
Dylan (Dynamic Language)

A multi-paradigm language

Oliver Juwig

Aachen, 12. Februar 2003

Seite 2

Agenda

History of Dylan

Concepts of the language

Multidimensional polymorphism - a silver bullet

Functional programming with Dylan

Dylan in a real project

Seite 3

Dylan has been inspired by functional programming
languages

History of Dylan

The language was inspired by Scheme and CommonLisp

– Dylan is a superset of Scheme

– Extensions:

– CommonLisp Object System

– CommonLisp Condition System

– A production-rule based macro processor

But: Language syntax is more like Pascal or Modula

Dylan is a best of breed language; it combines object-oriented, functional
and algorithmic programming paradigms

Seite 4

Dylan has been developed by several partners

History of Dylan

Three major partners has been involved in the development of the
language

– Carnegie-Mellon University (Project Gwydion)

– Digital Corporation

– Apple Computers, Inc.

– Harlequin

Dylan is a general purpose language, but it was targeted for small
devices in the beginning (similar to Java)

– Apple Newton

The first language draft appeared 1993

Seite 5

Current resources for Dylan

History of Dylan

Functional Objects - a commercial IDE provider

– http://www.functional-objects.com/

Gwydion project

– http://www.gwydiondylan.org/

Goodies, libraries, ...

– http://monday.sourceforge.net/wiki/

Forums / Newsgroups

– http://www.wikiservice.at/dse/wiki.cgi?SpracheDylan

– news:comp.lang.dylan

Seite 6

Agenda

History of Dylan

Concepts of the language

Multidimensional polymorphism - a silver bullet

Functional programming with Dylan

Dylan in a real project

Seite 7

Dylan combines extrem object-oriented concepts with
static and dynamic programming style

Concepts of the language

Seite 8

Every little thing in Dylan is an object

Concepts of the language

All objects are first class, even:

– Numbers and characters

– Classes

– Functions

Every object can be used as a function argument

All objects are typed and type-safe

Variables can be strongly typed

All objects devive from class <object>

Seite 9

A strong subset of the CommonLisp Object System is
used in Dylan

Concepts of the language

Strong support of multiple inheritance

Slots are functions (so called slot methods, they can be specialized)

Classes define no methods in addition to the slot methods

Scope of names is not defined by classes

– Dylan has an explicit name space concept based upon libraries and
modules

Sample

define open abstract class <presentation> (<object>)
 keyword cached:, type: <boolean>, init-value: #f;

 sealed slot name :: <normalized-descriptor>, init-keyword: name:;
 sealed slot controller-class :: limited(<class>, subclass-of: <presentation-controller>);

 sealed slot state :: <object>, init-value: #f;

 sealed slot available-controllers :: <vector>, init-value: #[];
 sealed slot active-controllers :: <vector>, init-value: #[];

 sealed slot lru-count :: <integer>, init-value: 0;
 sealed slot cached? :: <boolean>, setter: #f, init-value: #f, init-keyword: cached:;
end class <presentation>;

Seite 10

The core concept of Dylan is the <function>

Concepts of the language

A <method> is a callable unit of code identified by a fixed parameter
signature

<generic-function>s combine one or more <method>s with the
same number of parameters

Functions support required parameters, named keyword parameters and
an arbitrary number of additional (called rest) parameters

Sample

define open generic (&sequence1 :: <sequence>,
 &sequence2 :: <sequence>, #key) => result :: <sequence>;

define method intersection (&sequence1 :: <lazy-sequence>, &sequence2 :: <sequence>,
 #key key: &key :: <function> = identity,
 test: &test :: <function> = \==)
 => result :: <lazy-sequence>;
 choose(method (&item)
 member?(&item, &sequence2, key: &key, test: &test)
 end method,
 &sequence1);
end method intersection;

<generic-function> <method>

<function>

Seite 11

A complete collection framework including functional
iteration and mapping is supplied

Concepts of the language

<sequence>

<collection>

<single-object-vector>

<array>

<unicode-string>

<string> <deque> <list>

<pair> <empty-list>

<table>

<vector>
<range>

<stretchy-vector> <byte-string>

Supplied iteration and mapping functions:

– do, map, map-as, map-into, member?, any?, every?, choose, ...

Seite 12

The condition (exception) handling of Dylan surpasses
everything known in the C-world

Concepts of the language

Both exceptions and handlers are objects

Handlers can fix the problem and return to the signalling code block or
they can exit to any point in there lexical scope

Exceptions can be tested for furthermore environmental conditions
before handled

Several restart protocol exists

Simple sample

More complex sample

define method show-presentation (&presentation :: <descriptor>,
 &data, ...) => (#rest results :: <object>);
 ...

 block ()
 &environment := lookup-environment(&environment);

 exception (<error>)
 kill-thread(current-thread());
 end block;

 ...
end method show-presentation;

local method run-block-lock ()
 let &run :: <integer> = 0;

 while (#t)
 block (return)
 let handler <kill> = method (&condition :: <kill>,
 &next :: <function>)
 if (&run > 1000)
 return();
 end if;

 &next();
 end method;

 ... // Test code comes here...

