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Abstract

To prove termination of term rewriting systems (TRSs), several methods

have been developed to synthesize suitable well-founded orderings automati-

cally. However, virtually all orderings that are amenable to automation are

so-called simpli�cation orderings. Unfortunately, there exist numerous inter-

esting and relevant TRSs that cannot be oriented by orderings of this restricted

class and therefore their termination cannot be proved automatically with the

existing techniques.

In this paper we present a new automatic approach which allows to ap-

ply the standard techniques for automated termination proofs to those TRSs

where these techniques failed up to now. For that purpose we have developed

a procedure which, given a TRS, generates a set of inequalities (constraints)

automatically. If there exists a well-founded ordering satisfying these con-

straints, then the TRS is terminating. It turns out that for many TRSs where

a direct application of standard techniques fails, these standard techniques can

nevertheless synthesize a well-founded ordering satisfying the generated con-

straints. In this way, termination of numerous (also non-simply terminating)

term rewriting systems can be proved fully automatically.

1. Introduction

Termination is one of the most fundamental properties of a term rewriting sys-

tem, cf. e.g. [DJ90]. While in general this problem is undecidable [HL78], several

methods for proving termination have been developed (e.g. path orderings [Pla78,

Der82, DH95, Ste95b], Knuth-Bendix orderings [KB70, DKM90], forward closures

[LM78, DH95], semantic interpretations [Lan79, BL87, BL93, Ste94, Zan94, Gie95b],

transformation orderings [BD86, BL90, Ste95a], semantic labelling [Zan95] etc. |

for surveys see e.g. [Der87, Ste95b]).

In this paper we present a new approach for the automation of termination proofs.

Previous methods for proving termination usually tried to �nd a well-founded order-

ing (with certain additional features) such that left-hand sides of rules are greater

than right-hand sides. However, the central idea of our approach is to compare

left-hand sides of rules only with those subterms of the right-hand sides that may

possibly start a new reduction. The formal de�nitions needed for this approach are

introduced in Sect. 2 and in Sect. 3 we present a new termination criterion and

prove its soundness and completeness.

The main advantage of our termination criterion is that it is especially well suited

for automation. Therefore, in Sect. 4 we show how this criterion can be checked
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automatically. To increase the power of our method we introduce a re�ned approach

for its automation in Sect. 5. In this way we obtain a very powerful technique which

enables automated termination proofs for many TRSs where termination could not

be proved automatically before. In Sect. 6 we give some comments on related work

followed by a short conclusion in Sect. 7. The use and power of the technique is

demonstrated in Sect. 8 by a collection of examples.

2. Dependency Pairs

In this section we introduce the de�nitions needed for our termination criterion.

For TRSs of a certain kind, viz. the so-called constructor systems, it is common to

split the signature into two disjoint sets, the de�ned symbols and the constructors.

The following de�nition extends these notions to arbitrary term rewriting systems

R(F ; R) (with the rules R over a signature F). Here, the root of a term f(: : :)

denotes the leading function symbol f .

2.1 Definition (De�ned Symbols and Constructors, cf. [Kri95]). The set D

R

of

de�ned symbols of a TRS R(F ; R) is de�ned as froot(l)jl ! r 2 Rg and the

set C

R

of constructor symbols of R(F ; R) is de�ned as F nD

R

.

To refer to the de�ned symbols and constructors explicitly, a rewrite system is

written as R(D

R

; C

R

; R) and the subscripts are omitted if this omission does not

cause any confusion.

As an example consider the following TRS. Here, x. l represents the insertion of

a number x into a list l (where x. y. l abbreviates (x. (y. l)) ), app computes the

concatenation of lists, and sum(l) is used to compute the sum of all numbers in l

(e.g. sum applied to the list [1; 2; 3] returns [1 + 2 + 3]).

app(nil; k) ! k

app(l; nil) ! l

app(x. l; k) ! x. app(l; k)

sum(x. nil) ! x. nil

sum(x. y. l) ! sum((x+ y). l)

sum(app(l; x. y. k)) ! sum(app(l; sum(x. y. k)))

The de�ned symbols of this TRS are app and sum, whereas +, nil, and . are con-

structors.

A TRS is terminating if there does not exist a term that starts an in�nite reduction.

Unfortunately, most methods for automated termination proofs are restricted to

simpli�cation orderings [Der79, Ste95b]. These methods cannot be used to prove

termination of systems like the TRS above, because the left-hand side of the last

rule is homeomorphically embedded in its right-hand side.

To prove termination of such a system, instead of comparing s with every term

t it can be reduced to (i.e. instead of demanding s � t whenever s !

R

t), the

central idea of our approach is to compare s only with those subterms of t that

are instantiations of left-hand sides of rules. For that purpose we only regard

terms with de�ned root symbols, because rewrite rules can only be applied to such

subterms. Therefore, instead of comparing left- and right-hand sides of rules, we

only concentrate on those subterms of the right-hand sides whose root is a de�ned

symbol.

More precisely, if a term f(s

1

; : : : ; s

n

) rewrites to another term C[g(t

1

; : : : ; t

m

)]

(where f and g are de�ned symbols and C denotes some context), then to prove

termination we compare the argument tuple s

1

; : : : ; s

n

with the tuple t

1

; : : : ; t

m

. In
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order to avoid the handling of tuples, for a formal de�nition we introduce a special

symbol F , not occurring in the signature of the TRS, for every de�ned symbol

f in D and compare the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

) instead. To ease

readability we assume in this paper that the signature F consists of lower case

function symbols only and denote the special symbols by the corresponding upper

case symbols.

2.2 Definition (Dependency Pairs). Let R(D;C;R) be a TRS. If

f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ; t

m

)]

is a rewrite rule of R with f; g 2 D, then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i is called a

dependency pair of R.

In our example we obtain the following dependency pairs:

hAPP(x. l; k);APP(l; k)i; (1)

hSUM(x. y. l); SUM((x+ y). l)i; (2)

hSUM(app(l; x. y. k)); SUM(x. y. k)i; (3)

hSUM(app(l; x. y. k));APP(l; sum(x. y. k))i; (4)

hSUM(app(l; x. y. k)); SUM(app(l; sum(x. y. k)))i: (5)

Two dependency pairs hs

1

; t

1

i and hs

2

; t

2

i are equivalent, if there exists a renaming

substitution � such that s

1

� = s

2

and t

1

� = t

2

. We are interested in dependency

pairs up to equivalence and when useful, we may assume, without loss of generality,

that two (occurrences of) dependency pairs have disjoint sets of variables.

3. A Termination Criterion Using Dependency Pairs

Using the notion of dependency pairs, in this section we introduce a criterion for

termination of TRSs. Recall that a left-hand side of a rewrite rule only matches

subterms with de�ned root symbols. Thus, there occurs a de�ned symbol in any

term in an in�nite reduction. In a reduction, new de�ned symbols are introduced

by the right-hand sides of the applied rewrite rules. Therefore, the dependency

pairs focus on the subterms of the right-hand sides that have a de�ned symbol as

root symbol. By regarding a sequence of these dependency pairs, the introduction

of new de�ned symbols can be traced. This observation is the motivation for the

following de�nition.

3.1 Definition (R-chains). Let R(D;C;R) be a TRS. A sequence of dependency

pairs is called an R-chain if there exists a substitution

1

�, such that t

i

� !

�

R

s

i+1

�

holds for all consecutive pairs hs

i

; t

i

i and hs

i+1

; t

i+1

i in the sequence.

For example, hAPP(x. l; k);APP(l; k)ihAPP(x

0

. l

0

; k

0

);APP(l

0

; k

0

)i is an R-chain, be-

cause APP(l; k)� !

�

R

APP(x

0

. l

0

; k

0

)� holds for the substitution � that replaces l by

x

0

. l

0

and k by k

0

.

With the concept of dependency pairs we can now use the following criterion for

termination: A TRS R is terminating i� no in�nite R-chain exists. If it is clear

from the context which TRS is involved, we omit this information and write `chain'

instead of `R-chain'. In this section we prove that the absence of in�nite chains is

a su�cient (Thm. 3.2) and necessary (Thm. 3.3) condition for termination.

3.2 Theorem (Soundness). Let R(D;C;R) be a TRS. If no in�nite R-chain exists,

then R is terminating.

1

Throughout the paper we regard substitutions whose domain may be in�nite.
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Proof. We prove that for any in�nite reduction we can construct an in�nite R-

chain.

Let t be a term that starts an in�nite reduction. Then the term t contains a

subterm

2

f

1

(~u

1

) that starts an in�nite reduction, but none of the terms ~u

1

starts

an in�nite reduction, i.e. ~u

1

are strongly normalising.

Let us consider an in�nite reduction starting with f

1

(~u

1

). First, the arguments ~u

1

are reduced in zero or more steps to arguments ~v

1

and then a rewrite rule f

1

(~w

1

)! r

is applied to f

1

(~v

1

), i.e. a substitution � exists such that f

1

(~v

1

) = f

1

(~w

1

)� !

R

r�.

Now the in�nite reduction continues with r�, i.e. the term r� starts an in�nite

reduction, too.

Note that by assumption there exists no in�nite reduction beginning with one of

the terms ~v

1

= ~w

1

�. Hence, for all variables x occurring in f

1

(~w

1

) the terms �(x)

are strongly normalising. Thus, since r� starts an in�nite reduction, there occurs

a subterm f

2

(~u

2

) in r, i.e. r = C[f

2

(~u

2

)] for some context C, such that

� f

2

(~u

2

)� starts an in�nite reduction and

� ~u

2

� are strongly normalising terms.

