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Abstract. We present an approach for automated induction proofs with

partial functions. Most well-known techniques developed for (explicit)

induction theorem proving are unsound when dealing with partial func-

tions. But surprisingly, by slightly restricting the application of these

techniques, it is possible to develop a calculus for automated induc-

tion proofs with partial functions. In particular, under certain condi-

tions one may even generate induction schemes from the recursions of

non-terminating algorithms. The need for such induction schemes and

the power of our approach have been demonstrated on a large collec-

tion of non-trivial theorems (including Knuth and Bendix' critical pair

lemma). In this way, existing induction theorem provers can be directly

extended to partial functions without changing their logical framework.

1 Introduction

The most important proof method for software veri�cation is induction. There-

fore, several techniques

1

have been developed to compute suitable induction

relations and to perform induction proofs automatically, cf. e.g. [BM79, ZKK88,

Bu

+

93, Wal94, KS96]. However, most of these approaches are only sound if all

occurring functions are total.

In this paper we show that by slightly modifying the prerequisites of these

techniques it is nevertheless possible to use them for partial functions, too. In

particular, the successful heuristic of deriving induction relations from the recur-

sions of algorithms can also be applied for partial functions. In fact, under certain

conditions one may even perform inductions w.r.t. non-terminating algorithms.

Hence, with our approach the well-known existing techniques for automated in-

duction proofs can be directly extended to partial functions.

In [Gie96] we already presented a �rst approach for induction proofs with

partial functions. This approach did not require any reasoning about de�nedness

and it was already very successful for a certain class of conjectures (in particular,

?

Appeared in Proceedings of the Workshop on the Mechanization of Partial Functions,

held in conjunction with the 15th International Conference on Automated Deduction

(CADE-15), Lindau, Germany, 1998.

1

There are two paradigms for the automation of induction proofs, viz. explicit and

implicit induction (e.g. [KM87, BR95]), where we only focus on the �rst one.



conjectures containing at most one occurrence of a partial function). But to

increase the power of our approach, in this paper we suggest a re�nement where

de�nedness is made explicit.

In Sect. 2 we introduce our programming language and in Sect. 3 we de�ne

the notion of truth used for statements about partial functions. Then in Sect. 4

we sketch how the basic rules usually applied in automated induction theorem

proving can be extended to partial functions. In Sect. 5 we discuss some applica-

tion areas where reasoning about partial functions is required. Finally, we give

a comparison with related work in Sect. 6 and end up with a short conclusion.

2 The Programming Language

We consider a �rst order functional language with eager (i.e. call-by-value) se-

mantics, non-parameterized and free algebraic data types, and pattern matching.

As an example regard the algorithms minus and div. They operate on the data

type nat for naturals whose objects are built with the constructors 0 and s (where

we often write \1" instead of \s(0)" etc.).

function minus : nat� nat! nat

minus(x; 0) = x

minus(s(x); s(y)) = minus(x; y)

function div : nat� nat! nat

div(0; s(y)) = 0

div(s(x); y) = if( ge(s(x); y);

s(div(minus(s(x); y); y));

0)

In general, an algorithm f is de�ned by a set of orthogonal (i.e. non-over-

lapping and left-linear) equations of the form f(t

1

; : : : ; t

n

) = r where the terms

t

i

are built from constructors and variables only and where all variables of r also

occur in t

1

; : : : ; t

n

.

We restrict ourselves to well-sorted terms and substitutions, i.e. variables of

type � are only replaced by terms of the same data type � . Now the operational

semantics of our programming language can be de�ned by regarding each de�n-

ing equation as a rewrite rule, where however the variables in these rewrite rules

may only be instantiated with data objects, i.e. with constructor ground terms.

This restriction is due to the eager nature of our programming language. So for

example, div's �rst de�ning equation cannot be applied directly to evaluate the

term div(0; s(minus(1; 0)), because one argument of div is no constructor ground

term. Therefore, minus(1; 0) has to be evaluated to 1 �rst. Afterwards a de�ning

equation of div can be used to evaluate the resulting term div(0; 2) to 0.

