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Abstrat. This paper is onerned with methods that automatially

prove termination of term rewrite systems. The aim of dummy elimina-

tion, a method to prove termination introdued by Ferreira and Zantema,

is to transform a given rewrite system into a rewrite system whose termi-

nation is easier to prove. We show that dummy elimination is subsumed

by the more reent dependeny pair method of Arts and Giesl. More pre-

isely, if dummy elimination sueeds in transforming a rewrite system

into a so-alled simply terminating rewrite system then termination of

the given rewrite system an be diretly proved by the dependeny pair

tehnique. Even stronger, using dummy elimination as a preproessing

step to the dependeny pair tehnique does not have any advantages

either. We show that to a large extent these results also hold for the

argument �ltering transformation of Kusakari et al.

1 Introdution

Traditional methods to prove termination of term rewrite systems are based

on simpli�ation orders, like polynomial interpretations [6, 12, 17℄, the reursive

path order [7, 14℄, and the Knuth-Bendix order [9, 15℄. However, the restrition

to simpli�ation orders represents a signi�ant limitation on the lass of rewrite

systems that an be proved terminating. Indeed, there are numerous important

and interesting rewrite systems whih are not simply terminating, i.e., their ter-

mination annot be proved by simpli�ation orders. Transformation methods

(e.g. [5, 10, 11, 16, 18, 20{22℄) aim to prove termination by transforming a given

term rewrite system into a term rewrite system whose termination is easier to

prove. The suess of suh methods has been measured by how well they trans-

form non-simply terminating rewrite systems into simply terminating rewrite

systems, sine simply terminating systems were the only ones where termination

ould be established automatially.

In reent years, the dependeny pair tehnique of Arts and Giesl [1, 2℄ emerged

as the most powerful automati method for proving termination of rewrite sys-

tems. For any given rewrite system, this tehnique generates a set of onstraints
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whih may then be solved by standard simpli�ation orders. In this way, the

power of traditional termination proving methods has been inreased signi�-

antly, i.e., the lass of systems where termination is provable mehanially by

the dependeny pair tehnique is muh larger than the lass of simply terminat-

ing systems. In light of this development, it is no longer suÆient to base the

laim that a partiular transformation method is suessful on the fat that it

may transform non-simply terminating rewrite systems into simply terminating

ones. In this paper we ompare two transformation methods, dummy elimination

[11℄ and the argument �ltering transformation [16℄, with the dependeny pair

tehnique. With respet to dummy elimination we obtain the following results:

1. If dummy elimination transforms a given rewrite system R into a simply

terminating rewrite system R

0

, then the termination of R an also be proved

by the most basi version of the dependeny pair tehnique.

2. If dummy elimination transforms a given rewrite system R into a DP simply

terminating rewrite system R

0

, i.e., the termination of R

0

an be proved by

a simpli�ation order in ombination with the dependeny pair tehnique,

then R is also DP simply terminating.

These results are onstrutive in the sense that the onstrutions in the proofs

are solely based on the termination proof of R

0

. This shows that proving termi-

nation of R diretly by dependeny pairs is never more diÆult than proving

termination of R

0

. The seond result states that dummy elimination is useless

as a preproessing step to the dependeny pair tehnique. Not surprisingly, the

reverse statements do not hold. In other words, as far as automati termination

proofs are onerned, dummy elimination is no longer needed.

The reent argument �ltering transformation of Kusakari, Nakamura, and

Toyama [16℄ an be viewed as an improvement of dummy elimination by inor-

porating ideas of the dependeny pair tehnique. We show that the �rst result

above also holds for the argument �ltering transformation. The seond result

does not extend in its full generality, but we show that under a suitable restri-

tion on the argument �ltering applied in the transformation of R to R

0

, DP

simple termination of R

0

also implies DP simple termination of R.

The remainder of the paper is organized as follows. In the next setion we

briey reall some de�nitions and results pertaining to termination of rewrite

systems and in partiular, the dependeny pair tehnique. In Setion 3 we relate

the dependeny pair tehnique to dummy elimination. Setion 4 is devoted to

the omparison of the dependeny pair tehnique and the argument �ltering

transformation. We onlude in Setion 5.

2 Preliminaries

An introdution to term rewrite systems (TRSs) an be found in [4℄, for example.

We �rst introdue the dependeny pair tehnique. Our presentation ombines

features of [2, 13, 16℄. Apart from the presentation, all results stated below are

due to Arts and Giesl. We refer to [2, 3℄ for motivations and proofs. Let R

2



be a (�nite) TRS over a signature F . As usual, all root symbols of left-hand

sides of rewrite rules are alled de�ned, whereas all other funtion symbols are

onstrutors. Let F

℄

denote the union of F and ff

℄

j f is a de�ned symbol of Rg

where f

℄

has the same arity as f . Given a term t = f(t

1

; : : : ; t

n

) 2 T (F ;V) with

f de�ned, we write t

℄

for the term f

℄

(t

1

; : : : ; t

n

). If l! r 2 R and t is a subterm

of r with de�ned root symbol then the rewrite rule l

℄

! t

℄

is alled a dependeny

pair ofR. The set of all dependeny pairs ofR is denoted by DP(R). In examples

we often write F for f

℄

.

