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Abstrat Erlang is a funtional programming language developed by

Erisson Teleom, whih is partiularly well suited for implementing on-

urrent proesses. In this paper we show how methods from the area of term

rewriting are presently used at Erisson. To verify properties of proesses,

suh a property is transformed into a termination problem of a onditional

term rewriting system (CTRS). Subsequently, this termination proof an be

performed automatially using dependeny pairs.

The paper illustrates how the dependeny pair tehnique an be ap-

plied for termination proofs of onditional TRSs. Seondly, we present three

re�nements of this tehnique, viz. narrowing, rewriting, and instantiating

dependeny pairs. These re�nements are not only of use in the industrial

appliations skethed in this paper, but they are generally appliable to ar-

bitrary (C)TRSs. Thus, in this way dependeny pairs an be used to prove

termination of even more (C)TRSs automatially.

Keywords: veri�ation, distributed proesses, rewriting, termination

1 Introdution

In a patent appliation [24℄, Erisson developed a protool for a query lookup

in a distributed database. In several produts of Erisson, for example their

newer teleommuniation swithes, this database plays a key role in the re-

overy after a shutdown or rash of the system. Clearly, this ritial part

of the software should be trustworthy. This paper originates from an at-

tempt to verify this protool's implementation written in Erlang. To save

the amount of work and to inrease reliability, the aim was to perform as

?
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muh as possible of this veri�ation automatially. Model heking teh-

niques were not appliable, sine the properties to be proved require the

onsideration of the in�nite state spae of the proesses. A user guided ap-

proah based on theorem proving by a speialized proof heking tool was

suessful, but very labour intensive [1℄. We desribe two of the properties

whih had to be veri�ed in Set. 2 and Set. 7, respetively, and we show

that they an be represented as non-trivial termination problems of CTRSs.

In general, proving termination of CTRSs is onsiderably more diÆult

than showing termination of unonditional TRSs. Therefore, standard teh-

niques (see e.g. [14,18,31℄) fail with the termination proofs required for the

protool veri�ation desribed above. Moreover, due to the omplexity and

the safety requirements arising with pratial appliations in industry, a

high degree of automation is desirable for the termination proofs required.

These reasons motivate why we hose to apply the dependeny pair teh-

nique [2,3,5,8℄ (i.e., the urrently most powerful termination proof method

that is amenable to automation). However, it turned out that (without fur-

ther extensions) even the dependeny pair tehnique ould not perform the

required termination proofs automatially.

In Set. 3 we show that termination problems of CTRSs an be redued

to termination problems of unonditional TRSs. After reapitulating the

basi notions of dependeny pairs in Set. 4, we present three important

extensions, viz. narrowing (Set. 5), rewriting (Set. 6), and instantiating

dependeny pairs (Set. 7), whih are partiularly useful in the ontext of

CTRSs. With these re�nements, the dependeny pair approah ould solve

the termination problems automatially.

2 A Proess Veri�ation Problem

We have to prove properties of proesses in a network. A proess P

n

reeives

messages from a proess P

n�1

that onsist of a list of data items and an

integer M. For every item in the list, proess P

n

omputes a new list of data

items. For example, the data items ould be telephone numbers and the

proess ould generate a list of alls to that number on a ertain date. The

resulting list may have arbitrary length, inluding zero. The integer M in

the message indiates how many items of the newly omputed list should

be sent to the next proess P

n+1

. The restrition on the number of items

that may be sent is imposed for pratial optimization reasons.
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Fig. 1 Proess P

n

in a network

Of ourse, proess P

n

may have omputed more than M new items and in

that ase, it stores the remaining answers in an aumulator (implemented
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by an extra argument Store of the proess). However, whenever it has sent

the �rst M items to the next proess P

n+1

, proess P

n

may reeive a new

message from P

n�1

. To respond to the new message, it �rst heks whether

its store already ontains at least M items. In this ase, it sends the �rst

M items from its store to P

n+1

and depending on the inoming message,

probably some new items are omputed afterwards. Otherwise, if the store

ontains fewer than M items, then proess P

n+1

has to wait until the new

items are omputed. After this omputation, the �rst M items from the newly

obtained item list and the store are sent to P

n+1

. Again, those items that

exeed the limit M are stored in the proess aumulator. Finally, in order

to empty the store, proess P

n�1

repeatedly sends the empty list to proess

P

n

. In the end, so is the laim, proess P

n

will send the empty list as well.

We desribe how we are able to formally verify this laim with a high

degree of automation. The Erlang ode exeuted by the proesses is given

below (to save spae, the ode for obvious library funtions like app and

leq is not presented).

proess(NextPid,Store) ->

reeive

fItems,Mg ->

ase leq(M,length(Store)) of

true ->

fToSend,ToStoreg = split(M,Store),

NextPid!fToSend,Mg,

proess(NextPid,app(map f(self(),Items),ToStore));

false ->

fToSend,ToStoreg =

split(M,app(map f(self(),Items),Store)),

NextPid!fToSend,Mg,

proess(NextPid,ToStore)

end

end.

map f(Pid,nil) -> nil;

map f(Pid,ons(H,T)) -> app(f(Pid,H),map f(Pid,T)).

For a list L, split(M,L) returns a pair of lists fL

1

,L

2

g where L

1

on-

tains the �rst M elements (or L if its length is shorter than M) and L

2

ontains the rest of L. The ommand `!' denotes the sending of data and

NextPid!fToSend,Mg stands for sending the items ToSend and the integer

M to the proess with the identi�er NextPid. A proess an obtain its own

identi�er by alling the funtion self(). For every item in the list Items,

the funtion map f(Pid,Items) omputes new data items by means of the

funtion f(Pid,Item). So the atual omputation that f performs depends

on the proess identi�er Pid. Hene, to ompute new data items for the

inoming Items, a proess P

n

has to pass its own identi�er to the funtion

map f, i.e., it alls map f(self(),Items).
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Note that a proess itself is not a terminating funtion: in fat, it has

been designed to be non-terminating. Our aim is not to prove its termina-

tion, but to verify a ertain property, whih an be expressed in terms of

termination. As part of the orretness proof of the software, we have to

prove that if a proess P

n

ontinuously reeives the message fnil,Mg for

any integer M, then eventually the proess will send the message fnil,Mg as

well. This property must hold independent of the value of the store and of

the way in whih new data items are generated from given ones. Therefore,

f has been left unspei�ed, i.e., f may be any terminating funtion whih

returns a list of arbitrary length.

The framework of term rewriting [10,17℄ is very useful for this veri�a-

tion. We prove the desired property by onstruting a CTRS ontaining a

binary funtion proess whose arguments represent the stored data items

Store and the integer M sent in the messages. In this example, we may ab-

strat from the proess ommuniation. Thus, the Erlang funtion self()

beomes a onstant and we drop the send ommand (!) and the argu-

ment NextPid in the CTRS. Sine we assume that the proess onstantly

reeives the message fnil,Mg, we hard-ode it into the CTRS. Thus, the

variable Items is replaed by nil. As we still want to reason about the

variable M, we added it to the arguments of the proess. To model the

funtion split (whih returns a pair of lists) in the CTRS, we use sep-

arate funtions fstsplit and sndsplit for the two omponents of split's re-

sult. Thus, fstsplit(m; store) results in the �rst m elements of the store and

sndsplit(m; store) results in all but the �rstm elements of the store. Now the

idea is to fore the funtion proess to terminate if ToSend is the empty list

nil. So we only ontinue the omputation if appliation of the funtion empty

to the result of fstsplit yields false. Thus, if all evaluations w.r.t. this CTRS

terminate, then the original proess eventually outputs the demanded value.

As usual, the semantis of a rule `s

1

!

�

t

1

; s

2

!

�

t

2

j l! r' is that a redex

l� may only be redued to r� if s

1

� redues to t

1

� and s

2

� redues to t

2

�

(i.e., the vertial bar j separates the onditions from the atual rule).

leq(m; length(store))!

�

true;

empty(fstsplit(m; store))!

�

false j

proess(store;m)! proess(app(map f(self; nil); sndsplit(m; store));m) (1)

leq(m; length(store))!

�

false;

empty(fstsplit(m; app(map f(self; nil); store)))!

�

false j

proess(store;m)! proess(sndsplit(m; app(map f(self; nil); store));m) (2)

The auxiliary Erlang funtions as well as the funtions for empty, fstsplit,

and sndsplit are straightforwardly expressed by unonditional rewrite rules.

fstsplit(0; x)! nil

fstsplit(s(n); nil)! nil

fstsplit(s(n); ons(h; t))! ons(h; fstsplit(n; t))
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sndsplit(0; x)! x

sndsplit(s(n); nil)! nil

sndsplit(s(n); ons(h; t))! sndsplit(n; t)

empty(nil)! true

empty(ons(h; t))! false

leq(0;m)! true

leq(s(n); 0)! false

leq(s(n); s(m))! leq(n;m)

length(nil)! 0

length(ons(h; t))! s(length(t))

app(nil; x)! x

app(ons(h; t); x)! ons(h; app(t; x))

map f(pid; nil)! nil

map f(pid; ons(h; t))! app(f(pid; h);map f(pid; t))

The rules for the Erlang funtion f are not spei�ed, sine we have to

verify the desired property for any terminating funtion f. However, as

Erlang has an eager (all-by-value) evaluation strategy, if a terminating

Erlang funtion f is straightforwardly transformed into a (C)TRS (suh as

the above library funtions), then any evaluation w.r.t. these rules is �nite.

Now to prove the desired property of the Erlang proess, we have to show

that the whole CTRS with all its extra rules for the auxiliary funtions only

permits �nite evaluations.

The onstrution of the above CTRS is rather straightforward, but it

presupposes an understanding of the program and the veri�ation problem

and therefore it an hardly be mehanized. But after obtaining the CTRS,

the proof that any evaluation w.r.t. this CTRS is �nite should be done

automatially.

In this paper we desribe an extension of the dependeny pair tehnique

whih an perform suh automati proofs. Moreover, this extension is of

general use for termination proofs of TRSs and CTRSs. Hene, our results

signi�antly inrease the lass of systems where termination an be shown

mehanially.

3 Termination of Conditional Term Rewriting Systems

A CTRS is a TRS where onditions s

1

= t

1

; : : : ; s

n

= t

n

may be added to

rewrite rules l! r. In this paper, we restrit ourselves to CTRSs where all

variables in the onditions s

i

; t

i

also our in l. Depending on the interpreta-

tion of the equality sign in the onditions, di�erent rewrite relations an be

assoiated with a CTRS, f. e.g. [11,12,15,16,20,22,23,26,27,29,32℄. In our

veri�ation example, we transformed the problem into an oriented CTRS

[32℄, where the equality signs in onditions of rewrite rules are interpreted

as reahability (!

