

Prof. Dr. J. Giesl

M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Vorname:	
Nachname:	
Matrikelnummer:	
Studiengang (bitte ankreuzen):	
 Informatik Bachelor Informatik Master (Auflage) Mathematik Bachelor Technik-Kommunikation M A 	 Informatik Lehramt Informatik Promotion (Auflage) Technik-Kommunikation Bachelor

	Anzahl Punkte	Erreichte Punkte
Aufgabe 1	6	
Aufgabe 2	3	
Aufgabe 3	8	
Aufgabe 4	4	
Aufgabe 5	4	
Aufgabe 6	6	
Aufgabe 7	2	
Aufgabe 8	2	
Summe	35	

Hinweise:

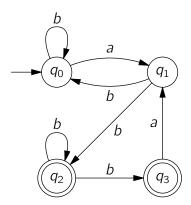
- Geben Sie Ihre Antworten in lesbarer und verständlicher Form an.
- Schreiben Sie mit dokumentenechten Stiften, nicht mit roten oder grünen Stiften und nicht mit Bleistiften.
- Bitte beantworten Sie die Aufgaben auf den Aufgabenblättern (benutzen Sie auch die Rückseiten).
- Auf alle Blätter (inklusive zusätzliche Blätter) müssen Sie Ihren Vornamen, Ihren Nachnamen und Ihre Matrikelnummer schreiben.
- Was nicht bewertet werden soll, streichen Sie bitte durch.
- Werden **Täuschungsversuche** beobachtet, so wird die Klausur mit **0 Punkten** bewertet.
- Geben Sie am Ende der Klausur alle Blätter zusammen mit den Aufgabenblättern ab.

Aufgabe 1 (Endliche Automaten):

(3 + 3 = 6 Punkte)

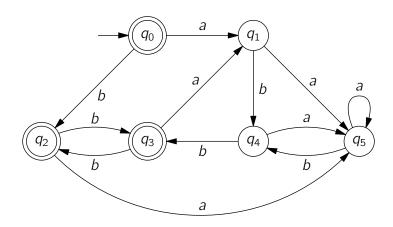
Sei $\Sigma = \{a, b\}$ ein Alphabet.

a) Betrachten Sie den folgenden NFA M_1 .



Überführen Sie den NFA M_1 in einen DFA M_1' mit $L(M_1) = L(M_1')$, indem Sie den Potenzautomaten zu M_1 bilden.

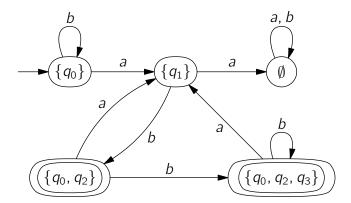
b) Betrachten Sie den folgenden DFA M_2 .



Bestimmen Sie unter Verwendung eines der beiden Minimierungsverfahren aus der Vorlesung den minimalen DFA M_2' mit $L(M_2)=L(M_2')$. Geben Sie dabei sowohl die bei der Ausführung des Algorithmus entstehende Tabelle als auch eine graphische Darstellung des minimalen DFA M_2' an.

Lösung: _

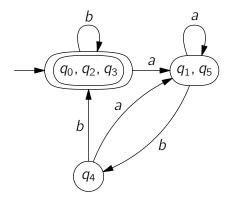
a) Wir wenden die Potenzmengenkonstruktion auf den NFA M_1 an und erhalten den folgenden DFA M_1' .



b) Tabelle des Markierungsalgorithmus:

$\overline{1}$	×				
2		×			
3		×			
4	×	×	×	×	
5	×		×	×	×
	0	1	2	3	4

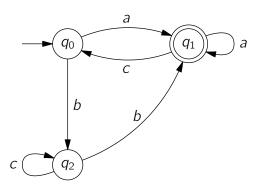
Aus der Tabelle ergibt sich der folgende minimale DFA:



Aufgabe 2 (NFAs und reguläre Ausdrücke):

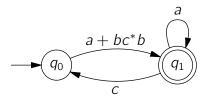
(3 Punkte)

Sei $\Sigma=\{a,b,c\}$ ein Alphabet. Wandeln Sie folgenden NFA über Σ in einen äquivalenten regulären Ausdruck um, indem Sie Zustände schrittweise entfernen und die betroffenen Kanten durch reguläre Ausdrücke ersetzen. Geben Sie hierzu zunächst den resultierenden Automaten nach Entfernung von q_2 an und geben Sie danach den zum Schluss abgelesenen regulären Ausdruck an.



