
Automated Detection of Non-Termination and
NullPointerExceptions for Java Bytecode?

Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. Recently, we developed an approach for automated termina-
tion proofs of Java Bytecode (JBC), which is based on constructing and
analyzing termination graphs. These graphs represent all possible pro-
gram executions in a finite way. In this paper, we show that this approach
can also be used to detect non-termination or NullPointerExceptions.
Our approach automatically generates witnesses, i.e., calling the program
with these witness arguments indeed leads to non-termination resp. to
a NullPointerException. Thus, we never obtain “false positives”. We
implemented our results in the termination prover AProVE and provide
experimental evidence for the power of our approach.

1 Introduction

To use program verification in the software development process, one is not
only interested in proving the validity of desired program properties, but also in
providing a witness (i.e., a counterexample) if the property is violated.

Our approach is based on our earlier work to prove termination of JBC [4,
6, 17]. Here, a JBC program is first automatically transformed to a termination
graph by symbolic evaluation. Afterwards, a term rewrite system is generated
from the termination graph and existing techniques from term rewriting are used
to prove termination of the rewrite system. As shown in the annual International
Termination Competition,1 our corresponding tool AProVE is currently among
the most powerful ones for automated termination proofs of Java programs.

Termination graphs finitely represent all runs through a program for a certain
set of input values. Similar graphs were used for many kinds of program analysis
(e.g., to improve the efficiency of software verification [7], or to ensure termi-
nation of program optimization [22]). In this paper, we show that termination
graphs can also be used to detect non-termination and NullPointerExceptions.

In Sect. 2, we recapitulate termination graphs. In contrast to [4, 6, 17], we
also handle programs with arrays and we present an algorithm to merge abstract
states in a termination graph which is needed in order to keep termination graphs
finite. In Sect. 3 we show how to automatically generate witness states (i.e., suit-
able inputs to the program) which result in errors like NullPointerExceptions.
Sect. 4 presents our approach to detect non-termination. Here, we use an SMT
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Research Training Group 1298 (AlgoSyn).

1 See http://www.termination-portal.org/wiki/Termination_Competition



solver to find different forms of non-terminating loops and the technique of Sect. 3
is applied to generate appropriate witness states.

Concerning the detection of NullPointerExceptions, most existing tech-
niques try to prove absence of such exceptions (e.g., [15, 23]), whereas our ap-
proach tries to prove existence of NullPointerExceptions and provides coun-
terexamples which indeed lead to such exceptions. So in contrast to bug finding
techniques like [2, 9], our approach does not yield “false positives”.

Methods to detect non-termination automatically have for example been
studied for term rewriting (e.g., [11, 19]) and logic programming (e.g., [18]). We
are only aware of two existing tools for automated non-termination analysis of
Java: The tool Julia transforms JBC programs into constraint logic programs,
which are then analyzed for non-termination [20]. The tool Invel [24] investigates
non-termination of Java programs based on a combination of theorem proving
and invariant generation using the KeY [3] system. In contrast to Julia and
to our approach, Invel only has limited support for programs operating on the
heap. Moreover, neither Julia nor Invel return witnesses for non-termination. In
Sect. 5 we compare the implementation of our approach in the tool AProVE with
Julia and Invel and show that our approach indeed leads to the most powerful
automated non-termination analyzer for Java so far.

Moreover, [14] presents a method for non-termination proofs of C programs.
In contrast to our approach, [14] can deal with non-terminating recursion and in-
teger overflows. On the other hand, [14] cannot detect non-periodic non-termina-
tion (where there is no fixed sequence of program positions that is repeated in-
finitely many times), whereas this is no problem for our approach, cf. Sect. 4.2.

There also exist tools for testing C programs in a randomized way, which can
detect candidates for potential non-termination bugs (e.g., [13, 21]). However,
they do not provide a proof for non-termination and may return “false positives”.

2 Termination Graphs

public class Loop {
public static void main(String [] a){
int i = 0;
int j = a.length;
while (i < j) {
i += a[i]. length (); }}}

Fig. 1. Java Program

main(String [] a):
00: iconst_0 #load 0 to stack
01: istore_1 #store to i
02: aload_0 #load a to stack
03: arraylength #get array length
04: istore_2 #store to j
05: iload_1 #load i to stack
06: iload_2 #load j to stack
07: if_icmpge 22 #jump to end if i >= j
10: iload_1 #load i to stack
11: aload_0 #load a to stack
12: iload_1 #load i to stack
13: aaload #load a[i]
14: invokevirtual length #call length ()
17: iadd #add length and i
18: istore_1 #store to i
19: goto 05
22: return

length ():
00: aload_0 #load this to stack
01: getfield count #load count field
04: ireturn #return it

Fig. 2. JBC Program

We illustrate our approach by the
main method of the Java program in
Fig. 1. The main method is the en-
try point when starting a program. Its
only argument is an array of String
objects corresponding to the argu-
ments specified on the command line.
To avoid dealing with all syntactic
constructs of Java, we analyze JBC
instead. JBC [16] is an assembly-like



object-oriented language designed as intermediate format for the execution of
Java. The corresponding JBC for our example, obtained automatically by the
standard javac compiler, is shown in Fig. 2 and will be explained in Sect. 2.2.

The method main increments i by the length of the i-th input string until i
exceeds the number j of input arguments. It combines two typical problems:

(a) The accesses to a.length and a[i].length() are not guarded by appropri-
ate checks to ensure memory safety. Thus, if a or a[i] are null, the method
ends with a NullPointerException. While this cannot happen when the
method is used as an entry point for the program, another method could for
instance contain String[] b = {null}; Loop.main(b).

(b) The method may not terminate, as the input arguments could contain the
empty string. If a[i] = "", then the counter i is not increased, leading
to looping non-termination, as the same program state is visited again and
again. For instance, the call java Loop "" does not terminate.

We show how to automatically detect such problems and to synthesize appropri-
ate witnesses in Sect. 3 and 4. Our approach is based on termination graphs that
over-approximate all program executions. After introducing our notion of states
in Sect. 2.1, we describe the construction of termination graphs in Sect. 2.2.
Sect. 2.3 shows how to create “merged” states representing two given states.

2.1 Abstract States

Our approach is related to abstract interpretation [8], since the states in termi-
nation graphs are abstract, i.e., they represent a (possibly infinite) set of concrete
system configurations of the program. We define the set of all states as States =
(PPos×LocVar×OpStack)∗ × ({⊥} ∪Refs)×Heap×Annotations.

Consider the program from Fig. 1. The initial state A in Fig. 3 represents all
system configurations entering the main method with arbitrary tree-shaped (and
thus, acyclic) non-null arguments. A state consists of four parts: the call stack,
exception information, the heap, and annotations for possible sharing effects.

00 |a :a1 |ε
a1:String[ ] i1 i1: [≥0]

Fig. 3. State A

The call stack consists of stack frames, where several
frames may occur due to method calls. For readability, we
exclude recursive programs, but our results easily extend to
the approach of [6] for recursion. We also disregard multi-

threading, reflection, static fields, static initialization of classes, and floats.
Each stack frame has three components. We write the frames of the call stack

below each other and separate their components by “|”. The first component of
a frame is the program position, indicated by the number of the next instruction
(00 in Fig. 3). The second component represents the local variables by a list of
references to the heap, i.e., LocVar = Refs∗. To avoid a special treatment of
primitive values, we also represent them by references. In examples, we write the
names of variables instead of their indices. Thus, “a :a1” means that the value of
the 0-th local variable a is the reference a1 (i.e., a1 is the address of an array ob-
ject). Of course, different local variables can point to the same address. The third
component is the operand stack that JBC instructions work on, where OpStack
= Refs∗. The empty stack is “ε” and “i6, i4” is a stack with i6 on top.



Information about thrown exceptions is represented in the second part of
our states. If no exception is currently thrown, this part is ⊥ (which we do not
display in example states). Otherwise it is a reference to the exception object.

Below the call stack, information about the heap is given by a partial func-
tion from Heap = Refs → (Integers ∪ Unknown ∪ Instances ∪ Arrays
∪ {null}) and by a set of annotations which specify possible sharing effects.