Our programming language has a pre-de�ned conditional function if : bool�

� � � ! � for each data type � (where bool is the data type with the construc-

tors true and false). These conditionals are the only functions with non-eager

semantics, i.e. when evaluating if(t

1

; t

2

; t

3

), the (boolean) term t

1

is evaluated

�rst and depending on the result of its evaluation either t

2

or t

3

is evaluated

afterwards yielding the result of the whole conditional.

2



Obviously, both algorithms minus and div compute partial functions. The

de�ning equations of minus do not cover all possible inputs, i.e. the algorithm

minus is incomplete and hence, minus(x; y) is only de�ned if x is not smaller

than y. The algorithm div for truncated division uses a (total) auxiliary function

ge to check whether the �rst argument is greater than or equal to the second

one before performing the recursive call. It is not only incomplete, but there are

also inputs which lead to a non-terminating evaluation (e.g. div(1; 0)). In fact,

div(x; y) is only de�ned if y is not 0. In general, we say that (evaluation of) a

ground term is de�ned, if it can be evaluated to a constructor ground term.

3 Truth of Statements about Partial Functions

Now our goal is to verify statements concerning a given collection of algorithms

and data types. For instance, we may try to verify that the multiplication of

div(n;m) with the divisor m yields a number � n whenever div(n;m) is de�ned.

8n;m : nat def(div(n;m)) = true ! ge(n; times(m; div(n;m))) = true (1)

Here, we use an appropriate (total) algorithm times and in order to reason

about de�nedness, we introduce a de�nedness function def : � ! bool for each

data type � . For any ground term t, def(t) is true i� evaluation of t is de�ned.

We only consider universally closed formulas of the form 8...' where ' is

quanti�er free and we often omit the quanti�ers to ease readability. So for ex-

ample, \'

1

! '

2

" is an abbreviation for \8... ('

1

! '

2

)", where '

1

and '

2

are

quanti�er free. We sometimes write '(x

�

) to indicate that ' contains at least

the variables x

�

(where x

�

is a tuple of pairwise di�erent variables x

1

; : : : ; x

n

)

and '(t

�

) denotes the result of replacing the variables x

�

in ' by the terms t

�

.

Intuitively, a formula 8x

�

'(x

�

) is inductively true, if it holds for all instan-

tiations of x

�

with data objects q

�

. For example, formula (1) is true, because the

term ge(n; times(m; div(n;m))) evaluates to true for all those natural numbers n

and m where div(n;m) is de�ned. In the following we will often speak of \truth"

instead of \inductive truth".

For a formal de�nition of truth for statements about partial functions, we

use a model theoretic approach. For total functions, the notion of inductive

truth generally used in the literature is equivalent to validity in the initial model

of the de�ning equations Eq, cf. e.g. [ZKK88, Wal94, WG94, BR95]. However,

due to the occurrence of partial functions, now the initial model of Eq is no

longer the speci�c intended model. The reason is that the de�ning equations

do not represent the eager evaluation strategy of our programming language.

For example, div(0; div(1; 0)) = 0 is valid in the initial model of the de�ning

equations

2

although (innermost) evaluation of div(0; div(1; 0)) is not terminating.

In our language, a de�ning equation f(t) = r may only be applied to evaluate

a term �(f(t)) if evaluation of the argument �(t) is de�ned, i.e. if def(�(t)) is

true. Thus, instead of a de�ning equation f(t) = r we use the equation f(t) =

2

when extended with the equations if(true; x; y) = x and if(false; x; y) = y
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if(def(t); r; f(t)). To handle functions with several arguments, in the following let

def(t

1

; : : : ; t

n

) be an abbreviation for the term if(def(t

1

); def(t

2

; : : : ; t

n

); false). So

intuitively, def(t

1

; : : : ; t

n

) is true i� def(t

i

) is true for all i. For the empty tuple

(where n = 0), def() is de�ned to be true. This leads to the following de�nition

of inductive truth for conjectures about partial functions.