For instane, onsider the following well-known one-rule TRS R from [8℄:

f(f(x)) ! f(e(f(x))) (1)

Here f is de�ned, e is a onstrutor, and DP(R) onsists of the two dependeny

pairs

F(f(x)) ! F(e(f(x))) F(f(x)) ! F(x)

An argument �ltering [2℄ for a signatureF is a mapping � that assoiates with

every n-ary funtion symbol an argument position i 2 f1; : : : ; ng or a (possibly

empty) list [i

1

; : : : ; i

m

℄ of argument positions with 1 6 i

1

< � � � < i

m

6 n.

The signature F

�

onsists of all funtion symbols f suh that �(f) is some list

[i

1

; : : : ; i

m

℄, where in F

�

the arity of f is m. Every argument �ltering � indues

a mapping from T (F ;V) to T (F

�

;V), also denoted by �:

�(t) =

8

>

<

>

:

t if t is a variable;

�(t

i

) if t = f(t

1

; : : : ; t

n

) and �(f) = i;

f(�(t

i

1

); : : : ; �(t

i

m

)) if t = f(t

1

; : : : ; t

n

) and �(f) = [i

1

; : : : ; i

m

℄:

Thus, an argument �ltering is used to replae funtion symbols by one of their

arguments or to eliminate ertain arguments of funtion symbols. For example, if

�(f) = �(F) = [1℄ and �(e) = 1, then we have �(F(e(f(x)))) = F(f(x)). However,

if we hange �(e) to [ ℄, then we obtain �(F(e(f(x)))) = F(e).

A preorder (or quasi-order) is a transitive and reexive relation. A rewrite

preorder is a preorder% on terms that is losed under ontexts and substitutions.

A redution pair [16℄ onsists of a rewrite preorder % and a ompatible well-

founded order > whih is losed under substitutions. Here ompatibility means

that the inlusion % � > � > or the inlusion > � % � > holds. In pratie,

> is often hosen to be the strit part � of % (or the order where s > t i�

s� � t� for all ground substitutions �). The following theorem presents the

(basi) dependeny pair approah of Arts and Giesl.

Theorem 1. A TRS R over a signature F is terminating if and only if there

exists an argument �ltering � for F

℄

and a redution pair (%; >) suh that

�(R) � % and �(DP(R)) � >.

Beause rewrite rules are just pairs of terms, �(R) � % is a shorthand for

�(l) % �(r) for every rewrite rule l ! r 2 R. In our example, when using

�(e) = [ ℄, the inequalities f(f(x)) % f(e), F(f(x)) > F(e), and F(f(x)) > F(x)
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resulting from the dependeny pair tehnique are satis�ed by the reursive path

order, for instane. Hene, termination of this TRS is proved.

Rather than onsidering all dependeny pairs at the same time, like in the

above theorem, it is advantageous to treat groups of dependeny pairs separately.

These groups orrespond to lusters in the dependeny graph of R. The nodes

of the dependeny graph are the dependeny pairs of R and there is an arrow

from node l

℄

1

! t

℄

1

to l

℄

2

! t

℄

2

if there exist substitutions �

1

and �

2

suh that

t

℄

1

�

1

!

�

R

l

℄

2

�

2

. (By renaming variables in di�erent ourrenes of dependeny

pairs we may assume that �

1

= �

2

.) The dependeny graph of R is denoted by

DG(R). We all a non-empty subset C of dependeny pairs of DP(R) a luster

if for every two (not neessarily distint) pairs l

℄

1

! t

℄

1

and l

℄

2

! t

℄

2

in C there

exists a non-empty path in C from l

℄

1

! t

℄

1

to l

℄

2

! t

℄

2

.

Theorem 2. A TRS R is terminating if and only if for every luster C in

DG(R) there exists an argument �ltering � and a redution pair (%; >) suh

that �(R) � %, �(C) � % [ >, and �(C) \> 6= ?.

Note that �(C) \> 6= ? denotes the situation that �(l

℄

) > �(t

℄

) for at least

one dependeny pair l

℄

! t

℄

2 C.

In the above example, the dependeny graph only ontains an arrow from

F(f(x)) ! F(x) to itself and thus fF(f(x)) ! F(x)g is the only luster. Hene,

with the re�nement of Theorem 2 the inequality F(f(x)) > F(e) is no longer ne-

essary. See [3℄ for further examples whih illustrate the advantages of regarding

lusters separately.

Note that while in general the dependeny graph annot be omputed au-

tomatially (sine it is undeidable whether t

℄

1

� !

�

R

l

℄

2

� holds for some �),

one an nevertheless approximate this graph automatially, f. [1{3, \estimated

dependeny graph"℄. In this way, the riterion of Theorem 2 an be mehanized.

Most lassial methods for automated termination proofs are restrited to

simpli�ation (pre)orders, i.e., to (pre)orders satisfying the subterm property

f(: : : t : : : ) � t or f(: : : t : : : ) % t, respetively. Hene, these methods annot

prove termination of TRSs like (1), as the left-hand side of its rule is embedded

in the right-hand side (so the TRS is not simply terminating). However, with

the development of the dependeny pair tehnique now the TRSs where an

automated termination proof is potentially possible are those systems where

the inequalities generated by the dependeny pair tehnique are satis�ed by

simpli�ation (pre)orders.