Lösung:

Im ersten Schritt entfernen wir den Zustand q_2 .



Der resultierende Ausdruck ist:

$$(a + bc*b)(a + c(a + bc*b))*$$

Eine alternative Lösung ist:

$$(a + bc*b)a*(c(a + bc*b)a*)*$$

Aufgabe 3 (Induktionsbeweis):

(3 + 5 = 8 Punkte)

Sei T ein Alphabet von Terminalsymbolen, N eine Menge von Nonterminalsymbolen und σ : $T \to T$ eine Permutation über T. Beispielsweise wäre für $T_0 = \{a, b, c\}$ die Funktion σ_0 mit $\sigma_0(a) = b$, $\sigma_0(b) = c$ und $\sigma_0(c) = a$ eine Permutation.

Wir erweitern σ zu einer Funktion $\overline{\sigma}:(T\cup N)^*\to (T\cup N)^*$ auf Wörtern von Terminalund Nonterminalsymbolen, indem wir Symbole aus T einzeln permutieren und Symbole aus N unverändert lassen:

$$\overline{\sigma}(w) = \begin{cases} \overline{\sigma}(w') \cdot \sigma(a) & \text{, falls } w = w' \cdot a \text{ mit } a \in T, w' \in (T \cup N)^* \\ \overline{\sigma}(w') \cdot A & \text{, falls } w = w' \cdot A \text{ mit } A \in N, w' \in (T \cup N)^* \\ \epsilon & \text{, falls } w = \epsilon \end{cases}$$

Für σ_0 wie oben und Nonterminale A, B, C gilt also $\overline{\sigma_0}(aAbBcC) = bAcBaC$.

Zu jeder kontextfreien Grammatik G=(N,T,P,S) in **Chomsky-Normalform** erstellen wir nun eine kontextfreie Grammatik $\overline{G}=(N,T,\overline{P},S)$, die die permutierten Wörter erkennen soll. Dafür definieren wir \overline{P} wie folgt: Es gilt $A \to w \in P$ genau dann, wenn $A \to \overline{\sigma}(w) \in \overline{P}$ gilt.

- a) Beweisen Sie zunächst, dass $\overline{\sigma}(w) = w$ für alle $w \in N^*$ gilt und verwenden Sie dabei Induktion über die Wortlänge |w|.
- **b)** Beweisen Sie nun, dass $L(\overline{G}) \subseteq \{\overline{\sigma}(w) \mid w \in L(G)\}$ gilt, indem Sie zeigen, dass für alle $A \in N$, $w \in (T \cup N)^*$ aus $A \Rightarrow_G^n w$ auch $A \Rightarrow_{\overline{G}}^n \overline{\sigma}(w)$ folgt. ¹ Verwenden Sie dazu Induktion über die Ableitungslänge n.

Sie dürfen dazu verwenden, dass $\overline{\sigma}(w) \cdot \overline{\sigma}(w') = \overline{\sigma}(w \cdot w')$ für alle $w, w' \in (T \cup N)^*$ gilt. Hinweise:

- Im Induktionsschluss betrachtet man den Fall $n \ge 1$. Hier soll man als **Induktions-hypothese** voraussetzen, dass die zu beweisende Aussage **für alle** n' mit $0 \le n' < n$ gilt.
- Trennen Sie im Induktionsschritt die Ableitung $A \Rightarrow_G^n w$ in $A \Rightarrow_G^1 w' \Rightarrow_G^{n-1} w$ auf und nutzen Sie aus, dass G in CNF ist.

Lösung:	

a) Im Induktionsanfang ist $w = \epsilon$ und es gilt $\overline{\sigma}(\epsilon) = \epsilon$ nach Konstruktion.