The �rst dependency pair of the in�nite chain that we construct is hF

1

(~w

1

); F

2

(~u

2

)i

corresponding to the rewrite rule f

1

(~w

1

)! C[f

2

(~u

2

)]. The other dependency pairs

of the in�nite R-chain are determined in the same way: f

2

(~u

2

)� starts an in�nite

reduction and the terms ~u

2

� are strongly normalising. Again, in zero or more steps

f

2

(~u

2

)� reduces to f

2

(~v

2

) to which a rewrite rule f

2

(~w

2

)! r

2

can be applied such

that r

2

� starts an in�nite reduction for some substitution � with ~v

2

= ~w

2

� .

Similar to the observations above, since r

2

� starts an in�nite reduction, there must

be a subterm f

3

(~u

3

) in r

2

such that

� f

3

(~u

3

)� starts an in�nite reduction and

� ~u

3

� are strongly normalising terms.

This results in the second dependency pair of the R-chain, viz. hF

2

(~w

2

); F

3

(~u

3

)i.

By repetition of this process

3

one obtains the in�nite sequence

hF

1

(~w

1

); F

2

(~u

2

)ihF

2

(~w

2

); F

3

(~u

3

)ihF

3

(~w

3

); F

4

(~u

4

)i : : :

It remains to prove that this sequence is really an R-chain.

Note that F

2

(~u

2

�) !

�

R

F

2

(~v

2

) and ~v

2

= ~w

2

� . Since we assume, without loss

of generality, that the variables of consecutive dependency pairs are disjoint, we

obtain one substitution � = � � � � : : : such that

F

2

(~u

2

)� !

�

R

F

2

(~w

2

)�; F

3

(~u

3

)� !

�

R

F

3

(~w

3

)�; : : :

Thus, we have in fact constructed an in�nite R-chain. ut

This criterion can now be used to prove termination of TRSs. For instance, in our

example there cannot be an in�nite chain of the form

hAPP(x. l; k);APP(l; k)ihAPP(x

0

. l

0

; k

0

);APP(l

0

; k

0

)i : : : ;

because for every substitution �, the term APP(x. l; k) contains one more occurrence

of the symbol `. ' than APP(l; k). In Sect. 4 we will show how the absence of in�nite

chains can be proved automatically.

After having shown that the absence of in�nite chains is su�cient for termination,

now we prove that this criterion is even necessary for termination.

2

We denote tuples of terms t

1

; : : : ; t

n

by

~

t.

3

Formally, this sequence has to be de�ned by an inductive de�nition.
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3.3 Theorem (Completeness). Let R(D;C;R) be a TRS. If R is terminating, then

no in�nite R-chain exists.

Proof. We prove that any in�nite R-chain corresponds to an in�nite reduction.

Assume there exists an in�nite R-chain.

hF

1

(~s

1

); F

2

(

~

t

2

)ihF

2

(~s

2

); F

3

(

~

t

3

)ihF

3

(~s

3

); F

4

(

~

t

4

)i : : :

Hence, there must be a substitution � such that

F

2

(

~

t

2

)� !

�

R

F

2

(~s

2

)�; F

3

(

~

t

3

)� !

�

R

F

3

(~s

3

)�; : : : ;

resp. f

i

(

~

t

i

)� !

�

R

f

i

(~s

i

)�, as the upper case symbols F

i

are not de�ned.

Note that every dependency pair hF (~s); G(

~

t)i corresponds to a rewrite rule f(~s)!

C[g(

~

t)] for some context C. Therefore, this results in the following in�nite reduction

f

1

(~s

1

)� ! C

1

[f

2

(

~

t

2

)]�

#

�

C

1

[f

2

(~s

2

)]� ! C

1

[C

2

[f

3

(

~

t

3

)]]�

#

�

C

1

[C

2

[f

3

(~s

3

)]]� ! : : :

ut

We derived that a TRS R is terminating if and only if no in�nite R-chain exists.

Since it is undecidable whether a TRS is terminating, it is also undecidable whether

an in�nite R-chain exists. However, for certain TRSs R we obtain a set of depen-

dency pairs for which we can automatically derive that these dependency pairs can

never form an in�nite R-chain and therefore we can prove termination of these

TRSs automatically.

4. Checking the Termination Criterion Automatically

Our termination criterion states that a TRS R is terminating i� no in�nite R-chain

exists. In this section we present an approach to perform automated termination

proofs using this criterion, i.e. we introduce a method to prove the absence of in�nite

chains automatically.

For that purpose, we introduce a procedure which, given a TRS, generates a set

of inequalities (which represent constraints). This transformation of a TRS into

a set of inequalities is such that if there exists a well-founded ordering satisfying

these inequalities, then termination of the TRS has been proved. A well-founded

ordering satisfying the generated inequalities can often be synthesized by standard

techniques, even if a direct termination proof is not possible with these techniques,

i.e. a well-founded ordering satisfying the generated inequalities can be synthesized,

whereas a well-founded ordering compatible with the reduction ordering cannot be

synthesized.

Note that if all chains correspond to a decreasing sequence w.r.t. some well-founded

ordering, then all chains must be �nite. Hence, to prove the absence of in�nite

chains, we will synthesize a well-founded ordering � such that all dependency pairs

are decreasing w.r.t. this ordering. More precisely, if for any sequence of dependency

pairs

hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : :

and for any substitution � with t

i

� !

�

R

s

i+1

� we have s

1

� � t

1

�, s

2

� � t

2

�,

s

3

� � t

3

�, : : : and t

1

� � s

2

�, t

2

� � s

3

�, : : :, then no in�nite chain exists.
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However, for most TRSs, the above inequalities are not satis�ed by any well-founded

ordering �. The reason is that the terms t

i

� and s

i+1

� of consecutive dependency

pairs in chains are often identical and therefore t

i

� � s

i+1

� does not hold.

But obviously not all of the inequalities s

i

� � t

i

� and t

i

� � s

i+1

� have to be strict.

For instance, to guarantee the absence of in�nite chains it is su�cient if there

exists a well-founded quasi-ordering % such that the strict inequality s

i

� � t

i

� and

the non-strict inequality t

i

�%s

i+1

� hold for each sequence of dependency pairs as

above. (A quasi-ordering % is a reexive and transitive relation and % is called

well-founded if its strict part � is well founded.)

Note that we cannot determine automatically for which substitutions � we have

t

i

� !

�

s

i+1

� and moreover, it is practically impossible to examine in�nite sequences

of dependency pairs. In the following we will restrict ourselves to weakly monotonic

quasi-orderings % where both % and its strict part � are closed under substitution.

(A quasi-ordering % is weakly monotonic if s% t implies f(: : : s : : :)%f(: : : t : : :).)

Then, to guarantee t

i

�%s

i+1

� whenever t

i

� !

�

s

i+1

� holds, it is su�cient to

demand l%r for all rewrite rules l ! r of the TRS. To ensure s

i

� � t

i

� for those

dependency pairs occurring in possibly in�nite chains, we will demand s � t for all

dependency pairs hs; ti.

4.1 Theorem (Checking the Termination Criterion). Let R(D;C;R) be a TRS. If

there exists a well-founded, weakly monotonic quasi-ordering % , where both % and

� are closed under substitution, such that

� l%r for all rules l ! r in R and

� s � t for all dependency pairs hs; ti,

then R is terminating.

Proof. Note that as l%r holds for all rules l ! r in R and as % is weakly mono-

tonic and closed under substitution, we have !

�

R

� % , i.e. if t!

�

R

s then t%s.

Suppose there is an in�nite R-chain

hs

1

; t

1

ihs

2

; t

2

i : : : ;

then there exists a substitution � such that t

i

� !

�

R

s

i+1

� holds for all i. As

!

�

R

� % , this implies t

i

�%s

i+1

�. Hence, we obtain the in�nite sequence

s

1

� � t

1

�% s

2

� � t

2

�% : : :

which is a contradiction to the well-foundedness of % and therefore no in�nite chain

exists. Thus, by Thm. 3.2 R is terminating. ut

The technique of Thm. 4.1 is very useful to make standard methods like the recursive

path ordering or polynomial interpretations applicable to TRSs for which they are

not directly applicable. For instance, in our example we have to �nd a quasi-ordering

satisfying the inequalities

app(nil; k) % k

app(l; nil) % l

app(x. l; k) % x. app(l; k)

sum(x. nil) % x. nil

sum(x. y. l) % sum((x + y). l)

sum(app(l; x. y. k)) % sum(app(l; sum(x. y. k)))

APP(x. l; k) � APP(l; k)

6



SUM(x. y. l) � SUM((x+ y). l)

SUM(app(l; x. y. k)) � SUM(x. y. k)

SUM(app(l; x. y. k)) � APP(l; sum(x. y. k))

SUM(app(l; x. y. k)) � SUM(app(l; sum(x. y. k)))

For example, these inequalities are satis�ed by the polynomial ordering [Lan79]

where nil is mapped to the constant 0, x. l is mapped to l + 1, (x + y) is mapped

to x+ y, app(l; k) is mapped to l + k + 1, sum(l) is mapped to the constant 1, and

APP(l; k) and SUM(l) are both mapped to l. Methods for the automated generation

of polynomial orderings have for instance been developed in [Ste94, Gie95b]. In this

way, termination of this TRS can be proved fully automatically, although a direct

termination proof with simpli�cation orderings was not possible.

