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Abstract. One of the difficulties of proving program termination is
managing the subtle interplay between the finding of a termination ar-
gument and the finding of the argument’s supporting invariant. In this
paper we propose a new mechanism that facilitates better cooperation
between these two types of reasoning. In an experimental evaluation we
find that our new method leads to dramatic performance improvements.

1 Introduction

When proving program termination we are simultaneously solving two problems:
the search for a termination argument, and the search for a supporting invariant.
Consider the following example:

y := 1;
while x > 0 do

x := x − y;
y := y + 1;

done

To prove termination of this program we are looking to find both a termination
argument (i.e., “x decreases until 0”) and a supporting invariant (i.e., y > 0).
The two are interrelated: Without y > 0, we cannot prove the validity of the
(safety) property “x decreases until 0”; and without “x decreases towards 0”,
how would we know that we need to prove y > 0?

Several program termination proving tools (e.g. [15], [16], [23], [34], [39])
address this problem using a strategy that oscillates between calls to an off-the-
shelf safety prover (e.g. [1], [4], [11], [26], [31], etc.) and calls to a rank function
synthesis tool (e.g. [2], [7], [8], [35], etc.). In this setting a candidate termination
argument is iteratively constructed. The safety prover proves or disproves the
validity of the current argument via the search for invariants. Refinement of the
current termination argument is performed using the output of a rank function
synthesis tool when applied to counterexamples found by the safety prover.

A difficulty with this approach is that currently, the underlying tools do not
share enough information about the overall state of the termination proof. For ex-
ample, the rank function synthesis tool is only applied to the single path through
the program described by the counterexample found by the safety prover, while



the context of this single path is not considered at all. Meanwhile, the safety
prover is unaware of things such as which paths in the program have already
been deemed terminating and how those paths might contribute to other po-
tentially infinite executions. The result is lost performance, as the underlying
tools often make choices inappropriate to the common goal of fast termination
proving.

In this paper we introduce a technique that facilitates cooperation between
the underlying tools in a termination prover, thus allowing for decisions more
appropriate to the common good of proving program termination. The idea is
to use a single representation of the state of the termination proof search—
called a cooperation graph—that both tools operate over. Nodes in the graph
are marked as either termination-nodes or safety-nodes, thus indicating the role
they play in the state of the proof. With this additional information exposed, we
can now represent the progress of the termination proof search by modifying the
termination subgraph. This has practical advantages. For example, the safety
prover can be encouraged not to explore parts of the program that have already
been proven terminating. On the rank function synthesis side, we can make use
of the full program structure in order to find better termination arguments.

Our approach results in dramatic performance improvements compared to
earlier methods and our implementation succeeds on numerous programs on
which previous tools fail. In cases where previous tools do succeed, our imple-
mentation increases performance by orders of magnitude.

Related work. Numerous tools and techniques exist for termination proving (e.g.
[5], [7], [8], [10], [15], [17], [20], [21], [29], [34], [39], etc.). In many instances our
approach is related but essentially incomparable with these previous tools. For
example, size-change termination proving [29] sacrifices precision for consistency
with a fixed a priori finite abstraction and an essentially fixed termination ar-
gument. The result is an analysis that will fail to prove termination in more
complex cases, but that itself always terminates. This is in contrast to our tech-
nique which privileges precision over predictability (e.g. we use possibly non-
terminating techniques during the search for supporting invariants).

The tools most similar to our own are ARMC [34], TRex [25], CProver [39],
HSF [23], Terminator [15], and T2 [16]. As discussed above, the key difference
here is in our treatment of shared information. These previous tools share only
simple paths with the rank function synthesis procedure, and only the termina-
tion argument with the safety-based validity proving procedure. Our cooperation
graph, while similar in principle to previous representations (e.g. [15]), exposes
information in a way that facilitates operations on the graph that would have
been difficult or unsound in previous approaches. To see the difference, we look
to the experimental results which show a dramatic improvement over previous
approaches when our technique is applied.

