Übersicht

- 3 Kontextfreie Sprachen
 - 3.1 Kontextfreie Sprachen und Grammatiken
 - 3.2 Ableitungsbäume
 - 3.3 Die *pre**-Operation
 - 3.4 Entscheidungsprobleme für CFGs
 - 3.5 Normalformen für CFGs
 - 3.6 Chomsky-Normalform
 - 3.7 Greibach-Normalform
 - 3.8 Das Pumping-Lemma für CFLs
 - 3.9 Kellerautomaten
 - 3.10 Deterministische Kellerautomaten
 - 3.11 Abschlusseigenschaften kontextfreier Sprachen

3 Kontextfreie Sprachen
3.5 Normalformen für CEGs

Entfernen von ϵ -Produktionen

Satz 3.5.1

Es sei G = (N, T, P, S) eine CFG mit $\epsilon \notin L(G)$.

Dann gibt es eine CFG G' ohne ϵ -Produktionen, die dieselbe Sprache wie G erzeugt.

Beweis.

Idee:

- **1** Finde alle nullierbaren Symbole $M \subseteq N$.
- ② Für jede Produktion $A \to \alpha B \gamma$ mit $B \in M$, erzeuge zusätzlich eine neue Produktion $A \to \alpha \gamma$ (wiederhole dies rekursiv).
- **3** Streiche alle Produktionen der Form $A \rightarrow \epsilon$.

3 Kontextfreie Sprachen
3.5 Normalformen für CFGs

Beispiel

$$S \rightarrow AaS \mid b$$

 $A \rightarrow Sb \mid aAA \mid \epsilon$
 $B \rightarrow AA \mid AB \mid BAa \mid b$

Welche Symbole sind nullierbar?

A und B

$$S \rightarrow AaS \mid aS \mid b$$

 $A \rightarrow Sb \mid aAA \mid aA \mid a$
 $B \rightarrow AA \mid AB \mid A \mid B \mid BAa \mid Ba \mid Aa \mid a \mid b$