| First name | Last name | Matriculation number |
| :--- | :--- | :--- |
|  |  |  |

## Exercise $1(2+2+2$ points $)$

The following data structure represents binary trees only containing values at the leaves:
data Tree $a=$ Node (Tree a) (Tree a) | Leaf a
Consider the tree $t$ of integers on the right-hand side. The representation of $t$ as an object of type Tree Int in Haskell would be:

Node (Node (Leaf 1) (Leaf 2)) (Leaf 3)


Implement the following functions in Haskell.
(a) The function foldTree of type ( $\mathrm{a}->\mathrm{a}->\mathrm{a}$ ) -> (b $->\mathrm{a}$ ) -> Tree b $->$ a works as follows: foldTree $n l$ t replaces all occurrences of the constructor Node in the tree $t$ by n and it replaces all occurrences of the constructor Leaf in t by l . So for the tree $t$ above, foldTree (+) id t should compute (+) ((+) (id 1) (id 2)) (id 3) which finally results in 6 . Here, Node is replaced by (+) and Leaf is replaced by id.
foldTree f g (Leaf x ) $=\mathrm{g} \mathrm{x}$
foldTree $f$ g (Node lr) $=f($ foldTree $f g l)(f o l d T r e e f g r)$
(b) Use the foldTree function from (a) to implement the maxTree function which returns the largest (w.r.t. >) element of the tree. Apart from the function declaration, also give the most general type declaration for maxTree.

```
maxTree :: Ord a => Tree a -> a
maxTree = foldTree max id
```

| First name | Last name | Matriculation number |
| :--- | :--- | :--- |
|  |  |  |

(c) Consider the following data type declaration for natural numbers:

```
data Nats = Zero | Succ Nats
```

A graphical representation of the first four levels of the domain for Nats could look like this:


Sketch a graphical representation of the first three levels of the domain $D_{\text {Tree Bool }}$ for the data type Tree Bool.


| First name | Last name | Matriculation number |
| :--- | :--- | :--- |
|  |  |  |

## Exercise $2(2+3$ points)

Consider the following Haskell declarations for the double function:

```
double :: Int -> Int
double (x+1) = 2 + (double x)
double _ = 0
```

(a) Give the Haskell declarations for the higher-order function f_double corresponding to double, i.e., the higher-order function f_double such that the least fixpoint of f_double is double. In addition to the function declaration(s), also give the type declaration of f_double. Since you may use full Haskell for f_double, you do not need to translate double into simple Haskell.

```
f_double :: (Int -> Int) -> (Int -> Int)
f_double double (x+1) = 2 + (double x)
f_double double _ = 0
```

(b) We add the Haskell declaration bot $=$ bot. For each $n \in \mathbb{N}$ determine which function is computed by f_double ${ }^{n}$ bot. Here "f_double ${ }^{n}$ bot" represents the $n$-fold application of f_double to bot, i.e., it is short for $\underbrace{\text { f_double (f_double } \ldots \text { (f_double }}_{n \text { times }}$ bot)...). Give the function in closed form, i.e., using a non-recursive definition.

$$
\left(\text { f_double }^{n}(\perp)\right)(x)= \begin{cases}2 \cdot x, & \text { if } 0<x<n \\ 0, & \text { if } x \leq 0 \wedge n>0 \\ \perp, & \text { if } n=0 \vee x=\perp \vee x \geq n\end{cases}
$$

| First name | Last name | Matriculation number |
| :--- | :--- | :--- |
|  |  |  |

## Exercise 3 (3+3 points)

Let $\sqsubseteq$ be a complete order and let $f$ be a function which is continuous (and, therefore, also monotonic).
Prove or disprove the following statements:
(a) $\left\{f^{n}(\perp) \mid n \in\{0,1,2, \ldots\}\right\}$ is a chain.

We must prove $f^{n}(\perp) \sqsubseteq f^{n+1}(\perp)$ for all $n \in\{0,1,2, \ldots\}$.
$-n=0$ : By definition we have $\perp \sqsubseteq f(\perp)$
$-n \rightarrow n+1$ : The function $f$ is continuous and therefore also monotonic.
Thus, $f^{n}(\perp) \sqsubseteq f^{n+1}(\perp)$ implies $f^{n+1}(\perp) \sqsubseteq f^{n+2}(\perp)$.
(b) $\sqcup\left\{f^{n}(\perp) \mid n \in\{0,1,2, \ldots\}\right\}$ is a fixpoint of $f$.

$$
\begin{aligned}
f\left(\sqcup\left\{f^{n}(\perp) \mid n \in\{0,1,2, \ldots\}\right\}\right) & \stackrel{f \text { continuous }}{=} \\
& \sqcup f\left(\left\{f^{n}(\perp) \mid n \in\{0,1,2, \ldots\}\right\}\right) \\
& = \\
& \sqcup\left\{f^{n+1}(\perp) \mid n \in\{0,1,2, \ldots\}\right\} \\
& \sqcup\left\{f^{n}(\perp) \mid n \in\{1,2, \ldots\}\right\} \\
& = \\
& \sqcup\left(\left\{f^{n}(\perp) \mid n \in\{1,2, \ldots\}\right\} \cup\{\perp\}\right) \\
& \left.=\sqcup\left\{f^{n}(\perp) \mid n \in\{1,2, \ldots\}\right\} \cup\left\{f^{0}(\perp)\right\}\right) \\
& \sqcup\left\{f^{n}(\perp) \mid n \in\{0,1,2, \ldots\}\right\}
\end{aligned}
$$

| First name | Last name | Matriculation number |
| :--- | :--- | :--- |
|  |  |  |

## Exercise 4 (3 points)

We define the following algebraic data type for lists:

```
data List a = Nil | Cons a (List a)
```

Write a program in simple Haskell which computes the function sum : : List Int -> Int. Here, sum adds all integers in a list of integers. For example, sum (Cons 1 (Cons (-2) Nil)) should return -1 .