De�nition (Inductive Truth). Let I be the initial model of

ff(t

�

) = if(def(t

�

); r; f(t

�

)) j for each de�ning equation f(t

�

) = rg

[ fif(true; x; y) = x; if(false; x; y) = yg

[ fdef(c(x

�

)) = def(x

�

) j for each constructor cg:

Then a formula is inductively true i� it is valid in I.

For terminating and completely de�ned algorithms, this notion of inductive

truth is equivalent to validity in the initial model of the de�ning equations. More-

over, now the model theoretic semantics of def corresponds to the operational

semantics of \de�nedness". So for any ground term t, the conjecture def(t) = true

is inductively true i� evaluation of t is de�ned. To verify partial correctness of

an algorithm w.r.t. a speci�cation ', one has to prove the conjecture

def(t

�

) = true ! ';

where t

�

are the (top-level) terms of '. Thus, an algorithm is partially correct

w.r.t. ', if ' holds for those instantiations where evaluation of all its terms is

de�ned. This notion of partial correctness is widely used in program veri�cation,

cf. e.g. [Man74, LS87].

4 Induction Theorem Proving for Partial Functions

Numerous techniques have been developed to perform induction proofs auto-

matically. As (1) contains a call of the function div, this call suggests a plausible

induction. For instance, we can apply an induction w.r.t. the recursions of the

algorithm div and use the variables n and m as induction variables. For that

purpose we perform a case analysis according to the de�ning equations of div

(i.e. n and m are instantiated by 0 and s(y) and by s(x) and y, respectively).

In the recursive equation of div we perform another case analysis w.r.t. the con-

dition ge(s(x); y) of the if-term. In the case ge(s(x); y) = true we assume that

(1) already holds for the arguments hminus(s(x); y); yi of div's recursive call. So

instead of (1) it is su�cient to prove the following formulas where we underlined

instantiations of the induction variables. Here, '(n;m) abbreviates formula (1).

'(0; s(y)) (2)

ge(s(x); y) = false ! '(s(x); y) (3)

ge(s(x); y) = true ! ('(minus(s(x); y); y) ! '(s(x); y) ) (4)
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The technique of performing inductions w.r.t. the recursions of algorithms

(like div) is commonly used in induction theorem proving, cf. e.g. [BM79, ZKK88,

Bun89, Wal94]. However, induction proofs are only sound if the induction rela-

tion used is well founded (i.e. if there is no in�nite descending chain t

�

1

� t

�

2

� : : :

w.r.t. the induction relation �). Here, the well-foundedness of the induction rela-

tion corresponds to the termination of the algorithm div, because when proving a

statement for the inputs of a recursive de�ning equation, we assume as induction

hypothesis that the statement holds for the arguments of the recursive call.

Hence, inductions w.r.t. non-terminating algorithms like div must not be used

in an unrestricted way. For example, by induction w.r.t. the non-terminating

algorithm f with the de�ning equation f(x) = f(x) one could prove any formula,

e.g. false conjectures like :x = x.

However, for formula (1) the induction w.r.t. the recursions of div is neverthe-

less sound, i.e. inductive truth of (2), (3), and (4) in fact implies inductive truth

of (1). To see this, assume that '(n;m) is false. Recall that '(n;m) has the form

\def(div(n;m)) = true ! '

0

(n;m)". Thus, there must be a counterexample,

i.e. two numbers p and q such that div(p; q) is de�ned, but '

0

(p; q) is false.

Let �

div

be the relation where hp

1

; q

1

i �

div

hp

2

; q

2

i holds for two pairs of

data objects i� evaluation of div(p

1

; q

1

) is de�ned and leads to the recursive call

div(p

2

; q

2

). This relation is well founded although div is partial. Hence, there also

exists a minimal counterexample hp; qi w.r.t. �

div

.