Note that when using polynomial orderings for direct termination proofs of TRSs,

then the polynomials have to be (strongly) monotonic in all their arguments, i.e.

s � t implies f(: : : s : : :) � f(: : : t : : :). However, for the approach of this paper,

we only need a weakly monotonic quasi-ordering satisfying the inequalities. Thus,

s � t only implies f(: : : s : : :)%f(: : : t : : :). Hence, when using our method it su�ces

to �nd a polynomial interpretation with weakly monotonic polynomials, which do

not necessarily depend on all their arguments. For example, we map sum(l) to the

constant 1 and map x. l to l + 1.

We can also use for example the recursive path ordering, which is (strongly) mono-

tonic, by �rst eliminating some of the arguments of several function symbols. Thus,

in our example, we eliminate all arguments of sum and the �rst argument of the

function symbol `. '. The resulting inequalities are then satis�ed by the recursive

path ordering.

5. Dependency Graphs

To prove termination of a TRS according to Thm. 4.1 we have to �nd an ordering

such that s � t holds for all dependency pairs hs; ti. However, for certain rewrite

systems this requirement can be weakened easily, in this section we show that we

have to demand s � t for some dependency pairs only.

For example, let us extend the TRS for sum and app by the following rules for +.

0+ y ! y;

s(x) + y ! s(x+ y):

Now + is no longer a constructor, but a de�ned symbol. This results in two new

dependency pairs

hSUM(x. y. l);PLUS(x; y)i; (6)

hPLUS(s(x); y);PLUS(x; y)i (7)

and to prove termination according to Thm. 4.1 in addition to the inequalities in

Sect. 4 we now obtain the following inequalities.

0+ y % y;

s(x) + y % s(x+ y);

SUM(x. y. l) � PLUS(x; y);

PLUS(s(x); y) � PLUS(x; y):

7



Unfortunately, no polynomial ordering (and no simpli�cation ordering either) satis-

�es all resulting inequalities

4

. However, in our example demanding SUM(x. y. l) �

PLUS(x; y) is unnecessary to ensure the absence of in�nite chains.

The reason is that in any chain the dependency pair (6) can occur at most once.

Recall that a dependency pair hu; vi may only follow a pair hs; ti in a chain, if there

exists a substitution � such that t� !

�

R

u�. As the upper case symbol PLUS is not

a de�ned symbol, PLUS(x; y)� can only be reduced to terms with the same root

symbol PLUS. Hence, the only dependency pair following hSUM(: : :);PLUS(: : :)i

can be hPLUS(s(x); y);PLUS(x; y)i, i.e. (6) can never occur twice in a chain.

To determine those dependency pairs which may possibly occur in�nitely often in a

chain we de�ne a graph whose nodes are the dependency pairs. Those dependency

pairs that possibly occur consecutive in a chain are connected in this graph. In this

way, any in�nite chain corresponds to a cycle in the graph and therefore it su�ces

to consider cycles in a graph instead of sequences of dependency pairs.

5.1 Definition (Dependency Graph). Let R be a TRS. The dependency graph of

R is a directed graph whose nodes are labelled with the dependency pairs of R

and there is an arc from hs; ti to hu; vi if there exists a substitution � such that

t� !

�

R

u�.

(4)

(1)

(7)
(6) (3)

(5) (2)

Figure 1: The dependency graph of the example

Therefore, to prove termination of the TRS it is su�cient if s � t holds for at least

one dependency pair on each cycle and s% t for all dependency pairs on a cycle.

Dependency pairs that do not occur on a cycle can be ignored. So we only have to

demand that the dependency pairs (1), (2), and (7) are strictly decreasing. Now

a polynomial ordering satisfying the resulting inequalities is obtained by extending

the polynomial ordering we used in Sect. 4 as follows: The symbol 0 is mapped

to the number 0, s(x) is mapped to x + 1, and PLUS(x; y) is mapped to x. In

general, we obtain the following re�ned theorem to check our termination criterion

automatically.

5.2 Theorem (Termination Proofs with Dependency Graphs). Let R(D;C;R) be

a TRS. If there exists a well-founded, weakly monotonic quasi-ordering % , where

both % and � are closed under substitution, such that

� l%r for all rules l ! r in R,

� s% t for all dependency pairs hs; ti on a cycle of the dependency graph, and

� s � t for at least one dependency pair hs; ti on every cycle of the dependency

graph,

4

The reason is that to satisfy SUM(x.y. l) � PLUS(x; y), the polynomial for `. ' has to de-

pend on its �rst argument. But then to satisfy sum(x.nil)% x.nil, sum can no longer be mapped

to a constant. Hence, for large enough arguments, the subterm x.y.k of the left-hand side of

sum(app(l; x.y.k)) ! sum(app(l; sum(x.y.k))) will be mapped to a smaller number than the sub-

term sum(x.y.k) of its right-hand side.
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then R is terminating.

Proof. Suppose there is an in�nite R-chain, then this in�nite chain must corre-

spond to an in�nite path in the dependency graph. This in�nite path traverses at

least one cycle in�nitely many times, since there are only �nitely many dependency

pairs. Every cycle has at least one dependency pair hs; ti with s � t and therefore

one such dependency pair occurs (up to renaming of the variables) in�nitely many

times in an in�nite R-chain. Thus the in�nite chain must have the form

: : : hs; ti : : : hs�

1

; t�

1

i : : : hs�

2

; t�

2

i : : :

where �

1

; �

2

; : : : are renamings. There exists a substitution � such that for all

consecutive dependency pairs hs

i

; t

i

i and hs

i+1

; t

i+1

i we have t

i

� !

�

R

s

i+1

�. This

implies t

i

�% s

i+1

�, because !

�

R

� % (as in Thm. 4.1). Without loss of generality

we may assume that the dependency pairs following hs; ti in the chain all occur on

some cycle of the graph. Hence, we obtain

s� � t� % s�

1

� � t�

1

�%s�

2

� � t�

2

�% : : :

and thus s� � s�

1

� � s�

2

� : : :. This is a contradiction to the well-foundedness of

�, hence no in�nite R-chain exists and by Thm. 3.2 R is terminating. ut

However, to perform termination proofs according to Thm. 5.2, we would have

to construct the dependency graph automatically. Unfortunately, in general this

is not possible, since for given terms t; u it is undecidable whether there exists a

substitution � such that t� !

�

R

u�.

Therefore, we introduce a technique to approximate the dependency graph, i.e. the

technique computes a superset of those pairs t; u where t� !

�

R

u� holds for some

substitution �. We call terms t; u suggested by our technique connectable terms.

In this way, (at least) all cycles that occur in the dependency graph and hence all

possibly in�nite chains can be determined. So by computing a graph containing

the dependency graph we can indeed apply the method of Thm. 5.2 for automated

termination proofs.

For the computation of connectable terms we use syntactic uni�cation. This uni�-

cation is not performed on the terms of the dependency pairs directly, but we unify

a modi�cation of these terms instead. If t is a term with a constructor root symbol

c, then t� can only be reduced to terms which have the same root symbol c. If the

root symbol of t is de�ned, then this does not give us any direct information about

those terms t� can be reduced to. For that reason, to determine whether t� can be

reduced to u�, we replace all subterms in t that have a de�ned root symbol by a

new variable.

Subsequently, we use syntactic uni�cation to determine whether the terms are con-

nectable, i.e. we check whether the modi�ed term t uni�es with u. For example,

SUM(: : :) is not connectable to PLUS(x; y). On the other hand, SUM(sum(: : :))

would be connectable to SUM(x. y. l) (because before uni�cation, sum(: : :) would

be replaced by a new variable).

In order to ensure that t is connectable to u whenever there exists a substitution �

such that t� !

�

R

u�, before uni�cation we also have to rename multiple occurrences

of the same variable. As an example consider the following well-known TRS from

[Toy87].

f(0; 1; x) ! f(x; x; x)

g(x; y) ! x

g(x; y) ! y

9



The only dependency pair, viz. hF(0; 1; x);F(x; x; x)i, is on a cycle of the dependency

graph, because F(x; x; x)� reduces to F(0; 1; x

0

)�, if � replaces x and x

0

by g(0; 1).

Note however that F(x; x; x) does not unify with F(0; 1; x

0

), i.e. if we would not

rename F(x; x; x) to F(x

1

; x

2

; x

3

) before the uni�cation, then we could not determine

this cycle of the dependency graph and we would falsely conclude termination of

this (non-terminating) TRS.

5.3 Definition (Connectable Terms). For any term t, let cap(t) result from re-

placing all subterms of t that have a de�ned root symbol by di�erent new variables

and let ren(t) result from replacing all variables in t by di�erent fresh variables. In

particular, di�erent occurrences of the same variable are also replaced by di�erent

new variables. The term t is connectable to the term u i� ren(cap(t)) and u are

uni�able.

For example, we have cap(SUM((x+y). l. l)) = SUM(z. l. l) and ren(cap(SUM((x+

y). l. l))) = SUM(z. l

1

. l

2

). As ren(t) is always a linear term, to check whether two

terms are connectable we can even use a uni�cation algorithm without occur check.