�

). Thus, we denote rewrite rules by

s

1

!

�

t

1

; : : : ; s

n

!

�

t

n

j l! r: (3)
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In fat, we even have a normal CTRS, beause all t

i

are ground normal

forms w.r.t. the TRS whih results from dropping all onditions.

A redution of C[l�℄ to C[r�℄ with rule (3) is only possible if s

i

� redues

to t

i

� for all 1 � i � n. Formally, the rewrite relation !

R

of a CTRS R

an be de�ned as !

R

=

S

j�0

!

R

j

, where

R

0

= ; and

R

j+1

=

S

`s

1

!

�

t

1

;:::;s

n

!

�

t

n

jl!r'2R

fl� ! r� j s

i

� !

�

R

j

t

i

� for all 1 � i � ng;

f. e.g. [23,29℄.

A CTRS R is terminating i� !

R

is well founded. But termination is

not enough to ensure that every evaluation with a CTRS is �nite. For

example, assume that evaluation of the ondition leq(m; length(store)) in

our CTRS would require the redution of proess(store;m). Then evalua-

tion of proess(store;m) would yield an in�nite omputation. Nevertheless,

proess(store;m) ould not be rewritten further and thus, the CTRS would

be terminating. But in this ase, the desired property would not hold for

the original Erlang proess, beause this would orrespond to a deadlok

situation where no messages are sent at all.

For that reason, instead of termination one is often muh more interested

in dereasing CTRSs [15℄. In this paper, we use a slightly modi�ed notion

of dereasingness, beause in our evaluation strategy onditions are heked

from left to right, f. [33℄. Thus, the i-th ondition s

i

!

�

t

i

is only heked

if all previous onditions s

j

!

�

t

j

for 1 � j < i hold.

De�nition 1 (Left-Right Dereasing) A CTRS R is left-right dereas-

ing if there exists a well-founded relation > ontaining the rewrite relation

!

R

and the subterm relation � suh that l� > s

i

� holds for all rules like

(3), all i 2 f1; : : : ; ng, and all substitutions � where s

j

� !

�

R

t

j

� for all

j 2 f1; : : : ; i� 1g.

This de�nition of left-right dereasingness exatly aptures the �niteness

of reursive evaluation of terms. (Obviously, dereasingness implies left-right

dereasingness, but not vie versa.) Hene, now our aim is to prove that the

CTRS orresponding to the Erlang proess is left-right dereasing.

A standard approah for proving termination of a CTRS R is to ver-

ify termination of the TRS R

0

whih results from dropping all onditions

(and for dereasingness one has to impose some additional demands). But

this approah fails for CTRSs where the onditions are neessary to ensure

termination. This also happens in our example, beause without the ondi-

tions empty(: : :)!

�

false the CTRS is no longer terminating (and thus, not

left-right dereasing either).

A solution for this problem is to transform CTRSs into unonditional

TRSs, f. [13,19,28℄. For unonditional rules, let tr( l! r ) = fl! rg. If �

is a onditional rule, i.e., � = `s

1

!

�

t

1

; : : : ; s

n

!

�

t

n

j l ! r', we de�ne

tr(�) =

fl! if

1;�

(x; s

1

)g [ fif

i;�

(x; t

i

)! if

i+1;�

(x; s

i+1

) j 1 � i < ng [ fif

n;�

(x; t

n

)! rg
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where x is the tuple of all variables in l and the if's are new funtion symbols.

To ease readability, instead of if

i;�

we often just write if

m

for some m 2 IN

where if

m

is a funtion symbol whih has not yet been used before.

Let R

tr

=

S

�2R

tr(�). For CTRSs without extra variables, R

tr

is in-

deed an (unonditional) TRS. (An extension to deterministi CTRSs [12℄

with extra variables is also possible.) The transformation of Rule (1) results

in

proess(store;m)! if

1

(store;m; leq(m; length(store))) (4)

if

1

(store;m; true)! if

2

(store;m; empty(fstsplit(m; store))) (5)

if

2

(store;m; false)! proess(app(map f(self; nil); sndsplit(m; store));m): (6)

Now we aim to prove termination of R

tr

instead of R's left-right dereas-

ingness.

In [19℄, this transformation is restrited to a limited lass of onver-

gent CTRSs. However, in the following we show that for our purpose this

restrition is not neessary. In other words, termination of R

tr

indeed im-

plies left-right dereasingness (and thus also termination) of R. Thus, this

transformation is a generally appliable tehnique to redue the termina-

tion problem of CTRSs to a termination problem of unonditional TRSs.

(A similar approah was presented in [28℄ for dereasingness proofs (instead

of left-right dereasingness) by using a transformation where all onditions

of a rule have to be heked in parallel.) We �rst prove that any redution

with R an be simulated by R

tr

. So in partiular, the equational theory of

R is a subset of R

tr

's equational theory.

Lemma 2 Let q; q

0

be terms without if's. If q !

+

R

q

0

, then q !

+

R

tr

q

0

.

Proof There must be a j 2 IN suh that q !

+

R

j

q

0

(j is the depth of the

redution). We prove the theorem by indution on the depth and the length

of the redution q !

+

R

q

0

(i.e., we use a lexiographi indution relation).

The redution has the form q !

R

p !

�

R

q

0

and by the indution hy-

pothesis we know p!

�

R

tr

q

0

. Thus, it suÆes to prove q !

+

R

tr

p.

If the redution q !

R

p is done with an unonditional rule of R, then

the onjeture is trivial. Otherwise, we must have q = C[l�℄, p = C[r�℄

for some ontext C and some rule like (3). As the depth of the redutions

s

i

� !

�

R

t

i

� is less than the depth of the redution q !

+

R

q

0

, by the indution

hypothesis we have s

i

� !

�

R

tr

t

i

�. This implies q !

+

R

tr

p. ut

Now the desired result is a diret onsequene of Lemma 2.

Corollary 3 (Left-Right Dereasingness of R and Termination of

R

tr

) If R

tr

is terminating, then R is left-right dereasing (and thus, it is

also terminating).

Proof It is well known that if !

R

tr

is well founded, then !

R

tr

[� is well

founded, too (this is a diret onsequene of !

R

tr

being losed under on-

text). Hene, the transitive losure (!

R

tr

[�)

+

is well founded, too. By
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Lemma 2, this relation satis�es all onditions imposed on the relation > in

Def. 1. Hene, R is left-right dereasing. ut

The onverse of this orollary does not hold. If R is the CTRS with

a ! b, f(a) ! b, and the onditional rule f(x) !

�

x j g(x) ! g(a), then

g(a) !

+

g(a) holds in the transformed TRS R

tr

, but not in the original

CTRS. Thus, the transformed TRS R

tr

is not terminating although the

original CTRS R is left-right dereasing.

However, independently, in the meanwhile this transformation has also

been studied by Ohlebush [30℄ and he ould prove a (restrited) omplete-

ness result for this transformation, viz. that left-right dereasingness ofR at

least implies innermost termination of R

tr

. (In [30℄, our notion of left-right

dereasingness is alled \quasi-dereasingness".)

In our example, the onditional rule (2) is transformed into three addi-

tional unonditional rules. But apart from the if-root symbol of the right-

hand side, the �rst of these rules is idential to (4). Thus, we obtain two

overlapping rules in the transformed TRS whih orrespond to the overlap-

ping onditional rules (1) and (2). However, in the CTRS this ritial pair

is infeasible [15℄, i.e., the onditions of both rules exlude eah other. Thus,

our transformation of CTRSs into TRSs sometimes introdues unneessary

rules and overlap.

Therefore, whenever we onstrut a rule of the form q ! if

k

(t) and there

already exists a rule q ! if

n

(t), then we identify if

k

and if

n

. This does not

a�et the soundness of our approah, beause termination of a TRS where

all ourrenes of a symbol g are substituted by a symbol f with the same

arity always implies termination of the original TRS.

1

Thus, we obtain the

additional rules:

if

1

(store;m; false)!

if

3

(store;m; empty(fstsplit(m; app(map f(self; nil); store)))) (7)

if

3

(store;m; false)! proess(sndsplit(m; app(map f(self; nil); store));m)(8)

If termination of a CTRS depends on its onditions, then in general

termination of the transformed TRS an only be shown if one examines

whih terms may follow eah other in a redution. However, in the lassial

approahes based on simpli�ation orderings (f. e.g. [14,31℄), suh onsid-

erations do not take plae. Hene, they fail in proving the termination of (4)

- (8). For this reason, suh transformations into unonditional TRSs have

rarely been applied for termination (or dereasingness) proofs of CTRSs.

However, we will demonstrate that with the dependeny pair approah this

transformation is very useful.

1

This possibility to eliminate unneessary overlap is an advantage of our trans-

formation ompared to the one of [28℄, where the transformed unonditional TRSs

remain overlapping. In pratie, proving termination of non-overlapping TRSs is

signi�antly easier, sine one may use tehniques spei�ally tailored to innermost

termination proofs, see below.
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To verify our original goal, we now have to prove termination of the

transformed TRS whih onsists of (4) - (8), the rules for all auxiliary (li-

brary) funtions from Set. 2, and the (unknown) rules for the unspei�ed

funtion f. Note that if an auxiliary Erlang funtion is straightforwardly

transformed into a TRS, then this TRS is non-overlapping. Thus, we assume

that all possible rules for the unspei�ed funtion f are non-overlapping as

well. Then it is suÆient just to prove innermost termination of the result-

ing TRS, sine innermost termination of non-overlapping systems implies

their termination, f. e.g. [21℄. In order to apply veri�ation on a large sale,

the aim is to perform suh proofs automatially.

In the rest of the paper we present some extensions of the dependeny

pair tehnique that make this possible. The dependeny pair tehnique (in-

luding these extensions) has been implemented in a tool written in Erlang

whih provides both a user friendly interfae for manual appliations of

dependeny pairs and the possibility to perform fully automati termina-

tion proofs of TRSs using dependeny pairs [9℄. See [4℄ for a olletion of

benhmarks to demonstrate the power of the dependeny pair approah.

4 Dependeny Pairs

Dependeny pairs allow the use of existing methods like simpli�ation or-

derings for automated termination and innermost termination proofs where

they were not appliable before. In this setion we briey reapitulate the

basi onepts of this approah and we present the theorems that we need

for the rest of the paper. For further details and explanations see [3,5,8℄.

In ontrast to the standard approahes for termination proofs, whih

ompare left and right-hand sides of rules, we only examine those subterms

that are responsible for starting new redutions. For that purpose we on-

entrate on the subterms in the right-hand sides of rules that have a de�ned

2

root symbol, beause these are the only terms a rewrite rule an ever be

applied to.