A straightforward way to generate a simpli�ation preorder � from a sim-

pli�ation order � is to de�ne s � t if s � t or s = t, where = denotes syn-

tati equality. Suh relations � are partiularly relevant, sine many existing

tehniques generate simpli�ation orders rather than preorders. By restriting

ourselves to this lass of simpli�ation preorders, we obtain the notion of DP

simple termination.

De�nition 1. A TRS R is alled DP simply terminating if for every luster C

in DG(R) there exists an argument �ltering � and a simpli�ation order � suh

that �(R [ C) � � and �(C) \ � 6= ?.
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Simple termination implies DP simple termination, but not vie versa. For

example, the TRS (1) is DP simply terminating, but not simply terminating. The

above de�nition oinides with the one in [13℄ exept that we use the real de-

pendeny graph instead of the estimated dependeny graph of [1{3℄. The reason

for this is that we do not want to restrit ourselves to a partiular omputable

approximation of the dependeny graph, for the same reason that we do not

insist on a partiular simpli�ation order to make the onditions e�etive.

3 Dummy Elimination

In [11℄, Ferreira and Zantema de�ned an automati transformation tehnique

whih transforms a TRS R into a new TRS dummy(R) suh that termination

of dummy(R) implies termination of R. The advantage of this transformation

is that non-simply terminating systems like (1) may be transformed into simply

terminating ones. Thus, after the transformation, standard tehniques may be

used to prove termination.

Below we de�ne Ferreira and Zantema's dummy elimination transformation.

While our formulation of dummy(R) is di�erent from the one in [11℄, it is easily

seen to be equivalent.

De�nition 2. Let R be a TRS over a signature F . Let e be a distinguished

funtion symbol in F of arity m > 1 and let � be a fresh onstant. We write

F

�

for (F n feg) [ f�g. The mapping ap: T (F ;V) ! T (F

�

;V) is indutively

de�ned as follows:

ap(t) =

8

>

<

>

:

t if t 2 V;

� if t = e(t

1

; : : : ; t

m

);

f(ap(t

1

); : : : ; ap(t

n

)) if t = f(t

1

; : : : ; t

n

) with f 6= e:

The mapping dummy assigns to every term in T (F ;V) a subset of T (F

�

;V), as

follows:

dummy(t) = fap(t)g [ fap(s) j s is an argument of an e symbol in tg:

Finally, we de�ne

dummy(R) = fap(l)! r

0

j l ! r 2 R and r

0

2 dummy(r)g:

The mappings ap and dummy are illustrated in Figure 1, where we assume

that the numbered ontexts do not ontain any ourrenes of e. Ferreira and

Zantema [11℄ showed that dummy elimination is sound.

Theorem 3. Let R be a TRS. If dummy(R) is terminating then R is termi-

nating.

For the one-rule TRS (1), dummy elimination yields the TRS onsisting of

the two rewrite rules

f(f(x)) ! f(�) f(f(x)) ! f(x)
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>

>
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>

>

>

>

>

>

>

;

= dummy(t)

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Fig. 1. The mappings ap and dummy.

In ontrast to the original system, the new TRS is simply terminating and its ter-

mination is easily shown automatially by standard tehniques like the reursive

path order. Hene, dummy elimination an transform non-simply terminating

TRSs into simply terminating ones. However, as indiated in the introdution,

nowadays the right question to ask is whether it an transform non-DP simply

terminating TRSs into DP simply terminating ones. Before answering this ques-

tion we show that if dummy elimination sueeds in transforming a TRS into a

simply terminating TRS then the original TRS is DP simply terminating. Even

stronger, whenever termination of dummy(R) an be proved by a simpli�ation

order, then the same simpli�ation order satis�es the onstraints of the depen-

deny pair approah. Thus, the termination proof using dependeny pairs is not

more diÆult or more omplex than the one with dummy elimination.

Theorem 4. Let R be a TRS. If dummy(R) is simply terminating then R is

DP simply terminating.

Proof. Let F be the signature of R. We show that R is DP simply terminating

even without onsidering the dependeny graph re�nement. So we de�ne an

argument �ltering � for F

℄

and a simpli�ation order � on T (F

℄

�

;V) suh that

�(R) � � and �(DP(R)) � �. The argument �ltering � is de�ned as follows:

�(e) = [ ℄ and �(f) = [1; : : : ; n℄ for every n-ary symbol f 2 (F nfeg)

℄

. Moreover,

if e is a de�ned symbol, we de�ne �(e

℄

) = [ ℄. Let = be any simpli�ation order

that shows the simple termination of dummy(R). We de�ne the simpli�ation

order � on T (F

℄

�

;V) as follows: s � t if and only if s

0

= t

0

where (�)

0

denotes the

mapping from T (F

℄

�

;V) to T (F

�

;V) that �rst replaes every marked symbol F

by f and afterwards replaes every ourrene of the onstant e by �. Note that �

and= are essentially the same. It is very easy to show that �(t)

0

= �(t

℄

)

0

= ap(t)

for every term t 2 T (F ;V). Let l! r 2 R. Beause ap(l)! ap(r) is a rewrite

rule in dummy(R), we get �(l)

0

= ap(l) = ap(r) = �(r)

0

and thus �(l) � �(r).