To determine whether there should be an arc between two dependency pairs in

the dependency graph we unify the terms of the dependency pairs after modifying

them by ren and cap, i.e. we draw an arc from a dependency pair hs; ti to hu; vi

whenever t is connectable to u. In this way, for our example a graph containing the

dependency graph of Fig. 1 is constructed automatically (where there are additional

arcs from (5) to (3), (4) and itself). In this way, termination of the TRS can be

proved automatically (because (5) is also decreasing w.r.t. the mentioned polynomial

ordering).

The following theorem proves the soundness of this approach: by the computation

of connectable terms we in fact obtain a supergraph of the dependency graph, i.e.

a graph containing all cycles of the dependency graph. Using this supergraph, we

can now prove termination according to Thm. 5.2.

5.4 Theorem (Computing Dependency Graphs). Let R(D;C;R) be a TRS and let

t; u be terms. If a substitution � exists such that t� !

�

R

u�, then t is connectable

to u.

Proof. By induction on the structure of t we prove that if t� !

�

R

v for some

term v, then ren(cap(t)) matches v. Thus, in particular, if t� !

�

R

u�, then

ren(cap(t)) matches u�. As ren(cap(t)) only contains new variables, this implies

that ren(cap(t)) and u are uni�able.

Assume that t� !

�

R

v for some term v. If t is a variable or if t = f(t

1

; : : : ; t

k

) for

some de�ned symbol f 2 D, then ren(cap(t)) is a variable x. Hence, x matches v.

If t = c(t

1

; : : : ; t

k

) for some constructor c 2 C, then we have

ren(cap(t)) = c(ren(cap(t

1

)); : : : ;ren(cap(t

k

))):

In this case, v has to be of the form c(v

1

; : : : ; v

k

) and t

i

� !

�

R

v

i

holds for all

1 � i � k. By the induction hypothesis we obtain that ren(cap(t

i

)) matches v

i

for all 1 � i � k. Since by the de�nition of ren, the variables in ren(cap(t

i

)) are

disjoint from the variables in ren(cap(t

j

)) for all i 6= j, ren(cap(t)) also matches

v. ut

6. Related Work

The concept of dependency pairs was introduced in [Art96] and a �rst method for

the automation of the dependency pair approach was proposed in [AG96b]. In the

present paper we formulated an alternative version of the termination criterion using
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dependency pairs which is better suited for automation than the original criterion

of [Art96]. Moreover, in this way we could prove the soundness of the criterion in

a very easy and short way (while the corresponding proof in [Art96] used semantic

labelling [Zan95]) and we could also prove its completeness. By having the theory

based on semantic labelling, in earlier approaches we were forced to construct a

semantic interpretation for the TRS, which is undecidable in general. Our technique

is now proved to be sound and complete without using semantic labelling and as an

advantage over the earlier approaches, we do not need such an interpretation any

more.

By the introduction of dependency graphs we obtained a considerably more power-

ful automated technique than the method proposed in [AG96b]. Most signi�cant,

while in [Art96, AG96b] dependency pairs were only used for termination proofs

of non-overlapping constructor systems without nested recursion, we extended the

technique to arbitrary term rewriting systems.

Recently, we also developed a method to use dependency pairs for proving innermost

normalisation, which is applicable to arbitrary TRSs [AG96c]. By restricting the

notion of chains, considering normal substitutions and innermost reductions only, we

obtain a soundness and completeness result for innermost normalisation. Adapting

the restrictions to the notion of dependency graphs as well results in a powerful

technique to prove innermost normalisation of TRSs automatically. Although the

latter method can also be used for proving termination, this can only be done for

non-overlapping TRSs (where innermost normalisation is su�cient for termination),

whereas the technique described in the present paper can be used for arbitrary

rewrite systems.

Most other methods for automated termination proofs are restricted to the genera-

tion of simpli�cation orderings. Instead of using these methods to prove termination

directly, it is always advantageous to combine them with the technique presented in

this paper. The reason is that for all those TRSs where termination could be proved

with a simpli�cation ordering directly, this simpli�cation ordering also satis�es the

inequalities resulting from our technique.

In this paper we presented a sound and complete criterion for termination. In

contrast to most other complete approaches (semantic path ordering [KL80], general

path ordering [DH95], semantic labelling [Zan95] etc.) our method is particularly

well suited for automation as has been demonstrated in this paper. The only other

sound and complete criterion that has been used for automatic termination proofs

(by J. Steinbach [Ste92, Ste95a]) is the approach of transformation orderings [BD86,

BL90]. It turns out that the termination of several examples where the automation

of Steinbach failed [Ste92] can be proved by our technique automatically (Sect. 8).

There is a relation between the dependency pair approach and semantic labelling

[Zan95], because the dependency pairs correspond to the labels of a TRS labelled by

the process of self-labelling. However, the semantic labelling method presupposes a

semantic interpretation, which in general cannot be found automatically, whereas

the dependency pair approach does not rely on any semantical interpretation.

At �rst sight there seem to be some similarities between our method and forward

closures [LM78, DH95]. The idea of forward closures is to restrict the application

of rules to that part of a term created by previous rewrites. Similar to our notion

of chains, this notion also results in a sequence of terms, but the semantics of these

sequences are completely di�erent. For example, forward closures are reductions

whereas in general the terms in a chain do not form a reduction. The reason is that

in the dependency pair approach we do not restrict the application of rules, but we

restrict the examination of terms to those subterms that can possibly be reduced

further. This construction is motivated by the fact that some terms are not essential

for the generation of in�nite reductions. However, these terms nevertheless have to

be considered in the forward closure approach.
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Compared to the forward closure approach, the dependency pair technique has the

advantage that it can be used for arbitrary TRSs, whereas the absence of in�nite for-

wards closures only implies termination for right-linear [Der81] or non-overlapping

[Geu89] TRSs. Moreover, in contrast to the dependency pair method, we do not

know of any attempt to automate the forward closure approach.

7. Conclusion

We have developed a method for automated termination proofs of term rewriting

systems. Based on the concept of dependency pairs we developed a termination

criterion and we showed how the checking of this criterion can be automated. First,

the dependency pairs are determined, which is trivially automated. Second, an

approximation of the dependency graph is computed. For this purpose the notion

of `connectable terms' is automated, which can be done by a uni�cation algorithm

(without occur check). Third, the dependency pairs that are on a cycle have to be

computed, for which several algorithms exist. Dependency pairs not on a cycle of the

dependency graph can be ignored. Fourth, a set of inequalities is generated from the

dependency pairs that occur on a cycle. Since only some dependency pairs should

correspond to strict inequalities, either all possible sets of inequalities should be

generated or heuristics should �nd a set of inequalities that is most suitable. Fifth,

a standard technique, like polynomial interpretations or path orderings, is used to

synthesize an ordering that satis�es the inequalities.

Methods for proving termination are often based on �nding well-founded reduction

orderings, i.e. the left-hand side of any rule has to be greater than the right-hand

side of that rule for some well-founded ordering closed under context and substi-

tution. Thus, a set of inequalities obtained by replacing every arrow in the TRS

by an ordering symbol should be satis�ed by a well-founded monotonic ordering

closed under substitution. Our technique can be considered as a transformation

that transforms these inequalities into a set of inequalities that only has to be sat-

is�ed by a well-founded weakly monotonic quasi-ordering closed under substitution.

Compared to proving termination directly, our approach has the advantage that

these inequalities are often satis�ed by standard (simpli�cation) orderings, even if

termination of the original TRS cannot be proved with these orderings. In this way,

these standard techniques can now be applied to prove termination of TRSs whose

termination could not be proved automatically before. Moreover, if the TRS could

be proved by synthesizing a simpli�cation ordering directly, then the inequalities

obtained by our technique are also satis�ed by this ordering.

We implemented our procedure for the synthesis of inequalities. For the generation

of a well-founded quasi-ordering satisfying these inequalities, we used well-known

automatic techniques, as recursive path ordering, lexicographic path ordering, and

polynomial interpretation. In this way, termination could be proved automatically

for many challenge problems from literature as well as for numerous practically

relevant TRSs from di�erent areas of computer science. A collection of such exam-

ples, including arithmetical operations, sorting algorithms, and several well-known

non-simply terminating TRSs, can be found in the next section.

8. Examples

This collection of examples demonstrates the power of the described method. Sev-

eral of these examples are not simply terminating. Thus all methods based on

simpli�cation orderings fail in proving termination of these (non-simply terminat-

ing) term rewriting systems.
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For proving termination of the examples, our technique �rst transforms the TRS

into a set of inequalities. Two kinds of such inequalities can be distinguished: For

each rewrite rule l ! r we obtain an inequality l%r and for each dependency pair

hs; ti on a cycle of the dependency graph we obtain the inequality s% t. Furthermore,

for each cycle one of these inequalities must be strict, i.e. s � t.

In most of the examples, we will only mention the inequalities resulting from depen-

dency pairs on cycles of the dependency graph. We will refer to these inequalities

as the relevant inequalities. But of course, the inequalities l%r are also synthesized

for each rewrite rule l ! r.

After having obtained the inequalities, a well-founded weakly monotonic quasi-

ordering satisfying these inequalities is generated. In the following collection of

examples we use two di�erent methods for that purpose.

The �rst approach is the well-known approach of synthesizing polynomial orderings

[Lan79]. Several techniques exist to derive polynomial interpretations automatically

[Ste94, Gie95b]. In contrast to the use of polynomial orderings for direct termination

proofs, we can use polynomial interpretations with weakly monotonic polynomials.

For instance, we can map a binary function symbol f(x; y) to the polynomial x+1

which is not strictly monotonic in its second argument. Moreover, we can map any

function symbol to a constant.