Our representation of integers abstracts from the different bounded types
of integers in Java and considers arbitrary integer numbers instead (i.e., we
do not handle overflows). To represent unknown integer values, we use possibly
unbounded intervals, i.e., Integers = {{x ∈ Z | a ≤ x ≤ b} | a ∈ Z∪{−∞}, b ∈
Z∪{∞}, a ≤ b}. We abbreviate (−∞,∞) by Z and intervals like [0,∞) by [≥ 0].
So “i1: [≥0]” means that any non-negative integer can be at the address i1.

Classnames contains the names of all classes and interfaces in the program.
Types = Classnames∪ {t[ ] | t ∈ Types} contains Classnames and all re-
sulting array types. So a type t[ ] can be generated from any type t to describe
arrays with entries of type t.2 We call t′ a subtype of t iff t′ = t; or t′ extends3

or implements a subtype of t; or t′ = t̂′[ ], t = t̂[ ], and t̂′ is a subtype of t̂.

The values in Unknown = Types×{?} represent tree-shaped (and thus
acyclic) objects and arrays where we have no information except the type. For
example, for a class List with the field next of type List, “o1 : List(?)” means
that the object at address o1 is null or of a subtype of List.

Instances represent objects of some class. They are described by the values
of their fields, i.e., Instances = Classnames×(FieldIDs→ Refs). For cases
where field names are overloaded, the FieldIDs also contain the respective class
name to avoid ambiguities, but we usually do not display it in our examples. So
“o1 : List(next = o2)” means that at the address o1, there is a List object and
the value of its field next is o2. For all (cl , f) ∈ Instances, the function f is
defined for all fields of the class cl and all of its superclasses.

In contrast to our earlier papers [4, 6, 17], in this paper we also show how to
handle arrays. An array can be represented by an element from Types×Refs
denoting the array’s type and length (specified by a reference to an integer value).
For instance, “a1:String[ ] i1” means that at the address a1, there is a String

array of length i1. Alternatively, the array representation can also contain an
additional list of references for the array entries. So “a2 : String[ ] i1 {o1, o2}”
denotes that at the address a2, we have a String array of length i1, and its
entries are o1 and o2 (displayed in the Java syntax “{. . .}” for arrays). Thus,
Arrays = (Types×Refs) ∪ (Types×Refs×Refs∗).

In our representation, no sharing can occur unless explicitly stated. So an
abstract state containing the references o1, o2 and not mentioning that they
could be sharing, only represents concrete states where o1 and the references
reachable from o1 are disjoint4 from o2 and the references reachable from o2.

2 We do not consider arrays of primitives in this paper, but our approach can easily
be extended to handle them, as we did in our implementation.

3 For example, any type (implicitly) extends the type java.lang.Object.
4 Disjointness is not required for references pointing to Integers or to null.



Moreover, then the objects at o1 and o2 must be tree-shaped (and thus acyclic).
Certain sharing effects are represented directly (e.g., “o1 :List(next=o1)” is

a cyclic singleton list). Other sharing effects are represented by three kinds of an-
notations, which are only built for references o where h(o) /∈ Integers∪ {null}
for the heap h. The first kind of annotation is called equality annotation and has
the form “o1 =? o2”. Its meaning is that the addresses o1 and o2 could be
equal. We only use such annotations if the value of at least one of o1 and o2
is Unknown. Joinability annotations are the second kind of annotation. They
express that two objects “may join” (o1 %$ o2). We say that a non-integer and
non-null reference o′ is a direct successor of o in a state s (denoted o→s o

′) iff
the object at address o has a field whose value is o′ or if the array at address o
has o′ as one of its entries. The meaning of “o1 %$ o2” is that there could be an
o with o1 →∗s o ←+

s o2 or o1 →+
s o ←∗s o2, i.e., o is a common successor of the

two references. However, o1 %$ o2 does not imply o1 =? o2. Finally, as the third
type of annotations, we use cyclicity annotations “o!” to denote that the object
at address o is not necessarily tree-shaped (so in particular, it could be cyclic).

2.2 Constructing Termination Graphs

Starting from the initial state A, the termination graph in Fig. 4 is constructed
by symbolic evaluation. In the first step, we have to evaluate iconst 0, i.e., we
load the integer 0 on top of the operand stack. The second instruction istore 1

stores the value 0 on top of the operand stack in the first local variable i.5

After that, the value of the 0-th local variable a (the array in the input
argument) is loaded on the operand stack and the instruction arraylength

retrieves its (unknown) length i1. That value is then stored in the second local
variable j using the instruction istore 2. This results in the state B in Fig. 4.
We connect A and B by a dotted arrow, indicating several evaluation steps (i.e.,
we omitted the states between A and B for space reasons in Fig. 4).

From B on, we load the values of i and j on the operand stack and reach
C.6 The instruction if icmpge branches depending on the relation of the two
elements on top of the stack. However, based on the knowledge in C, we cannot
determine whether i >= j holds. Thus, we perform a case analysis (called integer
refinement [4, Def. 1]), obtaining two new states D and E. We label the refine-
ment edges from C to D and E (represented by dashed arrows) by the reference
i1 that was refined. In D, we assume that i >= j holds. Hence, i1 (corresponding
to j) is ≤ 0 and from i1 : [≥ 0] in state C we conclude that i1 is 0. We thus
reach instruction 22 (return), where the program ends (denoted by �).

In E, we consider the other case and replace i1 by i2, which only represents
positive integers. We mark what relation holds in this case by labeling the eval-
uation edge from E to its successor with 0 < i2. In general, we always use a

5 If we have a reference whose value is from a singleton interval like [0, 0] or null,
we replace all its occurrences in states by 0 resp. by null. So in state B, we simply
write “i :0”. Such abbreviations will also be used in the labels of edges.

6 The box around C and the following states is dashed to indicate that these states
will be removed from the termination graph later on.



00 |a :a1 |ε
a1:String[ ] i1 i1: [≥0]

A

05 |a :a1, i :0, j : i1 |ε
a1:String[ ] i1 i1: [≥0]

B

07 |a :a1, i :0, j : i1 | i1,0
a1:String[ ] i1 i1: [≥0]

C

07 |a :a1, i :0, j :0 |0,0
a1:String[ ] 0

D07 |a :a1, i :0, j : i2 | i2,0
a1:String[ ] i2 i2: [>0]

E

13|a :a1, i :0, j : i2 |0,a1,0
a1:String[ ] i2 i2: [>0]

F

a1[0] : o1
13|a :a1, i :0, j : i2 |0,a1,0
a1:String[ ] i2 i2: [>0]
o1:String(?) a1 %$ o1

G

14|a :a1, i :0, j : i2 |o1,0
a1:String[ ] i2 i2: [>0]
o1:String(?) a1 %$ o1

H 14|a :a1, i :0, j : i2 |o2,0
a1:String[ ] i2 i2: [>0]
o2:String(count=i3, . . .)
i3: [≥0] a1 %$ o2

K

14|a :a1, i :0, j : i2 |null,0
a1:String[ ] i2 i2: [>0]

I

exception: o3
14|a :a1, i :0, j : i2 |null,0
a1:String[ ] i2 i2: [>0]
o3:NullPointerExc(. . .)

J

00|this :o2 |ε
17|a :a1, i :0, j : i2 |0
a1:String[ ] i2 i2: [>0]
o2:String(count=i3, . . .)
i3: [≥0] a1 %$ o2

L

05|a :a1, i : i4, j : i2 |ε
a1:String[ ] i2 i2: [>0]
i4: [≥0]

M

05|a :a1, i : i4, j : i6 |ε
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

N

07|a :a1, i : i4, j : i6 | i6,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

O

T:07|a :a1, i : i4, j : i6 | i6,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

P

F:07|a :a1, i : i4, j : i6 | i6,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

Q

13|a :a1, i : i4, j : i6| i4,a1,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

R

a1[i4] : o4
13|a :a1, i : i4, j : i6| i4,a1,i4
a1:String[ ] i6 i6: [≥0]
o4:String(?) a1 %$ o4
i4: [≥0]

S

14|a :a1, i : i4, j : i6 |o4,i4
a1:String[ ] i6 i6: [≥0]
o4:String(?) a1 %$ o4
i4: [≥0]

T
14|a :a1, i : i4, j : i6|null,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

V

exception: o6
14|a :a1, i : i4, j : i6|null,i4
a1 : String[ ] i6 i6 : [≥0]
i4: [≥0]
o6:NullPointerExc(. . .)

