Übersicht

- 1 Einführung
 - 1.1 Organisatorisches
 - 1.2 Motivation
 - 1.3 Empfohlene Literatur
 - 1.4 Alphabete, Wörter, Sprachen

1 Einführung

1.4 Alphabete, Wörter, Sprachen

Wörter und Sprachen

Was ist ein Wort, was ist eine Sprache?

Informelle Antwort:

- Ein Wort ist eine Aneinanderkettung von Symbolen aus einem Alphabet.
- 2 Eine Sprache ist eine Menge von Wörtern.

Beispiele:

```
01, 101001, \epsilon sind Wörter über dem Alphabet \{0,1\} \{0,1,101,1001\} und \{\epsilon,0,1,00,01,10,11,000,001,\dots\} sind Sprachen über dem Alphabet \{0,1\}.
```

Wie sieht eine formale, mathematisch korrekte Formalisierung dieser Begriffe aus?

1 Einführung
1.4 Alphabete, Wörter, Sprachen

Definition 1.4.1

- Eine Halbgruppe (H, ∘) besteht aus einer Menge H und einer assoziativen Verknüpfung ∘ : H × H → H.
- 2 Ein Monoid ist eine Halbgruppe mit einem neutralen Element.
- **3** Sei (M, \circ) ein Monoid und $E \subseteq M$. E ist ein Erzeugendensystem von (M, \circ) , falls jedes $m \in M$ als $m = e_1 \circ \cdots \circ e_n$ mit $e_i \in E$ dargestellt werden kann.

 $e_1 \circ \cdots \circ e_n$ bei n = 0 ist das neutrale Element.

Ein neutrales Element e ist links- und rechtsneutral.

Für jedes x gilt $e \circ x = x \circ e = x$.

Frage: Ist das neutrale Element in einem Monoid eindeutig?

Ja, denn $e_1 \circ e_2 = e_1$ und $e_1 \circ e_2 = e_2$.

1.4 Alphabete, Wörter, Sprachen

Beispiele

- (Z,+) ist ein Monoid.
 {-1,1} ein Erzeugendensystem.
- (N, +) ist ein Monoid. {1} ein Erzeugendensystem.
- (**Z**₈,·) ist ein Monoid.
 {2,3,5} ein Erzeugendensystem.

Frage:

```
Ist \{-16,17\} ein Erzeugendensystem für (\mathbf{Z},+)?
Ist \{3,5,7\} ein Erzeugendensystem für (\mathbf{Z_8},\cdot)?
```

1 Einführung

1.4 Alphabete, Wörter, Sprachen

Freie Erzeugendensysteme

Definition 1.4.2

Ein Erzeugendensystem E für ein Monoid (M, \circ) ist frei, falls jedes $m \in M$ auf nur eine Art als $m = e_1 \circ \cdots \circ e_n$ mit $e_i \in E$ dargestellt werden kann.

Falls E ein freies Erzeugendensystem für (M, \circ) ist, dann sagen wir, dass (M, \circ) das von E frei erzeugte Monoid ist.

Frage:

Ist das korrekt?

- 1 Einführung
 - 1.4 Alphabete, Wörter, Sprachen

Beispiele

- $(\mathbf{Z},+)$ ist von $\{-1,1\}$ nicht frei erzeugt:
 - 2 = 1 + 1 = 1 + 1 + (-1) + 1
 - 0 = (-1) + 1 = 1 + (-1)
- (N, +) ist von $\{1\}$ frei erzeugt.

1 Einführung

1.4 Alphabete, Wörter, Sprachen

Isomorphismen zwischen Monoiden

Definition 1.4.3

Zwei Monoide (M_1, \bullet) und (M_2, \circ) sind isomorph, falls es eine Abbildung h: $M_1 \to M_2$ gibt mit

- 1 h ist bijektiv.
- ② h ist ein Homomorphismus, d.h. $h(u \bullet v) = h(u) \circ h(v)$ für alle $u, v \in M_1$.

Wir nennen h einen Isomorphismus.

- 1 Einführung
 - 1.4 Alphabete, Wörter, Sprachen

Satz 1.4.4

Es sei Σ ein Alphabet. Dann ist das von Σ frei erzeugte Monoid bis auf Isomorphismus eindeutig.

Beweis.

 (M_1, \bullet) , (M_2, \circ) von Σ frei erzeugte Monoide.

$$h: M_1 \to M_2, \ u = a_1 \bullet \cdots \bullet a_n \mapsto a_1 \circ \cdots \circ a_n$$

 $g: M_2 \to M_1, \ v = b_1 \circ \cdots \circ b_m \mapsto b_1 \bullet \cdots \bullet b_m$

mit $a_1, \ldots, a_n, b_1, \ldots, b_m \in \Sigma$. h(g(v)) = v, also h bijektiv.

$$h(u \bullet v) = h(a_1 \bullet \cdots \bullet a_n \bullet b_1 \bullet \cdots \bullet b_m) = a_1 \circ \cdots \circ a_n \circ b_1 \circ \cdots \circ b_m = h(u) \circ h(v),$$

also ist h ein Homomorphismus.

- 1 Einführung
 - 1.4 Alphabete, Wörter, Sprachen

Definition 1.4.5

Es sei Σ ein Alphabet.

Dann ist (Σ^*, \cdot) das von Σ frei erzeugte Monoid.

Die Elemente von Σ^* nennen wir Wörter (über Σ).

Falls $L \subseteq \Sigma^*$, dann nennen wir L eine Sprache (über Σ).

Falls $u, v \in \Sigma^*$, dann schreiben wir auch u v statt $u \cdot v$.

Das neutrale Element von (Σ^*, \cdot) bezeichnen wir mit ϵ .

Einführung
 Alphabete, Wörter, Sprachen

Satz 1.4.6

Es seien Σ und Γ Alphabete. Jede Abbildung $\Sigma \to \Gamma^*$ lässt sich eindeutig auf einen Homomorphismus $\Sigma^* \to \Gamma^*$ erweitern.

Beweis.

Es sei $h \colon \Sigma^* \to \Gamma^*$ ein Homomorphismus. Dann ist $h(w) = h(a_1 \dots a_n)$ mit $a_1, \dots, a_n \in \Sigma = h(a_1) \dots h(a_n)$ weil h ein Homomorphismus ist.

Wenn wir einen Homomorphismus definieren wollen, genügt es, seine Wirkung auf Symbole zu beschreiben.