Im Induktionsschluss betrachten wir $w = w' \cdot A$ für ein $A \in N$ und setzen voraus, dass die Aussage für $w' \in N^*$ bereits gilt.

Dann gilt
$$\overline{\sigma}(w) = \overline{\sigma}(w' \cdot A) \stackrel{\mathsf{Def}.\overline{\sigma}}{=} \overline{\sigma}(w') \cdot A \stackrel{\mathsf{I.H.}}{=} w' \cdot A = w.$$

Nach dem Induktionsprinzip ist die Aussage damit bewiesen.

¹Hierbei bedeutet $A \Rightarrow_G^n w$, dass man das Wort \overline{w} in n Ableitungsschritten mit der Grammatik G aus dem Nonterminalsymbol A erreichen kann

b) Im Induktionsanfang ist n=0 und es gilt $A\Rightarrow_G^0 A$ und $A\Rightarrow_{\overline{G}}^0 A=\overline{\sigma}(A)$.

Im Induktionsschluss betrachten wir die Ableitungslänge $n \geq 1$ und nehmen als Induktionshypothese an, dass die Aussage bereits für alle n' mit $0 \leq n' < n$ gezeigt wurde.

Nun können wir die Ableitung $A \Rightarrow_G^n w$ in $A \Rightarrow_G^1 w' \Rightarrow_G^{n-1} w$ zerlegen. Da G in CNF ist, gilt entweder $w' = a \in T$ oder $w' = BC \in \mathbb{N}^2$.

<u>Fall</u> $w' = a \in T$: Es folgt n = 1 und w = w'. Es gibt eine Produktion $A \to a \in P$ und damit nach Konstruktion auch $A \to \overline{\sigma}(a) \in \overline{P}$. Damit können wir $A \Rightarrow_{\overline{G}}^{1} \overline{\sigma}(a)$ folgern.

<u>Fall $w' = BC \in N^2$ </u>: Es gibt eine Produktion $A \to BC \in P$ und damit nach Konstruktion auch $A \to \overline{\sigma}(BC) \in \overline{P}$. Nach Teil (a) gilt $\overline{\sigma}(BC) = BC$ und damit $A \to BC \in \overline{P}$.

Für die restlichen n-1 Ableitungsschritte können wir die Teilableitungen $B\Rightarrow_G^k w_B$ und $C\Rightarrow_G^\ell w_C$ mit $w=w_B\cdot w_C$ und $k+\ell=n-1$ betrachten. Nach I.H. gilt $B\Rightarrow_{\overline{G}}^k \overline{\sigma}(w_B)$ und $C\Rightarrow_{\overline{G}}^\ell \overline{\sigma}(w_C)$. Damit können wir $A\Rightarrow_G w'=BC\Rightarrow_G^{n-1} w_Bw_C$ und $A\Rightarrow_{\overline{G}} w'=BC\Rightarrow_{\overline{G}}^{n-1} \overline{\sigma}(w_B)\overline{\sigma}(w_C)$ folgern. Nach Aufgabenstellung gilt $\overline{\sigma}(w_B)\overline{\sigma}(w_C)=\overline{\sigma}(w_b\cdot w_c)=\overline{\sigma}(w)$.

Nach dem Induktionsprinzip ist die Aussage damit bewiesen.

Aufgabe 4 (Unproduktive Symbole):

(2 + 2 = 4 Punkte)

Sei G := (N, T, P, S) eine kontextfreie Grammatik mit $N := \{S, A, B, C\}, T := \{a, b, c\}$ und P wie folgt:

$$S \rightarrow aS \mid bAB \mid b$$

$$A \rightarrow aA \mid aC$$

$$B \rightarrow bSB \mid b$$

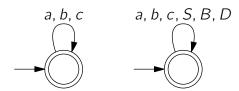
$$C \rightarrow cA$$

$$D \rightarrow cSB$$

- a) Ermitteln sie die Menge $\{Z \in N \mid \text{es gibt kein } w \in T^* \text{ mit } Z \Rightarrow^* w\}$ der unproduktiven Nonterminale mit Hilfe des in der Vorlesung vorgestellten Verfahrens. Geben Sie als Zwischenergebnis auch den NFA für die Sprache $pre^*(T^*)$ an.
- **b)** Geben Sie die Produktionen einer zu G äquivalente Grammatik G' an, in denen nur noch produktive, vom Startsymbol S aus erreichbare Nonterminale und Terminale verwendet werden und aus denen unproduktive Nonterminale entfernt wurden.

