

Prof. Dr. J. Giesl

M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Vorname:							
Nachname:							
Matrikelnummer:							
Studiengang (bitte ankreuzen):							
o Informatik Bachelor	o Informatik Lehramt						
Informatik Master (Auflage)	 Informatik Promotion (Auflage) 						
 Mathematik Bachelor 	 Technik-Kommunikation Bachelor 						
 Technik-Kommunikation M.A. 	Sonstige:						

	Anzahl Punkte	Erreichte Punkte
Aufgabe 1	5	
Aufgabe 2	5	
Aufgabe 3	4	
Aufgabe 4	4	
Aufgabe 5	4	
Aufgabe 6	8	
Aufgabe 7	3	
Aufgabe 8	4	
Summe	37	

Hinweise:

- Geben Sie Ihre Antworten in lesbarer und verständlicher Form an.
- Schreiben Sie mit dokumentenechten Stiften, nicht mit roten oder grünen Stiften und nicht mit Bleistiften.
- Bitte beantworten Sie die Aufgaben auf den Aufgabenblättern (benutzen Sie auch die Rückseiten).
- Auf alle Blätter (inklusive zusätzliche Blätter) müssen Sie Ihren Vornamen, Ihren Nachnamen und Ihre Matrikelnummer schreiben.
- Was nicht bewertet werden soll, streichen Sie bitte durch.
- Werden **Täuschungsversuche** beobachtet, so wird die Klausur mit **0 Punkten** bewertet.
- Geben Sie am Ende der Übung alle Blätter zusammen mit den Aufgabenblättern ab.

Aufgabe 1 (Endliche Automaten):

(3 + 1 + 1 = 5 Punkte)

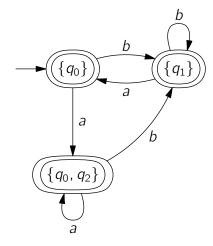
Sei $\Sigma = \{a, b\}$ ein Alphabet. Betrachten Sie den folgenden NFA M.



- a) Überführen Sie den NFA M in einen DFA M' mit L(M) = L(M'), indem Sie den Potenzautomaten zu M bilden.
- **b)** Gilt $L(M) = \Sigma^*$? Geben Sie eine kurze Begründung für Ihre Aussage.
- c) Geben Sie den minimalen DFA M_{min} mit $L(M) = L(M_{min})$ an. Sie müssen für diese Aufgabe **nicht** den Minimierungsalgorithmus aus der Vorlesung anwenden. Das Ergebnis aus Aufgabenteil b) könnte jedoch hilfreich sein.

Lösung:			

a) Wir wenden die Potenzmengenkonstruktion auf den NFA M an und erhalten den folgenden DFA M'.



b) Wir sehen, dass der DFA M' ausschließlich Endzustände besitzt. Daher gilt $L(M) = L(M') = \Sigma^*$.

c) Da $L(M) = \Sigma^*$ gilt, können wir M_{min} direkt angeben.

Aufgabe 2 (Induktionsbeweis):

(5 Punkte)

Sei Σ ein Alphabet und $\sigma: \Sigma \to \Sigma$ eine Permutation über Σ . Beispielsweise wäre für $\Sigma = \{a, b, c\}$ die Funktion σ mit $\sigma(a) = b$, $\sigma(b) = c$ und $\sigma(c) = a$ eine Permutation.

Wir erweitern σ zu einer Funktion $\overline{\sigma}: \Sigma^* \to \Sigma^*$ auf Wörtern, indem wir jedes Zeichen einzeln permutieren:

$$\overline{\sigma}(w) = \begin{cases} \overline{\sigma}(w') \cdot \sigma(a) & \text{, falls } w = w' \cdot a \text{ mit } a \in \Sigma, w' \in \Sigma^* \\ \epsilon & \text{, falls } w = \epsilon \end{cases}$$

Für σ wie oben gilt also $\overline{\sigma}(abc) = bca$.

Zu jedem DFA $M=(Q, \Sigma, \delta, q_0, F)$ erstellen wir nun einen DFA $\overline{M}=(Q, \Sigma, \delta', q_0, F)$, der die permutierten Wörter erkennen soll. Dafür definieren wir $\delta'(q, \sigma(a)) = \delta(q, a)$.

Um nachzuweisen, dass $L(\overline{M})=\{\overline{\sigma}(w)\mid w\in L(M)\}$ gilt, beweisen Sie die allgemeinere Aussage

$$\hat{\delta}'(q, \overline{\sigma}(w)) = \hat{\delta}(q, w)$$

für alle $q \in Q$ und verwenden Sie dabei Induktion über die Wortlänge |w|.

Lösung

Im Induktionsanfang ist $w = \epsilon$ und es gilt $\hat{\delta}'(q, \overline{\sigma}(\epsilon)) = \hat{\delta}'(q, \epsilon) = q = \hat{\delta}(q, \epsilon)$.