By (2) and (3), hp; qi corresponds to a recursive case of div. Thus due to

(4), '(minus(p; q); q) is also false, i.e. hminus(p; q); qi is also a counterexample.

Note that by the eager nature of our language, evaluation of div(p; q) necessar-

ily leads to evaluation of div(minus(p; q); q). Hence, hminus(p; q); qi is a smaller

counterexample than hp; qi which contradicts the minimality of hp; qi.

So due to the eager nature of our programming language, an induction w.r.t.

a (possibly partial) algorithm f using the induction variables x

�

proves a con-

jecture '(x

�

) for those instantiations where f(x

�

) is de�ned. Hence, in addition

one also has to verify '(x

�

) for those instantiations where f(x

�

) is not de�ned,

i.e. one also has to prove the permissibility conjecture

:def(f(x

�

)) = true ! '(x

�

):

Thus, by adding this permissibility conjecture to the premises of the induction

inference rule, the successful technique of deriving induction relations from the

recursions of algorithms may also be used for partial functions. In our example

the permissibility conjecture obtained is the following tautology.

:def(div(n;m)) = true ! (1)

In a similar way, other techniques typically used in automated induction the-

orem proving can also be extended to partial functions. For example, analogously

to induction w.r.t algorithms, a structural induction using the induction vari-

able x proves '(x) for all instantiations of x with de�ned terms. In other words,

structural induction may also be used in the presence of partial functions, if in
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addition we also prove the permissibility conjecture

:def(x) = true ! '(x):

Next we consider the well-known technique of symbolic evaluation, i.e. the

application of de�ning equations as rewrite rules. Due to our eager evaluation

strategy, now one has to take into account that a de�ning equation f(t

�

) = r

can only be applied to evaluate the term �(f(t

�

)) if the arguments �(t

�

) are

de�ned, i.e. if def(�(t

�

)) = true holds. Hence, when evaluating the term �(f(t

�

))

in a formula ', one also has to prove the permissibility conjecture

:def(�(t

�

)) = true ! ':

For example, in this way any formula '(div(0;minus(: : :))) can be transformed

into '(0) and the permissibility conjecture

:def(0;minus(: : :)) = true ! '(div(0;minus(: : :))):

Of course, as if is the only function symbol with non-eager semantics, to evaluate

a term if(t

1

; t

2

; t

3

) it is su�cient if just t

1

is de�ned.

Finally, �rst-order inference rules can be applied to simplify or to verify re-

sulting proof obligations. In particular, one may also use axioms Ax

def

about

de�nedness, which state how def operates on terms built with algorithms, con-

ditionals, and constructors.

Ax

def

= fdef(f(x

�

)) = true ! def(x

�

) = true j for all algorithms fg

[ fdef(if(x; y; z)) = true ! def(x) = trueg

[ fdef(c(x

�

)) = def(x

�

) j for all constructors cg:

In this way, the conjecture (1) about div can be easily be proved.

By modifying the standard inference rules of induction theorem proving as

described above, we developed a calculus for induction proofs with partial func-

tions in [Gie98a]. The only di�erence between the rules of this calculus and the

rules typically used for induction theorem proving (with total functions) is the

function symbol def, the axioms Ax

def

, and an additional permissibility con-

jecture which has to be proved whenever induction or symbolic evaluation is

applied. Hence, the existing induction theorem provers can easily be extended

to this calculus and thus, these systems can be directly used to reason about par-

tial functions. In particular, they may even perform an induction w.r.t. partial

functions whenever the corresponding permissibility conjecture can be veri�ed.

