First name Last name Matriculation number

Exercise 1 (2+2+2 points)

The following data structure represents binary trees only containing values at the leaves:
data Tree a = Node (Tree a) (Tree a) | Leaf a

Consider the tree t of integers on the right-hand / \
side. The representation of t as an object of type .
Tree Int in Haskell would be: 3
Node (Node (Leaf 1) (Leaf 2)) (Leaf 3) / \

1 2

Implement the following functions in Haskell.

(a) The function foldTree of type (a -> a > a) -> (b -> a) -> Tree b -> a works as
follows: foldTree n 1 t replaces all occurrences of the constructor Node in the tree t
by n and it replaces all occurrences of the constructor Leaf in t by 1. So for the tree
t above, foldTree (+) id t should compute (+) ((+) (id 1) (id 2)) (id 3) which
finally results in 6. Here, Node is replaced by (+) and Leaf is replaced by id.

foldTree f g (Leaf x)
foldTree f g (Node 1 r)

g X
f (foldTree f g 1) (foldTree f g r)

(b) Use the foldTree function from (a) to implement the maxTree function which returns the
largest (w.r.t. >) element of the tree. Apart from the function declaration, also give the
most general type declaration for maxTree.

maxTree :: Ord a => Tree a -> a
maxTree = foldTree max id

First name Last name Matriculation number
2
(c) Consider the following data type declaration for natural numbers:
data Nats = Zero | Succ Nats
A graphical representation of the first four levels of the domain for Nats could look like this:
Succ (Succ Zero) Succ (Succ (Succ 1))
Succ Zero Succ (Succ 1)
Ze‘ro Succ |
L
Sketch a graphical representation of the first three levels of the domain Drtypee poo1 for the
data type Tree Bool.
Node (Node L L) Node L (Node L 1)
Leaf True Leaf False Node (Leaf\ %J_ (Leaf 1)

Leaf J_ Node 1 |

e

First name Last name Matriculation number

Exercise 2 (243 points)

Consider the following Haskell declarations for the double function:

double :: Int -> Int
double (x+1) = 2 + (double x)
double _ =0

(a)

Give the Haskell declarations for the higher-order function f_double corresponding to
double, i.e., the higher-order function f_double such that the least fixpoint of f_double
is double. In addition to the function declaration(s), also give the type declaration of
f_double. Since you may use full Haskell for f_double, you do not need to translate
double into simple Haskell.

f_double :: (Int -> Int) -> (Int -> Int)
f_double double (x+1) = 2 + (double x)
f_double double _ = 0

We add the Haskell declaration bot = bot. For each n € IN determine which function
is computed by f_double™ bot. Here “f_double” bot” represents the n-fold application
of £_double to bot, i.e., it is short for f_double (f_double ... (f_double bot)...). Give

-~

n times
the function in closed form, i.e., using a non-recursive definition.

fx<0AnNn>0

2.2, f0<z<n
(f_double”(L))(x) =< O,
1, ifn=0vVa=1LVxr>n

o

First name Last name Matriculation number

Exercise 3 (343 points)

Let C be a complete order and let f be a function which is continuous (and, therefore, also
monotonic).

Prove or disprove the following statements:

(a) { fM(L) | ne{0,1,2,...} }is a chain.

We must prove f*(L) C f**(L) for all n € {0,1,2,...}.

— n = 0: By definition we have L C f(1)

— n — n+ 1: The function f is continuous and therefore also monotonic.
Thus, f7(1) C (1) implies f**(1) C f7+2(1).

(b) U{ f™(L) | ne{0,1,2,...} }is a fixpoint of f.

FULMWL) | ne{0,1,2,.. 0 T rreml) | nef0,1,2,..})
= L{f"H(L) | ned0,1,2,...}}
= U{f™(L) | me{L,2,...}}

= UMW) | me{L2. 3 u{L)
= L) | e L2, U {OW))
— UML) | ned{01,2,..}}

First name Last name Matriculation number

Exercise 4 (3 points)

We define the following algebraic data type for lists:
data List a = Nil | Cons a (List a)

Write a program in simple Haskell which computes the function sum :: List Int -> Int.
Here, sum adds all integers in a list of integers. For example, sum (Cons 1 (Cons (-2) Nil))
should return -1.

Your solution should use the functions defined in the transformation from the lecture such as
sel, ;, iSaconstr, and argof You do not have to use the transformation rules from the
lecture, though.

constr*

let sum = \1 -> if (isay;; 1)
then 0O
else (sely; (argofcons 1)) + (sum (selys (argofcons 1)))

First name Last name Matriculation number

Exercise 5 (243 points)
Consider the following data structure for natural numbers:
data Nats = Succ Nats | Zero

Let 0 be the set of rules from Definition 3.3.5, i.e., contains at least the following rules:

fix — Af. f (fix f)
if False — Mrvy.y

iSazer, (Succ (Succ Zero)) — False

(a) Please translate the following Haskell-expression into a lambda term using Lam. It suffices
to give the result of the transformation.

let g = \x -> if (isa_Zero x) then Zero else Succ (g (argof_Succ x))
in g (Succ (Succ Zero))

(fiz (Ag x. if (isager, x) Zero (Succ (g (argofg,.. 7))))) (Succ (Succ Zero))

(b) Reduce the lambda term from (a) by WHNO-reduction with the — gs-relation. You do not
have to give the intermediate steps but only the weak head normal form (which is not
the same as the normal form).

Let A= \g . if (isagzer,) Zero (Succ (g (argofsuc)))

fix (Ag z. if (isagzer, =) Zero (Succ (g (argofsucc)))) (Succ (Succ Zero))
= fix A (Succ (Succ Zero))
—s (Af. f (fix f)) A (Succ (Succ Zero))
—5 A (fix A) (Succ (Succ Zero))
—5 (Ax. if (isager,) Zero (Succ (fix A (argofgyc. 7)))) (Succ (Succ Zero))
(Succ Zero))) Zero (Succ (fix A (argofsyc. (Succ (Succ Zero)))))
—s if False Zero (Succ (fix A (argofsuyc. (Succ (Succ Zero)))))

—p5 1if (isagero (Succ

—s (Ar y.y) Zero (Succ (fix A (argofsyc. (Succ (Succ Zero)))))
—5 (Ay. y) (Succ (fix A (argofsuc. (Succ (Succ Zero)))))
—5 Succ (fix A (argofsyc (Succ (Succ Zero))))

First name Last name Matriculation number

Exercise 6 (4 points)

Use the type inference algorithm W to determine the most general type of the following A-term
under the initial type assumption Ay. Show the results of all sub-computations and unifications,
too. If the term is not well typed, show how and why the W-algorithm detects this.

fix (Az. Succ x)

In this exercise, please use the initial type assumption A, as presented in the lecture. This type
assumption contains at least the following:

Ap(Succ) = Nats — Nats
Ap(fix) = Va.(a—a) —a

W (A, fix (Az. Succ 7))
W(A(), le)
= (id, (bo — by) — bo)
W(Ap, Azx. Succ)
W (Ao + {z :: b1}, Succ z)
W(Ay+ {z:: b1}, Succ)
= (id, Nats — Nats)
W(Ay+ {x:: b1},)
= (Id/ bl)
mgu((Nats — Nats), (by — by)) = [b1/Nats, by /Nats]|
= ([by/Nats, by /Nats], Nats)
= ([by/Nats, by /Nats], Nats — Nats)
mgu(((bg — bo) — by), ((Nats — Nats) — b3)) = [bo/Nats, b3/Nats|
= ([by/Nats, by /Nats, by/Nats, b /Nats|, Nats)

Resulting type: Nats