More preisely, for every rule f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)℄ (where

f and g are de�ned symbols), we ompare the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

. To avoid the handling of tuples, for every de�ned symbol f

we introdue a fresh tuple symbol F . To ease readability, we assume that

the original signature onsists of lower ase funtion symbols only, whereas

the tuple symbols are denoted by the orresponding upper ase symbols.

Now instead of the tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

we ompare the terms

F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

).

De�nition 4 (Dependeny Pair) Let R be a TRS. If f(s

1

; : : : ; s

n

) !

C[g(t

1

; : : : ; t

m

)℄ is a rule of R and g is a de�ned symbol, then hF (s

1

; : : : ; s

n

);

G(t

1

; : : : ; t

m

)i is a dependeny pair of R.

2

Root symbols of left-hand sides are de�ned and all other funtions are on-

strutors.
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For the rules (4) - (8), (besides others) we obtain the following dependeny

pairs.

hPROCESS(store;m); IF

1

(store;m; leq(m; length(store)))i (9)

hIF

1

(store;m; true); IF

2

(store;m; empty(fstsplit(m; store)))i (10)

hIF

2

(store;m; false);PROCESS(app(map f(self; nil); sndsplit(m; store));m)i (11)

hIF

1

(store;m; false);

IF

3

(store;m; empty(fstsplit(m; app(map f(self; nil); store))))i (12)

hIF

3

(store;m; false);PROCESS(sndsplit(m; app(map f(self; nil); store));m)i (13)

To trae newly introdued redexes in an innermost redution, we on-

sider speial sequenes of dependeny pairs, so-alled innermost hains. A

sequene of dependeny pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an innermost hain if

there exists a substitution � suh that for all onseutive pairs hs

j

; t

j

i and

hs

j+1

; t

j+1

i in the sequene we have t

j

�

i

!

�

R

s

j+1

�. Here, \

i

!" denotes

innermost redutions (i.e., rewrite steps where only innermost redexes are

ontrated). In this way, the right-hand side of every dependeny pair an

be seen as the newly introdued redex that should be traed and the redu-

tions t

j

�

i

!

�

R

s

j+1

� are neessary to normalize the arguments of the redex

that is traed. Note that when regarding innermost redutions, arguments

of a redex should be in normal form before the redex is ontrated. Thus,

we may restrit ourselves to substitutions � where all s

j

� are in normal

form.

De�nition 5 (Innermost R-hains) Let R be a TRS. A sequene of

dependeny pairs hs

1

; t

1

i hs

2

; t

2

i : : : is alled an innermost R-hain if there

exists a substitution �, suh that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for every two onseutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the

sequene.

We always assume that di�erent (ourrenes of) dependeny pairs have

disjoint variables and we always regard substitutions whose domains may

be in�nite. In [3℄ we showed that the absene of in�nite innermost hains is

a (suÆient and neessary) riterion for innermost termination.

Theorem 6 (Innermost Termination Criterion) A TRS R is inner-

most terminating i� there exists no in�nite innermost R-hain.

To improve this riterion we introdued the following graph whih on-

tains ars between all those dependeny pairs whih may follow eah other

in innermost hains.

De�nition 7 (Innermost Dependeny Graph) The innermost depen-

deny graph of a TRS R is the direted graph whose nodes are the depen-

deny pairs and there is an ar from hs; ti to hv; wi if hs; ti hv; wi is an

innermost R-hain.
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In our example, (besides others) there are ars from (9) to (10) and (12),

from (10) to (11), from (12) to (13), and from both (11) and (13) to (9).

The subgraph of the innermost dependeny graph ontaining the nodes (9)

- (13) is depited in Figure 2.

-

'

� �

$

�

�

�	

�

�R

�

�R

�

�	

(9)

(10) (12)

(11) (13)

Fig. 2 Subgraph of the innermost dependeny graph in our example

Sine the innermost dependeny graph is in general not omputable, we

use an estimation of this graph for automation purposes (f. [3,5,8℄). The

estimation is suh that all ars in the original graph are also present in the

estimated graph. Let ap(t) result from t by replaing all subterms with

de�ned root symbols by di�erent fresh variables. The estimated innermost

dependeny graph is the direted graph whose nodes are the dependeny

pairs and there is an ar from hs; ti to hv; wi i� ap(t) and v are uni�able

by a mgu � where s� and v� are normal forms. It is not diÆult to see that

whenever hs; ti hv; wi is an innermost hain, then there is also an ar from

hs; ti to hv; wi in the estimated innermost dependeny graph. Thus, this

estimated graph is indeed a supergraph of the (real) innermost dependeny

graph.

A non-empty set P of dependeny pairs is alled a yle i� for all

hs; ti; hv; wi 2 P , there is a path from hs; ti to hv; wi in the innermost de-

pendeny graph, whih only traverses pairs from P . Obviously, every yle

in this graph is also a yle in the estimated innermost dependeny graph.

In our example, the dependeny pairs (9) - (13) form the yles P

1

=

f(9); (10); (11)g, P

2

= f(9); (12); (13)g, and P

3

= f(9); (10); (11); (12); (13)g.

However, (9) - (13) are not on a yle with any other dependeny pair (e.g.,

dependeny pairs from the rules of the auxiliary library funtions or the

unspei�ed funtion f, sine we assume that f does not all proess). This

leads to the following re�ned riterion.

Theorem 8 (Modular Innermost Termination Criterion) A �nite

TRS R is innermost terminating i� for eah yle P in the innermost de-

pendeny graph there exists no in�nite innermost R-hain of dependeny

pairs from P.

Note that for the soundness of this theorem one indeed has to regard all

yles, not just the minimal ones (i.e., not just those yles whih ontain
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no other yles as proper subsets). For example, the TRS with the rules

f(0)! g(1), f(1)! g(0), and g(x)! f(x) has three dependeny pairs

hF(0);G(1)i; (14)

hF(1);G(0)i; (15)

hG(x);F(x)i (16)

and three yles P

1

= f(14); (16)g, P

2

= f(15); (16)g, and P

3

= f(14); (15);

(16)g. There is no in�nite innermost hain from any of the minimal yles

P

1

or P

2

. Nevertheless, the TRS is not innermost terminating, and indeed

there is an in�nite innermost hain from the non-minimal yle P

3

.

In our de�nition, a yle is a set of dependeny pairs. Thus, a yle

never ontains multiple ourrenes of the same dependeny pair and for

a �nite TRS there only exist �nitely many yles P . The automation of

the dependeny pair tehnique is based on the generation of inequalities.

For every yle P (in the estimated graph) we searh for a quasi-ordering

�

P

suh that for any sequene of dependeny pairs hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : :

from P and for any substitution � with t

j

�!

�

R

s

j+1

� (for all j) we have

s

1

� �

P

t

1

� �

P

s

2

� �

P

t

2

� �

P

s

3

� �

P

t

3

� �

P

: : :

Moreover, for at least one hs; ti in P we demand the strit inequality s� >

P

t�. Here, >

P

must be a well-founded ordering ompatible with �

P

(i.e., we

have >

P

Æ �

P

� >

P

or �

P

Æ >

P

� >

P

). Then there exists no innermost

hain of dependeny pairs from P whih traverses all dependeny pairs in

P in�nitely many times.

In the following we require that both �

P

and >

P

must be losed under

substitution. Then s

j

�

P

t

j

and s

j

>

P

t

j

ensure s

j

� �

P

t

j

� and s

j

� >

P

t

j

�, respetively, for all substitutions �.

We also restrit ourselves to weakly monotoni quasi-orderings �

P

. (A

quasi-ordering �

P

is weakly monotoni if s �

P

t implies f(: : : s : : :) �

P

f(: : : t : : :).) Then to guarantee t

j

� �

P

s

j+1

� whenever t

j

�!

�

R

s

j+1

� holds,

it is suÆient to demand l �

P

r for all rules l! r of the TRS that may

be used in this redution. As we restrit ourselves to normal substitutions

�, not all rules are usable in a redution of t�. In general, if t ontains a

de�ned symbol f , then all f -rules are usable and moreover, all rules that

are usable for right-hand sides of f -rules are also usable for t.

De�nition 9 (Usable Rules) Let R be a TRS. For any symbol f let

Rls

R

(f) = fl! r 2 R j root(l) = fg. For any term we de�ne the usable

rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rls

R

(f) [

S

l!r2Rls

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

where R

0

= R n Rls

R

(f). Moreover, for any set P of dependeny pairs we

de�ne U

R

(P) =

S

hs;ti2P

U

R

(t).
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Note that this is indeed a reursive de�nition (sine R is dereasing to R

0

in the seond equation de�ning U

R

).

Now we obtain the following theorem for automated

3

innermost termi-

nation proofs.

Theorem 10 (Innermost Termination Proofs) A �nite TRS is inner-

most terminating if for eah yle P there is a weakly monotoni quasi-

ordering �

P

and a well-founded ordering >

P

ompatible with �

P

, where

both �

P

and >

P

are losed under substitution, suh that

� l �

P

r for all rules l! r 2 U

R

(P),

� s �

P

t for all dependeny pairs hs; ti from P, and

� s >

P

t for at least one dependeny pair hs; ti from P.

We already demonstrated that for Thm. 8 (and hene, also for Thm. 10)

onsidering just the minimal yles would be unsound. In fat, for Thm. 10

it would also be unsound just to onsider maximal yles (i.e., those yles

whih are not ontained in any other yle). The problem is that it is not suf-

�ient if just one dependeny pair of eah maximal yle is stritly dereas-

ing. There must be a stritly dereasing dependeny pair for every subyle

as well. As a ounterexample regard the TRS f(s(x)) ! f(s(x)), f(s(x)) !

f(x). Its (only) maximal yle is fhF(s(x));F(s(x))i; hF(s(x));F(x)ig. But the

onstraints F(s(x)) � F(s(x)) and F(s(x)) > F(x) for this yle are easily

ful�lled although this TRS is learly not innermost terminating. Thus, it is

ruial to onsider all yles P for Thm. 10.

In Set. 2 we presented the rules for the auxiliary funtions in our pro-

ess example. Proving absene of in�nite innermost hains for the yles of

their dependeny pairs is very straightforward using Thm. 10. So all library

funtions of our TRS are innermost terminating. Moreover, as we assumed

f to be a terminating funtion, its yles do not lead to in�nite innermost

hains either.

Reall that (9) - (13) are not on yles together with the remaining

dependeny pairs. Thus, what is left for verifying the desired property is

proving absene of in�nite innermost hains for the yles P

1

;P

2

;P

3

, where

all rules of the whole TRS are possible andidates for being usable rules

(also the rules for the unspei�ed funtion f).