Hene �(R) � � and thus ertainly �(R) � �. Now let l

℄

! t

℄

be a dependeny

pair of R, originating from the rewrite rule l ! r 2 R. From t E r (E denotes

the subterm relation) we easily infer the existene of a term u 2 dummy(r)

suh that ap(t) E u. Sine ap(l)! u is a rewrite rule in dummy(R), we have

6



�(l

℄

)

0

= ap(l) = u. The subterm property of = yields u w ap(t) = �(t

℄

)

0

. Hene

�(l

℄

)

0

= �(t

℄

)

0

and thus �(l

℄

) � �(t

℄

). We onlude that �(DP(R)) � �. ut

The previous result states that dummy elimination o�ers no advantage om-

pared to the dependeny pair tehnique. On the other hand, dependeny pairs

sueed for many systems where dummy elimination fails [1, 2℄ (an example is

given in the next setion). One ould imagine that dummy elimination may

nevertheless be helpful in ombination with dependeny pairs. Then to show

termination of a TRS one would �rst apply dummy elimination and afterwards

prove termination of the transformed TRS with the dependeny pair tehnique.

In the remainder of this setion we show that suh a senario annot handle

TRSs whih annot already be handled by the dependeny pair tehnique di-

retly. In short, dummy elimination is useless for automated termination proofs.

We proeed in a stepwise manner. First we relate the dependeny pairs of R to

those of dummy(R).

Lemma 1. If l

℄

! t

℄

2 DP(R) then ap(l)

℄

! ap(t)

℄

2 DP(dummy(R)).

Proof. In the proof of Theorem 4 we observed that there exists a rewrite rule

ap(l)! u in dummy(R) with ap(t) E u. Sine root(ap(t)) is a de�ned symbol

in dummy(R), ap(l)

℄

! ap(t)

℄

is a dependeny pair of dummy(R). ut

Now we prove that reduibility in R implies reduibility in dummy(R).

De�nition 3. Given a substitution �, the substitution �

ap

is de�ned as apÆ�

(i.e., the omposition of ap and � where � is applied �rst).

Lemma 2. For all terms t and substitutions �, we have ap(t�) = ap(t)�

ap

.

Proof. Easy indution on the struture of t. ut

Lemma 3. If s!

�

R

t then ap(s)!

�

dummy(R)

ap(t).

Proof. It is suÆient to show that s !

R

t implies ap(s) !

�

dummy(R)

ap(t).

There must be a rule l ! r 2 R and a position p suh that sj

�

= l� and

t = s[r�℄

p

. If p is below the position of an ourrene of e, then we have

ap(s) = ap(t). Otherwise, ap(s)j

p

= ap(l�) = ap(l)�

ap

by Lemma 2. Thus,

ap(s)!

dummy(R)

ap(s)[ap(r)�

ap

℄

p

= ap(s)[ap(r�)℄

p

= ap(t). ut

Next we show that if there is an arrow between two dependeny pairs in

the dependeny graph of R then there is an arrow between the orresponding

dependeny pairs in the dependeny graph of dummy(R).

Lemma 4. Let s, t be terms with de�ned root symbols. If s

℄

� !

�

R

t

℄

� for some

substitution �, then ap(s)

℄

�

ap

!

�

dummy(R)

ap(t)

℄

�

ap

.

Proof. Let s = f(s

1

; : : : ; s

n

). We have s

℄

� = f

℄

(s

1

�; : : : ; s

n

�). Sine f

℄

is a

onstrutor, no step in the sequene s

℄

� !

�

R

t

℄

� takes plae at the root position

and thus t

℄

= f

℄

(t

1

; : : : ; t

n

) with s

i

� !

�

R

t

i

� for all 1 6 i 6 n. We obtain

ap(s

i

)�

ap

= ap(s

i

�) !

�

dummy(R)

ap(t

i

�) = ap(t

i

)�

ap

for all 1 6 i 6 n by

Lemmata 2 and 3. Hene ap(s)

℄

�

ap

!

�

dummy(R)

ap(t)

℄

�

ap

. ut
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Finally we are ready for the main theorem of this setion.

Theorem 5. Let R be a TRS. If dummy(R) is DP simply terminating then R

is DP simply terminating.

Proof. Let C be a luster in the dependeny graph of R. From Lemmata 1 and 4

we infer the existene of a orresponding luster, denoted by dummy(C), in

the dependeny graph of dummy(R). By assumption, there exists an argument

�ltering �

0

and a simpli�ation order = suh that �

0

(dummy(R)[dummy(C)) �

w and �

0

(dummy(C)) \ = 6= ?. Let F be the signature of R. We de�ne an

argument �ltering � for F

℄

as follows: �(f) = �

0

(f) for every f 2 (F n feg)

℄

,

�(e) = [ ℄ and, if e is a de�ned symbol of R, �(e

℄

) = [ ℄. Slightly di�erent from

the proof of Theorem 4, let (�)

0

denote the mapping that just replaes every

ourrene of the onstant e by � and every ourrene of e

℄

by �

℄

. It is easy to

show that �(t)

0

= �

0

(ap(t)) for every term t 2 T (F ;V) and �(t

℄

)

0

= �

0

(ap(t)

℄

)

for every term t 2 T (F ;V) with a de�ned root symbol. Similar to Theorem 4,

we de�ne the simpli�ation order � on F

�

as s � t if and only if s

0

= t

0

.

