A reflexive partial ordering \sqsubseteq on a set D is *complete* iff - (1) D has a smallest element \bot_D - (2) every chain S of D has a least upper bound $\Box S \in D$ $f: D_1 \to D_2$ is *continuous* if $f(\sqcup S) = \sqcup f(S)$ for every chain S of D_1 . f is *continuous* \Rightarrow f is *monotonic* ## \sqsubseteq is a cpo on: - Base Domains \mathbb{Z}_{\perp} , \mathbb{B}_{\perp} , C_{\perp} , F_{\perp} - Product Domains $D_1 \times \ldots \times D_n$ - Function Domains $\langle D_1 \to D_2 \rangle$ (continuous functions)