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Abstract. Several induction theorem provers were developed to verify
functional programs mechanically. Unfortunately, automated verification
usually fails for functions with accumulating arguments. In particular,
this holds for tail-recursive functions that correspond to imperative pro-
grams, but also for programs with nested recursion.
Based on results from the theory of tree transducers, we develop an au-
tomatic transformation technique. It transforms accumulative functional
programs into non-accumulative ones, which are much better suited for
automated verification by induction theorem provers. Hence, in contrast
to classical program transformations aiming at improving the efficiency,
the goal of our deaccumulation technique is to improve the provability.

1 Introduction

In safety-critical applications, a formal verification of programs is required.
However, since mathematical correctness proofs are very expensive and time-
consuming, one tries to automate this task as much as possible. Since induction

is an important proof technique required for program verification, several induc-

tion theorem provers have been developed, which can be used for mechanized
reasoning about program properties (e.g., NQTHM [4], ACL-2 [17], RRL [16],
CLAM [5], INKA [1, 26], and SPIKE [3]). However, while such provers are suc-
cessfully applied for functional programs, they often have severe problems in
dealing with imperative programs.

As running example, we consider the calculation of a decreasing list contain-
ing the first x1 even numbers (i.e., [2x1 − 2, . . . , 4, 2, 0]). This problem can be
solved by the following part peven of an imperative program (in C-like syntax):

[int] even (int x1)

{ int y1 = 0; [int] y2 = [];

while (x1!=0) { y2 = y1:y2; y1 = y1+2; x1--; }

return y2; }

Here, [int] denotes the type of integer lists, [] denotes the empty list, and :

denotes list insertion, i.e., y1 : y2 inserts the element y1 in front of the list y2.
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Classical techniques for verifying imperative programs are based on inventing
suitable loop invariants [13]. However, while there are heuristics for finding loop
invariants [15, 23], in general this task is hard to mechanize [7].

Instead, our aim is to use the existing powerful induction theorem provers
also for the verification of imperative programs. To this end, imperative pro-
grams are translated into the functional input language of induction provers. In
the absence of pointers, such an automatic translation is easily possible [20] by
transforming every while-loop into a separate function whose parameters record
the changes during a run through the while-loop. For our program peven we ob-
tain the following tail-recursive program pacc (in Haskell-like syntax) together
with an initial call racc = (f x1 0 [ ]). It uses pattern matching on x1 (called
recursion argument) and represents natural numbers with the constructors 0 and
S for the successor function:

pacc : f (S x1) y1 y2 = f x1 (S (S y1)) (y1 : y2)
f 0 y1 y2 = y2

The above translation of imperative into functional programs always yields tail-
recursive functions that compute their result using accumulators. Indeed, f accu-
mulates values in its context arguments (arguments different from the recursion
argument, i.e., f ’s second and third argument). A function is called accumula-

tive if its context arguments are modified in its recursive calls. For instance, f
is accumulative, because both the second and the third argument do not remain
unchanged in the recursive call. A program like pacc is called accumulative if it
contains an accumulative function.

Assume that our aim is to verify the equivalence of racc and rq = (q x1) for
all natural numbers x1, where pq is the following functional specification of our
problem. Here, (q x1) calculates the desired list and (q′ x1) computes 2 · x1:

q (S x1) = (q′ x1) : (q x1) q′ (S x1) = S (S (q′ x1))
q 0 = [ ] q′ 0 = 0

Note that even if there exists a “natural” non-accumulative recursive specifica-
tion of a problem, imperative programs are typically written using loops, which
translate into accumulative programs. The accumulative version may also be
more efficient than a non-accumulative implementation (see e.g., App. B).

But unfortunately, accumulative programs are not suitable for mechanized
verification. For example, an automatic proof of

(f x1 0 [ ]) = (q x1)

by induction (using this equation for fixed x1 as induction hypothesis) fails,
because in the induction step (x1 7→ (S x1)) the induction hypothesis cannot
be successfully applied to prove (f (S x1) 0 [ ]) = (q (S x1)). For instance,
for this conjecture the ACL-2 prover performs a series of generalizations that
do not increase verifiability, and it ends up with consuming all memory avail-
able. The reason for the verification problems is that f uses accumulators: the
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context arguments of the term (f x1 (S (S 0)) (0 : [ ])), which originates from
rule application to (f (S x1) 0 [ ]), do not fit to the context arguments of the
term (f x1 0 [ ]) in the induction hypothesis! So the problem is that accumu-
lating parameters are typically initialized with some fixed values (like 0 and [ ]),
which then appear also in the conjecture to be proved and hence in the induc-
tion hypothesis. But since accumulators are changed in recursive calls, after rule
application we have different values like (S (S 0)) and (0 : [ ]) in the induction
conclusion of the step case.