We laim that � and � satisfy the onstraints for C, i.e., �(R [ C) � � and

�(dummy(C)) \ � 6= ?. If l ! r 2 R, then ap(l) ! ap(r) 2 dummy(R) and

thus �(l)

0

= �

0

(ap(l)) w �

0

(ap(r)) = �(r)

0

. Hene �(l) � �(r). If l

℄

! t

℄

2 C,

then ap(l)

℄

! ap(t)

℄

2 dummy(C) by Lemma 1 and thus �(l

℄

)

0

= �

0

(ap(l)

℄

) w

�

0

(ap(t)

℄

) = �(t

℄

)

0

. Hene �(l

℄

) � �(t

℄

) and if �

0

(ap(l)

℄

) = �

0

(ap(t)

℄

), then

�(l

℄

) � �(t

℄

). ut

We stress that the proof is onstrutive in the sense that a DP simple termi-

nation proof of dummy(R) an be automatially transformed into a DP simple

termination proof of R (i.e., the orders and argument �lterings required for the

DP simple termination proofs of dummy(R) and R are essentially the same).

Thus, the termination proof of dummy(R) is not simpler than a diret proof for

R.

Theorem 5 also holds if one uses the estimated dependeny graph of [1{3℄

instead of the real dependeny graph. As mentioned in Setion 2, suh a om-

putable approximation of the dependeny graph must be used in implementa-

tions, sine onstruting the real dependeny graph is undeidable in general.

The proof is similar to the one of Theorem 5, sine again for every luster in the

estimated dependeny graph of R there is a orresponding one in the estimated

dependeny graph of dummy(R).

4 Argument Filtering Transformation

By inorporating argument �lterings, a key ingredient of the dependeny pair

tehnique, into dummy elimination, Kusakari, Nakamura, and Toyama [16℄ re-

ently developed the argument �ltering transformation. In their paper they

proved the soundness of their transformation and they showed that it improves

upon dummy elimination. In this setion we ompare their transformation to

the dependeny pair tehnique. We proeed as in the previous setion. First we

reall the de�nition of the argument �ltering transformation.

8



De�nition 4. Let � be an argument �ltering, f a funtion symbol, and 1 6 i 6

arity(f). We write f ?

�

i if neither i 2 �(f) nor i = �(f). Given two terms s

and t, we say that s is a preserved subterm of t with respet to � and we write

s E

�

t, if s E t and either s = t or t = f(t

1

; : : : ; t

n

), s is a preserved subterm of

t

i

, and f 6?

�

i.

De�nition 5. Given an argument �ltering �, the argument �ltering �� is de�ned

as follows:

��(f) =

(

�(f) if �(f) = [i

1

; : : : ; i

m

℄,

[�(f)℄ if �(f) = i.

The mapping AFT

�

assigns to every term in T (F ;V) a subset of T (F

�

;V), as

follows:

AFT

�

(t) = f�(t) j ��(t) ontains a de�ned symbolg [

[

s2S

AFT

�

(s)

with S denoting the set of outermost non-preserved subterms of t. Finally, we

de�ne

AFT

�

(R) = f�(l)! r

0

j l ! r 2 R and r

0

2 AFT

�

(r) [ f�(r)gg:

Consider the term t of Figure 1. Figure 2 shows AFT

�

(t) for the two argument

�lterings with �(e) = [1℄ and �(e) = 2, respetively, and �(f) = [1; : : : ; n℄ for

every other n-ary funtion symbol f . Here we assume that all numbered ontexts

ontain de�ned symbols, but no ourrene of e.

1

e

2

e

6

�(t) =

3

e

4

5

7

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

= AFT

�

(t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1

3

5

7

= �(t)

2

4

6

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

�(e) = [1℄

�(e) = 2

Fig. 2. The mappings � and AFT

�

.

So essentially, AFT

�

(t) ontains �(s) for s = t and for all (maximal) sub-

terms s of t whih are eliminated if the argument �ltering � is applied to t.

9



However, one only needs terms �(s) in AFT

�

(t) where s ontained a de�ned

symbol outside eliminated arguments (otherwise the original subterm s an-

not have been responsible for a potential non-termination). Kusakari et al. [11℄

proved the soundness of the argument �ltering transformation.

Theorem 6. If AFT

�

(R) is terminating then R is terminating.

We show that if AFT

�

(R) is simply terminating then R is DP simply termi-

nating and again, a termination proof by dependeny pairs works with the same

argument �ltering � and the simpli�ation order used to orient AFT

�

(R). Thus,

the argument �ltering transformation has no advantage ompared to dependeny

pairs. We start with two easy lemmata.

1

Lemma 5. Let s and t be terms. If s E

�

t then �(s) E �(t).

Proof. By indution on the de�nition of E

�

. If s = t then the result is trivial.

Suppose t = f(t

1

; : : : ; t

n

), s E

�

t

i

, and f 6?

