
First name Last name Matriculation number
1

Exercise 1 (2+2+2 points)

The following data structure represents binary trees only containing values in the inner nodes:
data Tree a = Leaf | Node (Tree a) a (Tree a)

Consider the tree t of integers on the right-hand
side. The representation of t as an object of type
Tree Int in Haskell would be:

Node (Node Leaf 2 Leaf) 1 Leaf

1

<<
<<

<<
<<

��
��

��
�

2

>>
>>

>>
>>

��
��

��
�

·

· ·

Implement the following functions in Haskell.

(a) Please implement the function swapTree which returns the tree where all left children
have been swapped with the corresponding right
children. When computing swapTree t one would
obtain the tree on the right-hand side. Apart from
the function declaration, also give the most general
type declaration for swapTree. You may not use
any higher-order functions.

1

==
==

==
=

��
��

��
��

· 2

==
==

==
=

��
��

��
��

· ·

swapTree :: Tree a -> Tree a

swapTree Leaf = Leaf

swapTree (Node l x r) = Node (swapTree r) x (swapTree l)

1



First name Last name Matriculation number
2

(b) The function foldTree of type (a -> b -> a -> a) -> a -> Tree b -> a works as fol-
lows: foldTree n l t replaces all occurrences of the constructor Node in the tree t by
n and it replaces all occurrences of the constructor Leaf in t by l. Suppose there is the
function add:

add :: Int -> Int -> Int -> Int

add x y z = x + y + z

For the tree t from (a), “foldTree add 0 t” should compute:

foldTree add 0 (Node (Node Leaf 2 Leaf) 1 Leaf)

= add (add 0 2 0 ) 1 0

= 3

Here, Node is replaced by add and Leaf is replaced by 0.

Now use the foldTree function to implement the swapTree function again.

swapTree = foldTree (\x y z -> Node z y x) Leaf



First name Last name Matriculation number
3

(c) Consider the following data type declaration for natural numbers:

data Nats = Zero | Succ Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

Succ (Succ Zero) Succ (Succ (Succ ⊥))

iiiiiiiiiiiiiiii

Succ Zero Succ (Succ ⊥)

llllllllllllll

Zero Succ ⊥

qqqqqqqqqqqq

⊥

Sketch a graphical representation of the first three levels of the domain for the data type
Tree Bool.

Node (Node ⊥ ⊥ ⊥) ⊥ ⊥

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<
Node ⊥ True ⊥

Node ⊥ False ⊥

LLLLLLLLLLLLLLLLLLLLLLLLLL
Node ⊥ ⊥ (Node ⊥ ⊥ ⊥)

rrrrrrrrrrrrrrrrrrrrrrrrr

Node Leaf ⊥ ⊥

VVVVVVVVVVVVVVVVVV Node ⊥ ⊥ Leaf

hhhhhhhhhhhhhhhhhh

Leaf Node ⊥ ⊥ ⊥

hhhhhhhhhhhhhhhhhhhhhh

⊥



First name Last name Matriculation number
4

Exercise 2 (2+3 points)

Consider the following Haskell declarations for the half function:

half :: Int -> Int

half (x+2) = 1 + (half x)

half _ = 0

(a) Give the Haskell declarations for the higher-order function f half corresponding to half,
i.e., the higher-order function f half such that the least fixpoint of f half is half. In
addition to the function declaration(s), also give the type declaration of f half. Since you
may use full Haskell for f half, you do not need to translate half into simple Haskell.

f half :: (Int -> Int) -> (Int -> Int)

f half half (x+2) = 1 + (half x)

f half half = 0

(b) We add the Haskell declaration bot = bot. For each n ∈ IN determine which function
from ZZ⊥ to ZZ⊥ is computed by f halfn bot. Here “f halfn bot” represents the n-
fold application of f half to bot, i.e., it denotes f half (f half . . . (f half

︸ ︷︷ ︸

n times

bot) . . .).

Give the function computed by “f halfn bot” in closed form, i.e., using a non-recursive
definition.

(f half
n(⊥))(x) =







⌊x
2
⌋, if 1 < x < 2n

0, if x ≤ 1 ∧ n > 0
⊥, if n = 0 ∨ x = ⊥ ∨ x ≥ 2n



First name Last name Matriculation number
5

Exercise 3 (3+3 points)

Let ⊑ be a complete order and let f be a function which is continuous (and therefore also
monotonic).

Prove or disprove the following statements:

(a) { fn(⊥) | n ∈ {0, 1, 2, . . .} } is a chain.

We prove fn(⊥) ⊑ fn+1(⊥) for all n ∈ {0, 1, 2, . . .} by induction on n.

– n = 0: By definition we have ⊥ ⊑ f(⊥).