W

14|a :a1, i : i4, j : i6 |o5,i4
a1:String[ ] i6 i6: [≥0]
o5:String(count=i7, . . .)
i4: [≥0] i7: [≥0] a1 %$ o5

U

04|this :o5 | i7
17|a :a1, i : i4, j : i6 | i4
a1:String[ ] i6 i6: [≥0]
o5:String(count=i7, . . .)
i4: [≥0] i7: [≥0] a1 %$ o5

X

17|a :a1, i : i4, j : i6 | i7 , i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0] i7: [≥0]

Y

05|a :a1, i : i8, j : i6 |ε
a1:String[ ] i6 i6: [≥0]
i8: [≥0]

Z

{i1}{i1}

0 < i2

{a1, 0}

0 ≤ 0, 0 < i2

{o1}

{o1}
i4= i3+0

{i4, i6} {i4, i6}

i4 < i6

{a1, i4}

0 ≤ i4, i4 < i6

{o4}

{o4}

i8 = i7 + i4

Fig. 4. Termination Graph

fresh reference name like i2 when generating new values by a case analysis, to
ensure single static assignments, which will be useful in the analysis later on. We
continue with instruction 10 and load the values of i, a, and i on the operand
stack, obtaining state F . To evaluate aaload (i.e., to load the 0-th element from
the array a1 on the operand stack), we add more information about a1 at the
index 0 and label the refinement edge from F to G accordingly. In G, we created
some object o1 for the 0-th entry of the array a1 and marked that o1 is reachable
from a1 by adding the joinability annotation a1 %$ o1.7

Now evaluation of aaload moves o1 to the operand stack in state H. When-
ever an array access succeeds, we label the corresponding edge by the condition
that the used index is ≥ 0 and smaller than the length of the array.

In H, we need to invoke the method length() on the object o1. However, we
do not know whether o1 is null (which would lead to a NullPointerException).

7 If we had already retrieved another value o′ from the array a1, it would also have
been annotated with a1 %$ o′ and we would consequently add o1 %$ o′ and o1 =? o′

when retrieving o1, indicating that the two values may share or even be equal.



Hence, we perform an instance refinement [4, Def. 5] and label the edges from
H to the new states I and K by the reference o1 that is refined. In I, o1 has
the value null. In K, we replace the reference o1 by o2, pointing to a concrete
String object with unknown field values. In Fig. 4, we only display the field
count, containing the integer reference i3. In this instance refinement, one uses
the special semantics of the pre-defined String class to conclude that i3 can only
point to a non-negative integer, as count corresponds to the length of the string.
In I, further evaluation results in a NullPointerException. A corresponding
exception object o3 is generated and the exception is represented in J . As no
exception handler is defined, evaluation ends and the program terminates.

In K, calling length() succeeds. In L, a new stack frame is put on top of the
call stack, where the implicit argument this is set to o2. In the called method
length(), we load o2 on the operand stack and get the value i3 of its field count.
We then return from length(), add the returned value i3 to 0, and store the re-
sult in the variable i. Afterwards, we jump back to instruction 05. This is shown
in state M and the computation i4 = i3 + 0 is noted on the evaluation edge.

But now M is at the same program position as B. Continuing our symbolic
evaluation would lead to an infinite tree, as we would always have to consider the
case where the loop condition i < j is still true. Instead, our goal is to obtain a
finite termination graph. The solution is to automatically generate a new state N
which represents all concrete states that are represented by B or M (i.e., N re-
sults from merging B and M). Then we can insert instance edges from B and M
to N (displayed by double arrows) and continue the graph construction with N .

2.3 Instantiating and Merging States

To find differences between states and to merge states, we introduce state po-
sitions. Such a position describes a “path” through a state, starting with some
local variable, operand stack entry, or the exception object and then continu-
ing through fields of objects or entries of arrays. For the latter, we use the set
ArrayIdxs = {[j] | j ≥ 0} to describe the set of all possible array indices.

Definition 1 (State Positions SPos). Let s=(〈fr0, . . . , frn〉, e, h, a) be a state
where each stack frame fr i has the form (ppi, lvi, osi). Then SPos(s) is the
smallest set containing all the following sequences π:

• π = lvi,j where 0≤ i≤n, lvi = 〈oi,0, . . . , oi,mi
〉, 0≤j≤mi. Then s|π is oi,j.

• π = osi,j where 0≤ i≤n, osi = 〈o′i,0, . . . , o′i,ki〉, 0≤j≤ki. Then s|π is o′i,j.
• π = exc if e 6= ⊥. Then s|π is e.
• π = π′ v for some v ∈ FieldIDs and some π′ ∈ SPos(s) where h(s|π′) =

(cl , f) ∈ Instances and where f(v) is defined. Then s|π is f(v).
• π = π′ len for some π′ ∈ SPos(s) where h(s|π′) = (t, i) ∈ Arrays or
h(s|π′) = (t, i, d) ∈ Arrays. Then s|π is i.
• π = π′ [j] for some [j] ∈ ArrayIdxs and some π′ ∈ SPos(s), where
h(s|π′) = (t, i, 〈r0, . . . , rq〉) ∈ Arrays and 0 ≤ j ≤ q. Then s|π is rj.

For any position π, let πs denote the maximal prefix of π such that πs ∈ SPos(s).
We write π if s is clear from the context.



For example, in state K, the position π = os0,0 count refers to the reference
i3, i.e., we have K|π = i3 and for the position τ = lv0,0 len, we have K|τ = i2.
As the field count was introduced between H and K by an instance refinement,
we have π 6∈ SPos(H) and πH = os0,0, where H|π = o1. We can now see that
B and M only differ in the positions lv0,0 len, lv0,1, and lv0,2.

A state s′ is an instance of another state s (denoted s′ v s) if both are at the
same program position and if whenever there is a reference s′|π, then either the
values represented by s′|π in the heap of s′ are a subset of the values represented
by s|π in the heap of s or else, π /∈ SPos(s). Moreover, shared parts of the heap
in s′ must also be shared in s. As we only consider verified JBC programs, the
fact that s and s′ are at the same program position implies that they have the
same number of local variables and their operand stacks have the same size. For
a formal definition of “instance”, we refer to Def. 9 in the appendix, where we
extended the “instance” definition from [4, Def. 3] to arrays.

For example, B is not an instance of M since hB(B|lv0,2
) = [0,∞) 6⊆ [1,∞) =

hM (M |lv0,2) for the heaps hB and hM of B and M . Similarly, M 6v B because
hM (M |lv0,1) = [0,∞) 6⊆ {0} = hB(B|lv0,1). However, we can automatically
synthesize a “merged” (or “widened”) state N with B v N and M v N by
choosing the values for common positions π in B and M to be the union of
the values in B and M , i.e., hN (N |π) = hB(B|π) ∪ hM (M |π). Thus, we have
hN (N |lv0,2) = [0,∞) ∪ [1,∞) = [0,∞) and hN (N |lv0,1) = {0} ∪ [0,∞) = [0,∞).

Algorithm mergeStates(s, s′):
ŝ = new State(s)
for π ∈ SPos(s) ∩ SPos(s′):

ref = mergeRef(s|π, s′|π)
ĥ(ref ) = mergeVal(h(s|π), h′(s′|π))
ŝ|π = ref

for π 6= π′ ∈ SPos(s):

if (s|π = s|π′ ∨ s|π =? s|π′)
∧ h(s|π) /∈ Integers∪{null}:
if π, π′ ∈ SPos(ŝ):

if ŝ|π 6= ŝ|π′: Set ŝ|π =? ŝ|π′

else:

Set ŝ|π %$ ŝ|π′

if s|π %$ s|π′ : Set ŝ|π %$ ŝ|π′

for π ∈ SPos(s):
if s|π!: Set ŝ|π !
if ∃ρ 6=ρ′:πρ,πρ′∈SPos(s) ∧ s|πρ=s|πρ′
∧ ρ, ρ′ have no common prefix 6= ε
∧ h(s|πρ) /∈ Integers∪{null}:
if πρ, πρ′ ∈ SPos(ŝ) ∧ ŝ|πρ 6= ŝ|πρ′ :

Set ŝ|π!
if {πρ, πρ′} 6⊆ SPos(ŝ): Set ŝ|π !