�

i. The indution hypothesis yields

�(s) E �(t

i

). Beause f 6?

�

i, �(t

i

) is a subterm of �(t) and thus �(s) E �(t) as

desired. ut

Lemma 6. Let r be a term. For every subterm t of r with a de�ned root symbol

there exists a term u 2 AFT

�

(r) suh that �(t) E u.

Proof. We use indution on the struture of r. In the base ase we must have

t = r and we take u = �(r). Note that �(r) 2 AFT

�

(r) beause root(��(r)) =

root(r) is de�ned. In the indution step we distinguish two ases. If t E

�

r then

we also have t E

��

r and hene ��(t) E ��(r) by Lemma 5. As root(��(t)) = root(t)

is de�ned, the term ��(r) ontains a de�ned symbol. Hene �(r) 2 AFT

�

(r) by

de�nition and thus we an take u = �(r). In the other ase t is not a preserved

subterm of r. This implies that t E s for some outermost non-preserved subterm

s of r. The indution hypothesis, applied to t E s, yields a term u 2 AFT

�

(s)

suh that �(t) E u. We have AFT

�

(s) � AFT

�

(r) and hene u satis�es the

requirements. ut

Theorem 7. LetR be a TRS and � an argument �ltering. If AFT

�

(R) is simply

terminating then R is DP simply terminating.

Proof. Like in the proof of Theorem 4 there is no need to onsider the dependeny

graph. Let � be a simpli�ation order that shows the (simple) termination of

AFT

�

(R). We laim that the dependeny pair onstraints are satis�ed by � and

�, where � and � are extended to F

℄

by treating eah marked symbol F in the

same way as the orresponding unmarked f . For rewrite rules l ! r 2 R we have

�(l) � �(r) as �(l)! �(r) 2 AFT

�

(R). Let l

℄

! t

℄

be a dependeny pair of R,

originating from the rewrite rule l ! r. We show that �(l) � �(t) and hene,

1

Argumentations similar to the proofs of Lemma 6 and Theorem 7 an also be found

in [16, Lemma 4.3 and Theorem 4.4℄. However, [16℄ ontains neither Theorem 7

nor our main Theorem 8, sine the authors do not ompare the argument �ltering

transformation with the dependeny pair approah.

10



�(l

℄

) � �(t

℄

) as well. We have t E r. Sine root(t) is a de�ned funtion symbol

by the de�nition of dependeny pairs, we an apply Lemma 6. This yields a term

u 2 AFT

�

(r) suh that �(t) E u. The subterm property of � yields u � �(t).

By de�nition, �(l) ! u 2 AFT

�

(R) and thus �(l) � u by ompatibility of �

with AFT

�

(R). Hene �(l) � �(t) as desired. ut

Note that in the above proof we did not make use of the possibility to treat

marked symbols di�erently from unmarked ones. This learly shows why the

dependeny pair tehnique is muh more powerful than the argument �ltering

transformation; there are numerous DP simply terminating TRSs whih are no

longer DP simply terminating if we are fored to interpret a de�ned funtion

symbol and its marked version in the same way. As a simple example, onsider

R

1

=

8

<

:

x� 0 ! x 0� s(y)! 0

x� s(y)! p(x� y) s(x)� s(y)! s((x� y)� s(y))

p(s(x)) ! x

9

=

;

:

Note that R

1

is not simply terminating as the rewrite step s(x) � s(s(x)) !

s((x�s(x))�s(s(x))) is self-embedding. To obtain a terminating TRS AFT

�

(R

1

),

the rule p(s(x)) ! x enfores p 6?

�

1 and s 6?

�

1. From p 6?

�

1 and the rules for �

we infer that �(�) = [1; 2℄. But then, for all hoies of �(�), the rule s(x)�s(y)!

s((x�y)�s(y)) is transformed into one that is inompatible with a simpli�ation

order. So AFT

�

(R

1

) is not simply terminating for any �. (Similarly, dummy

elimination annot transform this TRS into a simply terminating one either.) On

the other hand, DP simple termination of R

1

is easily shown by the argument

�ltering �(p) = 1, �(�) = 1, �(�

℄

) = [1; 2℄, and �(f) = [1; : : : ; arity(f)℄ for

every other funtion symbol f in ombination with the reursive path order.

This example illustrates that treating de�ned symbols and their marked versions

di�erently is often required in order to bene�t from the fat that the dependeny

pair approah only requires weak dereasingness for the rules of R

1

.

The next question we address is whether the argument �ltering transforma-

tion an be useful as a preproessing step for the dependeny pair tehnique.

Surprisingly, the answer to this question is yes. Consider the TRS

R

2

=

8

<

:

f(a) ! f((a)) f(a) ! f(d(a)) e(g(x)) ! e(x)

f((x)) ! x f(d(x)) ! x

f((a)) ! f(d(b)) f((b)) ! f(d(a))

9

=

;

:

This TRS is not DP simply terminating whih an be seen as follows. The

dependeny pair E(g(x)) ! E(x) onstitutes a luster in the dependeny graph

of R

2

. Hene, if R

2

were DP simply terminating, there would be an argument

�ltering � and a simpli�ation order � suh that (amongst others)

�(f(a)) � �(f((a))) �(f(a)) � �(f(d(a)))

�(f((x))) � x �(f(d(x))) � x

�(f((a))) � �(f(d(b))) �(f((b))) � �(f(d(a)))

From �(f((x))) � x and �(f(d(x))) � x we infer that f 6?

