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Abstract

We present a method to prove termination of constructor systems auto-

matically. Our approach takes advantage of the special form of these rewrite

systems because for constructor systems instead of left- and right-hand sides

of rules it is su�cient to compare so-called dependency pairs [Art96]. Un-

fortunately, standard techniques for the generation of well-founded orderings

cannot be directly used for the automation of the dependency pair approach.

To solve this problem we have developed a transformation technique which

enables the application of known synthesis methods for well-founded order-

ings to prove that dependency pairs are decreasing. In this way termination of

many (also non-simply terminating) constructor systems can be proved fully

automatically.

1. Introduction

One of the most interesting properties of a term rewriting system is termina-

tion, cf. e.g. [DJ90]. While in general this problem is undecidable [HL78], sev-

eral methods for proving termination have been developed (e.g. path orderings

[Pla78, Der82, DH95, Ste95b], Knuth-Bendix orderings [KB70, Mar87], semantic

interpretations [Lan79, BCL87, BL93, Ste94, Zan94, Gie95b], transformation or-

derings [BD86, BL90, Ste95a], semantic labelling [Zan95] etc. | for surveys see e.g.

[Der87, Ste95b]).

In this paper we are concerned with the automation of termination proofs for con-

structor systems (CS for short). Due to the special form of these rewrite systems

it is possible to use a di�erent approach for CSs than is necessary for termination

of general rewrite systems. Therefore, in this paper we focus on a technique spe-

cially tailored for CSs, viz. the so-called dependency pair approach [Art96]. With

this approach it is also possible to prove termination of systems where all simpli-

�cation orderings fail. In Sect. 2 we describe which steps have to be performed

(automatically) to verify termination of CSs using this approach.

The main task in this approach is to prove that all dependency pairs are decreasing

w.r.t. a well-founded ordering. Up to now only some heuristics existed to perform

this step automatically. On the other hand, several techniques have been developed

to synthesise suited well-founded orderings for termination proofs of term rewriting

systems. Hence, one would like to apply these techniques for the automation of the

dependency pair approach. Unfortunately, as we will show in Sect. 3, this is not

directly possible.

Therefore in Sect. 4 we suggest a new technique to enable the application of standard

methods for the generation of well-founded orderings to prove that dependency pairs

are decreasing. For that purpose we transfer a variant of the estimation method

�
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[Wal94, Gie95c, Gie95d], which was originally developed for termination proofs of

functional programs, to rewrite systems.

By the combination of the dependency pair approach and the estimation method we

obtain a very powerful technique for automated termination proofs of CSs which

can prove termination of numerous CSs whose termination could not be proved

automatically before, cf. Sect. 5 of this report.

2. Dependency Pairs

A constructor system (D; C;R) is a term rewriting system with a set of rules R

and with a signature that can be partitioned into two disjoint sets D and C such

that for every left-hand side f(t

1

; : : : ; t

n

) of a rewrite rule of R the root symbol f

is from D and the terms t

1

; : : : ; t

n

only contain function symbols from C. Function

symbols from D are called de�ned symbols and function symbols from C are called

constructors. As an example consider the following CS:

minus(x; 0) ! x;

minus(succ(x); succ(y)) ! minus(x; y);

quot(0; succ(y)) ! 0;

quot(succ(x); succ(y)) ! succ(quot(minus(x; y); succ(y))):

Most methods for automated termination proofs of term rewriting systems are re-

stricted to simpli�cation orderings [Der79, Ste95b]. These methods cannot prove

termination of the above CS, because no simpli�cation ordering can orient the fourth

rule if y is instantiated to succ(x). The reason is that simpli�cation orderings � are

monotonic and satisfy the subterm property and this implies

succ(quot(minus(x; succ(x)); succ(succ(x)))) � quot(succ(x); succ(succ(x))):

All other known techniques for automated termination proofs of non-simply termi-

nating systems [Zan94, Ste95a, Ken95, FZ95] fail with this example, too.

However, with the dependency pair approach an automated termination proof of

the above CS is possible. The idea of this approach is to use an interpretation on

terms which assigns for every rewrite rule of the CS the same value to the left-hand

side as to the right-hand side. Then for termination of the CS it is su�cient if there

exists a well-founded ordering such that the interpretations of the arguments of all

de�ned symbols are decreasing in each recursive occurrence.

To represent the interpretation another CS E is used which is ground-convergent

(i.e. ground-conuent and terminating) and in which the CS R is contained, i.e.

(l�)#

E

= (r�)#

E

holds for all rewrite rules l ! r of R and all ground substitutions

� (where we always assume that there exist ground terms, i.e. there must be a

constant in the signature D [ C). Then for any ground term t the interpretation is

t#

E

.

If a term f(t

1

; : : : ; t

n

) rewrites to another term C[g(s

1

; : : : ; s

m

)] (where f and g are

de�ned symbols and C denotes some context), then we will try to show that the

interpretation of the tuple t

1

; : : : ; t

n

is greater than the interpretation of the tuple

s

1

; : : : ; s

m

. In order to avoid the comparison of tuples we extend our signature by

a tuple function symbol F for each f 2 D and compare the terms F (t

1

; : : : ; t

n

) and

G(s

1

; : : : ; s

m

) instead. To ease readability we assume that D [ C consists of lower

case function symbols only and denote the tuple functions by the corresponding

upper case symbols. Pairs of terms that have to be compared are called dependency

pairs.
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2.1. Definition. Let (D; C;R) be a CS. If f(t

1

; : : : ; t

n

) ! C[g(s

1

; : : : ; s

m

)] is a

rewrite rule of R and f; g 2 D, then hF (t

1

; : : : ; t

n

); G(s

1

; : : : ; s

m

)i is called a depen-

dency pair (of R).

In our example we obtain the following set of dependency pairs (where M and Q

denote the tuple function symbols for minus and quot):

hM(succ(x); succ(y));M(x; y)i; (1)

hQ(succ(x); succ(y));M(x; y)i; (2)

hQ(succ(x); succ(y));Q(minus(x; y); succ(y))i : (3)

The following theorem states that if the interpretations of the dependency pairs are

decreasing, then the CS is terminating.

2.2. Theorem. Let (D; C;R) be a CS and let (D; C; E) be a ground-convergent CS

such that R is contained in E . If there exists a well-founded ordering � on ground

terms such that (s�)#

E

� (t�)#

E

holds for all

1

dependency pairs hs; ti and all ground

substitutions �, then R is terminating.

For all theorems of this section, proofs (which are based on semantic labelling

[Zan95]) can be found in [Art96].

Hence, to prove termination of a CS R with the dependency pair technique two

tasks have to be done: �rst, one has to �nd a ground-convergent CS E such that

R is contained in E and then one has to prove that the E-interpretations of the

dependency pairs are decreasing w.r.t. a well-founded ordering.

For the �rst task, in [Art96] a method is presented to generate suited CSs E for a

subclass of CSs R automatically: Suppose that R is a non-overlapping

2

hierarchical

combination [Gra95] of R

0

with R

1

where R

0

is terminating. Suppose further

that if f and g are de�ned symbols of R

1

(and therefore not of R

0

), then they

do not occur nested in the rules (i.e. the rules do not contain subterms of the

form f(: : : g : : :)). Then it is su�cient if just the subsystem R

0

is contained in

E and hence, one can simply de�ne E to be R

0

. Moreover, one does not have

to consider all dependency pairs of R, but it is su�cient to examine only those

dependency pairs hF (: : :); G(: : :)i where f and g are de�ned symbols of R

1

. In this

way it is possible to prove termination of hierarchical combinations of subsystems

by successively proving termination of each subsystem and by de�ning E to consist

of those subsystems whose termination has already been proved before.

2.3. Theorem. Let (D; C;R) be a non-overlapping hierarchical combination of

(D

0

; C;R

0

) with (D

1

; C;R

1

) such that R

0

is terminating and such that symbols from

D

1

do not occur nested in the rules. If there exists a well-founded ordering � on

ground terms such that (s�)#

R

0

� (t�)#

R

0

holds for all dependency pairs hs; ti of

R

1

and all ground substitutions �, then R is terminating.

For instance, our example is a hierarchical combination of the minus-subsystem

with the quot-subsystem. Hence, if we already proved termination of the �rst two

minus-rules

3

, then we now only have to prove termination of the quot-rules and let

1

In many examples it is su�cient if only certain dependency pairs are decreasing and several

methods to determine those dependency pairs have been suggested in [Art96].

2

This requirement can even be weakened to overlay systems with joinable critical pairs.