Im Induktionsschritt betrachten wir $w=w'\cdot a$ für ein $a\in\Sigma$ und setzen voraus, dass die Aussage für w' bereits gilt.

Dann gilt:

$$\hat{\delta}'(q, \overline{\sigma}(w)) \stackrel{w=w' \cdot a}{=} \hat{\delta}'(q, \overline{\sigma}(w' \cdot a))$$

$$\stackrel{\text{Def. } \overline{\sigma}}{=} \hat{\delta}'(q, \overline{\sigma}(w') \cdot \sigma(a))$$

$$\stackrel{\text{Def. } \delta'}{=} \delta' \quad \delta'(\hat{\delta}'(q, \overline{\sigma}(w')), \sigma(a))$$

$$\stackrel{\text{IH}}{=} \delta'(\hat{\delta}(q, w'), \sigma(a))$$

$$\stackrel{\text{Def. } \delta'}{=} \delta \hat{\delta}(q, w' \cdot a)$$

$$\stackrel{\text{Def. } \delta}{=} \hat{\delta}(q, w)$$

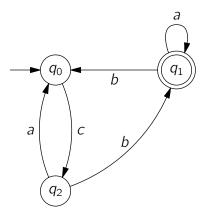
$$\stackrel{\text{Def. } \delta}{=} \hat{\delta}(q, w)$$

Nach dem Induktionsprinzip ist die Aussage damit bewiesen.

Aufgabe 3 (NFAs und reguläre Ausdrücke):

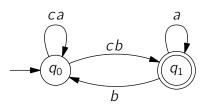
(4 Punkte)

Sei $\Sigma=\{a,b,c\}$ ein Alphabet. Wandeln Sie folgenden NFA über Σ in einen äquivalenten regulären Ausdruck um, indem Sie Zustände schrittweise entfernen und die betroffenen Kanten durch reguläre Ausdrücke ersetzen. Geben Sie hierzu zunächst den resultierenden Automaten nach Entfernung von q_2 an und geben Sie danach den zum Schluss abgelesenen regulären Ausdruck an.



Lösung:

Im ersten Schritt entfernen wir den Zustand q_2 .



Der resultierende Ausdruck ist:

$$(ca)^*cb(a+b(ca)^*cb)^*$$

Alternative Lösung:

Aufgabe 4 (Unproduktive Symbole):

(2 + 2 = 4 Punkte)

Sei G := (N, T, P, S) eine kontextfreie Grammatik mit $N := \{S, A, B, C\}, T := \{a, b, c\}$ und P wie folgt:

$$S \rightarrow AB \mid a$$

$$A \rightarrow SA$$

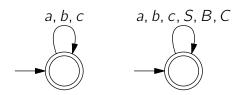
$$B \rightarrow CA \mid b$$

$$C \rightarrow BB \mid c$$

- a) Ermitteln sie die Menge $\{Z \in N \mid \text{es gibt kein } w \in T^* \text{ mit } Z \Rightarrow^* w\}$ der unproduktiven Nonterminale mit Hilfe des in der Vorlesung vorgestellten Verfahrens. Geben Sie als Zwischenergebnis auch den NFA für die Sprache $pre_G^*(T^*)$ an.
- **b)** Geben Sie eine zu G äquivalente Grammatik G' an, in der nur noch produktive, vom Startsymbol S aus erreichbare Nonterminale und Terminale existieren und aus der die unproduktiven Nonterminale entfernt wurden.

Lösung: ____

a) Zuerst berechnen wir den NFA zur Erkennung von T^* und daraus den NFA für $pre_G^*(T^*)$.



Die Menge der unproduktiven Symbolen ist nun $N \setminus pre_G^*(T^*) = \{A\}.$

b) Wir erzeugen eine Grammatik, in der die A-Regeln nicht mehr auftreten:

$$S \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow BB \mid c$$

Da aber S nun nur noch zu dem Terminalsymbol a ableitet, sind die B- und C-Produktionen nicht mehr erreichbar und wir erhalten:

$$S \rightarrow a$$

Aufgabe 5 (CYK-Algorithmus):

(4 Punkte)

Gegeben sei die folgende Grammatik G in Chomsky-Normalform.

$$S \rightarrow AC$$

$$A \rightarrow R_aB \mid R_aR_b$$

$$B \rightarrow R_bC$$

$$C \rightarrow R_bR_c \mid CR_c \mid R_cR_c$$

$$R_a \rightarrow a$$

$$R_b \rightarrow b$$

$$R_c \rightarrow c$$

Testen Sie mit dem CYK-Algorithmus, ob das Wort w = abcc in L(G) liegt.