In induction theorem proving, this problem is usually solved by transforming
the conjecture to be proved. In other words, the aim is to invent a suitable
generalization (see, e.g., [4, 14, 15, 26]). So, instead of the original conjecture
(f x1 0 [ ]) = (q x1), one tries to find a stronger conjecture that however is easier

to prove. In our example, the original conjecture may be generalized to

(f x1 y1 y2) = (q̄ x1 y1) ++ y2 ,

where ++ denotes list concatenation and where q̄ and q̄′ are defined as follows:

q̄ (S x1) y1 = (q̄′ x1 y1) : (q̄ x1 y1) q̄′ (S x1) y1 = S (S (q̄′ x1 y1))
q̄ 0 y1 = [ ] q̄′ 0 y1 = y1

However, finding such generalizations automatically is again very hard. In fact, it
is as difficult as discovering loop invariants for the original imperative program.
Therefore, developing techniques to verify accumulative functions is one of the
most important research topics in the area of inductive theorem proving [14].

In contrast to the classical approach of generalizing conjectures, we suggest
an automated program transformation, which transforms functions that are hard
to verify into functions that are much more suitable for mechanized verification.
The advantage of this approach is that it works fully automatically and that by
transforming a function definition, the verification problems with this function
are solved once and for all (i.e., for all conjectures one would like to prove about
this function). In contrast, when using the generalization approach, one has to
find a new generalization for every new conjecture to be proved. In particu-
lar, finding generalizations automatically is difficult for conjectures with several

occurrences of an accumulative function (see e.g., [12] and App. A and B).
The semantics-preserving transformation to be presented in this paper trans-

forms the original program pacc into the following program pnon :

pnon : f ′ (S x1) = sub (f ′ x1) (S (S 0)) (0 : [ ])
f ′ 0 = [ ]

sub (x1 : x2) y1 y2 = (sub x1 y1 y2) : (sub x2 y1 y2) sub 0 y1 y2 = y1

sub (S x1) y1 y2 = S (sub x1 y1 y2) sub [ ] y1 y2 = y2

together with an initial call rnon = (f ′ x1). Since pnon contains a function f ′

without context arguments, and a function sub with unchanged context argu-
ments in recursive calls, pnon is a non-accumulative program and our transfor-
mation technique is called deaccumulation. An application of the substitution
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function1 sub of the form (sub t s1 s2) replaces all occurrences of 0 in the term
t by the term s1 and all occurrences of [ ] by s2. For instance, the decreasing list
of the first three even numbers is computed by pnon as follows:

f ′ (S3 0) ⇒4
pnon

sub (sub (sub [ ] (S2 0) (0 : [ ])) (S2 0) (0 : [ ])) (S2 0) (0 : [ ])
⇒pnon

sub (sub (0 : [ ]) (S2 0) (0 : [ ])) (S2 0) (0 : [ ])

⇒3
pnon

sub ((S2 0) : (0 : [ ])) (S2 0) (0 : [ ])

⇒7
pnon

(S4 0) : ((S2 0) : (0 : [ ]))

This computation shows that the constructors 0 and [ ] in pnon are used as “place-
holders”, which are repeatedly substituted by (S2 0) and (0 : [ ]), respectively.

Now, the statement (f ′ x1) = (q x1) (taken as induction hypothesis IH1)
can be proved automatically by three nested inductions as follows. During the
proof, the new subgoals

IH2 : (sub (q x1) (S2 0) (0 : [ ])) = ((q′ x1) : (q x1)) and
IH3 : (sub (q′ x1) (S2 0) (0 : [ ])) = (S2 (q′ x1))

are generated. Note that there is no need to invent these subgoals manually here,
as these proof obligations show up automatically during the course of the proof.
We only give the induction steps (x1 7→ (S x1)) of the first two inductions and
omit the base cases (x1 = 0). A similar proof can also be generated by existing
induction theorem provers like ACL-2.

f ′ (S x1)
= sub (f ′ x1) (S2 0) (0 : [ ])
= sub (q x1) (S2 0) (0 : [ ]) (IH1)
= (q′ x1) : (q x1) (IH2)
= q (S x1)

sub (q (S x1)) (S2 0) (0 : [ ])
= sub ((q′ x1) : (q x1)) (S2 0) (0 : [ ])
= (sub (q′ x1) (S2 0) (0 : [ ])) : (sub (q x1) (S2 0) (0 : [ ]))
= (sub (q′ x1) (S2 0) (0 : [ ])) : ((q′ x1) : (q x1)) (IH2)
= (S2 (q′ x1)) : ((q′ x1) : (q x1)) (IH3)
= (q′ (S x1)) : (q (S x1))

In this paper we consider the definition of f in pacc as a macro tree transducer

(for short mtt) [8, 9, 11] with one function: in general, such an f is defined by case
analysis on the root symbol of the recursion argument t. The right-hand side of
an equation for f may only contain (extended) primitive-recursive function calls,
i.e., the recursion argument of f has to be a variable that refers to a subtree of t.
The functions f ′ and sub together are viewed as a 2-modular tree transducer (for
short modtt) [10], where it is allowed that a function in module 1 (here f ′) calls
a function in module 2 (here sub) non-primitive-recursively.

1 For simplicity, we regard an untyped language. When introducing types, one would
generate several substitution functions for the different types of arguments.
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We slightly modify a decomposition technique from [19] that is based on
results in [8–10] and transforms mtts like f into modtts like f ′ and sub without
accumulators. Unfortunately, it turns out that the new programs are still not
suitable for automatic verification. Since their verification problems are caused
only by the form of the new initial calls, we suggest another transformation step,
called constructor replacement, which yields initial calls of the innocuous form
(f ′ x1) without initial values like 0 and [ ].