. . . same for SPos(s′) . . .
return ŝ

Fig. 5. Merging Algorithm

This merging algorithm is illus-
trated in Fig. 5. Here, h, h′, ĥ refer to
the heaps of the states s, s′, ŝ, respec-
tively. With new State(s), we cre-
ate a fresh state at the same program
position as s. The auxiliary func-
tion mergeRef is an injective map-
ping from a pair of references to
a fresh reference name. The func-
tion mergeVal maps two heap val-
ues to the most precise value from
our abstract domains that represents
both input values. For example,
mergeVal([0, 1], [10, 15]) is [0, 15],
covering both input values, but also
adding [2, 9] to the set of represented
values. For values of the same
type, e.g., String(count=i1, . . . ) and
String(count=i2, . . . ), mergeVal re-
turns a new object of same type with
field values obtained by mergeRef,
e.g., String(count=i3, . . . ) where i3
= mergeRef(i1, i2). When merging
values of differing types or null, a



value from Unknown with the most precise common supertype is returned.
To handle sharing effects, in a second step, we check if there are “sharing”

references at some positions π and π′ in s or s′ that do not share anymore in
the merged state ŝ. Then we add the corresponding annotations to the maximal
prefixes ŝ|π and ŝ|π′ . Furthermore, we check if there are non-tree shaped objects
at some position π in s or s′, i.e., if one can reach the same successor using
different paths starting in position π. Then we add the annotation ŝ|π !.

Theorem 2. Let s, s′ ∈ States and ŝ = mergeStates(s,s′). Then s v ŝ w s′.8

In our example, we used the algorithm mergeStates to create the state N
and draw instance edges from B and M to N . Since the computation in N also
represents the states C to M (marked by dashed borders), we now remove them.

We continue symbolic evaluation in N , reaching state O, which is like C. In C,
we refined our information to decide whether the condition i >= j of if icmpge

holds. However, now this case analysis cannot be expressed by simply refining
the intervals from Integers that correspond to the references i6 and i4 (i.e., a
relation like i4 ≥ i6 is not expressible in our states). Instead, we again generate
successors for both possible values of the condition i >= j, but do not change
the actual information about our values. In the resulting states P and Q, we
mark the truth value of the condition i >= j by “T” and “F”. The refinement
edges from O to P and Q are marked by the references i4 and i6 that are refined.
P leads to a program end, while we continue the symbolic evaluation in Q. As
before, we label the refinement edge from Q to R by i4 < i6.

R and S are like F and G. The refinement edge from R to S is labeled by
a1 and i4 which were refined in order to evaluate aaload (note that since we
only reach R if i4 < i6, the array access succeeds). As in H, we then perform
an instance refinement to decide whether calling length() on the object o4
succeeds, leading to U and V . From V , we again reach a program end after a
NullPointerException was thrown in W . From U , we reach X by evaluating
the call to length(). Between X to Y , we return from length(). After that,
we add the two non-negative integers i7 and i4, creating a non-negative integer
i8. The edge from Y to Z is labeled by the computation i8 = i7 + i4.

Z is again an instance of N . We can also use the algorithm mergeStates

to determine whether one state is an instance of another: When merging s, s′

to obtain a new state ŝ, one adapts mergeStates(s, s′) such that the algorithm
terminates with failure whenever we widen a value of s or add an annotation to ŝ
that did not exist in s (e.g., when we add ŝ|π =? ŝ|π′ and there is no s|π =? s|π′).
Then the algorithm terminates successfully iff s′ v s holds. After drawing the
instance edge from Z to N (yielding a cycle in our graph), all leaves of the graph
are program ends and thus the graph construction is finished.

We now define termination graphs formally. We extend our earlier definition
from [4] slightly by labeling edges with information about the performed refine-
ments and about the relations of integers. Let RelOp = {i ◦ i′ | i, i′ ∈ Refs, ◦ ∈
{<,≤,=, 6=,≥, >}} denote the set of relations between two integer references
such as i4 < i6 and ArithOp = {i = i′ ./ i′′ | i, i′, i′′ ∈ Refs, ./ ∈ {+,−, ∗, /,%}}
8 For all proofs, we refer to the appendix.



denote the set of arithmetic computations such as i8 = i7 + i4.
Termination graphs are constructed by repeatedly expanding those leaves

that do not correspond to program ends. Whenever possible, we use symbolic

evaluation
SyEv−→ . Here,

SyEv−→ extends the usual evaluation relation for JBC such
that it can also be applied to abstract states representing several concrete states.

For a formal definition of
SyEv−→ , we refer to [4, Def. 6]. In the termination graph,

the corresponding evaluation edges can be labeled by a set C ⊆ ArithOp∪RelOp
which corresponds to the arithmetic operations and (implicitly) checked relations
in the evaluation. For example, when accessing the index i of an array a succeeds,
we have implicitly ensured 0 ≤ i and i < a.length and this is noted in C.

If symbolic evaluation is not possible, we refine the information for some
references R by case analysis and label the resulting refinement edges with R.

To obtain a finite graph, we create a more general state by merging whenever
a program position is visited a second time in our symbolic evaluation and add
appropriate instance edges to the graph. However, we require all cycles of the
termination graph to contain at least one evaluation edge. By using an appro-
priate strategy for merging resp. widening states, we can automatically generate
a finite termination graph for any program.

Definition 3 (Termination Graph). A graph (V,E) with V ⊆ States, E ⊆
V ×

(
({Eval}× 2ArithOp∪RelOp)∪ ({Refine}× 2Refs)∪ {Ins}

)
× V is a termi-

nation graph if every cycle contains at least one edge labeled with some EvalC
and one of the following holds for each s ∈ V :

• s has just one outgoing edge (s,EvalC , s
′), s

SyEv−→ s′, and C is the set of
integer relations that are checked (resp. generated) in this step
• the outgoing edges of s are (s,RefineR, s1), . . . , (s,RefineR, sn) and {s1,
. . . , sn} is a refinement of s on the references R ⊆ Refs
• s has just one outgoing edge (s, Ins, s′) and s v s′
• s has no outgoing edge and s = (ε, e, h, a) (i.e., s is a program end)

The soundness proofs for the transformation from JBC to termination graphs
can be found in [4]. There, we show that if c is a concrete state with c v s for some
state s in the termination graph, then the JBC evaluation of c is represented in
the termination graph. We refer to [6, 17] for methods to use termination graphs
for termination proofs. In Sect. 3 and 4 we show how to use termination graphs
to detect NullPointerExceptions and non-termination.

3 Generating Witnesses for NullPointerExceptions

In our example, an uncaught NullPointerException is thrown in the “error
state” W , leading to a program end. Such violations of memory safety can be
immediately detected from the termination graph.9

To report such a possible violation of memory safety to the user, we now show

9 In C, memory safety means absence of (i) accesses to null, (ii) dangling pointers, and
(iii) memory leaks [25]. In Java, the JVM ensures (ii) and (iii), and only NullPoin-

terExceptions and ArrayIndexOutOfBoundsExceptions can destroy memory safety.



how to automatically generate a witness (i.e., an assignment to the arguments
of the program) that leads to the exception. Our termination graph allows us
to generate such witnesses automatically. This technique for witness generation
will also be used to construct witnesses for non-termination in Sect. 4.

So our goal is to find a witness state A′ for the initial state A of the method
main w.r.t. the “error state” W . This state A′ describes a subset of arguments,
all of which lead to an instance of W , i.e., to a NullPointerException.

Definition 4 (Witness State). Let s, s′, w ∈ States. The state s′ is a witness

state for s w.r.t. w iff s′ v s and s′
SyEv−→ ∗ w′ for some state w′ v w.

To obtain a witness state A′ for A automatically, we start with the error
state W and traverse the edges of the termination graph backwards until we
reach A. In general, let s0, s1, . . . , sn = w be a path in the termination graph
from the initial state s0 to the error state sn. Assuming that we already have a
witness state s′i for si w.r.t. w, we show how to generate a witness state s′i−1 for
si−1 w.r.t. w. To this end, we revert the changes done to the state si−1 when
creating the state si during the construction of the termination graph (i.e., we
apply the rules for termination graph construction “backwards”). Of course, this
generation of witness states can fail (in particular, this happens for error states
that are not reachable from any concrete instantiation of the initial state s0). So
in this way, our technique for witness generation is also used as a check whether
certain errors can really result from initial method calls.

In our example, the error state is W . Trivially, W itself is a witness state for
W w.r.t. W . The only edge leading to W is from V . Thus, we now generate a
witness state V ′ for V w.r.t. W . The edge from V to W represents the evaluation
of the instruction invokevirtual that triggered the exception. Reversing this
instruction is straightforward, as we only have to remove the exception object
from W again. Thus, V is a witness state for V w.r.t. W .