Thm. 10 demands s �

P

t resp. s >

P

t for dependeny pairs hs; ti on

yles. However for (9) - (13), these inequalities are not satis�ed by any

quasi-simpli�ation ordering.

4

Thus, the automated proof fails here. More-

over, it is unlear whih inequalities we have to add for the usable rules, sine

the rules for f are not given. Therefore, we have to extend the dependeny

pair tehnique.

3

Additional re�nements for the automation an be found in [3,8℄.

4

Essentially, the reason is that the left-hand side of dependeny pair (9) is

embedded in the right-hand sides of the pairs (11) and (13).
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5 Narrowing Dependeny Pairs

To prove the absene of in�nite innermost hains, for a dependeny pair

hv; wi it would be suÆient to demand v� �

P

w� resp. v� >

P

w� just

for those instantiations � where an instantiated right omponent t� of a

previous dependeny pair hs; ti redues to v�. For example, (11) only has

to be regarded for instantiations � where the instantiated right omponent

IF

2

(store;m; empty(fstsplit(m; store)))� of (10) redues to the instantiated

left omponent IF

2

(store;m; false)� of (11). In fat, this an only happen

if store is not empty, i.e., if store redues to the form ons(h; t). However,

this observation has not been used in the inequalities of Thm. 10 and hene,

we ould not �nd an ordering for them. Thus, the idea is to perform the

omputation of empty on the level of the dependeny pair. For that purpose

the well-known onept of narrowing is extended to pairs of terms.

De�nition 11 Let R be a TRS. If a term t R-narrows to a term t

0

via the

substitution �, then the pair of terms hs; ti R-narrows to the pair hs�; t

0

i.

In the following, we will usually speak of `narrowing' instead of `R-nar-

rowing' if the TRS R is lear from the ontext. For example, the narrowings

of the dependeny pair (10) are

hIF

1

(x; 0; true); IF

2

(x; 0; empty(nil))i (10a)

hIF

1

(nil; s(n); true); IF

2

(nil; s(n); empty(nil))i (10b)

hIF

1

(ons(h; t); s(n); true); IF

2

(ons(h; t); s(n); empty(ons(h; fstsplit(n; t))))i: (10)

Thus, if a dependeny pair hs; ti is followed by some dependeny pairs

hv; wi in an innermost hain and if t is not already uni�able with v (i.e., at

least one rule is needed to redue t� to v�), then in order to `approximate'

the possible further R-redutions of t� we may replae hs; ti by all its R-

narrowings. Hene, we an replae the dependeny pair (10) by the new

pairs (10a) - (10), whih already ontain one `hidden' step of the next

R-redution.

This enables us to extrat neessary information from the last arguments

of if's, i.e., from the former onditions of the CTRS. Thus, the narrowing

re�nement is the main reason why the transformation of CTRSs into TRSs

is useful when analyzing the termination behaviour with dependeny pairs.

The number of narrowings for a pair is �nite (up to variable renaming) and

it an easily be omputed automatially.

Note however that narrowing may indeed only be applied for depen-

deny pairs whose right-hand side does not unify with any left-hand side

of a dependeny pair (after variable renaming). As an example regard the

following TRS.

g(f(a))! h(a)

f(b)! 

h(x)! g(f(x))
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This TRS is not innermost terminating as we have the in�nite innermost

redution g(f(a))

i

! h(a)

i

! g(f(a))

i

! : : : The only dependeny pairs on a

yle are hG(f(a));H(a)i and hH(x);G(f(x))i. But if the latter dependeny

pair is narrowed to hH(b);G()i, then there is no yle any more in the in-

nermost dependeny graph and hene, we would falsely onlude innermost

termination. This example also demonstrates why this requirement is still

neessary even if we would restrit ourselves to non-overlapping systems.

Before showing how narrowing helps in solving the inequalities of the

proess example, we �rst prove the soundness of our tehnique.

Theorem 12 (Narrowing Pairs) Let P be a set of pairs of terms and

let hs; ti 2 P suh that Var(t) � Var(s) and suh that for all (renamings

of) hv; wi 2 P, the terms t and v are not uni�able. Let P

0

result from P

by replaing hs; ti by all its narrowings. If there exists no in�nite innermost

hain of pairs from P

0

, then there exists no in�nite innermost hain of pairs

from P either.

Proof Suppose there is an innermost R-hain

: : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : :

of pairs from P . It suÆes to prove that then there exists a narrowing hs

0

; t

0

i

of hs; ti suh that : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is an innermost R-hain as

well. Here, hs; ti resp. hs

0

; t

0

i may also be the �rst pair in the hain (i.e.,

hv

1

; w

1

i may be missing). If this has been proved, then all ourrenes of

hs; ti in an in�nite innermost hain may be replaed by pairs from P

0

.

For the above innermost hain, there must be a substitution � suh

that all instantiated left-hand sides of the pairs are normal forms and every

instantiated right-hand side redues innermost to the instantiated left-hand

side of the next pair in the innermost hain. Note that t� annot be equal

to v

2

�, as otherwise � would be a uni�er of t and v

2

. Hene, we have

t�

i

!

R

q

i

!

�

R

v

2

� for some term q.

The redution t�

i

!

R

q annot take plae `in �', beause all variables of

t are ontained in s and hene, then s� would not be a normal form. Thus,

t ontains some subterm f(u) suh that a rule l! r has been applied to

f(u)�. In other words, l mathes f(u)� (i.e. l� = f(u)�). So the redution

has the following form:

t� = t�[f(u)�℄

�

= t�[l�℄

�

i

!

R

t�[r�℄

�

= q:

As in the usual de�nition of narrowing, we assume that the variables

of l! r have been renamed to fresh ones. Therefore we an extend � to

`behave' like � on the variables of l and r (but it still remains the same

on the variables of all pairs in the innermost hain). Now � is a uni�er of

l and f(u) and hene, there also exists a most general uni�er �. By the

de�nition of most general uni�ers, then there must be a substitution � suh

that � = �� .
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Let t

0

be the term t�[r�℄

�

and let s

0

be s�. Then hs; ti narrows to hs

0

; t

0

i.

As we may assume s

0

and t

0

to be variable disjoint from all other pairs, we

may extend � to behave like � on the variables of s

0

and t

0

. Then we have

w

1

�

i

!

�

R

s� = s�� = s

0

� = s

0

� and

t

0

� = t

0

� = t�� [r�� ℄

�

= t�[r�℄

�

= t�[r�℄

�

= q

i

!

�

R

v

2

�:

Hene, : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is also an innermost R-hain. ut

So we may always replae a dependeny pair by all its narrowings. How-

ever, while this re�nement is sound, in general it destroys the neessity of

our innermost termination riterion in Thm. 8. For example, the TRS with

the rules f(s(x)) ! f(g(h(x))), g(h(x)) ! g(x), g(0) ! s(0), h(0) ! 1

is innermost terminating. But if the dependeny pair hF(s(x));F(g(h(x)))i

is replaed by its narrowings hF(s(0));F(g(1))i and hF(s(x));F(g(x))i, then

hF(s(x));F(g(x))i forms an in�nite innermost hain (using the instantiation

fx=0g).

Nevertheless, in the appliation domain of proess veri�ation, we an

restrit ourselves to TRSs with the unique normal form property.

5

In fat,

the TRSs resulting from the translation of Erlang funtions are always non-

overlapping. As non-overlapping innermost terminating TRSs are onuent,

they also satisfy the unique normal form property. Hene, the requirement

of the unique normal form property in the following theorem ould also be

replaed by non-overlappingness.

The theorem shows that for suh TRSs, narrowing dependeny pairs

indeed is a ompleteness preserving tehnique. More preisely, whenever

innermost termination an be proved with the pairs P , then it an also be

proved with the pairs P

0

.

Theorem 13 (Narrowing Pairs Preserves Completeness) Let R be

an innermost terminating TRS with the unique normal form property and

let P, P

0

be as in Thm. 12. If there exists no in�nite innermost R-hain of

pairs from P, then there exists no in�nite innermost R-hain of pairs from

P

0

either.

Proof We show that every innermost R-hain : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : :

from P

0

an be transformed into an innermost hain from P of same length.

There must be a substitution � suh that for all pairs the instantiated left-

hand side is a normal form and the instantiated right-hand side redues to

the instantiated left-hand side of the next pair in the innermost hain. So

in partiular we have

w

1

�

i

!

�

R

s

0

� and t

0

�

i

!

�

R

v

2

�:

5

A TRS is said to have the unique normal form property i� for every term t,

whenever s

1

�

 t!

�

s

2

with s

1

and s

2

in normal form, then we have s

1

= s

2

.
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We know that hs; ti narrows to hs

0

; t

0

i via a substitution �. As the vari-

ables in hs; ti are disjoint from all other variables, we may extend � to

`behave' like �� on the variables of s and t. Then we have s� = s�� = s

0

�

and hene, w

1

�

i

!

�

R

s�.

Moreover, by the de�nition of narrowing, t�!

R

t

0

. This implies t��!

R

t

0

� and as t� = t��, we have t�!

R

t

0

�

i

!

�

R

v

2

� where v

2

� is a normal

form. As R is innermost terminating and every term has a unique normal

form, repeated appliation of innermost redution steps to t� also yields

the normal form v

2

�, i.e., t�

i

!

�

R

v

2

�. Thus, : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : is

also an innermost R-hain. ut

Hene, independent of the tehnique used to hek the absene of in-

�nite innermost hains, for TRSs with the unique normal form property,

narrowing dependeny pairs preserves the suess of the innermost termi-

nation proof. So we may narrow dependeny pairs without the risk that the

new pairs we obtain form an in�nite innermost hain, whereas the original

system is innermost terminating. Thus, in Thm. 6 and 8 when replaing the

dependeny pairs of R by their narrowings, one still obtains a suÆient and

neessary riterion for innermost termination.

Moreover, narrowing an of ourse be repeated an arbitrary number of

times. Thus, after replaing (10) by (10a) - (10), we may subsequently

replae (10a) and (10b) by their respetive narrowings.

hIF

1

(x; 0; true); IF

2

(x; 0; true)i (10aa)

hIF

1

(nil; s(n); true); IF

2

(nil; s(n); true)i (10ba)

This exludes them from being on a yle in the estimated innermost de-

pendeny graph. Thus, now instead of the dependeny pairs (9) - (13) we

onsider (9), (10), (11), (12), and (13). A further narrowing of (10) is not

neessary for our purposes (but aording to Thm. 13 it would not harm

either). The right omponent of the dependeny pair (11) uni�es with the

left omponent of (9) and therefore, (11) must not be narrowed. Instead we

narrow (9).

hPROCESS(nil;m); IF

1

(nil;m; leq(m; 0))i (9a)

hPROCESS(ons(h; t);m); IF

1

(ons(h; t);m; leq(m; s(length(t))))i (9b)

hPROCESS(store; 0); IF

1

(store; 0; true)i (9)

By narrowing (10) to (10), we determined that we only have to regard

instantiations where store has the form ons(h; t) and m has the form s(n).