The second approach is based on path orderings (e.g. recursive or lexicographic path

orderings) [Pla78, Der82, DH95, Ste95b]. The path orderings are simpli�cation

orderings that are easily generated automatically. Note that path orderings are

always strictly monotonic, whereas in our method we only need a weakly monotonic

ordering. For that reason, before synthesizing a suitable path ordering some of the

arguments of function symbols may be eliminated. More precisely, any function

symbol f can be replaced by a function symbol f of smaller arity. For instance, the

second argument of a binary function f may be eliminated. In that case every term

f(t; s) in the inequalities is replaced by f(t). By comparing terms resulting from

this replacement (instead of the original terms) we can take advantage of the fact

that f does not have to be strictly monotonic in its second argument.

Moreover, we also allow the possibility that a function symbol may be mapped

to one of its arguments. So a binary symbol f could also be mapped to its �rst

argument. Thus, any term f(t; s) in the inequalities would be replaced by t.

Note that there exist only �nitely many (and only few) di�erent possibilities to

eliminate arguments of function symbols. Therefore, all these possibilities can be

checked automatically.

First, the described technique is used to prove termination of all examples from

[AG96a] (Ex. 8.1 { 8.14). While the method of [AG96b, AG96a] is restricted to

non-overlapping constructor systems without nested recursion, the approach used

in this paper can handle arbitrary term rewriting systems. Therefore, subsequently

several examples are listed where the technique has been successfully applied to

TRSs that do not meet the above restrictions.

8.1. Division, Version 1

This is the running example of the article [AG96b], which is not simply terminating.

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))
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In this example, apart from the four inequalities corresponding to the rewrite rules,

two relevant inequalities are obtained

MINUS(s(x); s(y)) � MINUS(x; y)

QUOT(s(x); s(y)) � QUOT(minus(x; y); s(y)):

By mapping minus(x; y) to x, the recursive path ordering satis�es the demands on

the ordering.

With the other approach, of polynomials, a suitable quasi-ordering is also found

automatically. The normal ordering on the natural numbers together with the fol-

lowing interpretation of the function symbols satis�es the inequalities: the function

symbol 0 is mapped to the number 0, s(x) is mapped to x + 1 and quot(x; y),

QUOT(x; y), MINUS(x; y) and minus(x; y) are mapped to x.

8.2. Division, Version 2

This TRS for division uses di�erent minus-rules. Again, it is not simply terminating.

pred(s(x)) ! x

minus(x; 0) ! x

minus(x; s(y)) ! pred(minus(x; y))

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

The inequalities obtained from the dependency pairs on a cycle of the dependency

graph are given by:

MINUS(x; s(y)) � MINUS(x; y)

QUOT(s(x); s(y)) � QUOT(minus(x; y); s(y))

Synthesizing a suitable ordering is as easy as it was for the previous example, since

we just have to map minus(x; y) to x and pred(x) to x, too. The demands on the

ordering are then satis�ed by the recursive path ordering.

8.3. Division, Version 3

This TRS for division uses again di�erent minus-rules. Similar to the preceding

examples it is not simply terminating. We always use functions like if

minus

to encode

conditions and to ensure that conditions are evaluated �rst (to true or to false) and

that the corresponding result is evaluated afterwards. Hence, the �rst argument

of if

minus

is the condition that has to be tested and the other arguments are the

original arguments of minus. Further evaluation is only possible after the condition

has been reduced to true or to false.

le(0; s(y)) ! true

le(0; 0) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(0; y) ! 0

minus(s(x); y) ! if

minus

(le(s(x); y); s(x); y)

if

minus

(true; s(x); y) ! 0

if

minus

(false; s(x); y) ! s(minus(x; y))
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quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

The relevant inequalities are given by

LE(s(x); s(y)) � LE(x; y)

MINUS(s(x); y) % IF

minus

(le(s(x); y); s(x); y)

IF

minus

(false; s(x); y) � MINUS(x; y)

QUOT(s(x); s(y)) � QUOT(minus(x; y); s(y))

Note that only one of the dependency pairs on a cycle in the dependency graph

should result in a strict inequality, therefore the inequality

MINUS(s(x); y) % IF

minus

(le(s(x); y); s(x); y)

need not be strict.

By the following mapping

minus(x; y) 7! x

if

minus

(b; x; y) 7! x

IF

minus

(b; x; y) 7! x

MINUS(x; y) 7! x

the inequalities are satis�ed by the recursive path ordering.

8.4. Remainder, Version 1 - 3

Similar to the TRSs for division, we also obtain three versions of the following TRS

which again are not simply terminating. We only present one of them.

le(0; s(y)) ! true

le(0; 0) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

mod(0; y) ! 0

mod(s(x); 0) ! 0

mod(s(x); s(y)) ! if

mod

(le(y; x); s(x); s(y))

if

mod

(true; s(x); s(y)) ! mod(minus(x; y); s(y))

if

mod

(false; s(x); s(y)) ! s(x)

The relevant inequalities of this TRS are given by

LE(s(x); s(y)) � LE(x; y)

MINUS(s(x); s(y)) � MINUS(x; y)

MOD(s(x); s(y)) % IF

mod

(le(y; x); s(x); s(y))

IF

mod

(true; s(x); s(y)) � MOD(minus(x; y); s(y))
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By mapping minus(x; y), mod(x; y), if

mod

(b; x; y), MOD(x; y), and IF

mod

(b; x; y) to

x, the interpreted inequalities are satis�ed by the recursive path ordering.

8.5. Greatest Common Divisor, Version 1 - 3

There are also three versions of the following TRS for the computation of the gcd,

which are not simply terminating. Again, we only present one of them.

le(0; s(y)) ! true

le(0; 0) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

pred(s(x)) ! x

minus(x; 0) ! x

minus(x; s(y)) ! pred(minus(x; y))

gcd(0; y) ! 0

gcd(s(x); 0) ! 0

gcd(s(x); s(y)) ! if

gcd

(le(y; x); s(x); s(y))

if

gcd

(true; s(x); s(y)) ! gcd(minus(x; y); s(y))

if

gcd

(false; s(x); s(y)) ! gcd(minus(y; x); s(x))

(Of course we also could have switched the ordering of the arguments in the right-

hand side of the last rule. But this version here is even more di�cult: Termination

of the corresponding algorithm cannot be proved by the method of [Wal94], because

this method cannot deal with permutations of arguments.)

The relevant inequalities of this TRS are

LE(s(x); s(y)) � LE(x; y)

MINUS(x; s(y)) � MINUS(x; y)

GCD(s(x); s(y)) % IF

gcd

(le(y; x); s(x); s(y))

IF

gcd

(true; s(x); s(y)) � GCD(minus(x; y); s(y))

IF

gcd

(false; s(x); s(y)) � GCD(minus(y; x); s(x))

A suitable mapping is given by

pred(x) 7! x

minus(x; y) 7! x

if

gcd

(b; x; y) 7! if

gcd

(x; y)

IF

gcd

(b; x; y) 7! IF

gcd

(x; y)

The interpreted inequalities are satis�ed by the recursive path ordering.

This example was taken from [BM79] resp. [Wal91]. A variant of this example could

be proved terminating using Steinbach's method for the automated generation of

transformation orderings [Ste95a], but there the rules for le and minus were missing.

8.6. Logarithm, Version 1

The following TRS computes the dual logarithm.

half(0) ! 0
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half(s(s(x))) ! s(half(x))

log(0) ! 0

log(s(s(x))) ! s(log(s(half(x))))

The relevant inequalities of this TRS are

HALF(s(s(x))) � HALF(x)

LOG(s(s(x))) � LOG(s(half(x)))

A mapping for the function symbols is not needed since the inequalities are satis�ed

by the recursive path ordering. (Termination of the original system can also be

proved using the recursive path ordering.)

8.7. Logarithm, Version 2 - 4

The following TRS again computes the dual logarithm, but instead of half we now

use the function quot. Depending on which version of quot we use, we obtain three

di�erent versions of the TRS (all of which are not simply terminating, since the

quot TRS already was not simply terminating).

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

log(0; y) ! 0

log(s(s(x))) ! s(log(s(quot(x; s(s(0))))))

There are three inequalities obtained from the dependency pairs on a cycle of the

dependency graph:

MINUS(s(x); s(y)) � MINUS(x; y)

QUOT(s(x); s(y)) � QUOT(minus(x; y); s(y))

LOG(s(s(x))) � LOG(s(quot(x; s(s(0))))):

The interpretation to derive a quasi-ordering that satis�es all inequalities is given

by: quot(x; y) and minus(x; y) are mapped to x.

8.8. Eliminating Duplicates

The following TRS eliminates duplicates from a list. To represent lists we use the

constructors nil and add, where nil represents the empty list and add(n; x) represents

the insertion of n into the list x.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

rm(n; nil) ! nil

rm(n; add(m;x)) ! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) ! rm(n; x)

if

rm

(false; n; add(m;x)) ! add(m; rm(n; x))
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purge(nil) ! nil

purge(add(n; x)) ! add(n; purge(rm(n; x)))

The relevant inequalities are

EQ(s(x); s(y)) � EQ(x; y)

RM(n; add(m;x)) % IF

rm

(eq(n;m); n; add(m;x))

IF

rm

(true; n; add(m;x)) � RM(n; x)

IF

rm

(false; n; add(m;x)) � RM(n; x)

PURGE(add(n; x)) � PURGE(rm(n; x))

A suitable mapping is

rm(n; x) 7! x

if

rm

(b; x; y) 7! y

RM(n; x) 7! x

IF

rm

(b; x; y) 7! y

With this interpretation the inequalities are satis�ed by the recursive path ordering.