The only edge leading to V is a refinement edge from T . As a refinement
corresponds to a case analysis, the information in the target state is more precise.
Hence, we can reuse the witness state for V , since V is an instance of T . So V
is also a witness state for T w.r.t. W . 13|a :a2, i :0, j :1|0,a2,0

a2:String[ ] 1 {null}

Fig. 6. State R′
To reverse the edge between T and S, we have to undo

the instruction aaload. This is easy since S contains the
information that the entry at index i4 in the array a1 is o4. Thus the witness state
S′ for S w.r.t. W is like S, but here o4’s value is not an unknown object, but null.
Reversing the refinement between S and R is more complex. Note that not every
state represented by R leads to a NullPointerException. In S we had noted the
relation between the newly created reference o4 and the original array a1. In other
words, in S we know that a1[i4] is o4, where o4 has the value null in the witness
state S′ for S. But in R, o4 is missing. To solve this problem, in the witness state
R′ for R, we instantiate the abstract array a1 by a concrete one that contains
the entry null at the index i4. We use a simple heuristic10 to choose a suitable

10 Such heuristics cannot affect soundness, but just the power of our approach (choosing
unsuitable values may prevent us from finding a witness for the initial state).



length i6 for this concrete array, which tries to find “minimal” values. Here, our
heuristic chooses a1 to be an array of length one (i.e., i6 is chosen to be 1),
which only contains the entry null (at the index 0, i.e., i4 is chosen to be 0).
The resulting witness state R′ for R w.r.t. W is displayed in Fig. 6.

0|a :a2|ε
a2:String[ ] 1 {null}

Fig. 7. State A′

Reversing the evaluation steps between R and Q yields
a witness state Q′ for Q w.r.t. W . From O to Q, we have a
refinement edge and thus, Q′ is also a witness for O.

The steps from N to O can also be reversed easily. In N , we use a heuristic
to decide whether to follow the incoming edge from Z or from B. Our heuristic
chooses B as it is more concrete than Z. From there, we continue our reversed
evaluation until we reach a witness state A′ for the initial state A of the method
w.r.t. W , cf. Fig. 7. So any instance of A′ evaluates to an instance of W , i.e., it
leads to a NullPointerException. If the main method is called directly (as the
entry point of the program), then the JVM ensures that the input array does not
contain null references. But if the main method is called from another method,
then this violation of memory safety can indeed occur, cf. problem (a) in Sect. 2.

The following theorem summarizes our procedure to generate witness states.
If there is an edge from a state s1 to a state s2 in the termination graph and we
already have a witness state s′2 for s2 w.r.t. w, then Thm. 5 shows how to obtain
a witness state s′1 for s1 w.r.t. w. Hence, by repeated application of this construc-
tion, we finally obtain a witness state for the initial state of the method w.r.t. w.
If there is an evaluation edge from s1 to s2, then we first apply the reversed rules
for symbolic evaluation on s′2. Afterwards, we instantiate the freshly appearing
references (for example, those overwritten by the forward symbolic evaluation)
such that s′1 is indeed an instance of s1. If there is a refinement edge from s1 to
s2, then the witness state s′1 is like s′2, but when reading from abstract arrays
(such as between R and S), we instantiate the array to a concrete one in s′1. If
there is an instance edge from s1 to s2, then we intersect the states s1 and s′2 to
obtain a representation of those states that are instances of both s1 and s′2.

Theorem 5 (Generating Witnesses). Let (s1, l, s2) be an edge in the termi-
nation graph and let s′2 be a witness state for s2 w.r.t. w. Let s′1 ∈ States with:

• if l = EvalC , then s′1 is obtained from s′2 by applying the symbolic evaluation
used between s1 and s2 backwards. In s′1, we instantiate freshly appearing

variables such that s′1 v s1 and s′1
SyEv−→ s′2 holds.

• if l = RefineR, then s′1 v s′2.
• if l = Ins, then s′1 = s1 ∩ s′2 (for the definition of ∩, see [6, Def. 2]).

Then s′1 is a witness state for s1 w.r.t. w.

4 Proving Non-Termination

Now we show how to prove non-termination automatically. Sect. 4.1 introduces
a method to detect looping non-termination, i.e., infinite evaluations where the
interesting references (that determine the termination behavior) are unchanged.
Sect. 4.2 presents a method which can also detect non-looping non-termination.



4.1 Looping Non-Termination

For each state, we define its interesting references that determine the control flow
and hence, the termination behavior. Which references are interesting can be
deduced from the termination graph, because whenever the (changing) value of
a variable may influence the control flow, we perform a refinement. Hence, the
references in the labels of refinement edges are “interesting” in the corresponding
states. For example, the references i4 and i6 are interesting in the state O.

We propagate the information on interesting references backwards. For eval-
uation edges, those references that are interesting in the target state are also
interesting in the source state. Thus, i4 and i6 are also interesting in N .

When drawing refinement or instance edges, references may be renamed. But
if a reference at position π is interesting in the target state of such an edge, the
reference at π is also interesting in the source state. So i8 = Z|lv0,1

and i6 =
Z|lv0,2

are interesting in Z, as i4 = N |lv0,1
and i6 = N |lv0,2

are interesting in N .
Furthermore, if an interesting reference i of the target state was the result

of some computation (i.e., the evaluation edge is labeled with i = i′ ./ i′′), we
mark i′ and i′′ as interesting in the source state. The edge from Y to Z has the
label i8 = i7 + i4. As i8 is interesting in Z, i7 and i4 are interesting in Y .

Definition 6 (Interesting References). Let G = (V,E) be a termination
graph, and let s, s′ ∈ V be some states. Then I(s) ⊆ {s|π | π ∈ SPos(s)} is the
set of interesting references of s, defined as the minimal set of references with

• if (s,RefineR, s
′) ∈ E, then R ⊆ I(s).

• if (s, l, s′) ∈ E with l ∈ {RefineR, Ins}, then we have {s|π | π ∈ SPos(s) ∩
SPos(s′), s′|π ∈ I(s′)} ⊆ I(s).
• if (s,EvalC , s

′) ∈ E, then I(s′) ∩ {s|π | π ∈ SPos(s)} ⊆ I(s).
• if (s,EvalC , s

′) ∈ E, i = i′ ./ i′′ ∈ C and i ∈ I(s′), then {i′, i′′} ⊆ I(s).

Note that if there is an evaluation where the same program position is visited
repeatedly, but the values of the interesting references do not change, then this
evaluation will continue infinitely. We refer to this as looping non-termination.

To detect such non-terminating loops, we look at cycles s = s0, s1, . . . , sn−1,
sn = s in the termination graph. Our goal is to find a state v v s such that
when executing the loop, the values of the interesting references in v do not
change. More precisely, when executing the loop in v, one should reach a state
v′ with v′ vΠ v. Here, Π are the positions of interesting references in s and vΠ
is the “instance” relation restricted to positions with prefixes from Π, whereas
the values at other positions are ignored. The following theorem proves that if
one finds such a state v, then indeed the loop will be executed infinitely many
times when starting the evaluation in a concrete instance of v.

Theorem 7 (Looping Non-Termination). Let s occur in a cycle of the ter-
mination graph. Let Π = {π ∈ SPos(s) | s|π ∈ I(s)} be the positions of interest-

ing references in s. If there is a v v s where v
SyEv−→+ v′ for some v′ vΠ v, then

any concrete state that is an instance of v starts an infinite JBC evaluation.

We now automate Thm. 7 by a technique consisting of four steps (the first



three steps find suitable states v automatically and the fourth step checks whe-
ther v can be reached from the initial state of the method). Let s = s0, s1, . . . ,
sn−1, sn = s be a cycle in the termination graph such that there is an instance
edge from sn−1 to sn. In Fig. 4, N, . . . Z,N is such a cycle (i.e., here s is N).

1. Find suitable values for interesting integer references. In the first step, we
find out how to instantiate the interesting references of integer type in v. To this
end, we convert the cycle s = s0, . . . , sn = s edge by edge to a formula ϕ over
the integers. Then every model of ϕ indicates values for the interesting integer
references that are not modified when executing the loop.