In order to make use of the information that we have exposed we borrow sev-
eral existing techniques. For example, we adapt a program simplification strat-
egy from the dependency pair framework [3, 22, 27] to our shared graph as a way
of recording lemmas during the proof search. We use a recently developed tech-
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i := 0;
while i < n do

j := 0;
while j ≤ i do

j := j + 1;
done
i := i + 1;

done

start

`1

`2

τ0 : i := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

(a) (b)

Fig. 1. Textual and control-flow graph representation of skeleton bubble sort routine

nique for efficient rank function synthesis with multiple control-flow locations [2].
Finally, we build upon a recently developed iterative method for finding lexico-
graphic rank functions [16]. Our cooperation graphs facilitate the combination
of these complementary techniques, leading to a new tool that outperforms all
of the previous approaches.

Limitations. While in theory our approach works in a general setting, in our
implementation we are focusing on sequential arithmetic programs (e.g. these
programs do not use the heap or bitvectors). In some cases we have soundly
abstracted C programs with heap to arithmetic programs (e.g. using a technique
due to Magill et al. [30]); in other cases, as is standard in many tools (e.g.
SLAM [4]), we essentially ignored bitvectors and the heap. Techniques that
more accurately and efficiently reason about mixtures of heap and arithmetic
are an area of open interest.

2 Example

We illustrate our approach using the example in Fig. 1, which displays a bubble-
sort like program (the manipulation of the data has been abstracted away). In
our setting we use a graph—called a cooperation graph—to facilitate sharing of
information between a safety prover and a rank function synthesis procedure. See
Fig. 2 for the cooperation graph at the start of the proof search. Here we have
essentially duplicated the loops in the original program, with non-deterministic
transitions from one copy of the program to the other (i.e., τ4 and τ5). After
duplication, we apply a few known tricks: In the new copy of the program, we
follow the approach of Biere et al. [6] by adding nodes (i.e., `d1 and `d2) and transi-
tions to take a snapshot of variable values (i.e., γ1 and γ2). The current values of
variables i, j, n are stored in copies ic, jc, nc and the flag cpk is set to indicate that
a snapshot was taken at location `k. Furthermore, new transitions to an error
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start

`1

`2

`t1 `d1

`t2 `d2

err

err

τ0 : i := 0;
cp1 := 0;
cp2 := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

τ4 : skip;

τ5 : skip;

γ1 : if(cp1 < 1);
ic := i;
jc := j;
nc := n;
cp1 := 1;

η1 : if(cp1 < 1);

ρ1 : if(cp1 ≥ 1);

τ
t
1
:
if
(i
<
n)
;

j :
=
0;

τ t
2 :

if(j >
i);

i :=
i+

1;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

ρ2 : if(cp2 ≥ 1);

τt
3 : if(j ≤ i);

j := j + 1;

Fig. 2. Cooperation graph derived from Fig. 1

location “err” have been added that—using the approach of Cook et al. [15]—
can be strengthened later by partial termination arguments. Proving this error
location unreachable then implies a termination proof for the input program. In
the resulting graph, reasoning about termination is performed on the right-hand
side—called the termination subgraph—by a procedure built around an efficient
rank function synthesis. The search for supporting invariants is performed on
the left-hand side—called the safety subgraph—by a safety prover.

The advantage of the duplication (i.e. the termination and safety subgraphs)
is that we can easily restrict certain operations to either subgraph, but we main-
tain a connection between them. We use the safety subgraph to describe an
over-approximation of all reachable states, while the termination subgraph is an
over-approximation of those states for which termination has not been proven
yet. This allows us to perform operations in the one half that may not make sense
(or may be unsound) in the other. For example, when we prove that transitions
in the termination subgraph can only be used finitely often, we can simply re-
move them, as they cannot contribute to infinite executions. This is only sound
because the safety subgraph remains unchanged in this simplification, which
keeps the set of reachable states unchanged and hence allows reasoning about
safety/invariants. In our setting, these iterative program simplifications encode
the progress of the termination proof search and are directly available to the
safety prover when searching for more counterexamples.