Lösung: _

a) Zuerst berechnen wir den NFA zur Erkennung von T^* und daraus den NFA für $pre_G^*(T^*)$.



Die Menge der unproduktiven Symbolen ist nun $N \setminus pre^*(T^*) = \{A, C\}$.

b) Wir erzeugen eine Grammatik, in der keine rechten Seiten mehr auftreten, die A oder C enthalten:

$$S \rightarrow aS \mid b$$

$$B \rightarrow bSB \mid b$$

$$D \rightarrow cSB$$

Man kann aber D von S aus nicht erreichen. Außerdem kann man auch B nicht mehr von S erreichen und wir können daher die D- und B-Produktionen entfernen:

$$S \rightarrow aS \mid b$$

Aufgabe 5 (CYK-Algorithmus):

(4 Punkte)

Gegeben sei die folgende Grammatik *G* in Chomsky-Normalform.

$$S \rightarrow b \mid BC$$

$$A \rightarrow a \mid SC$$

$$B \rightarrow c \mid SC \mid AS$$

$$C \rightarrow c \mid CA \mid AB$$

Testen Sie mit dem CYK-Algorithmus, ob das Wort w = abcc in L(G) liegt.

Lösung: _

w =	а	Ь	С	С
1	Α	S	В,С	В, С
2	В	A, B	S	
3	C, S	C, S		
4	В, А			

$$\Rightarrow w \notin L(G)$$

Aufgabe 6 (Pumping-Lemma):

(3 + 3 = 6 Punkte)

Wir erinnern an das reguläre Pumping-Lemma:

Sei L eine reguläre Sprache. Dann gibt es ein $n \in \mathbb{N}_0$, so dass jedes Wort $w \in L$ mit $|w| \ge n$ in w = xyz zerlegt werden kann mit

- $|xy| \leq n$
- |y| > 0
- $xy^iz \in L$ für alle $i \ge 0$
- a) Betrachten Sie die Sprache $L_1 = \{a^k b^\ell c^\ell \mid k, \ell \ge 0\}$. Beweisen Sie mithilfe des Pumping-Lemmas für reguläre Sprachen, dass L_1 nicht regulär ist.
- **b)** Die Sprache $L_2 = \{a^i b^j c^k \mid i, j, k \geq 0 \text{ und } (i = 0 \text{ oder } j = k)\}$ ist nicht regulär. Beweisen Sie, dass L_2 trotzdem die Eigenschaften des regulären Pumping-Lemmas erfüllt. Hinweis: Um dies nachzuweisen, muss man eine Grenze n wählen und eine Zerlegung für jedes Wort $w \in L_2$ mit $|w| \geq n$ angeben, für die dann nachzuweisen ist, dass die Eigenschaften des Pumping-Lemmas erfüllt sind. Hierbei ist bereits n=1 eine geeignete Wahl.

Losuna	

- a) Sei $n \in \mathbb{N}_0$. Wir wählen das Wort $w = b^n c^n \in L_1$ mit $|w| \ge n$. Sei w = xyz mit $|xy| \le n$ und |y| > 0. Wir wählen i = 0, d.h. wir wollen zeigen, dass $xy^iz \notin L_1$ gilt. Wegen $|xy| \le n$ muss $y = b^t$ für ein $t \in \mathbb{N}$ gelten. Damit ist $w' = xz = b^{n-t}c^n$ und da 0 < |y| = t gilt, ist $w' \notin L_1$. Nach dem Pumping-Lemma für reguläre Sprachen ist damit L_1 nicht regulär.
- **b)** Wir wählen n = 1.

Sei $w \in L_2$ mit $|w| \ge 1$. Wir wählen die Zerlegung w = xyz mit $x = \epsilon$ und |y| = 1 (das heißt, dass y das erste Zeichen von w ist). Dann gilt $|xy| = |y| = 1 \le n = 1$ und |y| = 1 > 0. Sei $i \ge 0$. Wir betrachten das Wort $w' = xy^iz = y^iz$.