3

This can for instance be done with standard techniques like e.g. the recursive path ordering

[Der82] or again by the dependency pair approach. Then, E can be chosen to be any ground-

convergent CS (even the empty one), because in the CS consisting of the two minus-rules de�ned

symbols do not occur nested and this CS may be regarded as a hierarchical combination where

R

0

is empty.
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E consist of the two minus-rules. Now the only dependency pair we have to consider

is (3).

Hence, the main problem with automated termination proofs using dependency

pairs is the second task, i.e. to �nd a well-founded ordering such that the interpre-

tations of dependency pairs are decreasing.

3. Using Well-Founded Orderings

Numerous methods for the automated generation of suited well-founded orderings

have been developed to prove termination of term rewriting systems. Hence, for the

automation of the dependency pair approach we would like to use these standard

methods to prove that dependency pairs are decreasing.

However we will illustrate in Sect. 3.1 that, unfortunately, the direct application

of standard methods for this purpose is unsound. The reason is that arbitrary

orderings do not respect the equalities induced by E .

In Sect. 3.2 we show that the straightforward solution of restricting ourselves to

orderings that respect the equalities induced by E results in a method which is not

powerful enough.

But in Sect. 3.3 we prove that as long as the dependency pairs do not contain de�ned

symbols, the direct approach of Sect. 3.1 is sound. Therefore our aim will be to

eliminate all de�ned symbols in the dependency pairs. A transformation procedure

for the elimination of de�ned symbols will be presented in Sect. 4.

3.1. Direct Application of Well-Founded Orderings

Let DP be a set of inequalities which represent the constraints that left-hand sides

of dependency pairs have to be greater than right-hand sides, i.e.

DP = fs � tjhs; ti dependency pairg:

Now one could use standard methods to generate a well-founded ordering � satis-

fying the constraints DP. But unfortunately, this approach is unsound, i.e. it is not

su�cient for the termination of the CS R under consideration. As an example let

R be the CS

double(0) ! 0;

double(succ(x)) ! succ(succ(double(x)));

f(succ(x)) ! f(double(x)):

Assume that we have already proved termination of the double-subsystem. Hence

by Theorem 2.3, we can de�ne E to consist of the �rst two rules of R and we only

have to examine the dependency pair hF(succ(x));F(double(x))i. The constraint

DP = fF(succ(x)) � F(double(x))g

is for instance satis�ed by the recursive path ordering �

rpo

(with the precedence

succ > double), cf. [Der82]. Nevertheless, R is not terminating (e.g. f(succ(succ(0)))

starts a cycling reduction).

This direct application of orderings is not possible because the constraints in DP

only compare the terms s and t but not their E-interpretations. However, s �

rpo

t

is not su�cient for (s�)#

E

�

rpo

(t�)#

E

, because �

rpo

does not respect the equalities

induced by E . For instance,

F(succ(succ(0))) �

rpo

F(double(succ(0)));
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but

F(succ(succ(0)))#

E

6�

rpo

F(double(succ(0)))#

E

(as F(double(succ(0)))#

E

= F(succ(succ(0))) ).

So we have to ensure that whenever s#

E

= t#

E

holds for two ground terms s and t,

these terms must also be \equal" w.r.t. the used ordering. To formalize the notion

of \equality" we will now regard quasi-orderings.

3.2. Quasi-Orderings Respecting E

A quasi-ordering % is a reexive and transitive relation. For every quasi-ordering

% , let � denote the associated equivalence relation (i.e. s � t i� s % t and t % s)

and let � denote the strict part of the quasi-ordering (i.e. s � t i� s % t, but not

t % s). We say % is well-founded i� the strict part � is well-founded. In this paper

we restrict ourselves to relations on ground terms and (for notational convenience)

we extend every quasi-ordering % to arbitrary terms by de�ning s % t i� s� % t�

holds for all ground substitutions �. Analogously, s � t (resp. s � t) is de�ned as

s� � t� (resp. s� � t�) for all ground substitutions �.

A straightforward solution for the problem discussed in the preceding section would

be to try to �nd a well-founded quasi-ordering which satis�es both DP and EQ,

where EQ = fs � tj s; t ground terms with s#

E

= t#

E

g. Obviously the existence of

such a quasi-ordering would be su�cient for the termination of the CS R.

3.1. Lemma. If there exists a well-founded quasi-ordering satisfying the constraints

DP [ EQ, then R is terminating.

Proof. If % satis�es DP, then we have s� � t� for each dependency pair hs; ti

and each ground substitution �. If % also satis�es EQ, then (s�)#

E

� s� � t� �

(t�)#

E

. Hence, the lemma follows from Theorem 2.2 (resp. Theorem 2.3). 2

But unfortunately, the standard techniques for the automated generation of well-

founded quasi-orderings usually cannot be used to �nd a well-founded quasi-ordering

% satisfying the constraints DP [EQ. As an example regard the CS for minus and

quot (from Sect. 2) again. Assume that we have already proved termination of the

minus-subsystem and let us now prove termination of the quot-rules. According to

Theorem 2.3, we can de�ne E to consist of the two minus-rules and we obtain the

constraint

DP = fQ(succ(x); succ(y)) � Q(minus(x; y); succ(y))g: (4)

None of the well-founded quasi-orderings that can be generated automatically by the

usual techniques satis�es DP [EQ: Virtually all of those quasi-orderings are quasi-

simpli�cation-orderings

4

[Der82]. Hence, if % is a quasi-simpli�cation-ordering

satisfying EQ, then we have

Q(minus(x; y); succ(y)) � Q(minus(succ(x); succ(y)); succ(y))

(as minus(x; y) � minus(succ(x); succ(y)) holds and as quasi-simpli�cation-orderings

are (weakly) monotonic). Moreover, we have

Q(minus(succ(x); succ(y)); succ(y)) % Q(succ(x); succ(y))

(as quasi-simpli�cation-orderings satisfy the (weak) subterm property). Hence,

Q(minus(x; y); succ(y)) % Q(succ(x); succ(y)) which is a contradiction to (4).

So the standard techniques for the automated generation of well-founded quasi-

orderings fail here (and the same problem appears with most other examples).

Hence, demanding DP [ EQ is too strong, i.e. in this way most termination proofs

will not succeed.

4

DP [ EQ is not satis�ed by polynomial orderings [Lan79] either (which do not have to be

quasi-simpli�cation-orderings).
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3.3. Constraints Without De�ned Symbols

In Sect. 3.1 we showed that the existence of a well-founded quasi-ordering % satis-

fying DP is in general not su�cient for the termination of R, because % does not

necessarily respect the equalities induced by E (i.e. the equalities EQ).

Nevertheless, if DP contains no de�ned symbols (from D) then it is su�cient to

�nd a well-founded quasi-ordering satisfying DP. The reason is that any such quasi-

ordering can be transformed into a well-founded quasi-ordering satisfying both DP

and EQ:

3.2. Lemma. Let (D; C; E) be a ground-convergent CS, let DP be a set of inequalities

containing no de�ned symbols. If there exists a well-founded quasi-ordering %

satisfying DP, then there also exists a well-founded quasi-ordering %

0

satisfying

both DP and EQ.

Proof. For two ground terms s; t let s %

0

t i� s#

E

% t#

E

. Since % is a well-

founded quasi-ordering, %

0

is also a well-founded quasi-ordering and obviously, %

0

satis�es EQ.

We will now show that %

0

satis�es DP: Let s and t be terms without de�ned

symbols. As % satis�es DP, it is su�cient to prove that s % t implies s %

0

t.

Note that for terms without de�ned symbols we have (s�)#

E

= s(� #

E

) for each

ground substitution � (where �#

E

denotes the substitution of x by (�(x))#

E

for each

x 2 DOM (�)). Now s % t implies s(�#

E

) % t(�#

E

) for all ground substitutions �

or, respectively, (s�)#

E

% (t�)#

E

. Hence, s� %

0

t� holds for all � and therefore

s % t implies s %

0

t. In the same way it can be proved that s � t implies s �

0

t.

2

As an example consider the CS which only consists of the two rules for minus. Here,

DP contains only the inequality M(succ(x); succ(y)) � M(x; y) in which no de�ned

symbol occurs. Of course there exist well-founded quasi-orderings satisfying this

constraint (e.g. %

rpo

). For any ground-convergent E , %

rpo

can be transformed

into a well-founded quasi-ordering %

0

(as in the proof of Lemma 3.2) where s %

0

t

holds i� s#

E

%

rpo

t#

E

. This quasi-ordering satis�es both DP and EQ. Hence,

termination of this CS is proved.

So if DP does not contain de�ned symbols we can just use standard techniques to

generate a well-founded quasi-ordering satisfying DP. By the two Lemmata 3.1 and

3.2 this is su�cient for the termination of R.