The structure of the graph guides the safety prover to unproven parts of
the program, directly yielding relevant counterexamples that can be used by the
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rank function synthesis to produce better termination arguments. If these do
not allow a program simplification, they still guide the generation of invariants
by the safety prover for nodes in the safety subgraph. These in turn then sup-
port reasoning about the validity of termination arguments in the termination
subgraph.

Termination proof sketch. We now illustrate how termination is proved in our
setting. We begin searching for a path from the “start” location to the error loca-
tion “err”. We might, for example, choose the path 〈τ0, τ4, γ1, τ t1, η2, τ t3, η2, τ t2, ρ1〉
where τ0 is drawn from the safety subgraph and the other transitions come from
the termination subgraph. Here, 〈γ1, τ t1, η2, τ t3, η2, τ t2〉 form a cycle in the exe-
cution, returning back to location `t1. In our approach we do not simply use
this command sequence directly to search for a new termination argument (as
is done in previous tools). Instead, we additionally consider all transitions from
the termination subgraph that enter and exit nodes in the strongly connected
component (SCC) containing the found cycle of termination-transitions in the
counterexample. We call this enclosing SCC the SCC context of a certain cycle.
In this case, because the graph is so small, this includes the entire termination
subgraph:

start `1 `t1 `d1

`t2 `d2

τ0 : i := 0;
cp1 := 0;
cp2 := 0; τ4 : skip;

γ1 : if(cp1 < 1);
ic := i;
jc := j;
nc := n;
cp1 := 1;

η1 : if(cp1 < 1);

τ
t
1
:
if
(i
<
n)
;

j :
=
0;

τ t
2 :

if(j >
i);

i :=
i+

1;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

τt
3 : if(j ≤ i);

j := j + 1;

By examining a graph that includes extra termination-edges (e.g. τ t3) we can
see that the rank function n − i is a better rank function than j − i because τ t3
modifies j. Without τ t3, j appears as a constant and hence, j > i looks like a
suitable candidate invariant supporting the termination argument j− i.

Fig. 3 is the state of the cooperation graph after considering one counterex-
ample. We use the rank function with n − i + 1 for both `t1 and `d1, and n − i
for both `t2 and `d2. The value of this rank function is decreasing each time we
use the transition τ t1, and the condition i < n implies that the rank function
is bounded from below. Hence, τ t1 can only be used finitely often and we can
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start

`1

`2 `t2 `d2

err

τ0 : i := 0;
cp1 := 0;
cp2 := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

τ5 : skip;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

τt
3 : if(j ≤ i);

j := j + 1;

ρ2 : if(cp2 ≥ 1);

Fig. 3. Cooperation graph after safety and termination analysis on the graph from
Fig. 2. Due to termination analysis, the transition τ t2 has been removed. Afterwards, `t1
was not part of a non-trivial SCC anymore, so it, its duplicate `d1, and the connecting
transitions were removed.

remove it from the termination subgraph. Removing this transition is helpful
for future iterations of the proof search, as it no longer needs to be considered
when searching for further counterexamples. This also allows to remove `t1, `d1
and all transitions connected to the two, as they are not part of a non-trivial
strongly connected component anymore and hence cannot occur infinitely often
in an execution. Because these nodes and transitions are only used to reason
about termination, and not safety, we can soundly remove them. Removing the
corresponding node `1 from the safety subgraph is unsound, as this would make
the inner loop unreachable, without requiring a termination proof for it. In our
setting we use an incremental implementation of lazy abstraction with interpo-
lation (à la Impact [31]) to represent the inductive invariants for safety proving.
We are not displaying the additional information inferred by this safety proving
method in our cooperation graph here.

