
Eliminating Dummy Elimination

?

J�urgen Giesl

1

and Aart Middeldorp

2

1

Computer S
ien
e Department

University of New Mexi
o, Albuquerque, NM 87131, USA

giesl�
s.unm.edu

2

Institute of Information S
ien
es and Ele
troni
s

University of Tsukuba, Tsukuba 305-8573, Japan

ami�is.tsukuba.a
.jp

Abstra
t. This paper is
on
erned with methods that automati
ally

prove termination of term rewrite systems. The aim of dummy elimina-

tion, a method to prove termination introdu
ed by Ferreira and Zantema,

is to transform a given rewrite system into a rewrite system whose termi-

nation is easier to prove. We show that dummy elimination is subsumed

by the more re
ent dependen
y pair method of Arts and Giesl. More pre-

isely, if dummy elimination su

eeds in transforming a rewrite system

into a so-
alled simply terminating rewrite system then termination of

the given rewrite system
an be dire
tly proved by the dependen
y pair

te
hnique. Even stronger, using dummy elimination as a prepro
essing

step to the dependen
y pair te
hnique does not have any advantages

either. We show that to a large extent these results also hold for the

argument �ltering transformation of Kusakari et al.

1 Introdu
tion

Traditional methods to prove termination of term rewrite systems are based

on simpli�
ation orders, like polynomial interpretations [6, 12, 17℄, the re
ursive

path order [7, 14℄, and the Knuth-Bendix order [9, 15℄. However, the restri
tion

to simpli�
ation orders represents a signi�
ant limitation on the
lass of rewrite

systems that
an be proved terminating. Indeed, there are numerous important

and interesting rewrite systems whi
h are not simply terminating, i.e., their ter-

mination
annot be proved by simpli�
ation orders. Transformation methods

(e.g. [5, 10, 11, 16, 18, 20{22℄) aim to prove termination by transforming a given

term rewrite system into a term rewrite system whose termination is easier to

prove. The su

ess of su
h methods has been measured by how well they trans-

form non-simply terminating rewrite systems into simply terminating rewrite

systems, sin
e simply terminating systems were the only ones where termination

ould be established automati
ally.

In re
ent years, the dependen
y pair te
hnique of Arts and Giesl [1, 2℄ emerged

as the most powerful automati
 method for proving termination of rewrite sys-

tems. For any given rewrite system, this te
hnique generates a set of
onstraints

?

Pro
eedings of the 17th International Conferen
e on Automated Dedu
tion (CADE-

17), Pittsburgh, PA, USA, LNAI 1831, pages 309-323, Springer-Verlag, 2000.

whi
h may then be solved by standard simpli�
ation orders. In this way, the

power of traditional termination proving methods has been in
reased signi�-

antly, i.e., the
lass of systems where termination is provable me
hani
ally by

the dependen
y pair te
hnique is mu
h larger than the
lass of simply terminat-

ing systems. In light of this development, it is no longer suÆ
ient to base the

laim that a parti
ular transformation method is su

essful on the fa
t that it

may transform non-simply terminating rewrite systems into simply terminating

ones. In this paper we
ompare two transformation methods, dummy elimination

[11℄ and the argument �ltering transformation [16℄, with the dependen
y pair

te
hnique. With respe
t to dummy elimination we obtain the following results:

1. If dummy elimination transforms a given rewrite system R into a simply

terminating rewrite system R

0

, then the termination of R
an also be proved

by the most basi
 version of the dependen
y pair te
hnique.

2. If dummy elimination transforms a given rewrite system R into a DP simply

terminating rewrite system R

0

, i.e., the termination of R

0

an be proved by

a simpli�
ation order in
ombination with the dependen
y pair te
hnique,

then R is also DP simply terminating.

These results are
onstru
tive in the sense that the
onstru
tions in the proofs

are solely based on the termination proof of R

0

. This shows that proving termi-

nation of R dire
tly by dependen
y pairs is never more diÆ
ult than proving

termination of R

0

. The se
ond result states that dummy elimination is useless

as a prepro
essing step to the dependen
y pair te
hnique. Not surprisingly, the

reverse statements do not hold. In other words, as far as automati
 termination

proofs are
on
erned, dummy elimination is no longer needed.

The re
ent argument �ltering transformation of Kusakari, Nakamura, and

Toyama [16℄
an be viewed as an improvement of dummy elimination by in
or-

porating ideas of the dependen
y pair te
hnique. We show that the �rst result

above also holds for the argument �ltering transformation. The se
ond result

does not extend in its full generality, but we show that under a suitable restri
-

tion on the argument �ltering applied in the transformation of R to R

0

, DP

simple termination of R

0

also implies DP simple termination of R.

The remainder of the paper is organized as follows. In the next se
tion we

brie
y re
all some de�nitions and results pertaining to termination of rewrite

systems and in parti
ular, the dependen
y pair te
hnique. In Se
tion 3 we relate

the dependen
y pair te
hnique to dummy elimination. Se
tion 4 is devoted to

the
omparison of the dependen
y pair te
hnique and the argument �ltering

transformation. We
on
lude in Se
tion 5.

2 Preliminaries

An introdu
tion to term rewrite systems (TRSs)
an be found in [4℄, for example.