To conclude, we have shown that the direct use of well-founded quasi-orderings is

unsound (except if DP does not contain de�ned symbols) and we have illustrated

that the straightforward solution (i.e. the restriction to quasi-orderings which also

satisfy EQ) imposes too strong requirements such that termination proofs often fail.

In the next section we present a di�erent, powerful approach to deal with CSs where

DP does contain de�ned symbols. (This always happens if de�ned symbols occur

within the arguments of a recursive call in R.)

4. Elimination of De�ned Symbols

If we want to prove termination of the quot-subsystem then we have to show that

there exists a well-founded quasi-ordering satisfying both EQ (where E consists of

the �rst two minus-rules) and the constraint

DP = fQ(succ(x); succ(y)) � Q(minus(x; y); succ(y))g: (4)

6



As demonstrated in Sect. 3 the application of methods for the synthesis of well-

founded quasi-orderings is only possible if the constraints in DP do not contain

de�ned symbols (like minus). Therefore our aim is to transform the constraint (4)

into new constraints DP

0

without de�ned symbols. The invariant of this transfor-

mation will be that every quasi-ordering satisfying EQ and the resulting constraints

DP

0

also satis�es the original constraints DP. (In fact, this soundness result for our

transformation only holds for a certain (slightly restricted) class of quasi-orderings,

cf. Sect. 4.2.)

The constraints DP

0

resulting from the transformation contain no de�ned sym-

bols any more. Hence, if we �nd a well-founded quasi-ordering which satis�es just

DP

0

(by application of standard methods for the automated generation of such

quasi-orderings), then by Lemma 3.2 there also exists a well-founded quasi-ordering

satisfying DP

0

[ EQ. Hence, this quasi-ordering also satis�es DP. Therefore (by

Lemma 3.1) termination is proved. So the existence of a well-founded quasi-ordering

satisfying the resulting constraints DP

0

is su�cient for the termination of the CS.

In Sect. 4.1 we introduce the central idea of our transformation, viz. the estimation

technique. To apply the estimation technique we need so-called estimation inequal-

ities and Sect. 4.2 shows how they are computed. This section also contains the

soundness theorem for our transformation. For the transformation we have to make

a slight restriction on the used quasi-orderings. We present a generalised version of

Lemma 3.2 in Sect. 4.3 which shows how to use methods for the automated gener-

ation of well-founded quasi-orderings to synthesise the quasi-orderings we need.

4.1. Estimation

The constraint (4) contains the de�ned symbol minus. The central idea of our

transformation procedure is the estimation of de�ned symbols by new non-de�ned

function symbols. For that purpose we extend our signature by a new estimation

function

�

f for each f 2 D. Now minus is replaced by the new non-de�ned symbol

minus and we demand that the result of minus is always greater or equal than the

result of minus, i.e. we demand

minus(x; y) % minus(x; y): (5)

In contrast to minus the semantics of the non-de�ned symbol minus are not deter-

mined by the equalities in EQ. Our method transforms constraints like (4) into in-

equalities which contain non-de�ned symbols like minus, but no de�ned symbols like

minus. If these resulting inequalities are satis�ed by a well-founded quasi-ordering,

then termination of the CS is proved.

Assume for the moment that we know a set of so-called estimation inequalities

IN

minus
% minus

(without de�ned symbols) such that every quasi-ordering satisfying

IN

minus % minus

and EQ also satis�es (5). Moreover, let us restrict ourselves to quasi-

orderings that are weakly monotonic (i.e. s % t implies f(: : : s : : :) % f(: : : t : : :) for

all f 62 D). Then IN

minus % minus

and EQ do not only imply minus(x; y) % minus(x; y),

but they also ensure

Q(minus(x; y); succ(y)) % Q(minus(x; y); succ(y)):

Now

Q(succ(x); succ(y)) � Q(minus(x; y); succ(y)) (6)

and IN

minus
% minus

are su�cient for the original constraint (4), i.e. every quasi-ordering

which satis�es (6), IN

minus
% minus

and EQ (and is weakly monotonic) also satis�es (4).

The restriction to quasi-orderings that are weakly monotonic allows to estimate

function symbols within a term (i.e. function symbols that are not the root sym-

bol of the term). If such a quasi-ordering satis�es IN

�

f
% f

, then it also satis�es

C[

�

f(: : :)] % C[f(: : :)] for all contexts C with no de�ned symbols above f .
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In this way every inequality can be transformed into inequalities without de�ned

symbols: we replace every de�ned symbol f by the new non-de�ned symbol

�

f and

add the estimation inequalities IN

�

f
% f

to the constraints.

4.1. Definition. For every term t we de�ne its estimation by

est(f(t

1

; : : : ; t

n

)) =

�

�

f(est(t

1

); : : : ; est(t

n

)) if f 2 D

f(est(t

1

); : : : ; est(t

n

)) if f 62 D:

Let DP be a set of inequalities. Then we de�ne

DP

0

= fs � est(t)js � t 2 DPg [ fs % est(t)js % t 2 DPg[

[

f 2 D occurs in DP

IN

�

f
% f

:

In our example, minus is estimated by minus and hence, the resulting set of con-

straints DP

0

consists of (6) and IN

minus
% minus

.

4.2. Estimation Inequalities

In this section we show how to compute estimation inequalities IN

�

f % f

which are

needed for the estimation technique of Sect. 4.1 and we prove the soundness of

our transformation. The estimation inequalities IN

minus % minus

have to guarantee that

minus really is an upper bound for minus. To compute IN

minus % minus

we consider

each minus-rule of E separately. Instead of minus(x; y) % minus(x; y) we therefore

demand

minus(x; 0) % x; (7)

minus(succ(x); succ(y)) % minus(x; y): (8)

We cannot de�ne IN

minus
% minus

= f(7); (8)g because inequality (8) still contains the

de�ned symbol minus. De�ned symbols occurring in such formulas have to be

eliminated by estimation again.

But the problem here is that minus itself appears in inequality (8). We cannot use

the transformation of De�nition 4.1 for the estimation of minus, because we do not

know the estimation inequalities IN

minus
% minus

yet.

We solve this problem by constructing IN

minus
% minus

inductively with respect to the

computation ordering of E . The computation ordering >

E

of a rewrite system E is

a relation on ground terms where s >

E

t i� s !

+

E

C[t] holds for some (possibly

empty) context C. Obviously (as E is ground-convergent) its computation ordering

is well-founded, i.e. inductions w.r.t. such orderings are sound.

The �rst case of our inductive construction of IN

minus
% minus

corresponds to the non-

recursive �rst minus-rule. Inequality (7) ensures that for pairs of terms of the form

(t; 0), minus is an upper bound for minus.

For the second minus-rule we have to ensure that inequality (8) holds, i.e. for terms

of the form (succ(t

1

); succ(t

2

)), the result of minus must be greater or equal than

the result of minus. As induction hypothesis we can now use that this estima-

tion is already correct for (t

1

; t

2

), because minus(succ(t

1

); succ(t

2

)) >

E

minus(t

1

; t

2

).

Hence when regarding minus(succ(x); succ(y)), we can use the induction hypothesis

minus(x; y) % minus(x; y). Then it is su�cient for (8) if

minus(succ(x); succ(y)) % minus(x; y) (9)

is true. Therefore we can replace (8) by inequality (9) which does not contain

de�ned symbols.
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Note that to eliminate the de�ned symbol minus from (8) due to an inductive

argument we could again use the estimation technique. Now we have �nished our

inductive construction of IN

minus % minus

and obtain

IN

minus % minus

= f minus(x; 0) % x; (7)

minus(succ(x); succ(y)) % minus(x; y) g: (9)

4.2. Definition. Let (D; C; E) be a ground-convergent CS. For each f 2 D we

de�ne the set of estimation inequalities IN

�

f % f

as follows (here, s

�

abbreviates a

tuple of terms s

1

; : : : ; s

n

):

IN

�

f
% f

= f

�

f(s

�

) % est(t)j s

�

; t are terms, f(s

�

)! t 2 Eg [

[

g 2 D occurs in the

f-rules of E and g 6= f

IN

�g% g

:

But IN

minus % minus

is not yet su�cient for minus(x; y) % minus(x; y). The reason is

that for the construction of IN

minus % minus

we only considered minus(s

1

; s

2

) for terms

s

1

; s

2

of the form (t; 0) or (succ(t

1

); succ(t

2

)) (i.e. we only considered terms where

minus(s

1

; s

2

) is E-reducible

5

). But for instance, IN

minus
% minus

does not guarantee

minus(0; succ(0)) % minus(0; succ(0)).

