
Functional Programming SS16
Exam 17.08.2016

aaProf. Dr. J. Giesl D. Korzeniewski

Exam in Functional Programming SS 2016

First Name:

Last Name:

Matriculation Number:

Course of Studies (please mark exactly one):

◦ Informatik Bachelor ◦ Mathematik Master
◦ Informatik Master ◦ Software Systems Engineering Master
◦ Other:

Available Points Achieved Points

Exercise 1 35

Exercise 2 42

Exercise 3 25

Exercise 4 18

Sum 120

Notes:

• On all sheets (including additional sheets) you must write your �rst name, your last

name and your matriculation number.

• Give your answers in readable and understandable form.

• Use permanent pens. Do not use red or green pens and do not use pencils.

• Please write your answers on the exam sheets (also use the reverse sides).

• For each exercise part, give at most one solution. Cancel out everything else. Otherwise
all solutions of the particular exercise part will give you 0 points.

• If we observe any attempt of deception, the whole exam will be evaluated to 0 points.

• At the end of the exam, hand in all sheets together with the sheets containing the

exam questions.

1

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

Exercise 1 (Programming in Haskell): (6 + 6 + 7 + 16 = 35 points)

We de�ne a polymorphic data structure Warehouse to represent a warehouse that can contain goods.

data Warehouse a

= Corridor (Warehouse a) (Warehouse a)

| Shelf [a] deriving Show

The data structure Goods is used to represent di�erent types of goods.

data Goods

= NoGoods | Box | Barrel deriving (Show, Eq)

For example, aWarehouse is a valid expression of type Warehouse Goods.

aWarehouse = Corridor (Shelf [Box, Box]) (Corridor (Shelf [Barrel, NoGoods]) (Shelf [Box]))

The following function can be used to fold a Warehouse:

fold :: (a -> a -> a) -> a -> Warehouse a -> a

fold f res (Shelf xs) = foldr f res xs

fold f res (Corridor left right) = f (fold f res left) (fold f res right)

In the following exercises, you are allowed to use the functions given above, functions implemented in preceding
parts of the exercise, and prede�ned functions from the Haskell-Prelude. Moreover, you are always allowed to
implement additional auxiliary functions.

a) Implement a function buildWarehouse :: [a] -> Int -> Warehouse a that gets a list and a number
indicating how many items may be stored in one shelf. The function should return a warehouse containing
all items in the input list, distributed on the minimal number of shelves possible while respecting the
limit given by the second input.

If the input list is the empty list, Shelf [] should be returned. If the integer argument is less than 1
the function may behave arbitrarily.

For example buildWarehouse [Box, Box, Barrel, NoGoods, Box] 2 should result in a warehouse
with 3 shelves which together contain all elements from the list. A possible result would be aWarehouse,
as de�ned above.

2

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

b) Implement a function mapWarehouse together with its type declaration (mapWarehouse :: ...). The
function mapWarehouse gets a unary function and a Warehouse, and applies the function to every element
stored in the lists of the Shelf objects of the Warehouse. For example, the expression
mapWarehouse (\x -> if x == Box then NoGoods else x) returns a function that replaces all Boxes
in a Warehouse by NoGoods.

c) Implement a function inventory :: Warehouse Goods -> (Int, Int) that returns a tuple containing
the number of Boxes and Barrels in the input Warehouse. For example inventory aWarehouse should
yield (3, 1).

Hints:

You may use fold given above and mapWarehouse from the previous task (even if you have not solved
the previous task).

3

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

d) In this part of the exercise, you should implement a program that controls a forklift. The goal of the
forklift is to store Goods in a Warehouse. Goods can only be placed in free spaces indicated by NoGoods

or stacked on top of a shelf.

Implement a function storeGoods :: Warehouse Goods -> Goods -> IO (). Its input is a Warehouse
that contains Goods. It processes the Warehouse as follows:

For a Corridor, it prints "Do you want to turn left or right? (l|r)". If the user answers "l",
it proceeds with the �rst argument of the Corridor, if the answer is "r" it continues with the second
argument of Corridor, otherwise an error message "Incorrect input" is printed and the question is
repeated.

Once a Shelf is encountered the user is asked "How high do you want to raise the fork?" and an
integer k is read. The program then distinguishes the following cases:

• The number k is less than 0: An error message "Your forklift fell over" is printed.

• The number k is a position of the list in the Shelf: (Here an object Shelf [x_0, ..., x_n] has
positions 0, . . . , n and the object at position i is x_i.) If the list contains NoGoods at position
k, the message "Inserted the <Goods>" is printed where <Goods> is replaced by Box or Barrel
depending on the input, otherwise the message "No room in the shelf" is printed.

• The number k is at least the length of the list: The message "Stacked on top of the shelf" is
printed.

Afterwards the program terminates.