Essentially, ϕ is a conjunction of all constraints that the edges are labeled
with. More precisely, to compute ϕ, we process each edge (si, l, si+1). If l is
RefineR, then we connect the variable names in si and si+1 by adding the
equations si|π = si+1|π to ϕ for all those positions π where si|π is in R and
points to an integer. Thus, for the edge from O to Q, we add the trivial equations
i4 = i4 ∧ i6 = i6, as the references were not renamed in this refinement step.

If l = EvalC , we add the constraints and computations from C to the formula
ϕ.11 Thus, for the edge from Q to R we add the constraint i4 < i6, for the edge
from S to T we add 0 ≤ i4 ∧ i4 < i6, and the edge from Y to Z yields i8 = i7+i4.
If l is Ins, we again connect the reference names in si and si+1 by adding the
equations si|π = si+1|π for all π ∈ SPos(si+1) that point to integers. Thus, for
the edge from Z to N , we get i6 = i6 ∧ i8 = i4. So for the cycle N, . . . , Z,N , ϕ
is i4 < i6 ∧ 0 ≤ i4 ∧ i8 = i7 + i4 ∧ i8 = i4 (where tautologies have been removed).

To find values for the integer references that are not modified in the loop,
we now try to synthesize a model of ϕ. In our example, a standard SMT solver
easily proves satisfiability and returns a model like i4 = 0, i6 = 1, i7 = 0, i8 = 0.

2. Guess suitable values for interesting non-integer references. We want to find
a state v v s such that executing the loop does not change the values of inter-
esting references in v. We have determined the values of the interesting integer
references in v (i.e., i4 is 0 and i6 is 1 in our example). It remains to determine
suitable values for the other interesting references (i.e., for a1 in our example)

05|a :a3, i :0, j :1|ε
a3:String[ ] 1

Fig. 8. State Z′

To this end, we use the following heuristic. We instantiate
the integer references in sn−1 according to the model found
for ϕ, yielding a state s′n−1 v sn−1. So in our example (where

sn = s is N and sn−1 is Z), we instantiate i6 and i8 in Z by 1 resp. 0, resulting
in the state Z ′ in Fig. 8 (i.e., here s′n−1 is Z ′).

05|a :a3, i :0, j :1|ε
a3:String[ ] 1 {o6}
o6:String(count=0, . . .)

Fig. 9. State N ′

Afterwards, we traverse the path from sn−1 back-
wards to s0 and use the technique of witness generation
from Sect. 3 to generate a witness v for s0 w.r.t. s′n−1

(i.e., v v s0 such that v
SyEv−→ + v′ for some v′ v s′n−1). In our example,12 the

11 Remember that we use a single static assignment technique. Thus, we do not have
to perform renamings to avoid name clashes.

12 During the witness generation, one again uses the model of ϕ for intermediate integer
references. So when reversing the iadd evaluation between Y and Z, we choose 0 as
value for the newly appearing reference i7.



witness generation results in the state N ′ in Fig. 9. Note that the witness gen-
eration technique automatically “guessed” a suitable instantiation for the array
(i.e., it was instantiated by a 1-element array containing just the empty string).

Indeed, N ′ v N and N ′
SyEv−→ + v′ for an instance v′ of Z ′ (i.e., in our example

s0 = s is N and v is N ′). Here, v′ is like Z ′, but instead of “a3:String[ ] 1”, we
have “a3:String[ ] 1 {o6}” and “o6:String(count=0, . . .)”. Thus, v′ = N ′.

3. Check whether the guessed values for non-integer references do not change in
the loop. While our construction ensures that the interesting integer references
remain unchanged when executing the loop, this is not ensured for the interesting
non-integer references. Hence, in the third step, we now have to check whether
v′ vΠ v holds, where Π are the positions of interesting references in s.

To this end, we adapt our algorithm mergeStates(v,v′) such that it termi-
nates with failure whenever we widen a value of v or add an annotation that did
not exist in v at a position with a prefix from Π. Then the algorithm terminates
successfully iff v′ vΠ v. In our example where v = v′ = N , we clearly have v′ vΠ
v. Hence by Thm. 7, any instance of v (i.e., of N ′) starts an infinite execution.

4. Check whether the non-terminating loop can be reached from the initial state.
In the fourth step, we finally check whether N ′ can be reached from the initial
state of the method. Hence, we again use the witness generation technique from
Sect. 3 to create a witness state for A w.r.t. N ′. This witness state has the
stack frame “00 | a : a3 | ε” where a3 is a 1-element array containing just the
empty string. In other words, we automatically synthesized the counterexample
to termination indicated in problem (b) of Sect. 2.

4.2 Non-Looping Non-Termination

static void nonLoop(
int x, int y) {
if (y >= 0) {

while(x >= y) {
int z = x - y;
if (z > 0) {

x--;
} else {

x = 2*x + 1;
y++; }}}}

Fig. 10. nonLoop(x,y)

A loop can also be non-terminating if the values of in-
teresting references are modified in its body. We now
present a method to find such non-looping forms of non-
termination. In contrast to the technique of Sect. 4.1,
this method is restricted to loops that have no sub-loops
and whose termination behavior only depends on integer
arithmetic (i.e., the interesting references in all states of
the loop may only refer to integers). Then we can con-

struct a formula that represents the loop condition and the computation on each
path through the loop. If we can prove that no variable assignment that satisfies
the loop condition violates it in the next loop iteration, then we can conclude
non-termination under the condition that the loop condition is satisfiable.

The method nonLoop in Fig. 11 does not terminate if x ≥ y ≥ 0. For example,
if x = 2, y = 1 at the beginning of the loop, then after one iteration we have
x = 1, y = 1. In the next iterations, we obtain x = 3, y = 2; x = 2, y = 2; and
x = 5, y = 3, etc. So this non-termination is non-looping and even non-periodic
(since there is no fixed sequence of program positions that is repeated infinitely
many times). Thus, non-termination cannot be proved by techniques like [14].

Consider the termination graph, which is shown in a simplified version in



Fig. 11. A node in a cycle with a predecessor outside of the cycle is called a
loop head node. In Fig. 11, A is such a node. We consider all paths p1, . . . , pn

. . . |x : i4, y : i2 | . . .
i4:Z i2: [≥0]

B

. . . |x : i1, y : i2 | . . .
i1:Z i2: [≥0]

A

. . . |x : i6, y : i7 | . . .
i6:Z i7: [>0]

C

i1 ≥ i2, i3 = i1 − i2,
i3 > 0, i4 = i1 − 1

i1 ≥ i2, i3 = i1 − i2,
i3 ≤ 0, i5 = 2 · i1,
i6 = i5 + 1, i7 = i2 + 1

Fig. 11. Graph for nonLoop

from the loop head node back to itself (without
traversing the loop head node in between), i.e.,
p1 = A, . . . , B,A and p2 = A, . . . , C,A. Here, p1
corresponds to the case where x ≥ y and z =
x − y > 0, whereas p2 handles the case where
x ≥ y and z = x − y ≤ 0. For each path pj , we
generate a loop condition formula ϕj (expressing
the condition for entering this path) and a loop
body formula ψj (expressing how the values of the
interesting references are changed in this path).

The formulas ϕj and ψj are generated as in
Step 1 of Sect. 4.1, where we add relations fromRelOp to ϕj and constraints from
ArithOp to ψj . In our example, ϕ1 is i1 ≥ i2 ∧ i3 > 0 and ϕ2 is i1 ≥ i2 ∧ i3 ≤ 0.
Moreover, ψ1 is i3 = i1− i2 ∧ i4 = i1− 1 and ψ2 is i3 = i1− i2 ∧ i5 = 2 · i1 ∧ i6 =
i5 + 1 ∧ i7 = i2 + 1. To connect these formulas, we use a labeling function `k

where for any formula ξ, `k(ξ) results from ξ by labeling all variables with k. We
use the labels 1, . . . , n for the paths through the loop and the label r for the resul-
ting variables (in the second run, leaving the loop). We construct the formula

ρ(p1, . . . , pn) = µ︸︷︷︸
invariants

∧ (
∨n

j=1
(`j(ϕj) ∧ `j(ψj) ∧ ιj))︸ ︷︷ ︸

first run through the loop

∧ (
∧n

j=1
(¬`r(ϕj) ∧ `r(ψj)))︸ ︷︷ ︸

second run, leaving the loop

Here, µ is a set of invariants that are known in the loop head node. So as we
know “i2: [≥0]” in state A, µ is i2 ≥ 0 for our example. The formula ιj connects
the variables labeled with j to the unlabeled variables in µ and to the variables
labeled with r in the formulas for the second iteration. So for every integer
reference i in the loop head node, ιj contains i = ij . Moreover, if i is an integer
reference at position π in the loop head node s and i′ is at position π in the
predecessor s′ of s (where there is an instance edge from s′ to s), then ιj contains
i′j = ir. For our example, ι1 is i1 = i11 ∧ i2 = i12 ∧ i14 = ir1 ∧ i12 = ir2.