Apart from partial correctness statements (of the form \' holds if its evalu-

ation is de�ned"), our calculus also veri�es \de�nedness conjectures" (e.g. state-

ments about termination) which are often needed in both partial and total cor-

rectness proofs. Moreover, it can also verify unde�nedness. For instance, by in-

duction w.r.t. the partial algorithm div one can prove that div is always unde�ned

if its second argument is 0, i.e.

y = 0 ! :def(div(x; y)) = true:
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A re�nement of our approach is obtained by combining it with techniques to

approximate the domains of partial functions. More precisely, for every algorithm

f : �

1

� : : : � �

n

! � , a (total) algorithm �

f

: �

1

� : : : � �

n

! bool (a domain

predicate for f) is generated, such that the truth of �

f

(t

�

) implies that evaluation

of f(t

�

) is de�ned. Thus, �

f

is a total function specifying the domain of f .

To bene�t from these domain approximations, in our calculus one may now

use additional axioms Ax

dom

. For every algorithm f , Ax

dom

contains the axioms

�

f

(x

�

) = true ! def(f(x

�

)) = true

def(x

�

) = true ! def(�

f

(x

�

)) = true

which state that the truth of �

f

is su�cient for de�nedness of f , (i.e. domain

predicates are partially correct) and that domain predicates are total functions.

To generate domain predicate algorithms �

f

automatically, together with

J. Brauburger we developed a method for termination analysis of partial func-

tions which proved successful on a large collection of examples. For details on

this work see [BG96, GWB98, BG98].

The approach of present paper is a re�nement of the technique suggested

in [Gie96]. The technique of [Gie96] had the advantage that one could perform

proofs about partial functions (and even inductions w.r.t. partial functions) with-

out reasoning about de�nedness. However, in this technique induction w.r.t. par-

tial functions was only allowed for statements containing at most one occurrence

of a partial function. The reason for this restriction was that de�nedness was not

made explicit and hence, the calculus had to ensure that de�nedness of the in-

duction conclusion implied de�nedness of the induction hypothesis. Thus, there

exist conjectures which could not be veri�ed with this technique, because their

proofs require reasoning about de�nedness. An example is the proof that

minus(minus(x; y); z) = minus(minus(x; z); y)

holds whenever its evaluation is de�ned. This formula can be proved by induction

w.r.t. the partial function minus using x and y as induction variables. However,

the technique of [Gie96] does not allow this induction, because minus(x; y) is

not the only term with a partial root function in the conjecture. On the other

hand, with the method of the present paper the proof is easily possible, because

by explicit reasoning about de�nedness one can show that de�nedness of the

induction conclusion indeed implies de�nedness of the induction hypothesis.

To conclude, while the new calculus performs more re�ned inference steps

than the one in [Gie96], it also imposes more proof obligations, since now de-

�nedness conditions have to be checked explicitly, whereas this was not necessary

in the former calculus. Hence, for statements containing just one occurrence of

a partial function, it is often advantageous to use the calculus of [Gie96] instead.

5 Applications

In this section we analyze areas for applications of our results. One could guess

that for those partial functions whose domain can be determined automatically,

7



techniques for handling partiality are not necessary any more. Indeed, such a

function f(x

�

) could be replaced by a new total function f

0

(x

�

) which �rst tests

whether the corresponding domain predicate �

f

(x

�

) holds and only executes its

body if �

f

(x

�

) is true. Otherwise, f

0

(x

�

) returns some default value. However,

this transformation of partial functions into total ones leads to several problems.

The �rst problem is that this approach may result in unintuitive semantics.

Moreover, to transform partial functions f into total extensions f

0

one has to

construct f 's domain predicate. However, for many algorithms with nested or

mutual recursion, the generation of domain predicates already requires reasoning

about (possibly) partial functions, cf. [Gie97].

But the main problem with the transformation of partial functions f into

total ones is that in general the synthesized domain predicate �

f

is only su�cient,

but not necessary for de�nedness of f , i.e. it only returns true for a subset of f 's

domain. To determine whether a generated domain predicate indeed describes

the exact domain of a function, one may again apply our calculus. For example,

then a statement like def(div(x; y)) = true ! �

div

(x; y) = true can be veri�ed by

induction w.r.t. div. Hence, even for a partial function where an exact domain

predicate can be synthesized, one still needs an induction proof w.r.t. a partial

function in order to verify this exactness.