In the next iteration, starting on Fig. 3, all possible cycles allowed in the
termination subgraph use the transition τ t3. This transition can easily be proved
well-founded with the rank function i − j for the locations `t2 and `d2, allowing
us to remove τ t3 and then, `t2, `d2 and all connected transitions, leaving us with
a cooperation graph with an empty termination subgraph (i.e., with an empty
termination subgraph we are left with what is essentially the original graph from
Fig. 1). Thus we have proved termination. (In practice, our algorithm in Fig. 5
handles simple examples such as this one already in a preprocessing step. Here we
have given a counterexample-based termination proof for illustration purposes.)

3 Algorithm

In this section, we describe our new termination proving method more formally.
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Preliminaries. We represent programs as graphs of program locations connected
by transition rules with conditions and assignments to a set of integer variables
V. The canonical initial location is called start. Program states are tuples (k,x),
with k the current program location and x a column vector of the values of V
in some fixed order. Transitions are labeled by formulas relating pre- and post-
variables, where x′ is the post-variable corresponding to the pre-variable x (resp.
x are all pre-variables in fixed order, and x′ the post-variables). The statement
i := i + 1 is represented as i′ = i + 1 and if(i < n) as i < n. For example, the
commands on transition τ1 are equivalent to the formula i < n ∧ i′ = i ∧ j′ =
0∧ n′ = n. In this paper, we only consider linear program transitions and hence
use the constraint system A

(
x
x′
)
≥ a instead of the corresponding formula.

A program execution is a possibly infinite sequence of program states (k1,x1),
(k2,x2), . . . with k1=start, x1 freely chosen and for each pair (ki,xi), (ki+1,xi+1),
there is a program transition (ki, A

(
x
x′
)
≥ a, ki+1) such that A

( xi
xi+1

)
≥ a holds.

We call a program terminating if and only if it has no infinite execution.

Finding termination arguments. Past tools used constraint-based approaches for
finding rank functions for (sub)programs involving only one program location
(e.g. ARMC [34] and Terminator [15] use Podelski & Rybalchenko’s rank
function synthesis method [35], T2 [16] uses the approach due to Bradley et
al. [7] for lexicographic rank functions). In our setting, we need to find rank
functions for the SCC contexts of counterexamples in the termination subgraph,
which might involve transitions over several program points. For this purpose we
use the lexicographic rank function synthesis due to Alias et al. [2] to find linear
rank functions for a set of transitions using possibly several program locations.

Given a (finite) set of program transitions T , we prove termination iteratively.
When proving that transitions cannot be used infinitely often in an infinite
execution, we use an approach from the dependency pair framework [3, 22, 27] to
remove them. For this, we choose a sequence of rank functions f1, . . . , fm that
measure program states. A T-orienting rank function f is a measure of program
states in some well-founded ordered domain such that no transition t ∈ T allows
an increase of this measure, i.e., we require:∧

(k,A
(

x
x′
)
≥a,k′)∈T

∀x,x′.A
(

x
x′
)
≥ a→ f((k,x)) ≥ f((k′,x′)) (1)

Furthermore, we want that for at least one of the transitions t = (k,A
(

x
x′
)
≥

a, k′) in T the measure is actually decreasing and is bounded from below (0 is
a minimal element in our domain):

∀x,x′.A
(

x
x′
)
≥ a→ (f((k,x)) > f((k′,x′)) ∧ f((k,x)) ≥ 0) (2)

Similar to the dependency pair framework [3, 22, 27] and to monotonicity con-
straints [12], we compose lexicographic termination arguments from such T-
orienting rank functions. If Decreasing(T , f) ⊆ T is the set of transitions
for which (2) holds for some f with (1), then for proving termination it suffices
to consider executions that use only transitions from T \ Decreasing(T , f)
infinitely often (see also our technical report [9]).
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Consequently, we construct lexicographic termination arguments for a set
of transitions T by iteratively synthesizing such rank functions f . A transition
δ ∈ Decreasing(T , f) can only occur a finite number of times, so we ignore it
for the rest of our termination proof and only consider suffixes of infinite execu-
tions that do not use δ anymore. In our cooperation graphs, we build upon this
observation by removing transitions from the termination subgraph. There, any
finite prefix of a computation can be represented using the (unchanged) safety
subgraph, while the infinite suffix of a possibly non-terminating computation
is represented by the simplified termination subgraph. By repeatedly removing
transitions using different rank functions f1, . . . , fm, we mirror the progress of
building a lexicographic termination argument in the termination subgraph.