�

1,  6?

�

1, and

d 6?

�

1. Hene �(f(a)) � �(f((a))) and �(f(a)) � �(f(d(a))) an only be satis�ed

11



if �() = �(d) = 1. But then �(f((a))) � �(f(d(b))) and �(f((b))) � �(f(d(a)))

amount to either f(a) � f(b) and f(b) � f(a) (if �(f) = [1℄) or a � b and b � a

(if �(f) = 1). Sine f(a) 6= f(b) and a 6= b the required simpli�ation order does

not exist.

On the other hand, if �(e) = 1 then AFT

�

(R

2

) onsists of the �rst six rewrite

rules of R together with g(x)! x. One easily veri�es that there are no lusters

in DG(AFT

�

(R

2

)) and hene AFT

�

(R

2

) is trivially DP simply terminating.

De�nition 6. An argument �ltering � is alled ollapsing if �(f) = i for some

de�ned funtion symbol f .

The argument �ltering in the previous example is ollapsing. In the remainder

of this setion we show that for non-ollapsing argument �lterings the impliation

\AFT

�

(R) is DP simply terminating ) R is DP simply terminating" is valid.

Thus, using the argument �ltering transformation with a non-ollapsing � as a

preproessing step to the dependeny pair tehnique has no advantages.

First we prove a lemma to relate the dependeny pairs of R and AFT

�

(R).

Lemma 7. Let � be a non-ollapsing argument �ltering. If l

℄

! t

℄

2 DP(R)

then �(l)

℄

! �(t)

℄

2 DP(AFT

�

(R)).

Proof. By de�nition there is a rewrite rule l ! r 2 R and a subterm t E r with

de�ned root symbol. Aording to Lemma 6 there exists a term u 2 AFT

�

(r)

suh that �(t) E u. Thus, �(l) ! u 2 AFT

�

(R). Sine � is non-ollapsing,

root(�(t)) = root(t). Hene, as root(t) is de�ned, �(l)

℄

! �(t)

℄

is a dependeny

pair of AFT

�

(R). ut

Example R

2

shows that the above lemma is not true for arbitrary argument

�lterings. The reason is that e(g(x))

℄

! e(x)

℄

is a dependeny pair of R, but

with �(e) = 1 there is no orresponding dependeny pair in AFT

�

(R).

The next three lemmata will be used to show that lusters in DG(R) orre-

spond to lusters in DG(AFT

�

(R)).

De�nition 7. Given an argument �ltering � and a substitution �, the substitu-

tion �

�

is de�ned as � Æ � (i.e., � is applied �rst).

Lemma 8. For all terms t, argument �lterings �, and substitutions �, �(t�) =

�(t)�

�

.

Proof. Easy indution on the struture of t. ut

Lemma 9. Let R be a TRS and � a non-ollapsing argument �ltering. If s!

�

R

t

then �(s)!

�

AFT

�

(R)

�(t).

Proof. It suÆes to show that �(s)!

�

AFT

�

(R)

�(t) whenever s!

�

R

t onsists of

a single rewrite step. Let s = C[l�℄ and t = C[r�℄ for some ontext C, rewrite

rule l ! r 2 R, and substitution �. We use indution on C. If C is the empty

ontext, then �(s) = �(l�) = �(l)�

�

and �(t) = �(r�) = �(r)�

�

aording to

12



Lemma 8. As �(l) ! �(r) 2 AFT

�

(R), we have �(s) !

AFT

�

(R)

�(t). Suppose

C = f(s

1

; : : : ; C

0

; : : : ; s

n

) where C

0

is the i-th argument of C. If f ?

�

i then

�(s) = �(t). If �(f) = i (whih is possible for onstrutors f) then �(s) =

�(C

0

[l�℄) and �(t) = �(C

0

[r�℄), and thus we obtain �(s)!

�

AFT

�

(R)

�(t) from the

indution hypothesis. In the remaining ase we have �(f) = [i

1

; : : : ; i

m

℄ with i

j

=

i for some j and hene �(s) = f(�(s

i

1

); : : : ; �(C

0

[l�℄); : : : ; �(s

i

m

)) and �(t) =

f(�(s

i

1

); : : : ; �(C

0

[r�℄); : : : ; �(s

i

m

)). In this ase we obtain �(s) !

�

AFT

�

(R)

�(t)

from the indution hypothesis as well. ut

The following lemma states that if two dependeny pairs are onneted inR's

dependeny graph, then the orresponding pairs are onneted in the dependeny

graph of AFT

�

(R) as well.

Lemma 10. Let R be a TRS, � a non-ollapsing argument �ltering, and s, t

be terms with de�ned root symbols. If s

℄

� !

�

R

t

℄

� for some substitution � then

�(s)

℄

�

�

!

�

AFT

�

(R)

�(t)

℄

�

�

.