However, there are many interesting algorithms where an exact domain pred-

icate cannot be generated automatically. In particular, as the halting problem

is undecidable (and as totality is not even semi-decidable), there are even many

important total algorithms where totality cannot be veri�ed automatically. For

example, the well-known uni�cation algorithm by J. A. Robinson is total, but its

termination is a \deep theorem" [Pau85] and none of the current methods for au-

tomated termination analysis succeeds with this example. Hence, such functions

cannot be handled by (fully) automated theorem provers without the ability of

reasoning about possibly partial functions.

To show that our approach indeed can be used to prove relevant theorems

about (possibly) partial functions, in [Gie98b] we applied our calculus on more

than 400 conjectures from the area of term rewriting systems. As demonstrated

there, in contrast to previous approaches (e.g. [MW81, Pau85]), our calculus can

prove the soundness of the uni�cation algorithm by induction w.r.t. its recur-

sions without having to verify its termination. So the ability to use induction

relations without ensuring their well-foundedness is needed for algorithms where

the automated methods fail in determining the domains. But moreover, this abil-

ity also allows us to prove conjectures about algorithms like the famous \3x+1"

problem where totality is still an open question, i.e. algorithms whose domain

has not even be determined manually.

Even worse, there are numerous practically relevant algorithms with unde-

cidable domain, i.e. there does not exist any exact domain predicate. Typical

examples for such algorithms include interpreters for programming languages

and algorithms for automated reasoning (e.g. any implementation of a sound

and complete �rst order calculus). For instance, our collection in [Gie98b] con-

tains algorithms which check whether one term rewrites to another in arbitrary
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many steps and algorithms for joinability. The domains of such algorithms are

obviously undecidable. Nevertheless, we showed that induction w.r.t. such al-

gorithms can be used to prove numerous important theorems

3

. In particular,

with our calculus we also proved D. E. Knuth and P. B. Bendix' critical pair

lemma [KB70] which states that if all critical pairs of a term rewriting system

are joinable, then the system is locally conuent.

Note that apart from reasoning about given partial functions, our approach is

also required for program schemes where termination of the program depends on

the instantiation of the auxiliary functions which were left unspeci�ed. Moreover,

partial algorithms can also result from total ones during program transforma-

tions, e.g. when transforming imperative programs into functional ones. This

transformation is often necessary for the veri�cation of imperative programs as

most existing induction provers are restricted to functional languages.

6 Related Work

In this section we give a short survey on related work. We �rst discuss alternative

notions of \truth" for partial functions in Sect. 6.1. Then in Sect. 6.2 we comment

on other techniques for automated reasoning with partial functions.

6.1 Notions of Truth for Partial Functions

Essentially, there are two main possibilities for a formal handling of partial func-

tions. One possibility is to incorporate partiality into the logic itself. In algebraic

speci�cations, partiality is often modelled by partial algebras and di�erent ap-

propriate semantics of equality have been suggested in that framework (see e.g.

[Kre87, Rei87] for an overview and alternatives).

In some of these approaches formulas still are either true or false (e.g. by

considering all atomic formulas containing unde�ned terms as false, cf. [Far90]).

But one may also use a formalization with a three-valued logic [Kle52], where the

truth value of formulas depending on unde�ned terms is \unde�ned". See [KK95]

for a mechanization of this approach and for a discussion of other alternatives.

The other main possibility to handle partiality is to de�ne an appropriate

notion of \truth" in a classical two-valued logic where all terms denote and

where all algebras are total. (This is also the approach we used, as our aim was

to extend existing induction theorem provers to partial functions, i.e. we did not

want to change the underlying logic.)