Therefore we additionally have to demand that irreducible ground terms with a

de�ned root symbol are minimal, i.e. we also demand the constraints

MIN = ft % f(r

�

)jf 2 D; t; r

�

are ground terms; f(r

�

) is E-normal formg:

If MIN is also satis�ed, then irreducible terms like minus(0; succ(0)) are minimal,

and hence minus(0; succ(0)) % minus(0; succ(0)) obviously holds. Now we can prove

the soundness of our transformation:

4.3. Theorem. Let (D; C; E) be a ground-convergent CS, let DP be a set of inequal-

ities. Then every quasi-ordering % which is weakly monotonic and which satis�es

DP

0

[ EQ [ MIN also satis�es DP.

Proof.

(a) We �rst prove that all IN

�

f
% f

for f 2 D are sound. More precisely, we prove

that if % satis�es IN

�

f
% f

, then

�

f (r

�

) % f(r

�

) holds for all ground terms r

�

.

The proof is done by induction w.r.t. the computation ordering >

E

of E .

If f(r

�

) is irreducible then the statement follows from the fact that % satis�es

MIN . Otherwise there must be a rule f(s

�

) ! t where r

�

= s

�

� for some

�. Hence, IN

�

f
% f

contains

�

f (s

�

) % est(t) and the inequalities IN

�g% g

for all

g 2 D occurring in t.

Note that est(t) can be obtained from t by successively replacing each sub-

term g(u

�

) of t with a de�ned root symbol g 2 D (beginning with the out-

ermost) by �g(u

�

). As the estimation starts with the outermost de�ned sym-

bol, only such subterms g(u

�

) are estimated which have no de�ned symbol

above them any more. Therefore, if �g(u

�

) % g(u

�

) holds for all these sub-

terms, then est(t) % t must obviously be true. Analogously, the instantiation

est(t)� is obtained from t� by replacing subterms g(u

�

)� by �g(u

�

)�. Hence, if

�g(u

�

)� % g(u

�

)� holds for all these subterms, then this implies est(t)� % t�.

5

While in the original estimation method for functional programs [Gie95d] functions had to

be completely de�ned, here we have to extend the estimation method to incompletely de�ned

functions. This allows to prove termination of CSs that are not su�ciently complete [Pla85], too.
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All subterms g(u

�

)� in t� are >

E

-smaller than f(r

�

). If g is a de�ned symbol

(g = f is possible) then IN

�

f
% f

must contain IN

�g% g

and by the induction

hypothesis IN

�g% g

implies �g(u

�

)� % g(u

�

)�. Hence, we have est(t)� % t�

and (as

�

f (s

�

) % est(t) is in IN

�

f
% f

and as % is closed under substitutions),

�

f (r

�

) % est(t)� % t�. As t� � f(r

�

) 2 EQ, this implies

�

f(r

�

) % f(r

�

).

(b) Now we can show that % satis�es DP. Let IN

�

f
% f

hold for all de�ned

symbols f occurring in a term t. Due to (a), this implies

�

f(r

�

) % f(r

�

) for

all subterms f(r

�

) of t which have a de�ned root symbol. As illustrated in

(a), we therefore can conclude est(t) % t. Hence, s % est(t) implies s % t

(and s � est(t) implies s � t). As % satis�es DP

0

, it must also satisfy DP.

2

4.3. Automated Generation of Suited Quasi-Orderings

Theorem 4.3 states that if we restrict ourselves to quasi-orderings that are weakly

monotonic and that satisfy EQ and MIN , then our transformation is sound, i.e.

by application of the estimation technique to DP we obtain a set of inequalities

DP

0

without de�ned symbols, such that every quasi-ordering (as above) satisfying

DP

0

also satis�es DP .

Recall that the reason for eliminating de�ned symbols was that we wanted to apply

standard techniques to generate well-founded quasi-orderings that satisfy a given

set of constraints. If these constraints contain no de�ned symbols, then by Lemma

3.2 every such quasi-ordering can be extended to a well-founded quasi-ordering

satisfying also the equalities EQ.

To use our transformation procedure we had to restrict ourselves to quasi-orderings

which have a certain monotonicity property and which satisfy MIN . Therefore

we now have to prove a stronger version of Lemma 3.2. It must state that if

we have a well-founded quasi-ordering of this restricted form which satis�es some

constraints DP

0

without de�ned symbols, then we can transform it into one of the

same restricted form which additionally satis�es EQ. (Then, by Theorem 4.3 this

quasi-ordering also satis�es DP and therefore (by Lemma 3.1) termination of the

CS under consideration is proved.)

So with this lemma it would be su�cient to synthesise a well-founded quasi-ordering

which is weakly monotonic and which satis�esMIN and DP

0

. Standard techniques

can easily be used to generate suited quasi-orderings that satisfy the required mono-

tonicity condition, but an automated generation of quasi-orderings satisfying the

(in�nitely many) constraints in MIN seems to be hard at �rst sight.

Here, instead of demanding the constraints MIN the solution will be to restrict

ourselves to quasi-orderings which have a minimal element, i.e. there must be a term

m such that t % m holds for all ground terms t. Such quasi-orderings can easily

be generated automatically (e.g. one could add a constraint of the form x % m).

We will now prove a variant of Lemma3.2 which states that if there is a well-founded

quasi-ordering which is weakly monotonic, has a minimal element, and satis�es DP

0

,

then there also exists a well-founded quasi-ordering which is weakly monotonic and

satis�es all DP

0

, EQ and MIN . Hence, for termination it is su�cient to �nd a

well-founded quasi-ordering which is weakly monotonic, has a minimal element and

satis�es DP

0

. Such quasi-orderings can be generated automatically by standard

techniques.

4.4. Lemma. Let (D; C; E) be a ground-convergent CS, let DP

0

be a set of inequal-

ities containing no de�ned symbols. If there exists a well-founded quasi-ordering

% which is weakly monotonic, has a minimal element, and satis�es DP

0

, then

there also exists a well-founded quasi-ordering %

0

which is weakly monotonic and

satis�es DP

0

[ EQ [MIN .
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Proof. Let m be the minimal element of % . For each ground term we de�ne

[[f(t

1

; : : : ; t

n

)]] =

8

<

:

f([[t

1

]]; : : : ; [[t

n

]]) if f 62 D

m if f 2 D; f(t

1

; : : : ; t

n

) is E-normal form

[[f(t

1

; : : : ; t

n

)#

E

]] otherwise.

For two ground terms s; t let s %

0

t i� [[s]] % [[t]]. Since % is a well-founded

quasi-ordering, %

0

is also a well-founded quasi-ordering and obviously, %

0

satis�es

MIN and EQ (as [[t]] = [[t#

E

]] holds for all ground terms t).

The quasi-ordering %

0

is weakly monotonic because s %

0

t implies [[s�]] % [[t�]]

for all ground substitutions �, which in turn implies

f([[: : :]][[s�]][[: : :]]) % f([[: : :]][[t�]][[: : :]])

as % is weakly monotonic. Note that for f 62 D we have

f([[: : :]][[s�]][[: : :]]) = [[f(: : : (s�) : : :)]]:

Hence, [[f(: : : (s�) : : :)]] % [[f(: : : (t�) : : :)]], resp. [[f(: : : s : : :)�]] % [[f(: : : t : : :)�]]

holds for all ground substitutions � and therefore f(: : : s : : :) %

0

f(: : : t : : :).

That %

0

also satis�es DP

0

can be shown like in the proof of Lemma 3.2, because for

terms s without de�ned symbols we have [[s�]] = s[[�]] for all ground substitutions

� (where [[�]] denotes the substitution of x by [[�(x)]] for each x 2 DOM (�)).

Hence for such terms, s % t implies s[[�]] % t[[�]] for all ground substitutions � or,

respectively, [[s�]] % [[t�]], which in turn implies s %

0

t. 2

The following �nal theorem summarises our approach for termination proofs of

constructor systems.

4.5. Theorem. If there exists a well-founded quasi-ordering which is weakly mon-

otonic, has a minimal element, and satis�es DP

0

, then R is terminating.

Proof. By Lemma 4.4 every such quasi-ordering can be extended to a well-founded

weakly monotonic quasi-ordering which also satis�es EQ andMIN and by Theorem

4.3 this quasi-ordering must also satisfy the original constraints DP. Hence, by

Lemma 3.1 the CS R is terminating. 2

So in our example, it is su�cient to �nd a well-founded quasi-ordering which is

weakly monotonic, has a minimal element, and satis�es the computed constraints

(6) and IN

minus % minus

= f(7); (9)g. For instance, we can use a polynomial ordering

[Lan79] where the function symbol 0 is mapped to the number 0, succ(x) is mapped

to x+1 and Q(x; y) and minus(x; y) are both mapped to the polynomial x. Methods

for the automated generation of such polynomial orderings have for instance been

developed in [Ste94, Gie95b]. In this way termination of the CS for minus and quot

can be proved fully automatically.