Thus, (9a) and (9) do not our on a yle and therefore, (9) an be replaed

by (9b) only.

As (11)'s right omponent does not unify with left omponents any

longer, we may now narrow (11) as well. By repeated narrowing steps and

by dropping those pairs whih do not our on yles, (11) an be replaed

by

hIF

2

(ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (11aa)
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hIF

2

(ons(h; t); s(n); false);PROCESS(app(nil; sndsplit(n; t)); s(n))i (11ad)

hIF

2

(ons(h; t); s(n); false);

PROCESS(app(map f(self; nil); sndsplit(n; t)); s(n))i (11d)

Now for the yle P

1

, it is (for example) suÆient to demand that (11aa),

(11ad), and (11d) are stritly dereasing and that (9b), (10), and all usable

rules are weakly dereasing. Similar narrowings an also be applied for the

pairs (12) and (13) whih results in analogous inequalities for the yles P

2

and P

3

.

Most standard orderings amenable to automation are strongly mono-

toni path orderings (f. e.g. [14,31℄), whereas here we only need weak

monotoniity. Hene, before synthesizing a suitable ordering, some of the

arguments of funtion symbols may be eliminated, f. [8℄. For example, in

our inequalities one may eliminate the third argument of IF

2

. Then every

term IF

2

(t

1

; t

2

; t

3

) in the inequalities is replaed by IF

0

2

(t

1

; t

2

) (where IF

0

2

is a new binary funtion symbol). By omparing the terms resulting from

this replaement instead of the original terms, we an take advantage of

the fat that IF

2

does not have to be strongly monotoni in its third argu-

ment. Similarly, in our example we will also eliminate the third arguments

of IF

1

and IF

3

and the �rst argument of sndsplit. Note that there are only

�nitely many (and only few) possibilities to eliminate arguments of funtion

symbols. Therefore all these possibilities an be heked automatially. In

this way, the reursive path ordering (rpo) [14℄ satis�es the inequalities for

(11aa), (9b), (10), for the dependeny pairs resulting from (12) and (13),

and for all (known) usable rules. However, the inequalities resulting from

(11ad) and (11d)

IF

0

2

(ons(h; t); s(n)) > PROCESS(app(nil; sndsplit

0

(t)); s(n))

IF

0

2

(ons(h; t); s(n)) > PROCESS(app(map f(self; nil); sndsplit

0

(t)); s(n))

are not satis�ed beause of the app-terms on the right-hand sides (as the

app-rules fore app to be greater than ons in the preedene of the rpo).

Moreover, the map f-term in the inequalities requires us to onsider the

usable rules orresponding to the (unspei�ed) Erlang funtion f as well.

To get rid of these terms, one would like to perform narrowing on map f

and app. However, in general narrowing only some subterms of right om-

ponents is unsound.

6

Instead, we always have to replae a pair by all its

narrowings. But then narrowing (11ad) and (11d) provides no solution here,

sine narrowing the sndsplit-subterm results in pairs ontaining problemati

app- and map f-terms again. In the next setion we desribe a tehnique

whih solves the above problem.

6

As an example regard the TRS f(0; 1) ! s(1), f(x; 0) ! 1, a ! 0, and

g(s(y))! g(f(a; y)). If we would replae the dependeny pair hG(s(y));G(f(a; y))i

by only one of its narrowings, viz. hG(s(0));G(1)i, then one ould falsely prove

innermost termination, although the term g(s(1)) starts an in�nite innermost re-

dution.
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6 Rewriting Dependeny Pairs

While performing only some narrowing steps is unsound, for non-over-

lapping TRSs it is at least sound to perform only one of the possible rewrite

steps. So if t! r, then we may replae a dependeny pair hs; ti by hs; ri.

Note that this tehnique is only appliable to dependeny pairs, but not

to rules of the TRS. Indeed, by reduing the right-hand side of a rule, a

non (innermost) terminating TRS an be transformed into a terminating

one, even if the TRS is non-overlapping. As an example regard the TRS

with the rules 0 ! f(0), f(x)! 1 whih is learly not innermost terminat-

ing. However, if the right-hand side of the �rst rule is rewritten to 1, then

the resulting TRS is terminating. The following theorem proves that our

re�nement of the dependeny pair approah is sound.

Theorem 14 (Rewriting Pairs) Let R be non-overlapping and let P be

a set of pairs of terms. Let hs; ti 2 P, let t!

R

r and let P

0

result from P

by replaing hs; ti with hs; ri. If there exists no in�nite innermost hain of

pairs from P

0

, then there exists no in�nite innermost hain from P either.

Proof By replaing all (renamed) ourrenes of hs; ti with the orrespond-

ing renamed ourrenes of hs; ri, every innermost hain : : : hs; ti hv; wi : : :

from P an be translated into an innermost hain from P

0

of same length.

The reason is that there must be a substitution � with t�

i

!

�

R

v� where

v� is a normal form. So t� is weakly innermost terminating

7

and as R is

non-overlapping, by [22, Thm. 3.2.11 (1a) and (4a)℄ t� is onuent and ter-

minating. With t!

R

r, we obtain t�!

R

r�. Hene, r� is terminating as

well and thus, it also redues innermost to some normal form q. Now on-

uene of t� implies q = v�. Therefore, : : : hs; ri hv; wi : : : is an innermost

hain, too. ut

The above theorem enables us to perform a rewrite step in the right-hand

side of a dependeny pair and to ontinue with this dependeny pair instead

of the original one. Note that a weakening of Thm. 14 by just demanding

innermost onuene instead of non-overlappingness of R is not possible;

not even if we only allow innermost redutions in the right-hand side of

a dependeny pair. As a ounterexample onsider h(f(x)) ! h(g(s(x))),

h(g(a)) ! h(f(a)), g(s(x)) ! b, s(a) ! a. This TRS is innermost onu-

ent, but not innermost terminating (sine h(f(a)) starts a yling redu-

tion). Thus, the set P of all dependeny pairs forms an in�nite innermost

hain. But if we perform an innermost rewrite step on the dependeny pair

hH(f(x));H(g(s(x)))i, then it is replaed by hH(f(x));H(b)i. Now the result-

ing set of pairs has no in�nite innermost hains any more, and thus, we

ould falsely onlude innermost termination.

7

We all a term t (innermost) terminating if all (innermost) redutions starting

in t are �nite. Analogously, t is weakly (innermost) terminating if there exists a

�nite (innermost) redution starting in t.
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However, the demand that the TRS should be non-overlapping may be

weakened by demanding that it is innermost normal form preserving, i.e.,

for any term t, whenever s

i

 

�

t! r holds for a normal form s, then r

i

!

�

s.

Non-overlapping TRSs are innermost normal form preserving, but not vie

versa (onsider a ! a, a ! b). In pratie, however, the above version of

Thm. 14 is most important, sine it is usually muh easier to show that a

TRS is non-overlapping than that it is innermost normal form preserving.

The onverse of Thm. 14 holds as well if P is obtained from the de-

pendeny pairs by repeated narrowing and rewriting steps. So similar to

narrowing, rewriting dependeny pairs also preserves the neessity of our

riterion.

Theorem 15 (Rewriting Pairs Preserves Completeness) Let R be

an innermost terminating TRS with the unique normal form property and

let P, P

0

be as in Thm. 14. If there exists no in�nite innermost R-hain of

pairs from P, then there exists no in�nite innermost R-hain of pairs from

P

0

either.

Proof In an innermost hain : : : hs; ri hv; wi : : : from P

0

, replaing all (re-

named) ourrenes of hs; ri by orresponding renamings of hs; ti yields an

innermost hain from P of same length. The reason is that there must be

a � with r�

i

!

�

R

v�. As R is innermost terminating, there must be a nor-

mal form q whih is reahable from t� by innermost redution steps, i.e.,

t�

i

!

�

R

q. Thus, t�!

R

r�

i

!

�

R

v� implies q = v� by the unique normal

form property of R, and hene, t�

i

!

�

R

v�. ut

In our example we may now eliminate app and map f by rewriting the

pairs (11ad) and (11d). Even better, before narrowing, we ould �rst rewrite

(11), (12), and (13). Moreover, we ould simplify (10) by rewriting it as

well. Thus, the resulting pairs on the yles we are interested in are:

hPROCESS(ons(h; t);m); IF

1

(ons(h; t);m; leq(m; s(length(t))))i (9b)

hIF

1

(ons(h; t); s(n); true); IF

2

(ons(h; t); s(n); false)i (10

0

)

hIF

2

(store;m; false);PROCESS(sndsplit(m; store);m)i (11

0

)

hIF

1

(store;m; false); IF

3

(store;m; empty(fstsplit(m; store)))i (12

0

)

hIF

3

(store;m; false);PROCESS(sndsplit(m; store);m)i (13

0

)

Analogous to Set. 5, now we narrow (11

0

), (12

0

), (13

0

), perform a rewrite

step for one of (12

0

)'s narrowings, and delete those resulting pairs whih are

not on any yle. In this way, (11

0

), (12

0

), (13

0

) are replaed by

hIF

2

(ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (11

00

)

hIF

1

(ons(h; t); s(n); false); IF

3

(ons(h; t); s(n); false)i (12

00

)

hIF

3

(ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (13

00

)

By eliminating the �rst argument of sndsplit and the third arguments of

IF

1

, IF

2

, and IF

3

(f. Set. 5), we obtain the following inequalities. Note
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that aording to Thm. 10, these inequalities prove the absene of in�nite

innermost hains for all three yles built from (9b), (10

0

), and (11

00

) -

(13

00

), sine for eah of these yles (at least) one of its dependeny pairs is

stritly dereasing.

PROCESS(ons(h; t);m) � IF

0

1

(ons(h; t);m)

IF

0

1

(ons(h; t); s(n)) � IF

0

2

(ons(h; t); s(n))

IF

0

1

(ons(h; t); s(n)) � IF

0

3

(ons(h; t); s(n))

IF

0

2

(ons(h; t); s(n)) > PROCESS(sndsplit

0

(t); s(n))

IF

0

3

(ons(h; t); s(n)) > PROCESS(sndsplit

0

(t); s(n))

sndsplit

0

(x) � x

sndsplit

0

(nil) � nil

sndsplit

0

(ons(h; t)) � sndsplit

0

(t)

l � r for all rules l! r with root(l) 2 fleq; lengthg

Now these inequalities are satis�ed by the rpo. The sndsplit

0

-, leq-, and

length-inequalities are the only ones whih orrespond to the usable rules,

sine the rules formap f and f are no longer usable. Hene, the TRS of Set. 3

is innermost terminating. In this way, left-right dereasingness of the CTRS

from Set. 2 ould be proved automatially. Therefore, the desired property

holds for the original Erlang proess.