Our notion of inductive truth corresponds to one of the de�nitions of in-

ductive validity proposed in [WG94, \Type E"]. Alternative notions of truth

have been suggested in [KM86, KM87, Wal94]. Here, an incompletely speci�ed

function is interpreted as the set of all possible complete and consistent exten-

sions, cf. also [WG94, \Type D

0

"]. This corresponds to the intuition that such

3

In that respect, our proofs di�er from other case studies in related areas (e.g. the

proofs of the Church-Rosser theorem for the �-calculus in [Sha88, Nip96]).
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a function is not really partial, but it is a total function with (partly) unknown

behaviour. Hence, this approach cannot be used for non-terminating functions

like f(x) = s(f(x)) which do not have a complete consistent extension. In con-

trast, in our approach every speci�cation is consistent. Thus, we can handle

non-termination without any consistency checks. For a further discussion on the

di�erences between the semantics see e.g. [KM86, WG94, AM95].

6.2 Automated Induction Proofs with Partial Functions

We suggested an approach to perform inductions on the objects of the data struc-

tures. However, many general purpose tools for reasoning about programs use

techniques based on denotational semantics instead. The classical technique for

proofs about denotational semantics is computational induction (e.g. D. Scott 's

�xpoint induction [Sco69]). A full formalization of denotational semantics re-

quires a higher order logic (as it is for instance used in lcf [Pau87]), but an

alternative formalization of an lcf-like calculus with �xpoint induction using

�rst order logic can be found in [Sha89].

However, while �xpoint induction is a powerful tool for reasoning about

programs, it is less suitable for automation. For that reason, virtually all (ex-

plicit) induction provers (i.e. systems with powerful heuristics especially designed

for induction like nqthm [BM79], rrl [ZKK88, KS96], clam [Bu

+

93], inka

[Wal94, HS96]) perform inductions on the values of the program variables in-

stead. To �nd suitable induction relations automatically, a successful heuristic is

to use relations which correspond to the recursions of the algorithms occurring

in the conjecture. This approach has also been implemented in systems like hol,

lambda, and isabelle, cf. [Bou93, Bus93, Sli97]. This demonstrates that even

in provers for higher order logics, Noetherian induction on the data structure is

better suitable for automation than computational induction (see also [Pau85]).

However, a drawback is that up to now the derivation of induction schemes

from the recursions of algorithms was just considered to be a good heuristic.

But their soundness had to be guaranteed separately, i.e. one had to verify

that these induction relations were indeed well founded. To ensure this, in the

existing provers, induction relations could only be generated from the recursions

of terminating algorithms

4

.

Here, our main observation is that in partial correctness proofs, induction

relations do not have to be checked for well-foundedness any more if they are

obtained from the recursions of algorithms occurring in the conjecture. So this

choice is not just a successful heuristic, but it already guarantees the soundness

of the induction schemes. Now the restriction only to derive induction relations

from terminating algorithms is no longer necessary. Thus, induction proofs w.r.t.

partial functions can be automated without using proof techniques based on

denotational semantics. Hence, the existing induction provers and their powerful

heuristics can also be applied for partial functions without adapting them to a

new logical framework.

4

This is also true for all previous extensions of induction theorem provers to partial

functions, e.g. [BK84, KM86, BM88, KS96, Kap97].
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7 Conclusion

Partial functions are important in many areas, but the techniques implemented

in most induction provers rely on the termination of the occurring algorithms.

However, we showed that by introducing a few appropriate restrictions, these

techniques can be applied for partial functions, too. Based on this observation,

we developed a calculus for induction proofs with partial functions in [Gie98a].

To demonstrate its applicability, we tested our approach on a large bench-

mark of examples and used it to prove numerous theorems about partial func-

tions with undecidable domains [Gie98b]. Our calculus corresponds to the basic

rules used in induction theorem proving. So in this way, the existing induction

provers and their heuristics to control the application of these rules can be di-

rectly extended to partial functions. Thus, induction theorem proving for partial

functions may now become as powerful as it is for total functions.
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