Since the class of mtts contains not only tail-recursive programs, but also
programs with nested recursion, we will demonstrate by examples that our trans-
formation can not only be useful for functions resulting from the translation of
imperative programs, but for accumulative functional programs in general!

Besides this introduction, the paper contains four further sections and two
appendices. In Sect. 2 we fix the required notions and notations and introduce
our functional language and tree transducers. Sect. 3 presents the deaccumula-
tion technique. Sect. 4 compares our technique to related work. Finally, Sect. 5
contains future research topics. Two additional examples demonstrating the ap-
plication of our approach can be found in the appendices.

2 Preliminaries and Language

For every natural number m ∈ N, [m] denotes the set {1, . . . , m}. We use the
sets X = {x1, x2, x3, . . .} and Y = {y1, y2, y3, . . .} of variables. For every n ∈ N,
let Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn}. In particular, X0 = Y0 = ∅.

A ranked alphabet (C, rank ) consists of a finite set C and a mapping rank :
C → N where rank(c) is the arity of c. We define C(n) = {c ∈ C | rank(c) = n}.
The set of trees (or ground terms) over C, denoted by TC , is the smallest subset
T ⊆ (C ∪ {(} ∪ {)})∗ with C(0) ⊆ T and for every c ∈ C(n) with n ∈ N − {0}
and t1, . . . , tn ∈ T : (c t1 . . . tn) ∈ T . For a term t, pairwise distinct variables
x1, . . . , xn, and terms t1, . . . , tn, we denote by t[x1/t1, . . . , xn/tn] the term that
is obtained from t by substituting every occurrence of xj in t by tj . We abbreviate
[x1/t1, . . . , xn/tn] by [xj/tj], if the involved variables and terms are clear.

We consider a simple first-order, constructor-based functional programming
language P as source and target language for the transformations. Every program
p ∈ P consists of several modules. In every module a function is defined by
complete case analysis on the first argument (recursion argument) via pattern
matching, where only flat patterns of the form (c x1 . . . xk) for constructors c and
variables xi are allowed. The other arguments are called context arguments. If, in
a right-hand side of a function definition, there is a call of the same function, then
the first argument of this function call has to be a subtree xi of the first argument
in the corresponding left-hand side. To ease readability, we choose an untyped
ranked alphabet Cp of constructors, which is used to build up input and output
trees of every function in p. In example programs and program transformations
we relax the completeness of function definitions on TCp

by leaving out those
equations which are not intended to be used in evaluations.
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Definition 1 Let C and F be ranked alphabets of constructors and defined

function symbols, respectively, such that F (0) = ∅, and X , Y , C, F are pairwise
disjoint. We define the sets P , M , R of programs, modules, and right-hand sides

as follows. Here, p, m, r, c, f range over the sets P , M , R, C, F , respectively.

p ::= m1 . . .ml (program)
m ::= f (c1 x1 . . . xk1

) y1 . . . yn = r1 (module)
. . .

f (cq x1 . . . xkq
) y1 . . . yn = rq

r ::= xi | yj | c r1 . . . rk | f r0 r1 . . . rn (right-hand side)

The sets of constructors, defined functions, and modules that occur in p ∈ P are
denoted by Cp, Fp, and Mp, respectively. For every f ∈ Fp, there is exactly one
m ∈ Mp such that f is defined in m. Then, f is also denoted by fm. For every

f ∈ F
(n+1)
p and c ∈ C

(k)
p , there is exactly one equation of the form

f (c x1 . . . xk) y1 . . . yn = rhsp,f,c

with rhsp,f,c ∈ RHS(f, Cp∪Fp−{f}, Xk, Yn), where for every f ∈ F , C′ ⊆ C∪F ,
and k, n ∈ N, RHS(f, C′, Xk, Yn) is the smallest set RHS satisfying:

– For every i ∈ [k] and r1, . . . , rn ∈ RHS : (f xi r1 . . . rn) ∈ RHS .

– For every c ∈ C′(a)
and r1, . . . , ra ∈ RHS : (c r1 . . . ra) ∈ RHS .

– For every j ∈ [n]: yj ∈ RHS . �

Note that, in addition to constructors, defined function symbols may also be
contained in the second argument C′ of RHS in the previous definition. The
functions in C′ may then be called with arbitrary arguments in right-hand sides,
whereas in recursive calls of f , the recursion argument must be an xi.

Example 2 Consider the programs pacc and pnon from the introduction:

– pacc ∈ P , where Mpacc
contains one module macc,f with the definition of f .

– pnon ∈ P , Mpnon
contains modules mnon,f ′ , mnon,sub defining f ′ and sub. �

Now, we introduce the classes of tree transducers relevant for this paper. Since
in our language every module defines exactly one function, to simplify the pre-
sentation we also project this restriction on tree transducers. In the literature,
more general classes of macro tree transducers [8, 9] and modular tree transduc-

ers [10] are studied, which allow mutual recursion. Our transformation could
also handle these classes. In contrast to the literature, we include an initial call

r in the definition of tree transducers, which has the form of a right-hand side.

Definition 3 Let p ∈ P .