A successful run might look as follows:

*Main> storeGoods (Corridor (Shelf [Barrel, NoGoods, Box]) (Shelf [Box])) Barrel

Do you want to turn left or right? (l|r) l

How high do you want to raise the fork? 1

Inserted the Barrel

In the following run, the goods are stacked on top of a shelf:

*Main> storeGoods (Corridor (Shelf [Barrel, NoGoods, Box]) (Shelf [Box])) Barrel

Do you want to turn left or right? (l|r) y

Incorrect input

Do you want to turn left or right? (l|r) r

How high do you want to raise the fork? 42

Stacked on top of the shelf

Hints:

You should use the function getChar :: IO Char to read a character input from the user. Moreover,
you may assume there is a function getInt :: IO Int that reads an integer from the command line.
To print a String, you should use the function putStr :: String -> IO () or the function putStrLn

:: String -> IO (), if the output should end with a line break. You should use the function
show :: Goods -> String to convert a Goods object to a String. To save space, you may also assume
that the following additional declarations exist in your program:

leftRight, incorrect, howHigh, fellOver, noRoom, stacked :: String

leftRight = "Do you want to turn left or right? (l|r) "

incorrect = "Incorrect input"

howHigh = "How high do you want to raise the fork? "

fellOver = "Your forklift fell over"

noRoom = "No room in the shelf"

stacked = "Stacked on top of the shelf"

4

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

5

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

Exercise 2 (Semantics): (17 + 16 + 9 = 42 points)

a) i) Let D1, D2, and D3 be domains with complete orders v1, v2, and v3, respectively. Let g : D1 → D2

and f : D2 → D3 be strict and monotonic functions. Here, we say that g is strict on a (possibly
non-�at) domain D1 if and only if g(⊥D1) = ⊥D2 . As usual, f ◦ g is the composition of f and g
(i.e., (f ◦ g)(x) = f(g(x))). Prove or disprove whether f ◦ g is:

1) strict

2) monotonic

6

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

ii) Let Σ = {a, . . . , z}, let Σ∗ be the set of all �nite words over the alphabet Σ, and let ≤lex denote
the usual lexicographic order on Σ∗ (which corresponds to the order of words in a lexicon). So, for
example abc ≤lex abcd and xyz ≤lex xzz.
Prove or disprove each of the following statements:

1) There is an in�nite chain in (Σ∗,≤lex).

2) The order ≤lex is complete on Σ∗.

3) The order ≤lex is con�uent.

7

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

b) i) Consider the following Haskell function f:

f :: (Int, Int) -> Int

f (x, 0) = 0

f (x, y) = (x * y) + f (x, y - 1)

Please give the Haskell declaration for the higher-order function ff corresponding to f, i.e., the
higher-order function ff such that the least �xpoint of ff is f. In addition to the function declaration,
please also give the type declaration for ff. You may use full Haskell for ff.

ii) Let φff be the semantics of the function ff. Give the de�nition of φnff(⊥) in closed form for any
n ∈ N, i.e., give a non-recursive de�nition of the function that results from applying φff n-times to
⊥. Here, you should assume that Int can represent all integers, so no over�ow can occur.

iii) Give the de�nition of the least �xpoint of φff in closed form.

8

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

c) Consider the data type declarations on the left and, as an example, the graphical representation of the
�rst three levels of the domain for Nats on the right:

data Nats = Z | S Nats

data Warehouse a

= Corridor

(Warehouse a)

(Warehouse a)

| Shelf [a]

data Goods

= NoGoods | Box | Barrel ⊥

Z 2nd level

3rd level

1st level

S Z S (S ⊥)

S ⊥

Give a graphical representation of the �rst three levels of the domain for the type Warehouse Goods.
You may abbreviate the constructors to the �rst two letters (i.e., you may write Co instead of Corridor).

9

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

Exercise 3 (Lambda Calculus): (5 + 14 + 6 = 25 points)

a) Consider the following variant of the function from Exercise 2b:

f' :: Int -> Int -> Int

f' x 0 = 0

f' x y = (x * y) + f' x (y - 1)

Please implement this function in the lambda calculus, i.e., give a lambda term q such that, for all
x, y, z ∈ Z, f' x y == z if and only if q x y can be reduced to z via WHNO-reduction with the →βδ-
relation and the set of rules δ as introduced in the lecture to implement Haskell. You can use in�x
notation for prede�ned functions like (==), (∗), (+), or (−).

10

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

b) Let
t = λ g x y. if (x == 1) Nil (Cons y (g (x− 1) (y ∗ x)))

and

δ = { if True→ λx y. x,

if False→ λx y. y,

fix→ λ f. f(fix f)}
∪ { x− y → z | x, y, z ∈ Z ∧ z = x− y}
∪ { x+ y → z | x, y, z ∈ Z ∧ z = x+ y}
∪ { x ∗ y → z | x, y, z ∈ Z ∧ z = x · y}
∪ { x == x→ True | x ∈ Z}
∪ { x == y → False | x, y ∈ Z, x 6= y}

Please reduce fix t 3 1 by WHNO-reduction with the →βδ-relation. List all intermediate steps until
reaching weak head normal form, but please write �t� instead of

λ g x y. if (x == 1) Nil (Cons y (g (x− 1) (y ∗ x)))

whenever possible.

11

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

c) Consider the representation of natural numbers in the pure lambda calculus presented in the lecture, i.e.,
n ∈ N is represented by the term λ f x. fn x. Give a pure lambda term for multiplication, i.e., a term
mult such that mult(λ f x. fn x)(λ f x. fm x) can be reduced to λ f x. fn·m x.

Explain your solution shortly. You may give a reduction sequence as explanation.

12

Functional Programming SS16
Exam 17.08.2016

Name: Matriculation Number:

Exercise 4 (Type Inference): (18 points)

Using the initial type assumption A0 := {h :: ∀a.a}, infer the type of the expression λx.h (xh) using the
algorithm W.

13