Cooperation graphs. The procedure Instrument, from Fig. 4, is used to con-
struct an initial cooperation graph with transitions C from a program P with
locations L and transitions T . We use two mappings SafetyLoc and Termina-
tionLoc from L to fresh location names. We first create the safety subgraph of
the cooperation graph as a copy of P. For the termination subgraph, we first use
SCC Transitions to identify all transitions on components that may influence
termination, i.e., all non-trivial strongly connected components in the control-
flow graph of P, and copy these to the termination subgraph. We then connect
the safety and termination subgraphs at cutpoints [19] of the original program,
allowing a non-deterministic jump from the safety to the termination location.

We then apply the safety-reduction from Cook et al. [16] on cutpoints in the
termination subgraph. The point of this reduction is to add an error location
that is reachable iff the lexicographic termination argument is invalid. For this,
we use a mapping CutpointDuplicate from cutpoints in the original program
to fresh location names. We first “move” all transitions originally starting in the
termination copy of the cutpoint pt to its new duplicate. We then connect pt to
its duplicate by two transitions, one taking a snapshot of the current variable
state, one doing nothing. In our example in Fig. 1, `1 is a cutpoint and we
choose CutpointDuplicate(`1) = `d1. The function snapshot produces the
assignments needed to take a snapshot of the variables, i.e., storing copies of
variables v in an extra variable vc and setting an integer flag cpk that indicates
that a snapshot at location k was taken. An example of the result is γ1 from
Fig. 2. Its twin nosnapshot does not do anything. Note that both resulting
transitions can only be used if no snapshot of the program variables was taken
at this program point before. Finally, we connect pt to the error location by a
transition that assumes that no decrease was found using the current set of rank
functions. This set of rank functions is initially empty, and will be strengthened
in the termination proof. Hence, the function nodecrease only returns the
condition stating that a snapshot has been taken (e.g., for `t2 we have cp2 ≥ 1).

We define projections Safety and Termination on the cooperation graph.
Safety(C) are the transitions in C between locations in range(SafetyLoc),
while the projection Termination(C) are the transitions between locations in
range(TerminationLoc) ∪ range(CutpointDuplicate) ∪ {err}. The safety
projection Safety(C) is isomorphic to the original program, and the termination
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Input: Program with transitions T , start location start
Output: Cooperation graph C with start location SafetyLoc(start)
1: C := ∅
2: for all (`, τ, `′) in T do
3: C := C ∪ {(SafetyLoc(`), τ,SafetyLoc(`′))}
4: end for
5: for all (`, τ, `′) in SCC Transitions(T ) do
6: C := C ∪ {(TerminationLoc(`), τ,TerminationLoc(`′))}
7: end for
8: for all p in Cutpoints(T ) do
9: pt := TerminationLoc(p)

10: pd := CutpointDuplicate(p)
11: C := C ∪ {(SafetyLoc(p), skip, pt)}
12: for all (pt, τ, `′) in C do
13: C := (C \ {(pt, τ, `′)}) ∪ {(pd, τ, `′)}
14: end for
15: C := C ∪ {(pt, snapshot(p), pd), (pt,nosnapshot(p), pd)}
16: C := C ∪ {(pt,nodecrease(p), err)}
17: end for
18: return C

Fig. 4. Procedure Instrument, which initializes a new cooperation graph.

projection corresponds to a termination problem without explicit start state.
In our termination proofs, Safety(C) represents the set of reachable states,

and thus remains unchanged. In practice we use an incremental safety prover
on this graph to find the necessary inductive invariants on demand. Meanwhile,
Termination(C) represents the set of states for which we have not proven ter-
mination yet. We change Termination(C) in each iteration of the algorithm by
possibly removing transitions and strengthening the conditions of the transitions
from cutpoints to the error location. Consequently, questions of reachability and
validity of invariants are based on the safety projection.