– A pair (m, r) with m ∈ Mp and r ∈ RHS(fm, Cp, X1, Y0) is called a one-state

macro tree transducer of p (for short 1-mtt of p), if for every c ∈ C
(k)
p we

have rhsp,fm,c ∈ RHS(fm, Cp, Xk, Yn), where fm ∈ F
(n+1)
p .

Thus, the function fm from module m may call itself in a primitive-recursive
way, but it does not call any functions from other modules. Moreover, the
initial call r is a term built from fm, constructors, and the variable x1 as
first argument of all subterms rooted with fm.
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– A triple (m1, m2, r) with m1, m2 ∈ Mp is called homomorphism-substitution

modular tree transducer of p (for short hsmodtt of p), if there are n ∈ N and

pairwise distinct substitution constructors π1, . . . , πn ∈ C
(0)
p , such that:

1. fm1
∈ F

(1)
p and fm2

= sub ∈ F
(n+1)
p ,

2. for every c ∈ C
(k)
p we have rhsp,fm1

,c ∈ RHS(fm1
, Cp ∪ {sub}, Xk, Y0),

3. m2 contains the equations
sub πj y1 . . . yn = yj , for every j ∈ [n]
sub (c x1 . . . xk) y1 . . . yn = c (sub x1 y1 . . . yn) . . . (sub xk y1 . . . yn) ,

for every c ∈ (Cp − {π1, . . . , πn})(k)

4. r ∈ RHS(fm1
, (Cp − {π1, . . . , πn}) ∪ {sub}, X1, Y0).

Thus, the function from the module m1 is unary. In its right-hand sides, it
may call itself primitive-recursively and it may call the function sub from the
module m2 with arbitrary arguments. The function sub has the special form
of a substitution function, where (sub t s1 . . . sn) replaces all occurrences
of the substitution constructors π1, . . . , πn in t by s1, . . . , sn, respectively.
The initial call r is as for 1-mtts, but it may also contain sub, whereas the
substitution constructors π1, . . . , πn may not appear in it.

– A 1-mtt (m, r) of p is called nullary constructor disjoint (for short ncd), if

there are pairwise different nullary constructors c1, . . . , cn ∈ C
(0)
p , such that

r = (fm x1 c1 . . . cn) and c1, . . . , cn do not occur in right-hand sides of m.
An hsmodtt (m1, m2, r) of p is called ncd, if r = (sub (fm1

x1) c1 . . . cn)

with pairwise different c1, . . . , cn ∈ C
(0)
p − {π1, . . . , πn} that do not occur in

right-hand sides of m1.
– An hsmodtt (m1, m2, r) of p is initial value free (ivf ), if r = (fm1

x1). �

Example 4 (Ex. 2 continued)

– (macc,f , racc) with initial call racc = (f x1 0 [ ]) is a 1-mtt of pacc that is ncd.
– Our transformation consists of the two steps “decomposition” and “construc-

tor replacement”. Decomposition transforms pacc into the following program
pdec ∈ P , which contains the modules mdec,f ′ and mdec,sub :

f ′ (S x1) = sub (f ′ x1) (S (S π1)) (π1 : π2)
f ′ 0 = π2

sub (x1 : x2) y1 y2 = (sub x1 y1 y2) : (sub x2 y1 y2) sub [ ] y1 y2 = [ ]
sub (S x1) y1 y2 = S (sub x1 y1 y2) sub π1 y1 y2 = y1

sub 0 y1 y2 = 0 sub π2 y1 y2 = y2

Here, (mdec,f ′ , mdec,sub, rdec) with the initial call rdec = (sub (f ′ x1) 0 [ ]) is
an hsmodtt of pdec that is ncd, but not ivf.

– (mnon,f ′ , mnon,sub , rnon ) with rnon = (f ′ x1) and the modules from the in-
troduction is an hsmodtt of pnon that is ivf (n = 2, π1 = 0, π2 = [ ]). �

For every program p ∈ P , its evaluation is described by a (nondeterministic)
reduction relation ⇒p on TCp∪Fp

. As usual, ⇒n
p and ⇒∗

p denote the n-fold com-
position and the transitive, reflexive closure of ⇒p, respectively. If t ⇒∗

p t′ and
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there is no t′′ such that t′ ⇒p t′′, then t′ is called a normal form of t, which is
denoted by nfp(t), if it exists and is unique. It can be proved in analogy to [10]
that for every program p ∈ P , hsmodtt (m1, m2, r) of p (and 1-mtt (m, r) of p),
and t ∈ T{fm1

,fm2
}∪Cp

(and t ∈ T{fm}∪Cp
, respectively), there exists a unique

normal form nfp(t). In particular, for every t ∈ TCp
the normal form nfp(r[x1/t])

exists. The proof is based on the result that for every modtt and mtt the cor-
responding reduction relation is terminating and confluent. The normal form
nfp(r[x1/t]) is called the output tree computed for the input tree t.

3 Deaccumulation

To improve verifiability we transform accumulative programs into non-accumula-
tive programs by translating 1-mtts into hsmodtts. The defined functions of
the resulting programs have no context arguments at all or they have context
arguments that are not accumulating. Moreover, the resulting initial calls have no
initial values in context argument positions. The transformation proceeds in two
steps: “decomposition” (Sect. 3.1) and “constructor replacement” (Sect. 3.2).