Intuitively, satisfiability of the first two parts of ρ(p1, . . . , pn) corresponds
to one successful run through the loop. The third part encodes that none of
the loop conditions holds in the next run. Here, we do not only consider the
negated conditions ¬`r(ϕj), but we also need `r(ψj), as ϕj can contain variables
computed in the loop body. For example in nonLoop, `r(ϕ1) contains ir3 > 0.
But to determine how ir3 results from the “input arguments” ir1, i

r
2, one needs

`r(ψ1) which contains ir3 = ir1 − ir2. If an SMT solver proves unsatisfiability
of ρ(p1, . . . , pn), we know that whenever a variable assignment satisfies a loop
condition, then after one execution of the loop body, a loop condition is satisfied
again (i.e., the loop runs forever). Note that we generalized the notion of “loop
conditions”, as we discover the conditions by symbolic evaluation of the loop.
Consequently, we can also handle loop control constructs like break or continue.

So unsatisfiability of ρ(p1, . . . , pn) implies that the loop is non-terminating,
provided that the loop condition can be satisfied at all. To check this, we use an
SMT solver to find a model for σ(p1, . . . , pn) = µ∧ (

∨n
j=1(`j(ϕj)∧ `j(ψj)∧ ιj)).



Theorem 8 (Non-Looping Non-Termination). Let s be a loop head node in
a termination graph where I(s) only point to integer values and let p1, . . . , pn be
all paths from s back to s. Let ρ(p1, . . . , pn) be unsatisfiable and let σ(p1, . . . , pn)
be satisfiable by some model M (i.e., M is an assignment of integer references to
concrete integers). Let c v s be a concrete state where every integer reference in c
has been assigned the value given in M . Then c starts an infinite JBC evaluation.

From the model M of σ(p1, . . . , pn), we obtain an instance v of the loop head
node where we replace unknown integers by the values in M . Then the technique
from Sect. 3 can generate a witness for the initial state of the method w.r.t. v. For
our example, i1 = i11 = i13 = 1, i2 = i12 = ir2 = i14 = ir1 = 0 satisfies σ(p1, . . . , pn).
From this, we obtain a witness for the initial state with x = 1 and y = 0, i.e.,
we automatically generate a non-terminating counterexample.

5 Evaluation and Conclusion

Based on termination graphs for Java Bytecode, we presented a technique to
generate witnesses w.r.t. arbitrary error states. We then showed how to use
this technique to prove the reachability of NullPointerExceptions or of non-
terminating loops, which we detect by a novel SMT-based technique.

We implemented our new approach in the termination tool AProVE [12], using
the SMT solver Z3 [10] and evaluated it on a collection of 325 examples. They
consist of all 268 JBC programs from the Termination Problem Data Base that
is used in the annual International Termination Competition,13 all 55 examples
from [24] used to evaluate the Invel tool, and the two examples from this paper.
For our evaluation, we compared the old version of AProVE (without support
for non-termination), the new version AProVE-No containing the results of the
present paper, and Julia [20]. We were not able to obtain a running version of
Invel, and thus we only compared to the results of Invel reported in [24].

Invel Ex. Other Ex.
Y N F T R Y N F T R

AProVE-No 1 51 0 3 5 204 30 12 24 11
AProVE 1 0 5 49 54 204 0 27 39 15
Julia 1 0 54 0 2 166 22 82 0 4
Invel 0 42 13 0 ?

We used a time-out of 60 sec-
onds for each example. “Yes” and
“No” indicate how often termina-
tion (resp. non-termination) could
be proved, “Fail” states how often
the tool failed in less than 1 minute,
“T” indicates how many examples
led to a Time-out, and “R” gives the average Runtime in seconds for each
example. The experiments clearly show the power of our contributions, since
AProVE-No is the most powerful tool for automated non-termination proofs of
Java resp. JBC programs. Moreover, the comparison between AProVE-No and
AProVE indicates that the runtime for termination proofs did not increase due
to the added non-termination techniques. To experiment with our implementa-
tion via a web interface and for details on the experiments, we refer to [1].
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Appendix A. Proofs

To give the proof for Thm. 2, we first recapitulate the formal definition of “in-
stance” from [4, Def. 3], where we extended it in order to handle arrays.

Definition 9 (Instance). Let s′ = (〈fr ′0, . . . , fr
′
n〉, e′, h′, a′) and s = (〈fr0, . . . ,

frn〉, e, h, a), where fr ′i = (pp′i, lv
′
i, os

′
i) and fr i = (ppi, lvi, osi). We call s′ an

instance of s (denoted s′ v s) iff ppi = pp′i for all i and for all π, π′ ∈ SPos(s′):

(a) if h′(s′|π)∈Integers and π∈SPos(s), then h′(s′|π) ⊆ h(s|π)∈Integers.
(b) if h′(s′|π) = null and π ∈ SPos(s), then h(s|π) ∈ {null} ∪Unknown.
(c) if h′(s′|π) = (t′, ?) ∈ Unknown and π ∈ SPos(s), then

h(s|π) = (t, ?) ∈ Unknown and t′ is a subtype of t.
(d) if h′(s′|π) = (t′, i′) ∈ Arrays and π ∈ SPos(s), then

h(s|π) = (t, i) ∈ Arrays
or h(s|π) = (t, ?) ∈ Unknown and t′ is a subtype of t

(e) if h′(s′|π) = (t′, i′, d′) ∈ Arrays and π ∈ SPos(s), then
h(s|π) = (t, i, d) ∈ Arrays

or h(s|π) = (t, i) ∈ Arrays
or h(s|π) = (t, ?) ∈ Unknown and t′ is a subtype of t

(f) if h′(s′|π) = (cl ′, f ′) ∈ Instances and π ∈ SPos(s), then h(s|π) = (cl , ?)
or h(s|π) = (cl ′, f) ∈ Instances, where cl ′ must be a subtype of cl .

(g) if s′|π 6= s′|π′ and π, π′ ∈ SPos(s), then s|π 6= s|π′ .
(h) if s′|π = s′|π′ and π, π′ ∈ SPos(s) where h′(s′|π) 6∈ Integers∪{null},

then s|π = s|π′ or s|π =? s|π′ .
(i) if s′|π =? s′|π′ and π, π′ ∈ SPos(s), then s|π =? s|π′ .
(j) if

(
s′|π = s′|π′ or s′|π =? s′|π′ where h′(s′|π) 6∈ Integers∪{null}

)
and {π, π′} 6⊆ SPos(s) with π 6= π′, then s|π %$ s|π′ .

(k) if s′|π %$ s′|π′ , then s|π %$ s|π′ .
(l) if s′|π!, then s|π !.
(m)if there exist ρ, ρ′ ∈ (FieldIDs∪ArrayIdxs)∗ without common non-empty

prefix where ρ 6= ρ′, s′|πρ=s′|πρ′ , h′(s′|πρ) 6∈ Integers∪{null},
and ( {πρ, πρ′} 6⊆ SPos(s) or s|πρ=? s|πρ′ ), then s|π !.

To prove the soundness of the algorithm mergeStates, we repeat its defini-
tion with added line numbers in Fig. 12.

Theorem 2. Let s, s′ ∈ States and ŝ = mergeStates(s,s′). Then s v ŝ w s′.

Proof. We only show s v ŝ, as s′ v ŝ is completely analogous. Let h be the
heap of s and ĥ be the heap of ŝ. We assume that the algorithm never adds the
annotation ŝ|π =? ŝ|π′ for ĥ(ŝ|π), ĥ(ŝ|π′) 6∈ Unknown. If that happens in line

10 of the algorithm, we replace one of the two values ĥ(ŝ|π) or ĥ(ŝ|π′) by a value
from Unknown to be compatible with our requirement that in any annotation
o1 =? o2, at least one of the references points to a value from Unknown. Then
we restart the annotation computation in line 6.