5. Examples

This collection of examples demonstrates the power of the described method. Sev-

eral of these examples are not simply terminating. Thus all methods based on

simpli�cation orderings fail in proving termination of these (non-simply terminat-

ing) constructor systems.

All CSs in this section are non-overlapping, hierarchical combinations of construc-

tor systems without nested recursion. Therefore, Thm. 2.3 can be used to prove

termination of the CSs.
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2.3. Theorem. Let (D; C;R) be a non-overlapping hierarchical combination of

(D

0

; C;R

0

) with (D

1

; C;R

1

) such that R

0

is terminating and such that symbols

from D

1

do not occur nested in the rules. If there exists a well-founded ordering �

on ground terms such that (s�)#

R

0

� (t�)#

R

0

holds for all dependency pairs hs; ti

of R

1

and all ground substitutions �, then R is terminating.

Thus, proving termination of R is done as follows:

1. prove termination of R

0

,

2. prove that there exists a well-founded ordering � on ground terms, such that

(s�)#

R

0

� (t�)#

R

0

for all dependency pairs hs; ti of R

1

and all ground substi-

tutions �.

For proving termination of R

0

we may recursively use Thm. 2.3, since R

0

is non-

overlapping and may again be a hierarchical combination. If de�ned symbols of R

0

do not occur nested, then R

0

can be regarded as a hierarchical combination with

the empty CS (no rules). But also other methods, like the recursive path ordering,

may be used to prove termination of R

0

.

For proving that there exists a well-founded ordering � on ground terms, such that

(s�)#

R

0

� (t�)#

R

0

for all dependency pairs hs; ti of R

1

and all ground substitutions

�, we use the estimation method as described in Sect. 4. The estimation method

transforms the dependency pairs of R

1

into a set of inequalities, denoted by DP

0

,

where R

0

is used to construct DP

0

. This set of inequalities together with Thm. 4.5

is used to conclude termination of the CS.

4.5. Theorem. If there exists a well-founded quasi-ordering which is weakly mon-

otonic, has a minimal element, and satis�es DP

0

, then R is terminating.

The set of inequalities DP

0

is easily constructed and standard methods may be

used to �nd a well-founded quasi-ordering that is weakly monotonic, has a minimal

element, and satis�es DP

0

.

An algebra equipped with a well-founded ordering can easily be extended to a

well-founded ordering on ground terms by choosing suitable homomorphisms (or

interpretations). Since the demanded ordering has to be weakly monotonic, the

homomorphisms have to be weakly monotonic as well.

For all examples of this section, a well-founded ordering satisfying DP

0

can be

obtained using the algebra consisting of the natural numbers with their normal

ordering in combination with polynomial orderings that map terms into the natural

numbers [Lan79]. These orderings trivially always have a minimal element and

the ordering is weakly monotonic as long as the interpreted functions are weakly

monotonic. Several techniques exist to derive interpretations automatically [Gie95b,

Ste94].

Unfortunately, this polynomial approach, although very powerful, is not a deci-

sion procedure. For many examples, a di�erent approach based on the recursive

path ordering (rpo) can also be used, which results in a more e�ective method.

A straightforward approach would be to check directly if DP

0

is satis�ed by the

rpo. But note that while the rpo is strictly monotonic (i.e. t �

rpo

s implies

f(: : : t : : :) �

rpo

f(: : : s : : :)), for our method it su�ces to �nd a weakly monotonic

well-founded ordering satisfying DP

0

. To apply the rpo for termination proofs

according to Thm. 4.5, we therefore replace every function symbol f by a new func-

tion symbol

^

f which only has some of the arguments of f . In this way, for instance

f(t

1

; t

2

; t

3

) may be replaced by

^

f (t

1

; t

3

). By comparing the terms resulting from

12



this replacement (instead of the original terms) we can take advantage of the fact

that f does not have to be strictly monotonic in its second argument.

Formally, we use an algebra which consists of a set of ground terms (over a new

signature containing symbols like

^

f ) equipped with the recursive path ordering

(with some precedence). To obtain an ordering on the ground terms of our original

signature, we use a homomorphism which assigns to any term over the signature

of function symbols occurring in DP

0

a term over the new introduced signature.

This homomorphismmaps a term f(t

1

; : : : ; t

n

) to some of the arguments t

1

; : : : ; t

n

(kept together by a new function symbol

^

f ). Moreover, we also allow the possibility

that a term is mapped to one of its arguments. Thus, one might also choose a

homomorphism where f(t

1

; t

2

; t

3

) is mapped to t

2

.

Note that all these mappings are weakly monotonic and therefore ensure that if a

well-founded weakly monotonic ordering is found for the inequalities interpreted in

this algebra, then such an ordering exists for the original inequalities.

Thereafter we use the recursive path ordering to check whether DP

0

with this

interpretation ful�ls the demands. Since the set of function symbols occurring in

DP

0

is �nite, there are only �nitely many choices for the carrier set of the algebra

and for the interpretation (although quite a lot). Thus, this approach is an e�ective

method. We can easily add an extra constant to the precedence such that we obtain

a path ordering with a minimal element.

To ease readability the CSs are presented as two sets of rewrite rules separated by

some vertical space. The upper system will always denote R

0

, whereas the bottom

rules will denote R

1

.

For every CS, a set of dependency pairs is given. Note that not all dependency

pairs are given. Only those dependency pairs that are relevant are listed. For more

information about which dependency pairs are relevant and which are not, we refer

to [Art96].

1 Division, Version 1

This is the running example of this report. As demonstrated before, it is not simply

terminating.

minus(x; 0) ! x

minus(succ(x); succ(y)) ! minus(x; y)

quot(0; succ(y)) ! 0

quot(succ(x); succ(y)) ! succ(quot(minus(x; y); succ(y)))

The relevant dependency pairs of this CS are

hM(succ(x); succ(y));M(x; y)i

hQ(succ(x); succ(y));Q(minus(x; y); succ(y))i

The CS R

0

(with the minus rules) is terminating, since for the only dependency

pair of this CS, viz. hM(succ(x); succ(y));M(x; y)i, we have

M(succ(x); succ(y)) � M(x; y)

by the embedding ordering. The set of inequalities DP

0

is given by

Q(succ(x); succ(y)) � Q(minus(x; y); succ(y))

minus(x; 0) % x

minus(succ(x); succ(y)) % minus(x; y)

13



A well-founded ordering satisfying DP' is obtained by choosing an algebra of ground

terms and the following interpretation:

Q(x; y) 7! x

minus(x; y) 7! x

succ(x) 7!
d
succ(x)

0 7!

^

0

To ease readability in the following we will always write f instead of

^

f and we will

not list those function symbols that stay the same by the interpretation. Replacing

the terms in DP

0

by their interpretations results in the demands

succ(x) � x

x % x

succ(x) % x

which are satis�ed by the recursive path ordering. This is easily checked. Hence,

the demanded well-founded ordering satisfying DP

0

exists.

With the other approach, of polynomials, a suitable quasi-ordering satisfying DP

0

is automatically found. The normal ordering on the natural numbers together with

the following interpretation of the function symbols satis�es DP

0

: the function

symbol 0 is mapped to the number 0, succ(x) is mapped to x + 1 and Q(x; y) and

minus(x; y) are mapped to x.

2 Division, Version 2

This CS for division uses di�erent minus-rules. Again, it is not simply terminating.

pred(succ(x)) ! x

minus(x; 0) ! x

minus(x; succ(y)) ! pred(minus(x; y))

quot(0; succ(y)) ! 0

quot(succ(x); succ(y)) ! succ(quot(minus(x; y); succ(y)))

The relevant dependency pairs of this CS are given by

hM(x; succ(y));M(x; y)i

hQ(succ(x); succ(y));Q(minus(x; y); succ(y))i

The CS R

0

is terminating. This can be proved by the recursive path ordering, but

also by splitting the system in two CSs and �nding a suitable well-founded ordering

such that

M(x; succ(y)) � M(x; y)

This can be done automatically.

The set of inequalities DP

0

di�ers from the one in the previous example and is given

by

Q(succ(x); succ(y)) � Q(minus(x; y); succ(y))

pred(succ(x)) % x

minus(x; 0) % x

minus(x; succ(y)) % pred(minus(x; y))
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One of the possible algebras with interpretation

Q(x; y) 7! x

minus(x; y) 7! x

pred(x) 7! x

and by convention the non-listed symbols remain unchanged, results in the demand

that

succ(x) � x

succ(x) % x

x % x

x % x

which is satis�ed by the recursive path ordering.