This example comes from [Wal91] and a similar example was mentioned in [Ste95a],

but in Steinbach's version the rules for eq and if

rm

were missing.

If in the right-hand side of the last rule, add(n; purge(rm(n; x))), the n would be

replaced by a term containing add(n; x) then we would obtain a non-simply termi-

nating TRS, but termination could still be proved with our technique in the same

way.

8.9. Selection Sort

This TRS from [Wal94], which is a slight modi�cation of the corresponding TRS

in [AG96a], is obviously not simply terminating. The TRS can be used to sort a

list by repeatedly replacing the minimum of the list by the head of the list. It uses

replace(n;m; x) to replace the leftmost occurrence of n in the list x by m.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

le(0; s(y)) ! true

le(0; 0) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

min(add(n; nil)) ! element(n)

min(add(n; add(m;x))) ! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) ! min(add(n; x))

if

min

(false; add(n; add(m;x))) ! min(add(m;x))

replace(n;m; nil) ! nil

replace(n;m; add(k; x)) ! if

replace

(eq(n; k); n;m; add(k; x))
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if

replace

(true; n;m; add(k; x)) ! add(m;x)

if

replace

(false; n;m; add(k; x)) ! add(k; replace(n;m; x))

selsort(nil) ! nil

selsort(add(n; x)) ! if

selsort

(eq(n;min(add(n; x))); add(n; x))

if

selsort

(true; add(n; x)) ! add(n; selsort(x))

if

selsort

(false; add(n; x)) ! add(min(add(n; x))

selsort(replace(min(add(n; x)); n; x)))

The relevant inequalities are

EQ(s(x); s(y)) � EQ(x; y)

LE(s(x); s(y)) � LE(x; y)

MIN(add(n; add(m;x))) % IF

min

(le(n;m); add(n; add(m;x)))

IF

min

(true; add(n; add(m;x))) � MIN(add(n; x))

IF

min

(false; add(n; add(m;x))) � MIN(add(m;x))

REPLACE(n;m; add(k; x)) % IF

replace

(eq(n; k); n;m; add(k; x))

IF

replace

(false; n;m; add(k; x)) � REPLACE(n;m; x)

SELSORT(add(n; x)) % IF

selsort

(eq(n;min(add(n; x))); add(n; x))

IF

selsort

(true; add(n; x)) � SELSORT(x)

IF

selsort

(false; add(n; x)) � SELSORT(replace(min(add(n; x)); n; x))

A suitable mapping is given by

element(x) 7! element

add(n; x) 7! add(x)

if

min

(b; x) 7! if

min

(x)

replace(x; y; z) 7! z

if

replace

(b; x; y; z) 7! z

if

selsort

(b; x) 7! if

selsort

(x)

MIN(x) 7! x

IF

min

(b; x) 7! x

REPLACE(x; y; z) 7! z

IF

replace

(b; x; y; z) 7! z

SELSORT(x) 7! x

IF

selsort

(b; x) 7! x

Then the resulting inequalities are satis�ed by the recursive path ordering.

8.10. Minimum Sort

This TRS can be used to sort a list x by repeatedly removing the minimum of it.

For that purpose elements of x are shifted into the second argument of minsort, until

the minimum of the list is reached. Then the function rm is used to eliminate all

occurrences of the minimum and �nallyminsort is called recursively on the remaining

list. Hence, minsort does not only sort a list but it also eliminates duplicates. (Of
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course, the corresponding version of minsort where duplicates are not eliminated

could also be proved terminating with our method.)

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

le(0; s(y)) ! true

le(0; 0) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

min(add(0; nil)) ! 0

min(add(s(n); nil)) ! s(n)

min(add(n; add(m;x))) ! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) ! min(add(n; x))

if

min

(false; add(n; add(m;x))) ! min(add(m;x))

rm(n; nil) ! nil

rm(n; add(m;x)) ! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) ! rm(n; x)

if

rm

(false; n; add(m;x)) ! add(m; rm(n; x))

minsort(nil; nil) ! nil

minsort(add(n; x); y) ! if

minsort

(eq(n;min(add(n; x))); add(n; x); y)

if

minsort

(true; add(n; x); y) ! add(n;minsort(app(rm(n; x); y); nil))

if

minsort

(false; add(n; x); y) ! minsort(x; add(n; y))

The relevant inequalities of this TRS are given by

EQ(s(x); s(y)) � EQ(x; y)

LE(s(x); s(y)) � LE(x; y)

APP(add(n; x); y) � APP(x; y)

MIN(add(n; add(m;x))) % IF

min

(le(n;m); add(n; add(m;x)))

IF

min

(true; add(n; add(m;x))) � MIN(add(n; x))

IF

min

(false; add(n; add(m;x))) � MIN(add(m;x))

RM(n; add(m;x)) % IF

rm

(eq(n;m); n; add(m;x))

IF

rm

(true; n; add(m;x)) � RM(n; x)

IF

rm

(false; n; add(m;x)) � RM(n; x)

MINSORT(add(n; x); y) � IF

minsort

(eq(n;min(add(n; x))); add(n; x); y)

IF

minsort

(true; add(n; x); y) % MINSORT(app(rm(n; x); y); nil)

IF

minsort

(false; add(n; x); y) % MINSORT(x; add(n; y))
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The synthesized weakly monotonic ordering is a polynomial ordering with inter-

pretations where false, true, 0, nil, eq and le are mapped to 0, s(x) is mapped to

x + 1, min(x), if

min

(b; x), EQ(x; y), LE(x; y), MIN(x) and IF

min

(b; x) are mapped to

x, add(n; x) is mapped to n+ x+ 1, app(x; y) and APP(x; y) are mapped to x+ y,

rm(n; x), if

rm

(b; n; x), RM(n; x) and IF

rm

(b; n; x) are mapped to x, minsort(x; y),

if

minsort

(b; x; y) are mapped to x+y, MINSORT(x; y) is mapped to (x+y)

2

+2x+y+1

and IF

minsort

(b; x; y) is mapped to (x + y)

2

+ 2x+ y.

This example is inspired by an algorithm from [BM79] and [Wal94]. In the corre-

sponding example from [Ste92] the rules for le, eq, if

rm

and if

min

were missing.

8.11. Quicksort

The quicksort TRS is used to sort a list by the well-known quicksort-algorithm. It

uses the functions low(n; x) and high(n; x) which return the sublist of x containing

only the elements smaller or equal (resp. larger) then n.

le(0; s(y)) ! true

le(0; 0) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

low(n; nil) ! nil

low(n; add(m;x)) ! if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x)) ! add(m; low(n; x))

if

low

(false; n; add(m;x)) ! low(n; x)

high(n; nil) ! nil

high(n; add(m;x)) ! if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x)) ! high(n; x)

if

high

(false; n; add(m;x)) ! add(m; high(n; x))

quicksort(nil) ! nil

quicksort(add(n; x)) ! app(quicksort(low(n; x));

add(n; quicksort(high(n; x))))

The relevant inequalities are

LE(s(x); s(y)) � LE(x; y)

APP(add(n; x); y) � APP(x; y)

LOW(n; add(m;x)) % IF

low

(le(m;n); n; add(m;x))

IF

low

(true; n; add(m;x)) � LOW(n; x)

IF

low

(false; n; add(m;x)) � LOW(n; x)

HIGH(n; add(m;x)) % IF

high

(le(m;n); n; add(m;x))

IF

high

(true; n; add(m;x)) � HIGH(n; x)

IF

high

(false; n; add(m;x)) � HIGH(n; x)

QUICKSORT(add(n; x)) � QUICKSORT(low(n; x))

QUICKSORT(add(n; x)) � QUICKSORT(high(n; x))
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A suitable mapping is

low(n; x) 7! x

high(n; x) 7! x

if

low

(b; n; x) 7! x

if

high

(b; n; x) 7! x

IF

low

(b; n; x) 7! IF

low

(n; x)

IF

high

(b; n; x) 7! IF

high

(n; x)

This interpretation and the recursive path ordering satisfy the demands on the

ordering.

Steinbach could prove termination of a corresponding example with transformation

orderings [Ste95a], but in his example the rules for le, if

low

if

high

and app were

omitted.

If in the right-hand side of the last rule,

app(quicksort(low(n; x)); add(n; quicksort(high(n; x))));

one of the n's was replaced by a term containing add(n; x) then we would obtain a

non-simply terminating TRS. With our method, termination could still be proved

in the same way.

8.12. Permutation of Lists

This example is a TRS from [Wal94] to compute a permutation of a list, for instance,

shu�e([1; 2; 3; 4; 5]) reduces to [1; 5; 2; 4; 3].

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

reverse(nil) ! nil

reverse(add(n; x)) ! app(reverse(x); add(n; nil))

shu�e(nil) ! nil

shu�e(add(n; x)) ! add(n; shu�e(reverse(x)))

The inequalities obtained from the dependency pairs on a cycle in the dependency

graph are

APP(add(n; x); y) � APP(x; y)

REVERSE(add(n; x)) � REVERSE(x)

SHUFFLE(add(n; x)) � SHUFFLE(reverse(x))

A suitable (polynomial) interpretation of the function symbols is: nil is mapped to

0, add(n; x) is mapped to x+1, shu�e(x), SHUFFLE(x), reverse(x) and REVERSE(x)

are mapped to x and app(x; y) and APP(x; y) are mapped to x+ y.

