A reflexive partial ordering \sqsubseteq on a set D is *complete* iff

- (1) D has a smallest element \bot_D
- (2) every chain S of D has a least upper bound $\Box S \in D$

 $f: D_1 \to D_2$ is *continuous* if $f(\sqcup S) = \sqcup f(S)$ for every chain S of D_1 . f is *continuous* \Rightarrow f is *monotonic*

\sqsubseteq is a cpo on:

- Base Domains \mathbb{Z}_{\perp} , \mathbb{B}_{\perp} , C_{\perp} , F_{\perp}
- Product Domains $D_1 \times \ldots \times D_n$
- Function Domains $\langle D_1 \to D_2 \rangle$ (continuous functions)