Refinement algorithm. Our cooperation-based termination procedure is found in
Fig. 5. We first use Instrument to create a cooperation graph from our input
program. Then, we try to find (partial) lexicographic rank functions to simplify
SCCs in the termination part of the graph, where Decreasing(S, f) identifies
the transition rules satisfying (2) from above.

In simple examples such as that of Sect. 2, this preprocessing step can ac-
tually already prove termination, by removing all possible paths to the error
location before the main loop begins. In more complex cases, we enter the main
loop, in which we search for counterexamples to the decrease of the rank func-
tions found so far. Our counterexamples are lassos, with the cycle part in the
termination subgraph, starting in some cutpoint p, while the stem can always be
represented using only the safety subgraph. In the cycle, we first take a snapshot
of the current variable state and then return back to the termination copy of the
cutpoint p, finding that the current set of rank functions do not show a decrease.
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Input: Program with start state start, transitions T
Output: “Terminating” or “Unknown”
1: C := Instrument(T )
2: for all S in SCCs(Termination(C)) do
3: while ∃ S-orienting rank function f do
4: C := C \Decreasing(S, f)
5: S := S \Decreasing(S, f)
6: end while
7: end for
8: while ∃ counterexample (stem, cycle) from SafetyLoc(start) to err in C do
9: S := SCC Context(Termination(C), cycle)

10: if ∃ S-orienting rank function f then
11: C := C \Decreasing(S, f)
12: C := Strengthen(C, cycle, f)
13: else if ∃ any rank function f for cycle then
14: C := Strengthen(C, cycle, f)
15: else
16: return “Unknown”
17: end if
18: end while
19: return “Terminating”

Fig. 5. Procedure Refinement, which oscillates between a safety prover and a rank
function synthesis tool using a cooperation graph.

The counterexample is then used to synthesize a new rank function f . We
first determine the SCC context of the cycle in the termination subgraph of the
cooperation graph. We then try to find a rank function that is non-increasing for
the SCC context of the cycle and decreases for our counterexample. If we find
such a rank function, we remove any transitions that we have proven decreasing
in all cases from the termination subgraph. We additionally use Strengthen
to restrict the transition from the cutpoint p in the counterexample to the error
location further, i.e., we only allow going to the error location if the newly found
rank function does not decrease.

The procedure Strengthen refines the partial termination argument in the
safety-representation, as is done in previous tools (e.g. [15], [16], [23], [34], [25],
[39]). We use lexicographic termination arguments as in Cook et al. [16]. Such an
argument has the form 〈f1, . . . , fn〉, where the fi are the rank functions at some
cutpoint p. If we can find a S-orienting rank function, we can always prepend
it to an existing lexicographic termination argument (computed “bottom-up”).
If no such rank function could be found, we fall back to the method from Cook
et al. [16], synthesizing a rank function such that a lexicographic termination
argument for the counterexamples found so far can be constructed.

We then construct constraints that only allow a transition if an iteration
did not make the variable state decrease w.r.t. this argument. Formally, we use
the snapshots of old variable values to construct the pre-state s = (p,x) at the
beginning of the loop iteration and create the post-state s′ = (p,x′) of the loop
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iteration from the current variables. Then, Strengthen encodes the following
condition:4

¬
( ∨
1≤i≤n

fi(s) > fi(s
′) ∧ fi(s) ≥ 0 ∧ (

∧
1≤j<i

fj(s) ≥ fj(s′))
)

Strengthen uses the cycle passed as an argument to determine at which cut-
point to strengthen the termination argument. If we could find no rank function
for the cycle, we give up.5 Finally, if no counterexamples exist anymore, we re-
port termination. For a correctness proof of our termination proving procedure
in Fig. 5, please see the technical report [9].