 &run := &run + 1;
 end block;
 end while;
 end method;

Seite 13

Agenda

History of Dylan

Concepts of the language

Multidimensional polymorphism - a silver bullet

Functional programming with Dylan

Dylan in a real project

Seite 14

Dylan combines multiple inheritance with the so called
multimethod dispatch

Multidimensional polymorphism

Classes define no direct methods beside the slot methods

Dylan uses generic functions for the active part of a program

Each generic function can be compromised of methods that adhere to the
parameter contract of this function

Parameters of methods are strongly typed and define the type of arguments the
method can be applied to

The number of the so called applicable methods are computed for every concrete
argument situation prior to the function invocation

The applicable methods are sorted according to their specifity using a class
precedence list (short: CPL) algorithm

The most specific method is invoked

A method can invoke the next most specific method by calling next-method();

Seite 15

Even operators are generic functions in Dylan and can be
specialized

Multidimensional polymorphism

define generic method \+(x :: <object>,
 y :: <object>) => z :: <object>;

define method \+(r :: <ratio>, i :: <integer>) => (s :: <rat>)
 r + make(<ratio>, numerator: i)
end \+;

define method \+(s :: <string>, t :: <string>) => (r :: <string>)
 concatenate(s, t);
end method \+;

After this definition a program can write:

let h :: <string> = "Hello";
let w :: <string> = "World";

let hw :: <string> = h + " " + w;

Seite 16

Multimethods allows much more cleaner code than using
traditional object-oriented techniques

Multidimensional polymorphism

class Shape {
 bool intersect(Shape s) {
 /* generic case - slow */
 }
}
class Rect {
 bool intersect(Shape s) {
 if (s instanceof Rect) {
 /* simple and fast */
 }
 else {
 super.intersect(s);
 }
}
class Circle {
 bool intersect(Shape s) {
 if (s instanceof Circle) {
 /* simple and fast */
 }
 else {
 super.intersect(s);
 }
}

define generic intersect (s1 :: <shape>,
 s2 :: <shape>)
 => <boolean>;

define method intersect (s1 :: <shape>,
 s2 :: <shape>)
 => <boolean>;
 /* generic case - slow */
end method;

define method intersect (s1 :: <rect>,
 s2 :: <rect>)
 => <boolean>;
 /* simple and fast */
end method;

define method intersect (s1 :: <circle>,
 s2 :: <circle>)
 => <boolean>;
 /* simple and fast */
end method;

Seite 17

Methods can be added to generic functions at any time

Multidimensional polymorphism

When a generic function is not sealed, methods can be added by everyone at
any point in the program

Methods can be added syntactically according to the name scope or by using a
call to add-method(...);

Every method must comply with the parameter signature of the generic function

Methods can belong to several generic functions (esoteric feature)

Methods can be even removed from a generic function by calling remove-
method(...);

A complete set of introspection function are available

Seite 18

A complex sample

Multidimensional polymorphism

<bipedal>

<life-from>

<human>

<quadrupedal>

<dog>

<man> <woman>

<cat>

define method likes? (a :: <life-form>, b :: <life-form>) => likes? :: <boolean>
 #f;
end method likes?;

define method likes? (cat :: <cat>, whoCares :: <life-form>) => likes? :: <boolean>
 gives-food?(whoCares);
end method likes?;

define method likes? (dog :: <dog>, human :: <human>) => likes? :: <boolean>
 pet?(human, dog);
end method likes?;

define method likes? (man :: <man>, woman :: <woman>) => likes? :: <boolean>
 looks-good?(woman);
end method likes?;

define method likes? (woman :: <woman>, man :: <man>) => likes? :: <boolean>
 intelligent?(man) & rich?(man);
end method likes?;

define generic likes? (a :: <life-form>,
 b :: <life-form>) => likes? :: <boolean>;

Seite 19

Agenda

History of Dylan

Concepts of the language

Multidimensional polymorphism - a silver bullet

Functional programming with Dylan

Dylan in a real project

Seite 20

Dylan provides a complete set of functional programming
constructs

Functional programming with Dylan

Functional composition

– Closures

– compose, curry, rcurry, conjoin, disjoin

Function invocation

– apply

Iteration constructs

– do, map, map-as, map-into, reduce, reduce1, choose, choose-by

define method make-score (points :: <number>)
 method (increase :: <number>)
 points := points + increase;
 end;
end;

define constant score-david = make-score(100);

define constant score-diane = make-score(400);

score-david(0);
=> 100
score-david(10);
=> 110
score-david(20);
=> 130
score-diane(70);
=> 470