3.1 Decomposition

In [8–10] it was shown that every mtt (with possibly several functions of arbitrary
arity) can be decomposed into a top-down tree transducer (an mtt with unary
functions only) plus a substitution device. In this paper, we use a modification
of this result, integrating the constructions of Lemmata 21 and 23 of [19]. The
key idea is to simulate an (n + 1)-ary function f by a new unary function f ′. To
this end, all context arguments are deleted and only the recursion argument is
maintained. Since f ′ does not know the current values of its context arguments,
it uses a new constructor πj , whenever f uses its j-th context argument. For
this purpose, every occurrence of yj in the right-hand sides of equations for f
is replaced by πj . The current context arguments themselves are integrated into
the calculation by replacing every occurrence of the form (f xi . . .) in a right-
hand side or in the initial call by (sub (f ′ xi) . . .). Here, the new function sub is
a substitution function. As explained before, (sub t s1 . . . sn) replaces every πj

in the first argument t of sub by the j-th context argument sj .

Lemma 5 For every p ∈ P and 1-mtt (m, r) of p, there are p′ ∈ P and
an hsmodtt (m1, m2, r

′) of p′ such that for every t ∈ TCp
: nfp(r[x1/t]) =

nfp′(r′[x1/t]). Additionally, if (m, r) is ncd, then (m1, m2, r
′) is ncd, too.

Proof. We construct p′ ∈ P by adding modules m1 and m2 to p, and we construct

r′ from r. Let n ∈ N, f = fm ∈ F
(n+1)
p , f ′ ∈ (F − Fp)

(1), sub ∈ (F − Fp)
(n+1)

with sub 6= f ′, and pairwise distinct π1, . . . , πn ∈ (C − Cp)
(0).

1. For every c ∈ C
(k)
p and for every equation f (c x1 . . . xk) y1 . . . yn = rhsp,f,c

in m, the module m1 contains f ′ (c x1 . . . xk) = dec(rhsp,f,c), where dec :
RHS(f, Cp, Xk, Yn) −→ RHS(f ′, Cp ∪ {sub} ∪ {π1, . . . , πn}, Xk, Y0) with:
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dec(f xi r1 . . . rn) = sub (f ′ xi) dec(r1) . . . dec(rn) ,
for all i ∈ [k], r1, . . . , rn ∈ RHS(f, Cp, Xk, Yn)

dec(c′ r1 . . . ra) = c′ dec(r1) . . . dec(ra) ,

for all c′ ∈ C
(a)
p , r1, . . . , ra ∈ RHS(f, Cp, Xk, Yn)

dec(yj) = πj , for all j ∈ [n]

For every j ∈ [n], m1 contains a dummy-equation f ′ πj = πj .
2. m2 contains the equations

sub (c x1...xk) y1...yn = c (sub x1 y1...yn)...(sub xk y1...yn) , for all c ∈ C
(k)
p

sub πj y1...yn = yj , for all j ∈ [n]

3. r′ = dec(r).

Note that (m1, m2, r
′) is an hsmodtt of p′. Moreover, for every t ∈ TCp

, we
have nfp(r[x1/t]) = nfp′(r′[x1/t]). For the proof of this statement, the following
statements (∗) and (∗∗) are proved by simultaneous induction (cf., e.g., [9, 11,
25]). For space reasons we omit this proof.
(∗) For every t ∈ TCp

and s1, . . . , sn ∈ TCp∪{π1,...,πn}:
nfp(f t s1 . . . sn) = nfp′(sub (f ′ t) s1 . . . sn).
(∗∗) For every k ∈ N, t1, . . . , tk ∈ TCp

, r̄ ∈ RHS(f, Cp, Xk, Yn), and s1, . . . , sn ∈
TCp∪{π1,...,πn}: nfp(r̄[xj/tj ][yj/sj]) = nfp′(sub (dec(r̄)[xj/tj]) s1 . . . sn).

Moreover, if (m, r) is ncd, then there are pairwise different c1, . . . , cn ∈ C
(0)
p

such that r = (f x1 c1 . . . cn) and c1, . . . , cn do not occur in right-hand sides of
m. Thus, r′ = (sub (f ′ x1) c1 . . . cn) and by the definition of dec, c1, . . . , cn are
not introduced into right-hand sides of m1. Hence, (m1, m2, r

′) is ncd, too. �

Example 6 Decomposition translates the 1-mtt (macc,f , racc) of pacc into the
hsmodtt (mdec,f ′ , mdec,sub , rdec) of pdec, which are both ncd, cf. Ex. 4. �

However, we have not yet improved the automatic verifiability of programs:

Example 7 Let (mdec,f ′ , mdec,sub , rdec) be the hsmodtt of pdec created by de-
composition and resume the proof attempt from the introduction. Since the
initial call has changed from (f x1 0 [ ]) to (sub (f ′ x1) 0 [ ]), we have to prove
(sub (f ′ x1) 0 [ ]) = (q x1) by induction. Again, the automatic proof fails, be-
cause in the induction step (x1 7→ (S x1)) the induction hypothesis cannot be
successfully applied to prove (sub (f ′ (S x1)) 0 [ ]) = (q (S x1)). The problem
is that the context arguments of (sub (f ′ x1) (S (S π1)) (π1 : π2)), which origi-

nates as subterm from rule application to (sub (f ′ (S x1)) 0 [ ]), do not fit to the
context arguments of the term (sub (f ′ x1) 0 [ ]) in the induction hypothesis. �

3.2 Constructor Replacement

We solve the above problem by avoiding applications of substitution functions
(with specific context arguments like 0 and [ ] in Ex. 7) in initial calls. Since
then an initial call consists only of a unary function, induction hypotheses can
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be applied without paying attention to context arguments. The idea, illustrated
on Ex. 7, is to replace the substitution constructors π1 and π2 by 0 and [ ] from
the initial call. Thus, the initial values of sub’s context arguments are encoded
into the program and the substitution in the initial call becomes superfluous.

We restrict ourselves to 1-mtts that are ncd. Then, after decomposition, the
initial calls have the form (sub (f x1) c1 . . . cn), where c1, . . . , cn are pairwise
different. Thus, when replacing each πj by cj , there is a unique correspondence
between the nullary constructors c1, . . . , cn and the substitution constructors
π1, . . . , πn. In Ex. 10 we will demonstrate the problems with identical c1, . . . , cn.

When replacing πj by cj , the constructors c1, . . . , cn now have two roles: If
cj occurs within a first argument of sub, then it acts like the former substitution
constructor πj , i.e., it will be substituted by the j-th context argument of sub.
Thus, sub now has the defining equation sub cj y1 . . . yn = yj . Only occurrences
of cj outside of sub’s first argument are left unchanged, i.e., here the constructor
cj stands for its original value. To make sure that there is no conflict between
these two roles of cj , we again need the ncd-condition. It ensures that originally,
cj did not occur in right-hand sides of f ’s definition. Then the only occurrence
of cj , which does not stand for the substitution constructor πj , is as context
argument of sub in the initial call. This substitution, however, can be omitted,
because the call (sub (f x1) c1 . . . cn) would now just mean to replace every cj

in (f x1) by cj . In this way, the resulting hsmodtt is initial value free (ivf).

Lemma 8 Let p ∈ P and (m1, m2, r) be an hsmodtt of p as constructed in the
transformation of Lemma 5. Moreover, let (m1, m2, r) be ncd and π1, . . . , πn be
its substitution constructors. Then, there are p′ ∈ P and an hsmodtt (m′

1, m
′
2, r

′)
of p′ that is ivf, such that for all t ∈ TCp−{π1,...,πn}: nfp(r[x1/t])=nfp′(r′[x1/t]).

Proof. We construct p′ ∈ P by replacing m1 and m2 in p by modules m′
1 and

m′
2, and we define r′. Let f = fm1

∈ F
(1)
p , sub = fm2

∈ F
(n+1)
p , and c1, . . . , cn ∈

C
(0)
p −{π1, . . . , πn} be pairwise distinct, such that r = (sub (f x1) c1 . . . cn) and

c1, . . . , cn do not occur in right-hand sides of m1. Let Cp′ = Cp − {π1, . . . , πn}.

1. For every c ∈ C
(k)
p′ and for every equation f (c x1 . . . xk) = rhsp,f,c in

m1, the module m′
1 contains f (c x1 . . . xk) = repl(rhsp,f,c), where repl :

RHS(f, (Cp − {c1, . . . , cn}) ∪ {sub}, Xk, Y0) → RHS(f, Cp′ ∪ {sub}, Xk, Y0)
replaces every occurrence of πj by cj , for all j ∈ [n].

2. m′
2 contains the equations

sub (c x1 . . . xk) y1 . . . yn = c (sub x1 y1 . . . yn). . . (sub xk y1 . . . yn) ,

for all c ∈ C
(k)
p′ − {c1, . . . , cn}

sub cj y1 . . . yn = yj , for all j ∈ [n]

3. r′ = f x1.

Note that (m′
1, m

′
2, r

′) is an hsmodtt of p′ that is ivf. For every t ∈ TC
p′

, we
have nfp(r[x1/t]) = nfp′(r′[x1/t]). For the proof of this statement, the following
statements (∗) and (∗∗) are proved by simultaneous induction. For space reasons

10



we omit this proof.
(∗) For every t ∈ TC

p′
and s1, . . . , sn ∈ TC

p′
:

nfp(sub (f t) s1 . . . sn) = nfp′(sub (f t) s1 . . . sn).
(∗∗) For every k ∈ N, t1, . . . , tk ∈ TC

p′
,

r̄ ∈ RHS(f, (Cp − {c1, . . . , cn}) ∪ {sub}, Xk, Y0), and s1, . . . , sn ∈ TC
p′

:
nfp(sub (r̄[xj/tj]) s1 . . . sn) = nfp′ (sub (repl(r̄)[xj/tj ]) s1 . . . sn). �

Example 9 Constructor replacement translates the ncd hsmodtt (mdec,f ′ ,
mdec,sub , rdec) of pdec into the ivf hsmodtt (mnon,f ′ , mnon,sub , rnon) of pnon . Es-
sentially, all occurrences of π1 and π2 are replaced by 0 and [ ]. �

Now we demonstrate the problems with hsmodtts violating the condition ncd:

Example 10 Assume that pacc and racc are changed into the following program:

f (S x1) y1 y2 = f x1 (S (S y1)) (y1 + y2)
f 0 y1 y2 = y2

and the initial call (f x1 0 0), computing the sum of the first x1 even num-
bers. Now the same constructor 0 occurs in the initial values for both context
arguments. Decomposition delivers the program:2

f ′ (S x1) = sub (f ′ x1) (S (S π1)) (π1 + π2)
f ′ 0 = π2

sub (x1 + x2) y1 y2 = (sub x1 y1 y2) + (sub x2 y1 y2) sub π1 y1 y2 = y1

sub (S x1) y1 y2 = S (sub x1 y1 y2) sub π2 y1 y2 = y2

sub 0 y1 y2 = 0

and initial call (sub (f ′ x1) 0 0). Constructor replacement would replace π1 and
π2 by 0, which leads to different rules sub 0 y1 y2 = y1 and sub 0 y1 y2 = y2 with
same left-hand side. In Sect. 5 we give an idea how to overcome this problem. �

We conclude this section with some statements about substitution functions
which are often helpful for the verification of transformed programs (cf. the
examples in Sect. 4 and App. A and B). Instead of proving these statements
during verification, they should be generated during program transformation.
This is possible because the substitution functions only depend on the set of
constructors but not on the transformed function.

Lemma 11 Let p ∈ P and (m1, m2, r) be an hsmodtt of p with substitution
constructors c1, . . . , cn and substitution function sub.

1. Asub (Associativity of sub). For every t0, t1, ..., tn, s1, ..., sn ∈ TCp
we have

nfp(sub (sub t0 t1...tn) s1...sn)=nfp(sub t0 (sub t1 s1...sn)...(sub tn s1...sn)).
2. Usub (Right Units of sub). For every t ∈ TCp

we have nfp(sub t c1 . . . cn) = t.
3. +sub (Addition by sub). If n = 1, Cp = {S, 0}, and nfp((Sz1 0) + (Sz2 0)) =

Sz1+z2 0 for all z1, z2 ∈ N, then nfp(sub s t) = nfp(s + t) for all s, t ∈ TCp
.

Proof. The proofs are straightforward inductions on TCp
and N, respectively. �

2 During the transformation, + is treated as an ordinary binary constructor.
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4 Related Work

Program transformations are a well-established field in software engineering and
compiler construction (see, e.g., [2, 6, 21, 22]). However, we suggested a novel ap-
plication area for program transformations by applying them in order to increase
verifiability. This goal is often in contrast to the classical aim of increasing effi-
ciency, since a more efficient program is usually harder to verify. In particular,
while composition results from the theory of tree transducers are usually applied
in order to improve the efficiency of functional programs (cf., e.g., [18, 19, 24,
25]), we have demonstrated that also the corresponding decomposition results

are not only of theoretical interest.
Program transformations that improve verifiability have rarely been inves-

tigated before. A first step into this direction was taken in [12]. There, two
transformations were presented that can remove accumulators. They are based
on the associativity and commutativity of auxiliary functions like + occurring
in accumulator arguments. The advantage of the approach in [12] is that it does
not require the strict syntactic restrictions of 1-mtts that are ncd. Moreover,
[12] does not require that functions from other modules may not be called in
right-hand sides. Because of that restriction, in the present paper, we have to
treat all auxiliary functions like + as constructors and exclude the use of any
information about these functions during the transformation.

On the other hand, the technique of [12] can essentially only remove one

accumulator argument (e.g., in contrast to our method, it cannot eliminate both
accumulators of pacc). Moreover, the approach in [12] relies on knowledge about
auxiliary functions like +. Hence, it is not applicable if the context of accumu-
lator arguments on the right-hand side is not associative or commutative. Thus,
it fails on examples like the following program pexp. In particular, this demon-
strates that in contrast to [12], our technique can also handle nested recursion.
Indeed, deaccumulation is useful for functional programs in general — not just
for functions resulting from translating imperative programs.

exp (S x1) y1 = exp x1 (exp x1 y1)
exp 0 y1 = S y1

The initial call is (exp x1 0). We want to prove (exp x1 0) = (e x1), where
(e (Sn 0)) computes (S2n

0), see below. Here, (Sz1 0) + (Sz2 0) computes
Sz1+z2 0.

e (S x1) = (e x1) + (e x1)
e 0 = S 0

Since exp is a 1-mtt that is ncd, deaccumulation delivers the program:

exp′ (S x1) = sub (exp′ x1) (sub (exp′ x1) 0) sub (S x1) y1 = S (sub x1 y1)
exp′ 0 = S 0 sub 0 y1 = y1

and the initial call (exp′ x1), which are better suited for induction provers,
because there are no accumulating arguments anymore. For instance, instead of
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proving (exp x1 0) = (e x1) for the original program (which requires a generaliza-
tion), now the statement (exp′ x1) = (e x1) (taken as induction hypothesis IH)
can be proved automatically. We only show the induction step (x1 7→ (S x1)).

exp′ (S x1) = sub (exp′ x1) (sub (exp′ x1) 0)
= sub (e x1) (sub (e x1) 0) (2 ∗ IH)
= sub (e x1) (e x1) (Usub)
= (e x1) + (e x1) (+sub)
= e (S x1)

While in many examples generalizations can be avoided by our technique, it
does not render generalization techniques superfluous. There exist accumulative
functions where our transformation is not applicable, cf. Ex. 10 3, and even if it is
applicable, there may still be conjectures that can only be proved via a suitable
generalization. However, even then our transformation is advantageous, because
the generalizations for the transformed functions are usually much easier than
the ones required for the original accumulative functions (cf. App. A).