7 Verifying Networks of Proesses

In many appliations, one is not only interested in verifying ertain prop-

erties of a single proess in a network, but instead one wants to verify a

property of the whole network of proesses. If these proesses work asyn-

hronously, then the exat order of the messages passed through the network

is often indeterministi. Modelling this kind of behaviour usually results in

TRSs whih are overlapping (and in fat, not onuent).

In this setion we extend the well-known result that innermost termi-

nation of non-overlapping TRSs implies their termination to the lass of

overlapping TRSs whih result from desribing proess networks in our

framework. Then we show that our tehniques of narrowing and rewrit-

ing dependeny pairs an also be applied to overlapping TRSs. Moreover,

we introdue a third tehnique to modify dependeny pairs, viz. instan-

tiating dependeny pairs, whih is partiularly useful when dealing with

non-onuent TRSs. With these extensions, we show how an important

property for a network of Erlang proesses ould be suessfully veri�ed.

In this veri�ation problem, we have a ring of three asynhronous pro-

esses (similar to the proess desribed in Set. 2). The aim is to prove that

if the �rst proess disregards its input (i.e., it performs as if it repeatedly

gets the empty list as input), then eventually, the third proess will also send

the empty list. Of ourse, if one an prove this for a ring of three proesses,

then a similar proof for any other number of proesses works analogously.
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To model this situation, we use a CTRS similar to the one of Set. 2.

However, as we have to regard all three proesses simultaneously, we need a

new de�ned symbol ring to desribe the urrent state of the whole network.

The term

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)

desribes a situation where the stores of the proesses 1, 2, and 3 have

the values st

1

, st

2

, and st

3

, respetively. The variable in

2

is a list of lists

ontaining all messages whih have been sent from Proess 1 to Proess 2,

but whih have not yet been reeived by Proess 2. Similarly, in

3

is the

list of those messages sent from Proess 2 to Proess 3, whih have not yet

been reeived by Proess 3. The messages sent from Proess 3 to Proess

1 are ignored, beause in our veri�ation problem we assume that Proess

1 reeives no new input any more. Again, m is the (maximum) length of

messages allowed.

In order to prove the desired onjeture, we fore the redution to termi-

nate as soon as all proesses in the ring an only send the empty message. In

addition to the auxiliary funtions of Set. 2 we now also need the funtions

head and tail whih are de�ned by the following rules.

head(ons(h; t))! h tail(ons(h; t))! t

The CTRS to desribe the behaviour of the three proesses in the ring

is the following one.

empty(fstsplit(m; st

1

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(sndsplit(m; st

1

); ons(fstsplit(m; st

1

); in

2

); st

2

; in

3

; st

3

;m) (17)

leq(m; length(st

2

))!

�

true;

empty(fstsplit(m; st

2

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; sndsplit(m; st

2

); ons(fstsplit(m; st

2

); in

3

); st

3

;m) (18)

leq(m; length(st

2

))!

�

false;

empty(fstsplit(m; app(map f(2; head(in

2

)); st

2

)))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; tail(in

2

); sndsplit(m; app(map f(2; head(in

2

)); st

2

));

ons(fstsplit(m; app(map f(2; head(in

2

)); st

2

)); in

3

); st

3

;m) (19)
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empty(map f(2; head(in

2

)))!

�

true j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)! ring(st

1

; tail(in

2

); st

2

; in

3

; st

3

;m) (20)

leq(m; length(st

3

))!

�

true;

empty(fstsplit(m; st

3

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; st

2

; in

3

; sndsplit(m; st

3

);m) (21)

leq(m; length(st

3

))!

�

false;

empty(fstsplit(m; app(map f(3; head(in

3

)); st

3

)))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; st

2

; tail(in

3

); sndsplit(m; app(map f(3; head(in

3

)); st

3

));m) (22)

empty(map f(3; head(in

3

)))!

�

true j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)! ring(st

1

; in

2

; st

2

; tail(in

3

); st

3

;m) (23)

Rule (17) desribes how Proess 1 sends a message onsisting of the �rst

m items in its store st

1

. To that end, fstsplit(m; st

1

) is added to those other

items in

2

whih were already sent as an input to Proess 2, but whih have

not yet been reeived by this next proess. These �rst m items are taken

out of the store st

1

, i.e., its new value is sndsplit(m; st

1

).

The rules (18) and (19) desribe the ase where Proess 2 sends a mes-

sage. If its store already ontains at leastm items, then Rule (18) applies and

the �rst m items fstsplit(m; st

2

) are diretly sent to Proess 3, after whih

these items are removed from its store. Otherwise, if st

2

ontains less than

m items, then Rule (19) is used to reeive one of the inoming messages from

in

2

, i.e., in

2

is replaed by tail(in

2

). For these reeived items head(in

2

), the

proess omputes new items map f(2; head(in

2

)) and appends these newly

omputed items to its store. Afterwards it sends the �rst m items of the

new extended store to Proess 3.

Finally, Rule (20) deletes those messages from in

2

that Proess 2 would

not generate any new items from (i.e., where map f(2; head(in

2

)) is empty).

This rule is required in order to allow Proess 2 to ontinue reeiving

messages from tail(in

2

), even if fstsplit(m; app(map f(2; head(in

2

)); st

2

)) is

empty.

Similarly, Rules (21) and (22) desribe the sending of messages by Pro-

ess 3. The only di�erene is that messages sent by Proess 3 are not deliv-

ered to Proess 1 again, but they are ignored. Analogous to Rule (20), Rule

(23) is used to remove those messages from in

3

for whih Proess 3 does

not ompute new items. The ring-term will be irreduible as soon as none

of the proesses an send a non-empty message any longer.
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To prove the desired onjeture, we have to show that this CTRS is

left-right dereasing. Note that this CTRS indeed models an asynhronous

behaviour of the proesses. The reason is that we do not determine in whih

order the proesses send messages to the next proess in the ring. Conse-

quently, the translation of this CTRS yields a non-onuent unonditional

TRS. In the following TRS, \. . . " abbreviates the arguments \st

1

; in

2

; st

2

;

in

3

; st

3

;m".

ring(: : :) ! if

1

(: : : ; empty(fstsplit(m; st

1

))) (24)

if

1

(: : : ; false) ! ring(sndsplit(m; st

1

); ons(fstsplit(m; st

1

); in

2

); st

2

; in

3

; st

3

;m)

(25)

ring(: : :) ! if

2

(: : : ; leq(m; length(st

2

))) (26)

if

2

(: : : ; true) ! if

3

(: : : ; empty(fstsplit(m; st

2

))) (27)

if

3

(: : : ; false) ! ring(st

1

; in

2

; sndsplit(m; st

2

); ons(fstsplit(m; st

2

); in

3

); st

3

;m)

(28)

if

2

(: : : ; false) ! if

4

(: : : ; empty(fstsplit(m; app(map f(2; head(in

2

)); st

2

)))) (29)

if

4

(: : : ; false) ! ring(st

1

; tail(in

2

); sndsplit(m; app(map f(2; head(in

2

)); st

2

));

ons(fstsplit(m; app(map f(2; head(in

2

)); st

2

)); in

3

); st

3

;m)

(30)

ring(: : :) ! if

5

(: : : ; empty(map f(2; head(in

2

)))) (31)

if

5

(: : : ; true) ! ring(st

1

; tail(in

2

); st

2

; in

3

; st

3

;m) (32)

ring(: : :) ! if

6

(: : : ; leq(m; length(st

3

))) (33)

if

6

(: : : ; true) ! if

7

(: : : ; empty(fstsplit(m; st

3

))) (34)

if

7

(: : : ; false) ! ring(st

1

; in

2

; st

2

; in

3

; sndsplit(m; st

3

);m) (35)

if

6

(: : : ; false) ! if

8

(: : : ; empty(fstsplit(m; app(map f(3; head(in

3

)); st

3

)))) (36)

if

8

(: : : ; false) ! ring(st

1

; in

2

; st

2

; tail(in

3

);

sndsplit(m; app(map f(3; head(in

3

)); st

3

));m) (37)

ring(: : :) ! if

9

(: : : ; empty(map f(3; head(in

3

)))) (38)

if

9

(: : : ; true) ! ring(st

1

; in

2

; st

2

; tail(in

3

); st

3

;m) (39)

Aording to Corollary 3 now it suÆes to show that this TRS is termi-

nating. Note that this TRS is obviously not simply terminating. For exam-

ple, by adding the embedding rules fstsplit(m; st

1

)! st

1

, sndsplit(m; st

1

)!

st

1

, empty(l) ! l, and ons(h; t) ! t to the �rst two rules (24) and (25),

one an obtain a yling redution of ring(false; in

2

; st

2

; in

3

; st

3

;m) to itself.
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In fat, to prove termination of this TRS using the dependeny pair

approah in ombination with simpli�ation orderings, we again need our

re�nements of narrowing and rewriting dependeny pairs. However, reall

that the re�nements of the theorems 12 - 15 were restrited to innermost

termination proofs. In the example of Set. 3, the resulting TRS was non-

overlapping and thus, innermost termination was enough to onlude its

termination. However, now we have a TRS whih is not onuent and hene,

none of the existing results for proving termination by innermost termina-

tion is appliable.

Nevertheless, the following theorem shows that for TRSs like the one

in our example, innermost termination still implies termination. Note that

our TRS is a hierarhial ombination of a non-overlapping TRS R

1

(whih

de�nes the auxiliary funtions) and an overlapping TRS R

2

with the ring-

and if-rules to desribe the network veri�ation problem. In fat, TRSs of

this form our frequently in the proess veri�ation domain, sine the aux-

iliary Erlang funtions always result in non-overlapping rules, whereas the

desription of an asynhronous proess network often requires overlapping

rules. The following theorem gives a syntatial haraterization of these

TRSs, and it shows that for suh systems, innermost termination already

implies termination. Hene, this theorem is an important result in order to

failitate their termination proofs.

Theorem 16 (SuÆieny of Innermost Termination) Let R = R

1

[

R

2

, where R

1

is non-overlapping, R

2

is non-ollapsing, and R

2

-rules do

not form ritial pairs with R

1

-rules. Let � ontain all root symbols of

left- and right-hand sides of R

2

-rules, i.e., � = froot(l)j l ! r 2 R

2

g [

froot(r)j l ! r 2 R

2

g. If no R

1

-rule ontains symbols from � and if

no R

2

-rule ontains symbols from � below the root level, then innermost

termination of R implies termination of R.