As in earlier work, this use of Strengthen allows the termination prover to
speculate termination arguments based on single counterexamples. The safety
prover then has to find invariants proving the speculated argument to be correct,
or provide more counterexamples. However, in our cooperation graph setting,
the safety prover is helped in this by the removal of transitions proven to be
terminating. This both speeds up the state space exploration and avoids to refute
many spurious counterexamples. Moreover, by splitting executions into finite
prefixes (in the safety subgraph) and possibly infinite suffixes (in the termination
subgraph), the safety prover can infer “eventual invariants”, i.e., formulas that
always hold after a finite time.

4 Evaluation

To evaluate the usefulness of our idea we have compared our implementation
against the following tools/configurations:

– Terminator [15], which implements an oscillation between rank function
synthesis and safety using termination arguments expressed as transition
invariants [36].

– T2 [16], which implements a Terminator-like oscillation between rank
function synthesis and safety using termination arguments expressed as lex-
icographic rank functions.

– Cooperating-T2: Our implementation of the procedure from Fig. 5, which
is based on T2.6

– ARMC [34], which also implements a Terminator-like procedure. Note
that, as of the writing of this paper, Rybalchenko’s C-to-clauses converter
was not complete, and thus we could not compare against HSF. Based on
experience with the two tools we expect that ARMC and HSF will have
comparable results when proving termination [38].

– AProVE [21], a termination prover based on the dependency pair frame-
work [3, 22, 27] and including an implementation of the rank function syn-
thesis à la Alias et al. [2]. AProVE does not generate invariants on demand
and hence always uses the supporting invariant true.

4 Disjunctions in transition conditions can be expressed using several transitions.
5 Actually, we then attempt to prove non-termination, but the details of that procedure

are orthogonal to the point of this paper.
6 For details on accessing a source-based release of this tool, please see [9].
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– AProVE+Interproc, which uses the abstract interpretation tool Inter-
proc [28] to generate as many invariants as possible using the Octagon
abstract domain [33] before running AProVE.

– Size-change/MCNP, an implementation of termination proofs via mono-
tonicity constraints [12], an efficient generalization of the size-change princi-
ple [29]. The abstraction from integer programs to monotonicity constraints
is implemented in AProVE.

– KITTeL, another termination prover based on termination proving tech-
niques from rewriting systems [18].

During our evaluation we ran tools on a set of 449 termination proving bench-
marks drawn from a variety of applications that were also used in prior tool
evaluations (e.g. Windows device drivers, the Apache web server, the Post-
greSQL server, integer approximations of numerical programs from a book on
numerical recipes [37], integer approximations of benchmarks from LLBMC [32]
and other tool evaluations). Of these, 260 are known to be terminating and 181
are known to be non-terminating. For a handful examples, no result is known.
These include the Collatz conjecture, and the remaining are very large and hence
have not been analyzed manually. Our benchmarks and results can be found at

http://verify.rwth-aachen.de/brockschmidt/Cooperating-T2/

Experiments for Terminator, T2, and Cooperating-T2 were performed on
a quadcore 2.26GHz E5520 system with 4GB of RAM and running Windows 7.
All other experiments were performed on a quadcore 3.07GHz Core i7 system
with 4GB of RAM and running Debian Linux 6. We ran all tools with a timeout
of 300 seconds. When a tool returned early without a definite result or crashed,
we display this in the plots using the special “NR” (no result) value.

Term Non-Term

Cooperating-T2 91.4% 96%

AProVE 73.5% n.a.

KITTeL 73.1% n.a.

T2 70.5% 99%

AProVE+Interproc 69.0% n.a.