Proof. We have s = f(s

1

; : : : ; s

n

) and t = f(t

1

; : : : ; t

n

) for some n-ary de�ned

funtion symbol f with s

i

� !

�

R

t

i

� for all 1 6 i 6 n. Let �(f) = [i

1

; : : : ; i

m

℄.

This implies �(s�)

℄

= f

℄

(�(s

i

1

�); : : : ; �(s

i

m

�)) and �(t�)

℄

= f

℄

(�(t

i

1

�); : : : ;

�(t

i

m

�)). From the preeding lemma we know that �(s

i

j

�) !

�

AFT

�

(R)

�(t

i

j

�)

for all 1 6 j 6 m. Hene, using Lemma 8, �(s)

℄

�

�

= �(s�)

℄

!

�

AFT

�

(R)

�(t�)

℄

=

�(t)

℄

�

�

. ut

Now we an �nally prove the main theorem of this setion.

Theorem 8. Let R be a TRS and � a non-ollapsing argument �ltering. If

AFT

�

(R) is DP simply terminating then R is DP simply terminating.

Proof. Let C be a luster in DG(R). Aording to Lemmata 7 and 10, there is a

orresponding luster in DG(AFT

�

(R)), whih we denote by �(C). By assump-

tion, there exist an argument �ltering �

0

and a simpli�ation order � suh that

�

0

(AFT

�

(R)[�(C)) � � and �

0

(�(C))\� 6= ?. We de�ne an argument �ltering

�

00

for R as the omposition of � and �

0

. For a preise de�nition, let [ denote

the unmarking operation, i.e., f

[

= f and (f

℄

)

[

= f for all f 2 F . Then for all

f 2 F

℄

we de�ne

�

00

(f) =

8

>

<

>

:

[i

j

1

; : : : ; i

j

k

℄ if �(f

[

) = [i

1

; : : : ; i

m

℄ and �

0

(f) = [j

1

; : : : ; j

k

℄;

i

j

if �(f

[

) = [i

1

; : : : ; i

m

℄ and �

0

(f) = j;

i if �(f) = i:

It is not diÆult to show that �

00

(t) = �

0

(�(t)) and �

00

(t

℄

) = �

0

(�(t)

℄

) for all

terms t without marked symbols. We laim that �

00

and � satisfy the onstraints

for C, i.e., �

00

(R[C) � � and �

00

(C)\� 6= ?. These two properties follow from the

two assumptions �

0

(AFT

�

(R)[�(C)) � � and �

0

(�(C))\� 6= ? in onjuntion

with the obvious inlusion �(R) � AFT

�

(R). ut

Theorem 8 also holds for the estimated dependeny graph instead of the real

dependeny graph.
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5 Conlusion

In this paper, we have ompared two transformational tehniques for termination

proofs, viz. dummy elimination [11℄ and the argument �ltering transformation

[16℄, with the dependeny pair tehnique of Arts and Giesl [1{3℄. Essentially, all

these tehniques transform a given TRS into new inequalities or rewrite systems

whih then have to be oriented by suitable well-founded orders. Virtually all well-

founded orders whih an be generated automatially are simpli�ation orders.

As our fous was on automated termination proofs, we therefore investigated the

strengths of these three tehniques when ombined with simpli�ation orders.

To that end, we showed that whenever an automated termination proof is

possible using dummy elimination or the argument �ltering transformation, then

a orresponding termination proof an also be obtained by dependeny pairs.

Thus, the dependeny pair tehnique is more powerful than dummy elimination

or the argument �ltering transformation on their own.

Moreover, we examined whether dummy elimination or the argument �l-

tering transformation would at least be helpful as a preproessing step to the

dependeny pair tehnique. We proved that for dummy elimination and for an

argument �ltering transformation with a non-ollapsing argument �ltering, this

is not the ase. In fat, whenever there is a (pre)order satisfying the dependeny

pair onstraints for the rewrite system resulting from dummy elimination or a

non-ollapsing argument �ltering transformation, then the same (pre)order also

satis�es the dependeny pair onstraints for the original TRS.

As an be seen from the proofs of our main theorems, this latter result

even holds for arbitrary (i.e., non-simpli�ation) (pre)orders. Thus, in partiular,

Theorems 5 and 8 also hold for DP quasi-simple termination [13℄. This notion

aptures those TRSs where the dependeny pair onstraints are satis�ed by

an arbitrary simpli�ation preorder % (instead of just a preorder � where the

equivalene relation is syntati equality as in DP simple termination).

Future work will inlude a further investigation on the usefulness of ollaps-

ing argument �ltering transformations as a preproessing step to dependeny

pairs. Note that our ounterexampleR

2

is DP quasi-simply terminating (but not

DP simply terminating). In other words, at present it is not lear whether the

argument �ltering transformation is useful as a preproessing step to the depen-

deny pair tehnique if one admits arbitrary simpli�ation preorders to solve the

generated onstraints. However, an extension of Theorem 8 to DP quasi-simple

termination and to ollapsing argument �lterings � is not straightforward, sine

lusters of dependeny pairs in R may disappear in AFT

�

(R) (i.e., Lemma 7

does not hold for ollapsing argument �lterings). We also intend to examine the

relationship between dependeny pairs and other transformation tehniques suh

as \freezing" [20℄.
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