3 Division, Version 3

This CS for division uses again di�erent minus-rules. Similar to the preceding

examples it is not simply terminating. We always use functions like if

minus

to encode

conditions and to ensure that conditions are evaluated �rst (to true or to false) and

that the corresponding result is evaluated afterwards. Hence, the �rst argument

of if

minus

is the condition that has to be tested and the other arguments are the

original arguments of minus. Further evaluation is only possible after the condition

has been reduced to true or to false.

le(0; succ(y)) ! true

le(0; 0) ! true

le(succ(x); 0) ! false

le(succ(x); succ(y)) ! le(x; y)

minus(0; y) ! 0

minus(succ(x); y) ! if

minus

(le(succ(x); y); succ(x); y)

if

minus

(true; succ(x); y) ! 0

if

minus

(false; succ(x); y) ! succ(minus(x; y))

quot(0; succ(y)) ! 0

quot(succ(x); succ(y)) ! succ(quot(minus(x; y); succ(y)))

The relevant dependency pairs of this CS are given by

hLe(succ(x); succ(y)); Le(x; y)i

hM(succ(x); y); IF

minus

(le(succ(x); y); succ(x); y)i

hIF

minus

(false; x; y);M(x; y)i

hQ(succ(x); succ(y));Q(minus(x; y); succ(y))i

The CS R

0

is terminating, this can be proved by a variant of the lexicographic path

ordering or by using the dependency pair technique. In the latter proof we split R

0

and use the techniques recursively.
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The set of inequalities DP

0

is given by

Q(succ(x); succ(y)) � Q(minus(x; y); succ(y))

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

minus(0; y) % 0

minus(succ(x); y) % if

minus

(le(succ(x); y); succ(x); y)

if

minus

(true; succ(x); y) % 0

if

minus

(false; succ(x); y) % succ(minus(x; y))

Again, an algebra can be used to transform the demands into demands that are

satis�ed by the recursive path order:

Q(x; y) 7! x

minus(x; y) 7! x

if

minus

(b; x; y) 7! x

where by convention non-listed symbols remain unchanged.

4 Remainder, Version 1 - 3

Similar to the CSs for division, we also obtain three versions of the following CS

which again are not simply terminating. We only present one of them.

le(0; succ(y)) ! true

le(0; 0) ! true

le(succ(x); 0) ! false

le(succ(x); succ(y)) ! le(x; y)

minus(x; 0) ! x

minus(succ(x); succ(y)) ! minus(x; y)

mod(0; y) ! 0

mod(succ(x); 0) ! 0

mod(succ(x); succ(y)) ! if

mod

(le(y; x); succ(x); succ(y))

if

mod

(true; succ(x); succ(y)) ! mod(minus(x; y); succ(y))

if

mod

(false; succ(x); succ(y)) ! succ(x)

The relevant dependency pairs of this CS are given by

hLe(succ(x); succ(y); Le(x; y)i

hM(succ(x); succ(y));M(x; y)i

hMOD(succ(x); succ(y)); IF

mod

(le(y; x); succ(x); succ(y))i

hIF

mod

(true; succ(x); succ(y));MOD(minus(x; y); succ(y))i

The CS R

0

is terminating. This can be proved by the recursive path ordering or
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by the dependency pair technique. The set of inequalities DP

0

is given by

MOD(succ(x); succ(y)) � IF

mod

(le(y; x); succ(x); succ(y))

IF

mod

(true; succ(x); succ(y)) � MOD(minus(x; y); succ(y))

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

minus(x; 0) % x

minus(succ(x); succ(y)) % minus(x; y)

A suitable mapping is given by

MOD(x; y) 7! MOD(x)

IF

mod

(b; x; y) 7! IF

mod

(x)

minus(x; y) 7! x

where again we write MOD and IF

mod

instead of

\

MOD and

[

IF

mod

. The interpreted

inequalities are satis�ed by the recursive path order.

5 Greatest Common Divisor, Version 1 - 3

There are also three versions of the following CS for the computation of the gcd,

which again are not simply terminating. Again, we only present one of them.

le(0; succ(y)) ! true

le(0; 0) ! true

le(succ(x); 0) ! false

le(succ(x); succ(y)) ! le(x; y)

pred(succ(x)) ! x

minus(x; 0) ! x

minus(x; succ(y)) ! pred(minus(x; y))

gcd(0; y) ! 0

gcd(succ(x); 0) ! 0

gcd(succ(x); succ(y)) ! if

gcd

(le(y; x); succ(x); succ(y))

if

gcd

(true; succ(x); succ(y)) ! gcd(minus(x; y); succ(y))

if

gcd

(false; succ(x); succ(y)) ! gcd(minus(y; x); succ(x))

(Of course we also could have switched the ordering of the arguments in the right-

hand side of the last rule. But this version here is even more di�cult: Termination

of the corresponding algorithm cannot be proved by the method of [Wal94], because

this method cannot deal with permutations of arguments.)

The relevant dependency pairs of this CS are

hLe(succ(x); succ(y); Le(x; y)i

hM(x; succ(y));M(x; y)i

hGCD(succ(x); succ(y)); IF

gcd

(le(y; x); succ(x); succ(y))i

hIF

gcd

(true; succ(x); succ(y));GCD(minus(x; y); succ(y))i

hIF

gcd

(false; succ(x); succ(y));GCD(minus(y; x); succ(x))i
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Termination of R

0

can be proved by the recursive path ordering or by the depen-

dency pair approach. The set of inequalities DP

0

is

GCD(succ(x); succ(y)) � IF

gcd

(le(y; x); succ(x); succ(y))

IF

gcd

(true; succ(x); succ(y)) � GCD(minus(x; y); succ(y))

IF

gcd

(false; succ(x); succ(y)) � GCD(minus(y; x); succ(x))

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

pred(succ(x)) % x

minus(x; 0) % x

minus(x; succ(y)) % pred(minus(x; y))

In this example we have to use the polynomial approach. A suitable quasi-ordering

satisfying DP

0

is the ordering where the function symbol 0 is mapped to the number

0, succ(x) is mapped to x + 2, GCD(x; y) is mapped to x + y + 1, IF

gcd

(b; x; y) is

mapped to x+y, pred(x) and minus(x; y) are mapped to x, and all remaining function

symbols are mapped to 0.

This example was taken from [BM79] resp. [Wal91]. A variant of this example could

be proved terminating using Steinbach's method for the automated generation of

transformation orderings [Ste95a], but there the rules for le and minus were missing.

6 Logarithm, Version 1

The following CS computes the dual logarithm.

half(0) ! 0

half(succ(succ(x))) ! succ(half(x))

log(0) ! 0

log(succ(succ(x))) ! succ(log(succ(half(x))))

The relevant dependency pairs of this CS are

hHALF(succ(succ(x)));HALF(x)i

hLOG(succ(succ(x))); LOG(succ(half(x)))i

The CS R

0

is terminating. The recursive path ordering or the dependency pair

approach directly prove this. The set of inequalities DP

0

is given by

LOG(succ(succ(x))) � LOG(succ(half(x)))

half(0) % 0

half(succ(succ(x))) % succ(half(x))

A mapping for the function symbols is not needed since these inequalities are sat-

is�ed by the recursive path ordering. (Termination of the original system can also

be proved using the recursive path ordering.)

7 Logarithm, Version 2 - 4

The following CS again computes the dual logarithm, but instead of half we now

use the function quot. Depending on which version of quot we use, we obtain three
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di�erent versions of the CS (all of which are not simply terminating, since the quot

CS R

quot

already was not simply terminating).

R

quot

log(0; y) ! 0

log(succ(succ(x))) ! succ(log(succ(quot(x; succ(succ(0))))))

The CS R

0

, in this case R

quot

, is terminating. Termination of all three versions

of this CS is proved in the earlier examples. Therefore, we only consider the new

dependency pair to be relevant

hLOG(succ(succ(x))); LOG(succ(quot(x; succ(succ(0)))))i

The set of inequalities DP

0

depends on the version of R

quot

, but in all versions we

have the inequality

LOG(succ(succ(x))) � LOG(succ(
quot

(x; succ(succ(0)))))

The interpretation to derive a quasi-ordering that satis�es all three versions of DP

0

is given by: quot(x; y) 7! x, and all other mappings as in the example corresponding

to the version of R

quot

. With this interpretation DP

0

is satis�ed by the recursive

path ordering.