Terminator 66.0% 100%

Size-Change/MCNP 58.2% n.a.

ARMC 51.5% n.a.

Fig. 8. Evaluation overview

The results of our test runs are
displayed in Figs. 6–8. Fig. 6 con-
tains two plots which chart the dif-
ference between our new procedure
and T2’s previous procedure, in log
scale. Plot (a) represents the results
when applied to programs that ter-
minate. Plot (b) contains the re-
sults from non-terminating bench-
marks. Here both configurations of
T2 use an approach similar to the approach used in TNT [24]. Our method
from Fig. 5 has a fixed overhead, making non-terminating proofs for examples
where the first counterexample already suffices to find a non-termination argu-
ment slower. Additionally, our method exposes a performance/non-termination
bug in Z3 in a few cases, leading to some additional timeouts. In non-terminating
examples with many other terminating loops, our program simplifications speed
up the search for a non-termination proof. Fig. 7 compares our procedure to
the other termination proving tools (to accommodate that not all tools support
non-termination proofs, we only consider those examples that are not known to
be non-terminating here). Fig. 8 gives the percentages of benchmarks proved
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Fig. 6. Evaluation results of Cooperating-T2 vs. Standard T2, in log scale. Plot (a)
represents the results of the two tools on terminating benchmarks, (b) represents non-
terminating benchmarks. Timeout=300s. NR=“No Result”. The NR cases are due to
failure of the underlying safety prover to find an inductive invariant.

(non-)terminating by the respective tools. The improvement for terminating
benchmarks is dramatic: Cooperating-T2 times out or fails far less often than
competing tools. On non-terminating benchmarks, the difference is small.

Discussion. Overall, the performance gains of our approach over previous tech-
niques are dramatic. Our method does not just speed up termination proving,
it makes a dramatic improvement in cases where previous tools time out or fail.
Our experimental results also show how important supporting invariants are, e.g.
in Cooperating-T2 vs. AProVE we see that many results cannot be obtained
with the invariant true, even though AProVE also uses modern rank function
synthesis algorithms (e.g. [2]). Furthermore, the result of AProVE+Interproc
indicates that an eager search for invariants in a preprocessing step is not a suit-
able solution to this problem, as this leads to more timeouts. In-depth analysis
shows that these are not only due to timeouts in the preprocessing tool Inter-
proc, but that the wealth of generated invariants also slows down the later
termination proof. As expected [16], the performance of ARMC and Termina-
tor is worse than that of T2. Thus, since our approach improves dramatically
over T2, it also represents an improvement over ARMC and Terminator.

5 Conclusion

One of the difficulties for reliable and scalable program termination provers is
orchestrating the interplay between the reasoning about progress and the search
for supporting invariants. In this paper we have developed a new method that
facilitates cooperation between these two types of reasoning. Our representation
gives the underlying tools the whole picture of the current proof state, allow-
ing both types of reasoning to contribute towards the greater goal and also to
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Fig. 7. Evaluation results of Cooperating-T2 vs. other termination proving tools (see
Fig. 6 for comparison to T2). Scatter plots are in log scale. Timeout=300s. NR=“No
Result”, indicating failure of the tool.
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share their intermediate findings. As we have demonstrated experimentally, our
approach leads to dramatic performance gains.

Future work. We have focused on a method to improve performance of termi-
nation analysis for arithmetic programs. Our technique could be adapted for
additional contexts. For example, a finite-state model checker could potentially
make use of similar information when proving safety properties resulting from the
liveness-to-safety reduction from Biere et al. [6]. The techniques developed here
can possibly be adapted to proving termination of heap-based programs, perhaps
by using shape analysis techniques in the safety subgraph to learn arithmetic
invariants for the termination subgraph. Finally, we expect that the approach
developed here adapts naturally to the problem of CTL and LTL model checking
(e.g. via [13] and [14]), but we have not looked into this in detail yet.
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