Proof For any ground term t, we write t = C[[t

1

; : : : ; t

n

℄℄ provided that C is

a non-empty ontext (i.e., C 6= 2) whih does not ontain symbols from �

below the root level and provided that root(t

i

) 2 � for all 1 � i � n. Now

it is easy to see that if t = C[[t

1

; : : : ; t

n

℄℄ and t !

R

s, then we have one of

the following three possibilities:

(i) s = C[[t

1

; : : : ; t

i�1

; s

i

; t

i+1

; : : : ; t

n

℄℄ and t

i

!

R

s

i

for some 1 � i � n

(in this ase, we speak of a bottom rewrite step)

(ii) s = C

0

[[s

1

; : : : ; s

m

℄℄, C !

R

C

0

, and fs

1

; : : : ; s

m

g � ft

1

; : : : ; t

n

g

(in this ase, we speak of a top rewrite step)

(iii) s = t

i

for some 1 � i � n

(in this ase, we have a top ollapsing rewrite step).

The reason is that reduing a term t with root(t) 2 � again yields a term

whose root is from � and that symbols of � do not our below the root

level in any rule of R. Thus, if the root of the redex is in C, then we really

must have a step of the form (ii) or (iii).
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Now assume that R is innermost terminating, but not terminating. Let t

be a minimal ground term (w.r.t. the subterm relation) suh that t starts an

in�niteR-redution. Again, we must have t = C[[t

1

; : : : ; t

n

℄℄ for some ontext

C. Due to the minimality of t, its subterms t

1

; : : : ; t

n

are terminating. Thus,

in the in�nite redution of t, there annot be any top ollapsing rewrite step

and there an only be �nitely many bottom rewrite steps. Hene, C starts

an in�nite R-redution as well.

In other words, if R is not terminating, then there exists a non-termina-

ting ontext C whih does not ontain any �-symbol below the root level.

To use standard notation, we will now denote this ontext C by q, sine a

ontext is just a term possibly ontaining `2' symbols.

First suppose that q does not ontain any �-symbol at all. Then the only

rules appliable in any redution of q are from R

1

. However, R's innermost

termination implies that all innermost redutions starting from q are �nite.

Thus, q is innermost terminating w.r.t. R

1

and sine R

1

is non-overlapping,

by [22, Thm. 3.2.11 (1a)℄ we know that q is also terminating, whih yields

a ontradition.

Thus, innermost termination of R in fat implies termination of R

1

for

all terms without symbols from �. Now suppose that the root of q is from

�, i.e., q has the form f

0

(s

0

) with f

0

2 � and s

0

are terms without symbols

from �. Thus, the in�nite R-redution of f

0

(s

0

) must have the following

form.

f

0

(s

0

)!

�

R

1

f

0

(t

0

)!

R

2

f

1

(s

1

)!

�

R

1

f

1

(t

1

)!

R

2

f

2

(s

2

)!

�

R

1

: : :

Here, we have f

i

2 � for all i, the terms s

i

and t

i

do not ontain any

symbols from �, and we have s

i

!

�

R

1

t

i

.

Hene, there must be substitutions �

i

and rules f

i

(l

i

) ! f

i+1

(r

i

) in

R

2

suh that l

i

�

i

= t

i

and r

i

�

i

= s

i+1

. Let �

0

i

be the substitution with

�

0

i

(x) = (�

i

(x)) #

R

1

. (For terms without symbols from �, the normal form

w.r.t. R

1

is well de�ned, sine these terms are terminating and R

1

is non-

overlapping.) Sine R

2

does not form ritial pairs with R

1

-rules, we have

l

i

�

0

i

= (l

i

�

i

) #

R

1

= t

i

#

R

1

= s

i

#

R

1

. Moreover, we have (r

i

�

0

i

) #

R

1

= s

i+1

#

R

1

by the onvergene of R

1

for terms without symbols from �. This implies

f

0

(s

0

#

R

1

)!

R

2

f

1

(r

0

�

0

0

)!

�

R

1

f

1

(s

1

#

R

1

)!

R

2

f

2

(r

1

�

0

1

)!

�

R

1

f

2

(s

2

#

R

1

)!

R

2

: : :

Sine R

1

is terminating, we an use innermost steps to redue eah

r

i

�

0

i

to its normal form s

i+1

#

R

1

. Moreover, all the R

2

-steps in the above

redution are innermost steps as well, sine the arguments s

i

#

R

1

are in

normal form. Thus, the above redution is an in�nite innermost redution,

whih yields a ontradition to the innermost termination of R. ut

Thus in our example, innermost termination of the transformed TRS

indeed implies termination of the TRS and thus, it implies left-right de-

reasingness of the original CTRS. Hene, in this way the property of the

proess network an be proved.
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As indiated, to perform this innermost termination proof, we again need

our re�nements of narrowing and rewriting dependeny pairs. However, as

this TRS is not onuent, for this purpose these tehniques now have to be

extended to overlapping TRSs.

It turns out that suh an extension is indeed possible, beause for the

theorems 13 - 15 it is in fat suÆient to demand non-overlappingness (resp.

the unique normal form property) just for the usable rules U(P) instead of

the whole TRS R. In our example, the usable rules of the RING-yles only

onsist of the rules for the auxiliary funtions, i.e., the rules (24) - (39)

are not usable. As demonstrated in Set. 2, these auxiliary rules are non-

overlapping. Thus, the following extensions of the theorems 13 - 15 allow us

to apply our new tehniques for TRSs like the one above, too. In this way,

onjetures about asynhronous networks of proesses an now be veri�ed

by dependeny pairs as well.

Theorem 17 (Completeness of Narrowing for Non-Conuent Sys-

tems) Let R be an innermost terminating TRS, let P, P

0

be as in Thm.

12 and let U(P) have the unique normal form property. If there exists no

in�nite innermost R-hain of pairs from P, then there exists no in�nite

innermost R-hain of pairs from P

0

either.

Proof The proof is similar to the one of Thm. 13. The only di�erene is

the proof that t�!

�

R

v

2

� implies t�

i

!

�

R

v

2

� for the normal form v

2

�. The

reason is that innermost termination ofR implies that there must exist some

normal form q suh that t�

i

!

�

R

q. Note that all rules used in any redution

of t� are ontained in U(P). Thus, the unique normal form property of U(P)

is enough to onlude q = v

2

�. ut

Theorem 18 (Rewriting Pairs for Non-Conuent TRSs) Let R be a

TRS and let P be a set of pairs of terms suh that U(P) is non-overlapping.

Let hs; ti 2 P, let t !

R

r and let P

0

result from P by replaing hs; ti with

hs; ri. If there exists no in�nite innermost hain of pairs from P

0

, then there

exists no in�nite innermost hain from P either.

Proof Again, the proof is similar to the proof of Thm. 14. The only ex-

tra observation needed is that t�

i

!

�

R

v� implies t�

i

!

�

U(P)

v�, sine all

rules appliable in a redution of t� are ontained in U(P). Hene, by non-

overlappingness of U(P) we an apply [22, Thm. 3.2.11 (1a) and (4a)℄ to

onlude termination and onuene of t� w.r.t. U(P). But as all rules ap-

pliable in redutions of t� are already ontained in U(P), this means that

t� is terminating and onuent w.r.t. R as well. Thus, now the rest of the

proof is idential to the one of Thm. 14. ut

Theorem 19 (Completeness of Rewriting for Non-Conuent TRS)

Let R be an innermost terminating TRS, let P, P

0

be as in Thm. 18, and

let U(P) have the unique normal form property. If there exists no in�nite

innermost R-hain of pairs from P, then there exists no in�nite innermost

R-hain of pairs from P

0

either.
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Proof The hanges to the proof of Thm. 15 are similar as in the proof

of Thm. 17. We have t�!

�

R

v� for some normal form v� and innermost

termination of R implies t�

i

!

�

R

q for some normal form q. Again, all these

redution steps only use rules from U(P). Thus, U(P)'s unique normal form

property implies v� = q. ut

Note that with these re�ned theorems we an also handle TRSs where

di�erent, but equivalent if-symbols are not identi�ed (f. Set. 3). However

in pratie, suh an identi�ation is still useful, sine it simpli�es the TRSs

onsiderably.

In partiular, due to the above extended theorems, now we may apply

narrowing and rewriting to the dependeny pairs resulting from the rules

(24) - (39). The only dependeny pair resulting from Rule (24) whih is on a

yle is hRING(: : :); IF

1

(: : :)i. Narrowing and rewriting this dependeny pair

(and deleting those resulting pairs whih are not on yles) yields

hRING(ons(h; t); : : : ; s(n)); IF

1

(ons(h; t); : : : ; s(n); false)i: (40)

Next we regard the dependeny pair hIF

1

(: : :); RING(: : :)i resulting from

Rule (25). One would like to perform narrowing on this dependeny pair.

However, this is not possible sine its right-hand side uni�es with the left-

hand sides of the dependeny pairs resulting from the rules (26), (31), (33),

and (38). In fat, this problem is typial when regarding overlapping TRSs.

Nevertheless, the only pair whih may our before hIF

1

(: : :); RING(: : :)i

in an innermost hain is (40). When regarding (40), one immediately sees

that therefore one only has to regard instantiations of hIF

1

(: : :); RING(: : :)i

where st

1

is replaed by ons(h; t) and m is replaed by s(n).

Reall that when estimating the innermost dependeny graph, for every

dependeny pair hs; ti we hek for whih (renamings of) dependeny pairs

hv; wi, ap(w) uni�es with s (where their mgu must satisfy some additional

normality ondition). Here, ap(w) results from replaing all subterms of

w with de�ned root symbols by di�erent fresh variables. Let �

1

; : : : ; �

k

be

all mgu's of s and terms of the form ap(w). Then one may replae the

dependeny pair hs; ti by its instantiations hs�

1

; t�

1

i, . . . , hs�

k

; t�

k

i, sine

(speializations of) these instantiations are the only ones that are needed

in in�nite innermost hains. This leads to the tehnique of instantiating

dependeny pairs.

Theorem 20 (Instantiating Pairs) Let P be a set of pairs of terms with

hs; ti 2 P and let Var(w) � Var(v) for all hv; wi 2 P. Let

P

0

= P n fhs; tig [ fhs�; t�i j� = mgu(ap(w); s); hv; wi 2 Pg;

where we again assume that di�erent ourrenes of pairs from P are vari-

able disjoint. Then there exists no in�nite innermost hain of pairs from P

0

i� there exists no in�nite innermost hain of pairs from P.
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Proof If : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : is an innermost hain, then there exists

a substitution � suh that w

1

�

i

!