We prove s v ŝ by checking each of the conditions from Def. 9. Let π, π′ ∈
SPos(s):



Algorithm mergeStates(s, s′):
01 ŝ = new State(s)
02 for π ∈ SPos(s) ∩ SPos(s′):
03 ref = mergeRef(s|π, s′|π)
04 ĥ(ref ) = mergeVal(h(s|π), h′(s′|π))
05 ŝ|π = ref
06 for π 6= π′ ∈ SPos(s):

07 if (s|π = s|π′ ∨ s|π =? s|π′)
08 ∧ h(s|π) /∈ Integers∪{null}:
09 if π, π′ ∈ SPos(ŝ):

10 if ŝ|π 6= ŝ|π′: Set ŝ|π =? ŝ|π′

11 else:

12 Set ŝ|π %$ ŝ|π′

13 if s|π %$ s|π′ : Set ŝ|π %$ ŝ|π′

14 for π ∈ SPos(s):
15 if s|π!: Set ŝ|π !
16 if ∃ρ 6=ρ′:πρ,πρ′∈SPos(s) ∧ s|πρ=s|πρ′
17 ∧ ρ, ρ′ have no common prefix 6= ε
18 ∧ h(s|πρ) /∈ Integers∪{null}:
19 if πρ, πρ′ ∈ SPos(ŝ) ∧ ŝ|πρ 6= ŝ|πρ′ :
20 Set ŝ|π!
21 if {πρ, πρ′} 6⊆ SPos(ŝ): Set ŝ|π !
22 . . . same for SPos(s′) . . .
23 return ŝ

Fig. 12. Merging Algorithm

(a)-(f): These conditions hold due to the (correct) merging of values
by mergeVal in line 4.

(g): If s|π 6= s|π′ and π, π′ ∈ SPos(ŝ), then by construction π, π′ ∈ SPos(s′)
and thus ŝ|π = mergeRef(s|π, s′|π) and ŝ|π′ = mergeRef(s|π′ , s′|π′).
Since mergeRef is injective, we have ŝ|π 6= ŝ|π′ .

(h): If s|π = s|π′ , h(s|π) 6∈ Integers∪{null}, and π, π′ ∈ SPos(ŝ), then
ŝ|π = ŝ|π′ or by line 10, ŝ|π =? ŝ|π′ .

(i): Analogous to (h).
(j): If π 6= π′, s|π = s|π′ or s|π =? s|π′ , h(s|π) 6∈ Integers∪{null}, and
{π, π′} 6⊆ SPos(ŝ), then ŝ|π %$ ŝ|π′ by line 12.

(k), (l): Similar to (j) (by line 13 resp. line 15).
(m):If ρ, ρ′ have no common non-empty prefix, ρ 6= ρ′, s|πρ = s|πρ′ , and

h(s|π) 6∈ Integers∪{null}, then
πρ, πρ′ ∈ SPos(ŝ) and ŝ|πρ = ŝ|πρ′ ,

or πρ, πρ′ ∈ SPos(ŝ) and ŝ|πρ =? ŝ|πρ′ and by line 20, ŝ|π!,
or {πρ, πρ′} 6⊆ SPos(ŝ) and by line 21, we have ŝ|π !. ut

Theorem 5 (Generating Witnesses). Let (s1, l, s2) be an edge in the termi-
nation graph and let s′2 be a witness state for s2 w.r.t. w. Let s′1 ∈ States with:



• if l = EvalC , then s′1 is obtained from s′2 by applying the symbolic evaluation
used between s1 and s2 backwards. In s′1, we instantiate freshly appearing

variables such that s′1 v s1 and s′1
SyEv−→ s′2 holds.

• if l = RefineR, then s′1 v s′2.
• if l = Ins, then s′1 = s1 ∩ s′2 (for the definition of ∩, see [6, Def. 2]).

Then s′1 is a witness state for s1 w.r.t. w.

Proof. For evaluation edges, we have s′1 v s1 and s′1
SyEv−→ s′2

SyEv−→ ∗ w′ for an
instance w′ v w, since s′2 is a witness state w.r.t. w.

For refinement edges, we have s2 v s1. As s′2 is a witness for s2 (and thus

s′2 v s2), we obtain s′1 v s′2 v s2 v s1. Moreover, since s′2
SyEv−→ ∗ w′ for an

instance w′ v w, s′1 v s′2 implies that s′1
SyEv−→ ∗ w′′ for an instance w′′ v w′ v w.

For instance edges, s′1 = s1 ∩ s′2 implies s′1 v s1 and s′1 v s′2. Hence, we

obtain s′1
SyEv−→ ∗ w′′ for an instance w′′ v w as for refinement edges. ut

Theorem 7 (Looping Non-Termination). Let s occur in a cycle of the ter-
mination graph. Let Π = {π ∈ SPos(s) | s|π ∈ I(s)} be the positions of interest-

ing references in s. If there is a v v s where v
SyEv−→+ v′ for some v′ vΠ v, then

any concrete state that is an instance of v starts an infinite JBC evaluation.

Proof. Let s = s0, . . . , sn = s be the cyclic path from s to s in the termination
graph. We assume that there is a concrete state c v v that starts no infinite

computation. As v
SyEv−→ + v′, there is a corresponding concrete JBC evaluation

c
SyEv−→+ c′ with c′ v v′. As v′ vΠ v v s, this corresponds to one run through the

loop.
By assumption, c and hence, c′ start no infinite computation. Thus when

continuing the evaluation of c′, one stays within the loop for some more time,
but then one leaves the loop. Let e be the last state in the evaluation of c′ that
is still within the loop and let e′ be the first state in this evaluation which is

outside the loop. So we have c′
SyEv−→ ∗ e SyEv−→ e′ and there is a state si from the

loop with e v si but e′ 6v si+1 (i.e, e
SyEv−→ e′ is the evaluation step where the

loop is left).
In the termination graph, the state si has several successors (at least one in

the loop and one outside of it). By soundness of the graph construction, e′ is an
instance of one of the successors of si.

By the definition of termination graphs, the only states with more than one
successor are states with outgoing refinement edges. Let R be the set of references
that these edges are marked with. Then the references from R are interesting in
si and by the definition of interesting references, the corresponding references
are also interesting in s. This means that Π contains the positions of those
references whose values determine whether one leaves the loop in an instance of
si.



Let vi v si be the state in the evaluation v
SyEv−→+ v′ that corresponds to the

state si (i.e., v
SyEv−→ ∗ vi

SyEv−→ ∗ v′). Since c′ v v′ vΠ v and since the evaluation
steps that evaluated c′ to e were also used to evaluate v to vi, we also obtain
e vΠ vi. Note that when evaluating vi further, we stay in the loop. But as Π
contains the positions of those references whose values determine whether one
leaves the loop, one obtains a corresponding evaluation in e, i.e., one cannot
leave the loop when evaluating e. In other words, the successor state e′ cannot
be outside the loop, which is a contradiction. ut

Theorem 8 (Non-Looping Non-Termination). Let s be a loop head node in
a termination graph where I(s) only point to integer values and let p1, . . . , pn be
all paths from s back to s. Let ρ(p1, . . . , pn) be unsatisfiable and let σ(p1, . . . , pn)
be satisfiable by some model M (i.e., M is an assignment of integer references to
concrete integers). Let c v s be a concrete state where every integer reference in c
has been assigned the value given in M . Then c starts an infinite JBC evaluation.

Proof. Assume that c does not start an infinite evaluation, i.e., its evaluation is

finite. We now consider the sequence c = c0
SyEv−→+ c1

SyEv−→+ . . .
SyEv−→+ cm−1

SyEv−→+

cm, which is part of this evaluation. Here, all ci are instances of the loop head
node s and all states in the computations between ci and ci+1 are no instances
of s. Moreover, no state reached after cm in the evaluation is an instance of s.
We know that m is at least 1, as M is a satisfying assignment for the disjunction
of loop conditions σ(p1, . . . , pn) and thus, the loop is traversed at least once.

From the values of the integer variables in cm−1, we can construct another
assignment M ′ satisfying σ(p1, . . . , pn), as by construction, the loop is traversed
once more (leading to cm). But as the loop is left after reaching cm, none of the
loop conditions `r(ϕj) holds for these values. Moreover, M ′ can also be extended
to satisfy all `r(ψj), which are conjunctions of equations of the form i = i′ ./ i′′,
where i is always a fresh variable. Then M ′ is also satisfying assignment for
ρ(p1, . . . , pn), which contradicts its unsatisfiability. ut