8.13. Reachability on Directed Graphs

To check whether there is a path from the node x to the node y in a directed graph

g, the term reach(x; y; g; �) must be reducible to true with the rules of the TRS of

this example from [Gie95a]. The fourth argument of reach is used to store edges

that have already been examined but that are not included in the actual solution

path. If an edge from u to v (with x 6= u) is found, then it is rejected at �rst. If an
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edge from x to v (with v 6= y) is found then one either searches for further edges

beginning in x (then one will never need the edge from x to v again) or one tries

to �nd a path from v to y and now all edges that were rejected before have to be

considered again.

The function union is used to unite two graphs. The constructor � denotes the

empty graph and edge(x; y; g) represents the graph g extended by an edge from x

to y. Nodes are labelled with natural numbers.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

or(true; x) ! true

or(false; true) ! true

or(false; false) ! false

union(�; h) ! h

union(edge(x; y; i); h) ! edge(x; y; union(i; h))

reach(x; y; �; h) ! false

reach(x; y; edge(u; v; i); h) ! if

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

if

reach 1

(true; x; y; edge(u; v; i); h) ! if

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

if

reach 2

(true; x; y; edge(u; v; i); h) ! true

if

reach 2

(false; x; y; edge(u; v; i); h) ! or(reach(x; y; i; h);

reach(v; y; union(i; h); �))

if

reach 1

(false; x; y; edge(u; v; i); h) ! reach(x; y; i; edge(u; v; h))

The inequalities obtained from dependency pairs on cycles in the dependency graph

are given by

EQ(s(x); s(y)) � EQ(x; y)

UNION(edge(x; y; i); h) � UNION(i; h)

REACH(x; y; edge(u; v; i); h) % IF

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

IF

reach 1

(true; x; y; edge(u; v; i); h) % IF

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

IF

reach 2

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; h)

IF

reach 2

(false; x; y; edge(u; v; i); h) � REACH(v; y; union(i; h); �)

IF

reach 1

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; edge(u; v; h))

A mapping to polynomials results in a suitable ordering. The interpretation is:

eq(x; y), or(x; y), true, false, � and 0 are mapped to 0, s(x) is mapped to x +

1, EQ(x; y) is mapped to x, edge(x; y; g) is mapped to g + 2, union(g; h) and

UNION(g; h) are mapped to g + h, reach(x; y; g; h), if

reach 1

(b; x; y; g; h), and

if

reach 2

(b; x; y; g; h) are mapped to 0, REACH(x; y; g; h) is mapped to (g+h)

2

+2g+

h+2, IF

reach 1

(b; x; y; g; h) is mapped to (g+h)

2

+2g+h+1, and IF

reach 2

(b; x; y; g; h)

is mapped to (g + h)

2

+ 2g + h.

8.14. Comparison of Binary Trees

This TRS is used to �nd out if one binary tree has less leaves than another one. It

uses a function concat(x; y) to replace the rightmost leaf of x by y. Here, cons(u; v)
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is used to built a new tree with the two direct subtrees u and v.

concat(leaf; y) ! y

concat(cons(u; v); y) ! cons(u; concat(v; y))

less leaves(x; leaf) ! false

less leaves(leaf; cons(w; z)) ! true

less leaves(cons(u; v); cons(w; z)) ! less leaves(concat(u; v); concat(w; z))

The inequalities corresponding to the dependency pairs that are on a cycle of the

dependency graph are:

CONCAT(cons(u; v); y) � CONCAT(v; y)

LESS LEAVES(cons(u; v); cons(w; z)) � LESS LEAVES(concat(u; v); concat(w; z))

A suitable (polynomial) interpretation is: leaf, false, and true are mapped to 0,

cons(u; v) is mapped to 1 + u + v, concat(u; v) and CONCAT(u; v) are mapped to

u+ v, and less leaves(x; y) and LESS LEAVES(x; y) are mapped to x.

If concat(w; z) in the second argument of less leaves (in the right-hand side of the last

rule) would be replaced by an appropriate argument, we would obtain a non-simply

terminating TRS whose termination could be proved in the same way.

8.15. Average of Naturals

The following overlay system, which computes the average of two numbers [DH95],

is locally conuent and therefore innermost termination su�ces for proving ter-

mination. However, the technique presented in this paper can prove termination

directly.

average(s(x); y) ! average(x; s(y))

average(x; s(s(s(y)))) ! s(average(s(x); y))

average(0; 0) ! 0

average(0; s(x)) ! 0

average(0; s(s(0))) ! s(0)

For proving termination of this TRS the inequalities corresponding to the rewrite

rules and the two strict inequalities corresponding to the dependency pairs on a

cycle

AVERAGE(s(x); y) � AVERAGE(x; s(y))

AVERAGE(x; s(s(s(y)))) � AVERAGE(s(x); y))

should be satis�ed by a well-founded weakly monotonic quasi-ordering.

In this way, termination of this TRS is easily proved by mapping 0 to 0, s(x) to

x+ 1, average(x; y) to x+ y, and AVERAGE(x; y) to 2x+ y.

8.16. Plus and Times

The following TRS [DH95] is again a locally conuent overlay system. To ease

readability we use an in�x notation for + and �.

x� 0 ! 0

x� s(y) ! (x� y) + x
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x+ 0 ! x

0+ x ! x

x+ s(y) ! s(x+ y)

s(x) + y ! s(x+ y)

Applying the technique results in a set of inequalities satis�ed by the automatically

synthesized polynomial interpretation where 0 is mapped to 0, s(x) is mapped to

x+ 1, x+ y is mapped to the sum of x and y, and x� y is mapped to the product

of x and y.

8.17. Summing Elements of Lists

This TRS, which has overlapping rules, is the leading example of the paper.

app(nil; k) ! k

app(l; nil) ! l

app(x. l; k) ! x. app(l; k)

sum(x. nil) ! x. nil

sum(x. y. l) ! sum((x+ y). l)

sum(app(l; x. y. k)) ! sum(app(l; sum(x. y. k)))

0+ y ! y

s(x) + y ! s(x+ y)

While this system is not simply terminating, the inequalities generated by our

method are satis�ed by the polynomial ordering where nil is mapped to the constant

0, x. l is mapped to l+1, x+y is mapped to the sum of x and y, app(l; k) is mapped

to l + k + 1, sum(l) is mapped to the constant 1, APP(l; k) and SUM(l) are both

mapped to l, and PLUS(x; y) is mapped to x.

8.18. Sum and Predecessor

Note that termination of the preceding TRS can also be proved without using

dependency graphs, i.e. one can also verify its termination by using the method

of Sect. 4 only. However, then the resulting inequalities are not satis�ed by any

polynomial (or simpli�cation) ordering. Instead, one has to use a lexicographic

combination of a polynomial ordering where x. l is mapped to x+l and the mentioned

polynomial ordering.

However, if we add the following rules to the system, then this lexicographic ordering

does no longer satisfy the inequalities resulting from the method of Sect. 4. Here,

pred is a predecessor function on one-element lists.

sum(0.x+ y. l) ! pred(sum(s(x). y. l));

pred(s(x). nil) ! x. nil;

With the concept of connectable terms we can easily determine that the dependency

pair

hSUM(0.x+ y. l); SUM(s(x). y. l)i
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is not on a cycle of the dependency graph. The reason is that s(x) does not unify

with 0. Hence, SUM(s(x). y. l) is not connectable to SUM(0.x

0

+ y

0

. l

0

). To satisfy

the resulting inequalities, we have to extend the above polynomial interpretation

by mapping pred to the constant 1.

8.19. Addition and Subtraction

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

double(0) ! 0

double(s(x)) ! s(s(double(x)))

plus(0; y) ! y

plus(s(x); y) ! s(plus(x; y))

plus(s(x); y) ! plus(x; s(y))

plus(s(x); y) ! s(plus(minus(x; y); double(y)))

Again, this system is overlapping and not simply terminating. However, the inequal-

ities obtained by our approach are satis�ed by the lexicographic path ordering, if

minus(x; y) is replaced by x. For that purpose we have to use a precedence where

double and plus are greater than s.

8.20. Addition with Nested Recursion { Version 1

We may also add an additional rule to the above system which turns it into a TRS

that is not an overlay system any more and which furthermore introduces nested

recursion.

plus(s(plus(x; y)); z) ! s(plus(plus(x; y); z))

Still, the resulting inequalities are satis�ed by the interpretation and the lexico-

graphic path ordering mentioned above.

8.21. Addition with Nested Recursion { Version 2

The following alternative TRS for addition from [Ste92] has nested recursion, too.

0+ y ! y

s(x) + 0 ! s(x)

s(x) + s(y) ! s(s(x) + (y + 0))

The `natural' polynomial interpretation (where + is mapped to the addition) maps

left and right-hand sides of the rules to the same numbers. Therefore this polynomial

ordering cannot be used for a direct termination proof, but it nevertheless satis�es

the inequalities generated by our method. In this way, termination can easily be

proved.