8 Eliminating Duplicates

The following CS eliminates duplicates from a list. To represent lists we use the

constructors empty and add, where empty represents the empty list and add(n; x)

represents the insertion of n into the list x.

eq(0; 0) ! true

eq(0; succ(x)) ! false

eq(succ(x); 0) ! false

eq(succ(x); succ(y)) ! eq(x; y)

rm(n; empty) ! empty

rm(n; add(m;x)) ! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) ! rm(n; x)

if

rm

(false; n; add(m;x)) ! add(m; rm(n; x))

purge(empty) ! empty

purge(add(n; x)) ! add(n; purge(rm(n; x)))

The relevant dependency pairs are

hEQUAL(succ(x); succ(y));EQUAL(x; y)i

hRM(n; add(m;x)); IF

remove

(eq(n;m); n; add(m;x))i

hIF

remove

(true; n; add(m;x));RM(n; x)i

hIF

remove

(false; n; add(m;x));RM(n; x)i

hPURGE(add(n; x));PURGE(rm(n; x))i
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Termination of R

0

can be proved with the dependency pair approach by considering

this CS as a hierarchical combination of the eq rules and the other rules. The set

of inequalities DP

0

is given by

PURGE(add(n; x)) � PURGE(rm(n; x))

eq(0; 0) % true

eq(0; succ(x)) % false

eq(succ(x); 0) % false

eq(succ(x); succ(y)) % eq(x; y)

rm(n; empty) % empty

rm(n; add(m;x)) % if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) % rm(n; x)

if

rm

(false; n; add(m;x)) % add(m; rm(n; x))

A suitable mapping is

rm(n; x) 7! x

if

rm

(b; x; y) 7! y

With this interpretation DP

0

is satis�ed by the recursive path ordering.

This example comes from [Wal91] and a similar example was mentioned in [Ste95a],

but in Steinbach's version the rules for eq and if

rm

were missing.

If in the right-hand side of the last rule, add(n; purge(rm(n; x))), the n would be

replaced by a term containing add(n; x) then we would obtain a non-simply ter-

minating CS, but termination could still be proved with our method in the same

way.

9 Selection Sort

The CS below, from [Wal94], is obviously not simply terminating. The CS can be

used to sort a list by repeatedly replacing the minimum of the list by the head of

the list. It uses replace(n;m; x) to replace the leftmost occurrence of n in the list x

by m.

eq(0; 0) ! true

eq(0; succ(x)) ! false

eq(succ(x); 0) ! false

eq(succ(x); succ(y)) ! eq(x; y)

le(0; succ(y)) ! true

le(0; 0) ! true

le(succ(x); 0) ! false

le(succ(x); succ(y)) ! le(x; y)

min(add(0; empty)) ! 0

min(add(succ(n); empty)) ! succ(n)

min(add(n; add(m;x))) ! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) ! min(add(n; x))

if

min

(false; add(n; add(m;x))) ! min(add(m;x))

replace(n;m; empty) ! empty

replace(n;m; add(k; x)) ! if

replace

(eq(n; k); n;m; add(k; x))

if

replace

(true; n;m; add(k; x)) ! add(m;x)
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if

replace

(false; n;m; add(k; x)) ! add(k; replace(n;m; x))

selsort(empty) ! empty

selsort(add(n; x)) ! if

selsort

(eq(n;min(add(n; x))); add(n; x))

if

selsort

(true; add(n; x)) ! add(n; selsort(x))

if

selsort

(false; add(n; x)) ! add(min(add(n; x))

selsort(replace(min(add(n; x)); n; x)))

The CS R

0

is terminating, as can be proved fairly easy with the dependency pair

approach.

The set of inequalities DP

0

is

SELSORT(add(n; x)) � IF

selsort

(eq(n;min(add(n; x))); add(n; x))

IF

selsort

(true; add(n; x)) � SELSORT(x)

IF

selsort

(false; add(n; x)) � SELSORT(replace(min(add(n; x)); n; x))

eq(0; 0) % true

eq(0; succ(x)) % false

eq(succ(x); 0) % false

eq(succ(x); succ(y)) % eq(x; y)

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

min(add(0; empty)) % 0

min(add(succ(n); empty)) % succ(n)

min(add(n; add(m;x))) % if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) % min(add(n; x))

if

min

(false; add(n; add(m;x))) % min(add(m;x))

replace(n;m; empty) % empty

replace(n;m; add(k; x)) % if

replace

(eq(n; k); n;m; add(k; x))

if

replace

(true; n;m; add(k; x)) % add(m;x)

if

replace

(false; n;m; add(k; x)) % add(k; replace(n;m; x))

A suitable mapping is given by

add(n; x) 7! add(x)

IF

selsort

(b; x) 7! x

replace(x; y; z) 7! z

if

replace

(b; x; y; z) 7! z

The demands of DP

0

are satis�ed by this interpretation and the recursive path

ordering.

10 Minimum Sort

This CS can be used to sort a list x by repeatedly removing the minimum of it. For

that purpose elements of x are shifted into the second argument of minsort, until

the minimum of the list is reached. Then the function rm is used to eliminate all

occurrences of the minimumand �nallyminsort is called recursively on the remaining

list. Hence, minsort does not only sort a list but it also eliminates duplicates. (Of

course, the corresponding version of minsort where duplicates are not eliminated
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could also be proved terminating with our method.)

eq(0; 0) ! true

eq(0; succ(x)) ! false

eq(succ(x); 0) ! false

eq(succ(x); succ(y)) ! eq(x; y)

le(0; succ(y)) ! true

le(0; 0) ! true

le(succ(x); 0) ! false

le(succ(x); succ(y)) ! le(x; y)

app(empty; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

min(add(0; empty)) ! 0

min(add(succ(n); empty)) ! succ(n)

min(add(n; add(m;x))) ! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) ! min(add(n; x))

if

min

(false; add(n; add(m;x))) ! min(add(m;x))

rm(n; empty) ! empty

rm(n; add(m;x)) ! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) ! rm(n; x)

if

rm

(false; n; add(m;x)) ! add(m; rm(n; x))

minsort(empty; empty) ! empty

minsort(add(n; x); y) ! if

minsort

(eq(n;min(add(n; x))); add(n; x); y)

if

minsort

(true; add(n; x); y) ! add(n;minsort(app(rm(n; x); y); empty))

if

minsort

(false; add(n; x); y) ! minsort(x; add(n; y))

As in the other examples, the CS R

0

can be proved terminating by recursively ap-

plying the technique of the dependency pairs approach to it. The set of inequalities

DP

0

is

MINSORT(add(n; x); y) � IF

minsort

(eq(n;min(add(n; x))); add(n; x); y)

IF

minsort

(true; add(n; x); y) � MINSORT(app(rm(n; x); y); empty)

IF

minsort

(false; add(n; x); y) � MINSORT(x; add(n; y))

eq(0; 0) % true

eq(0; succ(x)) % false

eq(succ(x); 0) % false

eq(succ(x); succ(y)) % eq(x; y)

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

app(empty; y) % y

app(add(n; x); y) % add(n; app(x; y))

min(add(0; empty)) % 0

min(add(succ(n); empty)) % succ(n)

min(add(n; add(m;x))) % if

min

(le(n;m); add(n; add(m;x)))
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if

min

(true; add(n; add(m;x))) % min(add(n; x))

if

min

(false; add(n; add(m;x))) % min(add(m;x))

rm(n; empty) % empty

rm(n; add(m;x)) % if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) % rm(n; x)

if

rm

(false; n; add(m;x)) % add(m; rm(n; x))

In this example choosing just a few arguments and using rpo will not do, but an

algebra consisting of the natural numbers as carrier set and interpretation: empty is

mapped to 0, add(n; x) is mapped to x+2, MINSORT(x; y) is mapped to (x+y)

2

+

2x+y+1, IF

minsort

(b; x; y) is mapped to (x+y)

2

+2x+y, rm(n; x) and if

rm

(b; n; x) are

both mapped to x, and app(x; y) is mapped to x+y. All remaining function symbols

are mapped to the constant 0. This results in a suitable well-founded quasi-order.

This example is inspired by an algorithm from [BM79] and [Wal94]. In the corre-

sponding example from [Ste92] the rules for le, eq, if

rm

and if

min

were missing.