define method addX (n :: <number>, x :: <number>)
 n + x;
end;

define constant add10 = rcurry(addX, 10);
define constant less100? = rcurry(\<, 100);
define constant equal100? = curry(\=, 100);

define constant greater100? =
 conjoin(complement(less100?), equal100?);

define constant greater90? =
 compose(greater100?, add10);

greater90?(99);
=> #t
greater90?(87);
=> #f

define method add2 (x :: <integer>, y :: <integer>)
 x + y;
end;

apply(add2, list(1, 2));
=> 3
apply(min, list(4, 6, 7));
=> 4
apply(max, 3, 7, list(1, 2));
=> 7

do(method (a, b) print(a + b); end,
 #(100, 200, 300, 400), #(1, 2, 3));
101
202
303
=> #f
map(\+, #(1, 2, 3), #(4, 5, 6));
=> #(5, 7, 9)
reduce(max, 10, #(2, 4, 6, 11));
=> 11
reduce1(\+, #(1, 2, 3, 4, 5));
=> 15
choose(even?, #(3, 1, 4, 5, 6, 2));
=> #(4, 6, 2)
choose-by(even?, range(from: 1),
 #("a", "b", "c", "d", "e", "f", "g", "h"));
=> #("b", "d", "f", "h")

Seite 21

Sample from a real application

Functional programming with Dylan

define function build-from-part (&environment :: <sequence>,
 &expression :: <select-query-expression>,
 #rest &args) => (from-part :: <string>,
 hints :: false-or(<string>));
 let &variables :: <sequence> = remove-duplicates!(as(<vector>, first(&environment).variables));
 let &classes :: <sequence> = choose(rcurry(instance?, <transformed-class>), &variables);
 let &structs :: <sequence> = choose(rcurry(instance?, <transformed-struct>), &variables);
 let &sequences :: <sequence> = choose(rcurry(instance?, <transformed-sequence>), &variables);
 let &first? :: <boolean> = #t;
 let &from-part :: <string> = $empty-string;
 let &hints = #f;

 local method make-table-from-string (&alias :: <string>, &table :: <string>)
 ...
 end method;

 unless (empty?(&classes))
 &classes := choose(complement(compose(empty?, specifity)), &classes);

 unless (empty?(&classes))
 let &class :: <transformed-class> =
 first(sort!(&classes, key: compose(curry(reduce, \+, 0), specifity)));
 let &specifity :: <integer> = reduce(max, 0, &class.specifity);

 ...
 end unless;
 end unless;

Seite 22

Agenda

History of Dylan

Concepts of the language

Multidimensional polymorphism - a silver bullet

Functional programming with Dylan

Dylan in a real project

Seite 23

Dylan can be used successfully in very large commercial
information systems

Dylan in a real project

Project FIM for GEMA

– Central application of the company

– About 50 person-years development effort

– About 4 million lines of code written completely in Dylan

– 1.5 million lines of code for technical framework

– 2.5 million lines of code for the application

– About 400 dialogs and 45 batches

– About 800 persistent classes (tables) in the underlying database

– Some tables have about 30 million entries

The project has been started before Java matured and has gone into production
before the first J2EE application server was commercially available

Seite 24

Some screenshots of FIM (1/4)

Dylan in a real project

Seite 25

Some screenshots of FIM (2/4)

Dylan in a real project

Seite 26

Some screenshots of FIM (3/4)

Dylan in a real project

Seite 27

Some screenshots of FIM (4/4)

Dylan in a real project

Seite 28

Discussion

Contact: Oliver Juwig mailto:oliver.juwig@sdm.de
sd&m Research http://www.sdm-research.de
software design & management
Thomas-Dehler-Str. 27, 81737 München, Germany
Tel +49 89 63812-653, Fax -911
Tel +49 2241 9737-413
Mobile +49 171 3105384

	Dylan has been inspired by functional programming languages
	Dylan has been developed by several partners
	Current resources for Dylan
	Dylan combines extrem object-oriented concepts with static and dynamic programming style
	Every little thing in Dylan is an object
	A strong subset of the CommonLisp Object System is used in Dylan
	The core concept of Dylan is the <function>
	A complete collection framework including functional iteration and mapping is supplied
	The condition (exception) handling of Dylan surpasses everything known in the C-world
	Dylan combines multiple inheritance with the so called multimethod dispatch
	Even operators are generic functions in Dylan and can be specialized
	Multimethods allows much more cleaner code than using traditional object-oriented techniques
	Methods can be added to generic functions at any time
	A complex sample
	Dylan provides a complete set of functional programming constructs
	Sample from a real application
	Dylan can be used successfully in very large commercial information systems
	Some screenshots of FIM (1/4)
	Some screenshots of FIM (2/4)
	Some screenshots of FIM (3/4)
	Some screenshots of FIM (4/4)