8.22. Multiplication and Addition

The following example is taken from [Der87, p. 101].
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x� (y + 1) ! (x� (y + (1� 0))) + x

x� 1 ! x

x+ 0 ! x

x� 0 ! 0

The inequalities resulting from dependency pairs on a cycle of the dependency graph

are

TIMES(x; y + 1) � TIMES(x; y + (1� 0))

This system is not simply terminating (and in [Der87] it is used to illustrate the

use of the semantic path ordering). However, with our method termination of this

example can be proved automatically. The inequalities obtained are satis�ed by the

natural polynomial ordering, where TIMES(x; y) is mapped to y.

8.23. Extended Multiplication and Addition

Similarly we can also prove termination of the following `extended' version of the

above system where the full rules for + and � are added. Again, this system is not

an overlay system any more.

x� (y + s(z)) ! (x� (y + (s(z)� 0))) + (x� s(z))

x� 0 ! 0

x� s(y) ! (x� y) + x

x+ 0 ! x

x+ s(y) ! s(x+ y)

The inequalities our method generates for this extended example, i.e. the inequalities

corresponding to the rewrite rules and

PLUS(x; s(y)) � PLUS(x; y)

TIMES(x; y + s(z)) � TIMES(x; y + (s(z)� 0))

TIMES(x; s(y)) � TIMES(x; y)

TIMES(x; y + s(z)) % TIMES(x; s(z))

are satis�ed by the same polynomial ordering we used above (where PLUS(x; y) and

TIMES(x; y) are both mapped to y).

8.24. Nested Recursion 1

The following system was introduced in [Gie96, `nest2'] as an example for a small

TRS with nested recursion where all simpli�cation orderings fail.

f(0; y) ! 0

f(s(x); y) ! f(f(x; y); y)

With our approach, however, an automated termination proof is directly possible.

For instance, we may use a polynomial ordering where 0 and s are interpreted as

usual and both f(x; y) and F(x; y) are mapped to x.
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8.25. Nested Recursion 2

This system (by Christoph Walther), which is similar system to the preceding one,

has been examined in [Ste92].

f(0) ! s(0)

f(s(0)) ! s(0)

f(s(s(x))) ! f(f(s(x)))

The inequalities resulting from our transformation are satis�ed by the polynomial

ordering, where f(x) is mapped to the constant 1, F(x) is mapped to x, and where

0 and s are interpreted as usual.

8.26. Nested Recursion 3

As an example of a string rewrite system with minimal ordinal !

!

associated to it,

Hans Zantema and Maria Ferreira presented the following TRS [FZ93].

f(g(x)) ! g(f(f(x)))

f(h(x)) ! h(g(x))

The inequalities corresponding to this system, except for the inequalities corre-

sponding to the two rules, are

F(g(x)) � F(f(x))

F(g(x)) � F(x):

All inequalities are satis�ed by the polynomial interpretation mapping f(x) and F(x)

to x, h(x) to 0 and g(x) to x+ 1.

8.27. Nested Recursion 4

The following TRS is again an example of a TRS for which all kind of path orderings

cannot show termination directly, but these path orderings can be used for solving

the inequalities resulting from our technique.

f(x) ! s(x)

f(s(s(x))) ! s(f(f(x)))

The inequalities to satisfy are

f(x) % s(x)

f(s(s(x))) % s(f(f(x)))

F(s(s(x))) � F(x)

F(s(s(x))) � F(f(x))

An appropriate path ordering is found by choosing f and s to be equal in the

precedence.

8.28. Nested Symbols on Left-hand Sides

The following example is from [Der93]. It has been proved terminating by a lexico-

graphic combination of two orderings.

f(f(x)) ! g(f(x))

g(g(x)) ! f(x)
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By using the technique of dependency pairs, the resulting inequalities are satis�ed

by the mapping of f(x) and g(x) to x+ 1 and mapping F(x) and G(x) to x. In this

way, the dependency pair hF(f(x));G(f(x))i does not need to be strictly decreasing,

but hG(g(x));F(x)i is strictly decreasing.

8.29. Nested Symbols on Both Sides of Rules

The following TRS cannot be shown terminating by the lexicographic path ordering

and is therefore one of the systems for which the semantic path ordering has been

used in literature [Der93]. However, the system can be shown to terminate using

the lexicographic path ordering after applying the described technique, since the

demanded ordering may now be a weakly monotonic ordering instead of a mono-

tonic ordering. Therefore, after mapping some function symbols to some of their

arguments or to a constant the lexicographic path ordering can nevertheless be used

to prove termination of the TRS.

(x � y)� z ! x� (y � z)

(x + y)� z ! (x � z) + (y � z)

z � (x+ f(y)) ! g(z; y)� (x+ a)

Apart from the three inequalities corresponding to the rewrite rules, by using the

technique four other inequalities are obtained from the cycles of the dependency

graph.

TIMES(x � y; z) � TIMES(y; z)

TIMES(x � y; z) � TIMES(x; y � z)

TIMES(x + y; z) � TIMES(x; z)

TIMES(x + y; z) � TIMES(y; z)

The seven inequalities are satis�ed by the lexicographic path ordering if we map

g(z; y) to z.

8.30. A System which is not left-linear

The following TRS, originally from Geerling [Gee91], cannot be proved terminating

by the recursive path ordering (but one needs a generalisation of the recursive path

ordering as de�ned in [Fer95]). It is also very easily proved terminating by the

automatic technique described in this paper.

f(s(x); y; y) ! f(y; x; s(x))

The mapping of f(x; y; z) to x + y and the mapping of F(x; y; z) to x + y satis�es

the two inequalities obtained by the technique.

8.31. Systems without Cycles in Dependency Graphs 1

The following system is from [Ste92].

f(a; b) ! f(a; c)

f(c; d) ! f(b; d)

With our method, the termination proof for this system is trivial, because its depen-

dency graph does not contain any cycles. This can easily be determined automat-

ically, as f(a; c) is not connectable to f(a; b) or f(c; d), neither is f(c; d) connectable

to f(a; b) or f(c; d).
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8.32. Systems without Cycles in Dependency Graphs 2

Another example in which the dependency graph plays an important role is a TRS

introduced in [FZ95] to demonstrate the technique of `dummy elimination'.

f(g(x)) ! f(a(g(g(f(x))); g(f(x))))

Since a(x; y) does not unify with g(x), the only two inequalities to satisfy are

f(g(x)) % f(a(g(g(f(x))); g(f(x))))

F(g(x)) � F(x)

which are easily solved by mapping a(x; y) to 0, F(x) to x, and g(x) to x+ 1.

8.33. A TRS which is not totally terminating 1

The most famous example of a TRS that is terminating, but not totally terminating

is the following [Der87].

f(a) ! f(b)

g(b) ! g(a)

With our approach, termination of this system is again obvious, because the de-

pendency graph does not contain any cycles (as F(b) is not connectable to F(a) and

G(a) is not connectable to G(b)). Hence, the set of constraints generated by our

method are the two inequalities

f(a) % f(b)

g(b) % g(a)

corresponding to the two rewrite rules. The mapping of f(x) and g(x) to 0 satis�es

these two inequalities.

8.34. A TRS which is not totally terminating 2

A TRS introduced in [Fer95] as an example of a TRS that is not totally terminat-

ing and in particular for which the recursive path ordering and the Knuth-Bendix

ordering cannot be used to prove termination, is given by:

p(f(f(x))) ! q(f(g(x)))

p(g(g(x))) ! q(g(f(x)))

q(f(f(x))) ! p(f(g(x)))

q(g(g(x))) ! p(g(f(x)))

Termination is trivially concluded from the fact that there are no cycles in the

dependency graph together with the mapping of p(x) and q(x) to 0.

8.35. Systems with `Unde�ned' Function Symbols

The following well-known system from [Der87] is one of the smallest non-simply

terminating TRSs.

f(f(x)) ! f(g(f(x)))

As F(g(f(x))) is not connectable to F(f(x)), the only dependency pair on a cycle of

the dependency graph is hF(f(x));F(x)i. The resulting inequalities are for instance
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satis�ed by a polynomial ordering where f(x) is mapped to x+ 1 and g is mapped

to the identity.

In a completely analogous way, we can also prove termination of the system

f(g(x)) ! f(h(g(x))):

from [BL88].

8.36. Reversing Lists

The following system is a slight variant of a TRS proposed in [HH82, `brev']. Given

a list x. l, the function rev calls two other functions rev1 and rev2, where rev1(x; l)

returns the last element of x. l and rev2(x; l) returns the reversed list rev(x. l) without

its �rst element. Hence, rev(rev2(y; l)) returns the list y. l without its last element.

Note that this system is mutually recursive and that mutually recursive functions

also occur nested.

rev(nil) ! nil

rev(x. l) ! rev1(x; l). rev2(x; l)

rev1(0; nil) ! 0

rev1(s(x); nil) ! s(x)

rev1(x; y. l) ! rev1(y; l)

rev2(x; nil) ! nil

rev2(x; y. l) ! rev(x. rev(rev2(y; l)))

The resulting inequalities are satis�ed by a polynomial ordering, where nil is mapped

to 0, x. l is mapped to l+1, rev(l) is mapped to l, the symbols rev1(x; l), 0 and s(x)

are all mapped to the constant 0, and rev2(x; l) is mapped to l. The tuple symbol

REV(l) is mapped to the identity and both REV1(x; l) and REV2(x; l) are mapped

to l. In this way the following two dependency pairs

hREV(x. l);REV2(x; l)i

hREV2(x; y. l);REV(x. rev(rev2(y; l)))i

which form a cycle of the dependency graph are both decreasing, but only the �rst

one is strictly decreasing.
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