– n → n + 1: The function f is continuous and therefore also monotonic.
Thus, fn(⊥) ⊑ fn+1(⊥) implies fn+1(⊥) ⊑ fn+2(⊥).

(b) ⊔{ fn(⊥) | n ∈ {0, 1, 2, . . .} } is a fixpoint of f .

f(⊔{fn(⊥) | n ∈ {0, 1, 2, . . .}})
f continuous

= ⊔f({fn(⊥) | n ∈ {0, 1, 2, . . .}})

= ⊔{fn+1(⊥) | n ∈ {0, 1, 2, . . .}}

= ⊔{fn(⊥) | n ∈ {1, 2, . . .}}

= ⊔({fn(⊥) | n ∈ {1, 2, . . .}} ∪ {⊥})

= ⊔({fn(⊥) | n ∈ {1, 2, . . .}} ∪ {f 0(⊥)})

= ⊔{fn(⊥) | n ∈ {0, 1, 2, . . .}}



First name Last name Matriculation number
6

Exercise 4 (3 points)

We define the following algebraic data type for lists:

data List a = Nil | Cons a (List a)

Write declarations in simple Haskell for the function maxList :: List Int -> Int. Here, for
empty lists the function should return bot. For non-empty lists, maxList should return the
maximum of that list. For example, maxList (Cons 1 (Cons (-2) Nil)) should return 1.

Your solution should use the functions defined in the transformation from the lecture such as
seln,i, isaconstr, argofconstr, and bot. You do not have to use the transformation rules from
the lecture, though. Additionally, you may use the built-in function max :: Int -> Int -> Int

for computing the maximum of two integers.

maxList= \xs -> if (isaCons xs)
then if (isaNil (sel2,2 (argofCons xs)))

then sel2,1 (argofCons xs)
else max (sel2,1 (argofCons xs)) (maxList (sel2,2 (argofCons xs)))

else bot



First name Last name Matriculation number
7

Exercise 5 (2+4 points)

Consider the following data structures for natural numbers and polymorphic lists:

data Nats = Zero | Succ Nats

data List a = Nil | Cons a (List a)

Let δ be the set of rules from Definition 3.3.5, i.e., δ contains among others the following rules:

fix → λf. f (fix f)

if True → λx y. x

isaNil Nil → True

(a) Please translate the following Haskell-expression into an equivalent lambda term (e.g.,
using Lam). It suffices to give the result of the transformation.

let length= \xs -> if (isaNil xs) then Zero

else Succ (length (sel2,2 (argofCons xs)))
in length

fix (λlength xs. if (isaNil xs) Zero (Succ (length (sel2,2 (argof
Cons

xs)))))



First name Last name Matriculation number
8

(b) Let “fix t” be the lambda term from (a). Please reduce “(fix t) Nil” by WHNO-reduction
with the →βδ-relation. You have to give all intermediate steps until one reaches weak
head normal form.
We have t = (λlength xs. if (isaNil xs) Zero (Succ (length (sel2,2 (argof

Cons
xs)))))

fix t Nil

→δ (λf. f (fix f)) t Nil

→β t (fix t) Nil

→β (λxs. if (isaNil xs) Zero (Succ (fix t (sel2,2 (argof
Cons

xs))))) Nil

→β if (isaNil Nil) Zero (Succ (fix t (sel2,2 (argof
Cons

Nil))))

→δ if True Zero (Succ (fix t (sel2,2 (argof
Cons

Nil))))

→δ (λx y. x) Zero (Succ (fix t (sel2,2 (argof
Cons

Nil))))

→β (λy. Zero) (Succ (fix t (sel2,2 (argof
Cons

Nil))))

→β Zero



First name Last name Matriculation number
9

Exercise 6 (4 points)

Use the type inference algorithm W to determine the most general type of the following λ-term
under the initial type assumption A0. Show the results of all sub-computations and unifications,
too. If the term is not well typed, show how and why the W-algorithm detects this.

λf. f (Succ Zero)

The initial type assumption A0 contains at least the following:

A0(f) = ∀a. a
A0(Succ) = Nats → Nats

A0(Zero) = Nats

W (A0, λf. f (Succ Zero))
W (A0 + {f :: b0}, f (Succ Zero))

W (A0 + {f :: b0}, f)
= (id, b0)
W (A0 + {f :: b0}, Succ Zero)

W (A0 + {f :: b0}, Succ)
= (id, (Nats → Nats))
W (A0 + {f :: b0}, Zero)
= (id, Nats)
building mgu of (Nats → Nats) and (Nats → b1) = [b1/Nats]

= ([b1/Nats], Nats)
building mgu of b0 and (Nats → b2) = [b0/(Nats → b2)]

= ([b1/Nats, b0/(Nats → b2)], b2)
= ([b1/Nats, b0/(Nats → b2)], ((Nats → b2) → b2))

Resulting type: ((Nats → b2) → b2)