Lösung: _

w =	а	b	С	С
1	Ra	R_b	R_c	R_c
2	Α	С	С	
3		В, С		
4	A, S			

$$\Rightarrow w \in L(G)$$

Aufgabe 6 (Pumping-Lemma):

(2 + 4 + 2 = 8 Punkte)

a) In dieser Aufgabe geht es darum, zu beweisen, dass aus den Eigenschaften des regulären Pumping-Lemmas die Eigenschaften des kontextfreien Pumping-Lemmas folgen.

Sei L eine Sprache, für die folgendes gilt:

Es gibt ein $n \in \mathbb{N}_0$, so dass jedes Wort $z \in L$ mit $|z| \ge n$ in z = rst zerlegt werden kann mit

- $|rs| \leq n$
- |s| > 0
- $rs^i t \in L$ für alle $i \ge 0$

Zeigen Sie, dass L dann folgende Eigenschaften erfüllt.

Es gibt ein $n \in \mathbb{N}_0$, so dass jedes Wort $z \in L$ mit $|z| \ge n$ in z = uvwxy zerlegt werden kann mit

- $|vwx| \leq n$
- |vx| > 0
- $uv^iwx^iy \in L$ für alle $i \ge 0$
- **b)** Betrachten Sie folgende Sprache $L_1 = \{a^k b a^k b a^k \mid k \ge 0\}.$

Beweisen Sie mithilfe des Pumping-Lemmas für kontextfreie Sprachen, dass L_1 nicht kontextfrei ist.

c) Sei L eine Sprache, die folgende Eigenschaften nicht erfüllt:

Es gibt ein $n \in \mathbb{N}_0$, so dass jedes Wort $z \in L$ mit $|z| \ge n$ in z = uvwxy zerlegt werden kann mit

- $|vwx| \le n$
- |vx| > 0
- $uv^iwx^iy \in L$ für alle $i \ge 0$

Zeigen Sie, dass L dann unendlich viele Äquivalenzklassen bzgl. der Myhill-Nerode-Relation \equiv_L hat.

Sie dürfen selbstverständlich Sätze aus der Vorlesung in ihrem Beweis verwenden.

- a) Wähle $u=v=\epsilon$, w=r, x=s und y=t. Dann gilt $|vwx|=|rs|\leq n$, |vx|=|s|>0 und $uv^iwx^iy=rs^it\in L$ für alle $i\in\mathbb{N}$. Damit ist die Aussage bewiesen.
- **b)** Sei $n \in \mathbb{N}_0$. Wir wählen das Wort $z = a^nba^nba^n \in L_1$ mit |z| > n. Sei z = uvwxy mit $|vwx| \le n$ und |vx| > 0. Wir wählen i = 0, d.h. wir wollen zeigen, dass $uwy \notin L_1$ gilt. Wegen $|vwx| \le n$ kann vwx nicht zweimal das Zeichen b enthalten. Falls vx ein b enthält, gilt sofort $uwy \notin L_1$. Andernfalls enthält vx mindestens ein a. Gleichzeitig kann aber vx nicht gleich viele a Zeichen im Bereich vor, nach und zwischen den beiden b Zeichen enthalten, da schon vwx nicht beide b Zeichen enthält. Damit gilt wiederum $uwy \notin L_1$ und nach dem Pumping-Lemma für kontextfreie Sprachen ist damit L_1 nicht kontextfrei.
- c) Da L das Pumping-Lemma für kontextfreie Sprachen nicht erfüllt, ist L nicht kontextfrei. Damit ist L insbesondere auch nicht regulär. Nach dem Satz von Myhill-Nerode ist dies äquivalent dazu, dass L unendlich viele Äquivalenzklassen bzgl. \equiv_L hat.

Aufgabe 7 (Kellerautomaten):

(3 Punkte)

Gegeben sei die folgende Grammatik G:

$$S \rightarrow BC$$

$$A \rightarrow aBB \mid b$$

$$B \rightarrow bSA \mid a$$

$$C \rightarrow cS$$

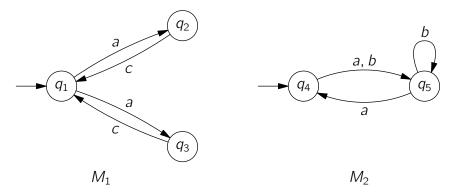
Geben Sie einen Kellerautomaten M an, so dass N(M) = L(G) gilt. Ihr Automat sollte dabei nicht mehr als 6 Transitionen enthalten.

Lösung: ____

$$\begin{array}{c|c}
\epsilon, S \mid BC \\
a, A \mid BB \\
b, A \mid \epsilon \\
b, B \mid SA \\
a, B \mid \epsilon \\
c, C \mid S
\end{array}$$

Aufgabe 8 (Synchronisiertes Produkt):

(4 Punkte)



Gegeben seien die NFAs M_1 über dem Alphabet $\{a,c\}$ und M_2 über dem Alphabet $\{a,b\}$. Berechnen Sie das synchronisierte Produkt $M_1\circ M_2$.

Lösung: .