5 Conclusion and Future Work

Imperative programs and accumulative functional programs resulting from their
translation are hard to verify with induction provers. Therefore, we introduced an
automatic technique that transforms accumulative functions into non-accumula-
tive functions, whose verification is often significantly easier with existing proof
tools. However, it remains to characterize (at least informally) the class of veri-
fication problems, for which there is a real improvement.

To increase the applicability of our approach, we plan to extend it to more
general forms of algorithms. For example, the requirement ncd should be weak-
ened, such that examples with equal constructors in initial calls can be handled
as well. The idea is to use different substitution functions such that at every node
of a tree it can be read from the substitution function, how a nullary constructor
has to be substituted. To this end, one must analyze the decomposed program
prior to constructor replacement to find out which substitution constructors can
occur in which contexts. For instance, in Ex. 10 it can be shown that π1 can
only occur in a left subtree of a +, whereas π2 cannot occur in such positions.
Thus, in the program after constructor replacement every occurrence of a 0 in
a left subtree of a + must be substituted by y1, whereas all other occurrences
must be substituted by y2.

An extension beyond mtts seems to be possible as well. For example, the re-
quirement of flat patterns on left-hand sides may be relaxed. Moreover, one could
consider different constructor terms instead of nullary constructors in initial calls.
Further extensions include a decomposition that only removes those context
arguments from a function that are modified in recursive calls. Finally, we also
investigate how to incorporate the transformations of [12] into our approach.

3 Note that for this example, however, one can construct an equivalent non-
accumulative program, cf. Sect. 5.
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A Example: Splitting Monadic Trees

The program split (A x1) y1 = A (split x1 y1)
split (B x1) y1 = split x1 (B y1)
split N y1 = y1

with initial call (split x1 N) translates monadic trees with n1 and n2 occurrences
of the unary constructors A and B, respectively, into the tree An1(Bn2N) by
accumulating the B’s in the context argument of split . It is transformed into:

split ′ (A x1) = A (sub (split ′ x1) N) sub (A x1) y1 = A (sub x1 y1)
split ′ (B x1) = sub (split ′ x1) (B N) sub (B x1) y1 = B (sub x1 y1)
split ′ N = N sub N y1 = y1

with initial call (split ′ x1). If we want to prove the idempotence of the split-
ting operation, then the proof for the original program requires a generalization
from (split (split x1 N) N) = (split x1 N) to (split (split x1 (b x2)) (b x3)) =
(split x1 (b (x2 + x3))) , where (b n) computes (Bn N). Such a generalization is
difficult to find. On the other hand, (split ′ (split ′ x1)) = (split ′ x1) can be proved
automatically. In the step case (x1 7→ (A x1)), Usub from Lemma 11 is used to
infer (sub (split ′ x1) N) = (split ′ x1). In the step case (x1 7→ (B x1)), a straight-
forward generalization step is required by identifying two common subexpres-
sions in a proof subgoal. More precisely, by applying the induction hypothesis,
the induction conclusion is transformed into (split ′ (sub (split ′ x1) (B N))) =

(sub (split ′ (split ′ x1)) (B N)). Now, the two underlined occurrences of (split ′ x1)
are generalized to a fresh variable x, and then the proof works by induction on x.

B Example: Reversing Monadic Trees

The program rev (A x1) y1 = rev x1 (A y1)
rev (B x1) y1 = rev x1 (B y1)
rev N y1 = y1

with initial call (rev x1 N) is transformed into the program

rev ′ (A x1) = sub (rev ′ x1) (A N) sub (A x1) y1 = A (sub x1 y1)
rev ′ (B x1) = sub (rev ′ x1) (B N) sub (B x1) y1 = B (sub x1 y1)
rev ′ N = N sub N y1 = y1

with initial call (rev ′ x1). Taking into account that sub is just the concatenation
function on monadic trees, the above programs correspond to the efficient and
the inefficient reverse function, which have linear and quadratic time-complexity
in the size of the input tree, respectively. Thus, this example shows that the aim
of our technique contrasts with the aim of classical program transformations,
i.e., the efficiency is decreased, but the suitability for verification is improved: If
we want to show that the reverse of two concatenated lists is the concatenation
of the reversed lists in exchanged order, then the proof of (rev (sub x1 x2) N) =
(sub (rev x2 N) (rev x1 N)) again requires considerable generalization effort,
whereas (rev ′ (sub x1 x2)) = (sub (rev ′ x2) (rev ′ x1)) can be proved by a
straightforward induction on x1, exploiting Usub and Asub from Lemma 11.
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