Your solution should use the functions defined in the transformation from the lecture such as $\operatorname{sel}_{n, i}$, isa constr , and $\operatorname{argof}_{\underline{\text { constr }}}$. You do not have to use the transformation rules from the lecture, though.

```
let sum = \l -> if (isaNNil l)
    then 0
    else (sel 2,1 (argof Cons l)) + (sum (sel (s,2 (argof Cons l)))
```

| First name | Last name | Matriculation number |
| :--- | :--- | :--- |
|  |  |  |

## Exercise 5 (2+3 points)

Consider the following data structure for natural numbers:
data Nats = Succ Nats | Zero

Let $\delta$ be the set of rules from Definition 3.3.5, i.e., $\delta$ contains at least the following rules:

$$
\begin{aligned}
\text { fix } & \rightarrow \lambda f . f(\text { fix } f) \\
\text { if False } & \rightarrow \lambda x y . y \\
\text { isa }_{\text {Zero }}(\text { Succ (Succ Zero) }) & \rightarrow \text { False }
\end{aligned}
$$

(a) Please translate the following Haskell-expression into a lambda term using $\mathcal{L} a m$. It suffices to give the result of the transformation.
let $g=\backslash x$-> if (isa_Zero $x$ ) then Zero else Succ ( $(\operatorname{argof}$ _Succ $x)$ ) in $g$ (Succ (Succ Zero))

```
(fix (\lambdagx. if (isazero }x)\mathrm{ Zero (Succ (g (argof Succ }x))))) (Succ (Succ Zero))
```

(b) Reduce the lambda term from (a) by WHNO-reduction with the $\rightarrow_{\beta \delta}$-relation. You do not have to give the intermediate steps but only the weak head normal form (which is not the same as the normal form).

Let $A=\lambda g x$.if $\left(\right.$ isa $\left._{\text {zero }} x\right)$ Zero $\left(\operatorname{Succ}\left(g\left(\operatorname{argof}_{\text {Succ }} x\right)\right)\right)$

```
            fix (\lambdag x. if (isazero }x)\mathrm{ Zero (Succ (g (argof Succ }x)))) (Succ (Succ Zero))
    = fix A (Succ (Succ Zero))
    ->\delta
    -> }A(\mathrm{ fix A) (Succ (Succ Zero))
    ->\beta
    ->\beta}\mp@code{if (isaZero (Succ (Succ Zero))) Zero (Succ (fix A (argof Succ (Succ (Succ Zero)))))
    ->\delta if False Zero (Succ (fix A (argof Succ (Succ (Succ Zero)))))
    ->\delta
    ->\beta
    ->\beta}\operatorname{Succ}(\mathrm{ fix A (argof Succ
```

| First name | Last name | Matriculation number |
| :--- | :--- | :--- |
|  |  |  |
| 7 |  |  |

## Exercise 6 (4 points)

Use the type inference algorithm $\mathcal{W}$ to determine the most general type of the following $\lambda$-term under the initial type assumption $A_{0}$. Show the results of all sub-computations and unifications, too. If the term is not well typed, show how and why the $\mathcal{W}$-algorithm detects this.

```
fix ( }\lambdax.\operatorname{Succ}x
```

In this exercise, please use the initial type assumption $A_{0}$ as presented in the lecture. This type assumption contains at least the following:

$$
\begin{aligned}
& A_{0}(\text { Succ })=\text { Nats } \rightarrow \text { Nats } \\
& A_{0}(\text { fix })=\forall a .(a \rightarrow a) \rightarrow a
\end{aligned}
$$

```
\(W\left(A_{0}\right.\), fix \((\lambda x\). Succ \(\left.x)\right)\)
    \(W\left(A_{0}\right.\), fix \()\)
    \(=\left(i d,\left(b_{0} \rightarrow b_{0}\right) \rightarrow b_{0}\right)\)
    \(W\left(A_{0}, \lambda x\right.\). Succ \(\left.x\right)\)
        \(W\left(A_{0}+\left\{x:: b_{1}\right\}\right.\), Succ \(\left.x\right)\)
            \(W\left(A_{0}+\left\{x:: b_{1}\right\}\right.\), Succ \()\)
            \(=(i d\), Nats \(\rightarrow\) Nats \()\)
            \(W\left(A_{0}+\left\{x:: b_{1}\right\}, x\right)\)
            \(=\left(i d, b_{1}\right)\)
            \(m g u\left((\right.\) Nats \(\rightarrow\) Nats \(\left.),\left(b_{1} \rightarrow b_{2}\right)\right)=\left[b_{1} /\right.\) Nats, \(b_{2} /\) Nats \(]\)
        \(=\left(\left[b_{1} /\right.\right.\) Nats, \(b_{2} /\) Nats \(]\), Nats \()\)
    \(=\left(\left[b_{1} /\right.\right.\) Nats, \(b_{2} /\) Nats \(]\), Nats \(\rightarrow\) Nats \()\)
    \(\operatorname{mgu}\left(\left(\left(b_{0} \rightarrow b_{0}\right) \rightarrow b_{0}\right),\left((\right.\right.\) Nats \(\rightarrow\) Nats \(\left.\left.) \rightarrow b_{3}\right)\right)=\left[b_{0} /\right.\) Nats, \(b_{3} /\) Nats \(]\)
\(=\left(\left[b_{1} /\right.\right.\) Nats, \(b_{2} /\) Nats, \(b_{0} /\) Nats, \(b_{3} /\) Nats \(]\), Nats \()\)
```

Resulting type: Nats