�

R

s�. Let w

1

have the form C[p

1

; : : : ; p

n

℄,

where the ontext C ontains no de�ned symbols and all p

i

have a de�ned

root symbol. As redutions annot take plae in � (sine otherwise, v

1

�

would not be a normal form), we know that s� = C�[q

1

; : : : ; q

n

℄ where

p

i

�

i

!

�

R

q

i

.

We have ap(w

1

) = C[y

1

; : : : ; y

n

℄, where the y

i

are fresh variables. Let �

0

be the modi�ation of � suh that �

0

(y

i

) = q

i

. Then we obtain ap(w

1

)�

0

=

s� = s�

0

, i.e., ap(w

1

) and s are uni�able. Let � be the mgu of ap(w

1

) and

s. Thus, there exists a substitution � suh that �

0

= �� . As the variables

of all (ourrenes of all) pairs may be assumed disjoint, we may modify �

to behave like � on the variables of hs�; t�i. Then we have w

1

�

i

!

�

R

s� =

s�

0

= s�� = (s�)� and we also have (t�)� = t�� = t�

i

!

�

R

v

2

�. Thus,

: : : hv

1

; w

1

i hs�; t�i hv

2

; w

2

i : : : is an innermost hain, too.

In this way, one an replae all ourrenes of hs; ti in innermost hains

by pairs of P

0

, exept for the very �rst pair in the hain. However, if

hs; ti hv

1

; w

1

i hv

2

; w

2

i : : : is an in�nite innermost hain, then hv

1

; w

1

i hv

2

; w

2

i

: : : is an in�nite innermost hain as well. Thus, by deleting the possibly re-

maining �rst ourrene of hs; ti in the end, every in�nite innermost hain

of P an indeed be transformed into an in�nite innermost hain of P

0

.

For the other diretion, let : : : hs�; t�i : : : be an innermost hain. As

di�erent ourrenes of dependeny pairs may be assumed variable disjoint,

we an extend every substitution � to behave like �� on the variables of s.

Hene, this diretion of the theorem is immediately proved. ut

It should be remarked that the tehnique of instantiating dependeny

pairs an also be used for termination instead of innermost termination

proofs. When using dependeny pairs for arbitrary termination proofs, one

has to prove absene of in�nite hains (instead of innermost hains), where

hs

1

; t

1

i hs

2

; t

2

i : : : is an R-hain if there exists a substitution � suh that

t

j

� !

�

R

s

j+1

� for all onseutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i, f. [2,8℄.

Let ren(t) result from renaming all ourrenes of variables to fresh vari-

ables (in partiular, di�erent ourrenes of the same variable are also re-

named to di�erent new variables). If P

0

= P n fhs; tig [ fhs�; t�i j� =

mgu(ren(ap(w)); s); hv; wi 2 Pg, then there exists no in�nite hain of

pairs from P

0

i� there exists no in�nite hain of pairs from P . The proof is

very similar to the proof of Thm. 20. The only di�erene is that now we write

w

1

as C[p

1

; : : : p

n

℄ where C ontains no de�ned symbols or variables and all

p

i

either have a de�ned root symbol or they are variables. Then we know

that s� = C[q

1

; : : : ; q

n

℄ with p

i

� !

�

R

q

i

and ren(ap(w

1

)) = C[y

1

; : : : ; y

n

℄

where the y

i

are fresh variables. The rest of the proof is ompletely analo-

gous.

In our example, the only right-hand side of a pair whose ap uni�es with

the left-hand side IF

1

(st

1

; in

2

; st

2

; in

3

; st

3

;m; false) of the dependeny pair

from Rule (25) is IF

1

(ons(h; t); in

2

; st

2

; in

3

; st

3

; s(n); false) from Pair (40).
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Thus, we an instantiate st

1

by ons(h; t) and m by s(n) in the dependeny

pair hIF

1

(: : :); RING(: : :)i from Rule (25). Subsequent rewriting yields

hIF

1

(ons(h; t); : : : ; s(n); false); RING(sndsplit(n; t); : : : ; s(n))i: (41)

The only dependeny pair resulting from Rule (26) whih is on a yle

is

hRING(: : :); IF

2

(: : : ; leq(m; length(st

2

))i: (42)

For the dependeny pair hIF

2

(: : :); IF

3

(: : :)i from Rule (27) we proeed

in a similar way as for the one from Rule (24) whih yields

hIF

2

(: : : ; ons(h; t); : : : ; s(n); true); IF

3

(: : : ; ons(h; t); : : : ; s(n); false)i: (43)

Rule (28) gives rise to a dependeny pair hIF

3

(: : :);RING(: : :)i. The only

dependeny pair whih may preede this one in innermost hains is (43).

Thus, by the instantiation tehnique, st

2

an be replaed by ons(h; t) and

m an be replaed by s(n). Subsequent rewriting yields

hIF

3

(st

1

; in

2

; ons(h; t); : : :); RING(st

1

; in

2

; sndsplit(n; t); : : :)i: (44)

The dependeny pair hIF

2

(: : :); IF

4

(: : :)i from Rule (29) yields the fol-

lowing narrowing.

hIF

2

(st

1

; ons(h; t); : : :); IF

4

(st

1

; ons(h; t); : : :)i (45)

For the dependeny pair resulting from Rule (30) we only have to regard

the instantiation where in

2

is replaed by ons(h; t). Rewriting this pair

yields

hIF

4

(st

1

; ons(h; t); : : :); RING(st

1

; t; : : :)i: (46)

Similarly, narrowing the dependeny pair hRING(: : :); IF

5

(: : :)i from Rule

(31) yields

hRING(st

1

; ons(h; t); : : :); IF

5

(st

1

; ons(h; t); : : :)i: (47)

So the dependeny pair hIF

5

(: : :); RING(: : :)i from Rule (32) only has to

be regarded for the instantiation of in

2

by ons(h; t) and thus, rewriting it

results in

hIF

5

(st

1

; ons(h; t); : : :); RING(st

1

; t; : : :)i: (48)

Finally, for the dependeny pairs resulting from the rules (33) - (39) we

proeed in an analogous way and we obtain seven pairs similar to (42) -

(48). Now the resulting onstraints from the dependeny pair approah are

satis�ed by the lexiographi path ordering (lpo) [25℄ if one eliminates the

last arguments of all IF-symbols and the �rst argument of sndsplit before

(to bene�t from the fat that these symbols do not have to be strongly

monotoni in these arguments). In this way, all of the above dependeny

pairs are weakly dereasing and the ones with a RING-term as their right

omponent are stritly dereasing. The preedene used for this lpo should

make RING and the IF-symbols equally great, whereas the tuple symbols
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should be greater than all lower ase symbols. Of ourse, here we assume

that the rules for the funtion f are also weakly dereasing w.r.t. the lpo.

The reason is that now we onsider a problem where non-empty lists must

be proessed and thus, the f-rules are usable as well. Hene, as soon as the

atual rules for the funtion f are determined, their weak dereasingness has

to be heked.

Thus, in this setion we have demonstrated that although asynhronous

networks are desribed by non-onuent (C)TRSs, proving innermost ter-

mination is still suÆient for their termination proof. Subsequently, we have

shown that our tehniques of rewriting and narrowing dependeny pairs an

be extended to TRSs where just the usable rules (i.e., the rules for the aux-

iliary funtions) satisfy non-overlappingness requirements. Finally, we have

introdued a third tehnique for manipulating dependeny pairs, viz. in-

stantiation. In this way, now dependeny pairs an also be used to prove

statements about asynhronous networks of proesses.

8 Conlusion

We have shown that the dependeny pair approah an be suessfully ap-

plied for proess veri�ation tasks in industry. While our work was moti-

vated by spei� proess veri�ation problems, in this paper we developed

several tehniques whih are of general use in term rewriting.

First of all, we showed how dependeny pairs an be utilized to prove

that onditional term rewriting systems are dereasing and terminating.

Moreover, we presented three re�nements whih onsiderably inrease the

lass of systems where dependeny pairs are suessful. The �rst re�nement

of narrowing dependeny pairs for innermost termination was already intro-

dued in [8℄. However, [8℄ did not ontain an expliit proof of its soundness,

and ompleteness of the tehnique for TRSs with unique normal forms is a

new result. It ensures that appliation of the narrowing tehnique preserves

the suess of suh an innermost termination proof. In fat, our narrow-

ing re�nement is the main reason why the approah of handling CTRSs by

transforming them into TRSs is suessful in ombination with the depen-

deny pair approah (whereas this transformation is usually not of muh

use for the standard termination proving tehniques). To strengthen the

power of dependeny pairs we also introdued the novel tehnique of rewrit-

ing dependeny pairs and proved its soundness and ompleteness for inner-

most termination of non-overlapping TRSs. Finally, the re�nement of in-

stantiating dependeny pairs was presented and we showed how to lift the

non-overlappingness restritions for narrowing and rewriting dependeny

pairs in order to apply these tehniques to non-onuent TRSs. We also

developed a new syntatial haraterization for a lass of (possibly) non-

onuent TRSs where innermost termination implies termination, whih

aptures those rewrite systems desribing asynhronous proess networks.

This paper is a substantially revised and extended version of [6℄ and [7℄.
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Note that we have used the modularity results for the dependeny pair

tehnique [5℄ for both a split and onquer approah and for dealing with

the inompleteness of our spei�ation. For many reasons, in pratie it is

more rule than exeption that a spei�ation laks some information, like

the de�nition of the funtion f in our example. Usually, at a ertain level of

abstration one stops speifying and, hene, for many built-in funtions the

spei�ation is preferably hidden (e.g., one ould add a date as a time stamp

to every message where in many ases the omputation of this date is not

relevant). Thus, assuming some properties of the missing part of the spe-

i�ation and proving them for that part when it beomes available makes

sense. In that ontext the modularity of the dependeny pair tehnique is

of great help.

Our tehniques have shown to be suessfully appliable in small, but

real examples, where eventuality properties had to be proved. These expe-

rienes demonstrate that our approah is partiularly useful for verifying

properties of proesses where a lot of data manipulation is involved and

where ommuniation plays a minor role. Typially, these are the proper-

ties that are hard to handle by model-heking. The examples in this paper

represent suh situations where model-heking annot be used beause of

the arbitrary lengths of the stores. These problems have also been takled

by a speialized proof heker for Erlang [1℄. Compared to dependeny pairs,

the proof heker approah is more generally appliable. But sine in that

approah the proofs had, up to a great extend, to be provided by hand,

the dependeny pair approah has the important advantage that it is muh

better suitable for automation.
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