11 Quicksort

The quicksort CS is used to sort a list by the well-known quicksort-algorithm. It

uses the functions low(n; x) and high(n; x) which return the sublist of x containing

only the elements smaller or equal (resp. larger) then n.

le(0; succ(y)) ! true

le(0; 0) ! true

le(succ(x); 0) ! false

le(succ(x); succ(y)) ! le(x; y)

app(empty; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

low(n; empty) ! empty

low(n; add(m;x)) ! if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x)) ! add(m; low(n; x))

if

low

(false; n; add(m;x)) ! low(n; x)

high(n; empty) ! empty

high(n; add(m;x)) ! if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x)) ! high(n; x)

if

high

(false; n; add(m;x)) ! add(m; high(n; x))

quicksort(empty) ! empty

quicksort(add(n; x)) ! app(quicksort(low(n; x));

add(n; quicksort(high(n; x))))

The CS R

0

can be proved terminating by the recursive path order or by the depen-

dency pair approach. The set of inequalities DP

0

is

QUICKSORT(add(n; x)) � QUICKSORT(low(n; x))

QUICKSORT(add(n; x)) � QUICKSORT(high(n; x))

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)
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app(empty; y) % y

app(add(n; x); y) % add(n; app(x; y))

low(n; empty) % empty

low(n; add(m;x)) % if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x)) % add(m; low(n; x))

if

low

(false; n; add(m;x)) % low(n; x)

high(n; empty) % empty

high(n; add(m;x)) % if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x)) % high(n; x)

if

high

(false; n; add(m;x)) % add(m; high(n; x))

A suitable mapping is

low(n; x) 7! x

high(n; x) 7! x

if

low

(b; n; x) 7! x

if

high

(b; n; x) 7! x

This interpretation and the recursive path ordering satisfy the demands on DP

0

.

Steinbach could prove termination of a corresponding example with transformation

orderings [Ste95a], but in his example the rules for le, if

low

if

high

and app were

omitted.

If in the right-hand side of the last rule,

app(quicksort(low(n; x)); add(n; quicksort(high(n; x)));

one of the n's was replaced by a term containing add(n; x) then we would obtain a

non-simply terminating CS. With our method termination could still be proved in

the same way.

12 Permutation of Lists

This example is a CS from [Wal94] to compute a permutation of a list, for instance,

shu�e([1; 2; 3; 4; 5]) reduces to [1; 5; 2; 4; 3].

app(empty; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

reverse(empty) ! empty

reverse(add(n; x)) ! app(reverse(x); add(n; empty))

shu�e(empty) ! empty

shu�e(add(n; x)) ! add(n; shu�e(reverse(x)))

Termination of R

0

, the �rst four rules, can easily be proved by the recursive path

ordering or the dependency pair approach. The set DP

0

of inequalities is

SHUFFLE(add(n; x)) � SHUFFLE(reverse(x))

app(empty; y) % y

app(add(n; x); y) % add(n; app(x; y))

reverse(empty) % empty

reverse(add(n; x)) % app(reverse(x); add(n; empty))

Also for this example we do need a polynomial interpretation. A suitable interpre-

tation of the function symbols is: empty is mapped to 0, add(n; x) is mapped to

x+1, SHUFFLE(x) and reverse(x) are mapped to x and app(x; y) is mapped to x+y.
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13 Reachability on Directed Graphs

To check whether there is a path from the node x to the node y in a directed graph

g, the term reach(x; y; g; �) must be reducible to true with the rules of the CS of

this example from [Gie95a]. The fourth argument of reach is used to store edges

that have already been examined but that are not included in the actual solution

path. If an edge from u to v (with x 6= u) is found, then it is rejected at �rst. If an

edge from x to v (with v 6= y) is found then one either searches for further edges

beginning in x (then one will never need the edge from x to v again) or one tries

to �nd a path from v to y and now all edges that were rejected before have to be

considered again.

The function union is used to unite two graphs. The constructor � denotes the

empty graph and edge(x; y; g) represents the graph g extended by an edge from x

to y. Nodes are labelled with natural numbers.

eq(0; 0) ! true

eq(0; succ(x)) ! false

eq(succ(x); 0) ! false

eq(succ(x); succ(y)) ! eq(x; y)

or(true; x) ! true

or(false; true) ! true

or(false; false) ! false

union(�; h) ! h

union(edge(x; y; i); h) ! edge(x; y; union(i; h))

reach(x; y; �; h) ! false

reach(x; y; edge(u; v; i); h) ! if

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

if

reach 1

(true; x; y; edge(u; v; i); h) ! if

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

if

reach 2

(true; x; y; edge(u; v; i); h) ! true

if

reach 2

(false; x; y; edge(u; v; i); h) ! or(reach(x; y; i; h);

reach(v; y; union(i; h); �))

if

reach 1

(false; x; y; edge(u; v; i); h) ! reach(x; y; i; edge(u; v; h))

The CS R

0

can be proved terminating very easy, for example by the dependency

pair approach. The set of inequalities DP

0

is

REACH(x; y; edge(u; v; i); h) � IF

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

IF

reach 1

(true; x; y; edge(u; v; i); h) � IF

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

IF

reach 2

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; h)

IF

reach 2

(false; x; y; edge(u; v; i); h) � REACH(v; y; union(i; h); �)

IF

reach 1

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; edge(u; v; h))

eq(0; 0) % true

eq(0; succ(x)) % false

eq(succ(x); 0) % false

eq(succ(x); succ(y)) % eq(x; y)

union(�; h) % h

union(edge(x; y; i); h) % edge(x; y; union(i; h))

A mapping to polynomials results in a suitable order. The interpretation is: �

is mapped to 0, edge(x; y; g) is mapped to g + 2, REACH(x; y; g; h) is mapped to
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(g + h)

2

+ 2g + h + 2, IF

reach 1

(b; x; y; g; h) is mapped to (g + h)

2

+ 2g + h + 1,

IF

reach 2

(b; x; y; g; h) is mapped to (g + h)

2

+ 2g + h and union(g; h) is mapped to

g + h. All remaining function symbols are mapped to 0.

14 Comparison of Binary Trees

This CS is used to �nd out if one binary tree has less leafs than another one. It uses

a function concat(x; y) to replace the rightmost leaf of x by y. Here, the constructor

nil represents a leaf and cons(u; v) is used to built a new tree with the two direct

subtrees u and v.

concat(nil; y) ! y

concat(cons(u; v); y) ! cons(u; concat(v; y))

less leafs(x; nil) ! false

less leafs(nil; cons(w; z)) ! true

less leafs(cons(u; v); cons(w; z)) ! less leafs(concat(u; v); concat(w; z))

The two rules of R

0

are easily proved terminating. The set of inequalities DP

0

is

LESS LEAFS(cons(u; v); cons(w; z)) � LESS LEAFS(concat(u; v); concat(w; z))

concat(nil; y) % y

concat(cons(u; v); y) % cons(u; concat(v; y))

A suitable (polynomial) interpretation is: nil is mapped to 0, cons(u; v) is mapped

to 1+u+v, LESS LEAFS(x; y) is mapped to x, and concat(u; v) is mapped to u+v.

If concat(w; z) in the second argument of less leafs (in the right-hand side of the last

rule) would be replaced by an appropriate argument, we would obtain a non-simply

terminating CS whose termination could be proved in the same way.

6. Conclusion and Further Work

We have developed a method for automated termination proofs of constructor sys-

tems which uses an estimation technique to automate the analysis of dependency

pairs. Our method works as follows:

� For a CS R a ground-convergent CS E is synthesised in which R is contained.

(For CSs that are hierarchical combinations of a certain type, a suited E can

be immediately obtained automatically, cf. [Art96].)

� Let DP be the set of inequalities which ensure that all dependency pairs are

decreasing. Then by application of the estimation technique DP is trans-

formed into a new set of inequalities DP

0

without de�ned symbols.

� Now standard methods are used to generate a well-founded quasi-ordering

which is weakly monotonic, has a minimal element, and satis�es DP

0

. If

there exists such a quasi-ordering then the CS R is terminating.

The presented method makes use of the special structure of constructor systems.

Therefore in this way termination of many CSs can be proved automatically where

all other known techniques fail. Our method has been tested on numerous prac-

tically relevant CSs from di�erent areas of computer science (using a system for

the automated generation of polynomial orderings [Gie95b]) and proved successful.
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A collection of examples which demonstrate the power of our method (including

arithmetical operations such as gcd and logarithm, several sorting algorithms such

as quicksort or selection sort as well as functions on trees and graphs (e.g. a reacha-

bility algorithm)) has been presented in Sect. 5.

Future work will include an investigation on possible combinations of our method

with induction theorem proving systems (e.g. [BM79, BHHW86, KZ89, BHHS90,

BKR92]). Then for the elimination of de�ned symbols apart from estimation

additional transformation techniques may be possible (cf. [BM79, BL93, Wal94,

Gie95d]), which may be advantageous for further sophisticated termination proofs.
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