Falls y=a, so gilt $w=a^jb^kc^k$ mit $j,k\geq 0$ und daher $w'=a^{j+i-1}b^kc^k$. Damit ist $w'\in L_2$. Falls $y\neq a$, so gilt $w=a^0b^jc^k$ mit $j,k\geq 0$ und j+k>0 und daher entweder $w'=a^0b^{j+i-1}c^k$ oder $w'=a^0b^0c^{k+i-1}$. Damit ist wiederum $w'\in L_2$.

Aufgabe 7 (Kellerautomaten):

(2 Punkte)

Gegeben sei die folgende Grammatik G:

$$S \rightarrow aCB \mid bDA$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow aCB \mid aB$$

$$D \rightarrow bDA \mid bA$$

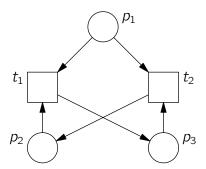
Geben Sie einen Kellerautomaten M mit höchstens 8 Transitionen an, so dass N(M) = L(G) gilt.

Lösung: _

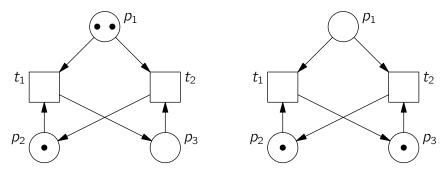
Aufgabe 8 (Petrinetze):

(2 Punkte)

Betrachten Sie folgendes Petrinetz *N*.

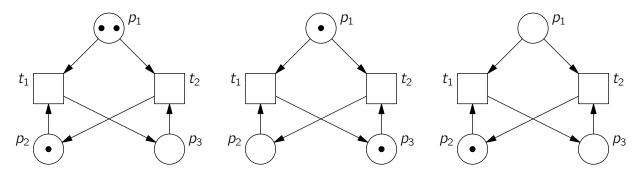


Weiterhin sei die Markierung m=(2,1,0) für die Stellen p_1,p_2,p_3 gegeben. Untersuchen Sie nun, ob die Markierung m'=(0,1,1) von m aus erreichbar ist und geben Sie Ihren Lösungsweg an. Graphisch lassen sich die beiden Markierungen wie folgt illustrieren:



Lösung:

Da sich das Petrinetz auf m deterministisch verhält, gibt es genau eine mögliche Folge von Konfigurationen:



Aus der letzten Konfiguration kann keine weitere Transition geschaltet werden, und die Markierung m'=(0,1,1) war nicht unter den erreichten Konfigurationen. Daher ist m' nicht von m aus erreichbar.

Allgemeiner lässt sich die Frage mit Hilfe der Inzidenzmatrix des Petrinetzes lösen. Zuerst stellen wir dazu die Matrizen D^- und D^+ auf.

$$D^- = \begin{pmatrix} -1 & -1 & 0 \ -1 & 0 & -1 \end{pmatrix}$$
, $D^+ = \begin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}$

Damit ergibt sich die Inzidenzmatrix

$$D = \begin{pmatrix} -1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}.$$

Nun stellen wir das Gleichungssystem auf. Damit m' von m aus erreichbar ist, muss gelten, dass

$$(0,1,1) = (2,1,0) + x \begin{pmatrix} -1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$

Zunächst stellen wir die Gleichung um und transponieren.

$$\begin{pmatrix} -1 & -1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix} x = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$

Mit dem Gauß-Algorithmus lösen wir nun dieses lineare Gleichungssystem.

$$\begin{pmatrix} -1 & -1 & | & -2 \\ -1 & 1 & | & 0 \\ 1 & -1 & | & 1 \end{pmatrix} \mid III + II \rightarrow \begin{pmatrix} -1 & -1 & | & -2 \\ -1 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{pmatrix}$$

An der letzten Zeile sehen wir, dass das Gleichungssystem keine Lösung hat, da $0 \neq 1$. Damit ist m' nicht von m aus erreichbar.