We �rst introdu
e the dependen
y pair te
hnique. Our presentation
ombines

features of [2, 13, 16℄. Apart from the presentation, all results stated below are

due to Arts and Giesl. We refer to [2, 3℄ for motivations and proofs. Let R

2

be a (�nite) TRS over a signature F . As usual, all root symbols of left-hand

sides of rewrite rules are
alled de�ned, whereas all other fun
tion symbols are

onstru
tors. Let F

℄

denote the union of F and ff

℄

j f is a de�ned symbol of Rg

where f

℄

has the same arity as f . Given a term t = f(t

1

; : : : ; t

n

) 2 T (F ;V) with

f de�ned, we write t

℄

for the term f

℄

(t

1

; : : : ; t

n

). If l! r 2 R and t is a subterm

of r with de�ned root symbol then the rewrite rule l

℄

! t

℄

is
alled a dependen
y

pair ofR. The set of all dependen
y pairs ofR is denoted by DP(R). In examples

we often write F for f

℄

.

For instan
e,
onsider the following well-known one-rule TRS R from [8℄:

f(f(x)) ! f(e(f(x))) (1)

Here f is de�ned, e is a
onstru
tor, and DP(R)
onsists of the two dependen
y

pairs

F(f(x)) ! F(e(f(x))) F(f(x)) ! F(x)

An argument �ltering [2℄ for a signatureF is a mapping � that asso
iates with

every n-ary fun
tion symbol an argument position i 2 f1; : : : ; ng or a (possibly

empty) list [i

1

; : : : ; i

m

℄ of argument positions with 1 6 i

1

< � � � < i

m

6 n.

The signature F

�

onsists of all fun
tion symbols f su
h that �(f) is some list

[i

1

; : : : ; i

m

℄, where in F

�

the arity of f is m. Every argument �ltering � indu
es

a mapping from T (F ;V) to T (F

�

;V), also denoted by �:

�(t) =

8

>

<

>

:

t if t is a variable;

�(t

i

) if t = f(t

1

; : : : ; t

n

) and �(f) = i;

f(�(t

i

1

); : : : ; �(t

i

m

)) if t = f(t

1

; : : : ; t

n

) and �(f) = [i

1

; : : : ; i

m

℄:

Thus, an argument �ltering is used to repla
e fun
tion symbols by one of their

arguments or to eliminate
ertain arguments of fun
tion symbols. For example, if

�(f) = �(F) = [1℄ and �(e) = 1, then we have �(F(e(f(x)))) = F(f(x)). However,

if we
hange �(e) to [℄, then we obtain �(F(e(f(x)))) = F(e).

A preorder (or quasi-order) is a transitive and re
exive relation. A rewrite

preorder is a preorder% on terms that is
losed under
ontexts and substitutions.

A redu
tion pair [16℄
onsists of a rewrite preorder % and a
ompatible well-

founded order > whi
h is
losed under substitutions. Here
ompatibility means

that the in
lusion % � > � > or the in
lusion > � % � > holds. In pra
ti
e,

> is often
hosen to be the stri
t part � of % (or the order where s > t i�

s� � t� for all ground substitutions �). The following theorem presents the

(basi
) dependen
y pair approa
h of Arts and Giesl.

Theorem 1. A TRS R over a signature F is terminating if and only if there

exists an argument �ltering � for F

℄

and a redu
tion pair (%; >) su
h that

�(R) � % and �(DP(R)) � >.

Be
ause rewrite rules are just pairs of terms, �(R) � % is a shorthand for

�(l) % �(r) for every rewrite rule l ! r 2 R. In our example, when using

�(e) = [℄, the inequalities f(f(x)) % f(e), F(f(x)) > F(e), and F(f(x)) > F(x)

3

resulting from the dependen
y pair te
hnique are satis�ed by the re
ursive path

order, for instan
e. Hen
e, termination of this TRS is proved.

Rather than
onsidering all dependen
y pairs at the same time, like in the

above theorem, it is advantageous to treat groups of dependen
y pairs separately.

These groups
orrespond to
lusters in the dependen
y graph of R. The nodes

of the dependen
y graph are the dependen
y pairs of R and there is an arrow

from node l

℄

1

! t

℄

1

to l

℄

2

! t

℄

2

if there exist substitutions �

1

and �

2

su
h that

t

℄

1

�

1

!

�

R

l

℄

2

�

2

. (By renaming variables in di�erent o

urren
es of dependen
y

pairs we may assume that �

1

= �

2

.) The dependen
y graph of R is denoted by

DG(R). We
all a non-empty subset C of dependen
y pairs of DP(R) a
luster

if for every two (not ne
essarily distin
t) pairs l

℄

1

! t

℄

1

and l

℄

2

! t

℄

2

in C there

exists a non-empty path in C from l

℄

1

! t

℄

1

to l

℄

2

! t

℄

2

.

Theorem 2. A TRS R is terminating if and only if for every
luster C in

DG(R) there exists an argument �ltering � and a redu
tion pair (%; >) su
h

that �(R) � %, �(C) � % [>, and �(C) \> 6= ?.

Note that �(C) \> 6= ? denotes the situation that �(l

℄

) > �(t

℄

) for at least

one dependen
y pair l

℄

! t

℄

2 C.

In the above example, the dependen
y graph only
ontains an arrow from

F(f(x)) ! F(x) to itself and thus fF(f(x)) ! F(x)g is the only
luster. Hen
e,

with the re�nement of Theorem 2 the inequality F(f(x)) > F(e) is no longer ne
-

essary. See [3℄ for further examples whi
h illustrate the advantages of regarding

lusters separately.

Note that while in general the dependen
y graph
annot be
omputed au-

tomati
ally (sin
e it is unde
idable whether t

℄

1

� !

�

R

l

℄

2

� holds for some �),

one
an nevertheless approximate this graph automati
ally,
f. [1{3, \estimated

dependen
y graph"℄. In this way, the
riterion of Theorem 2
an be me
hanized.

Most
lassi
al methods for automated termination proofs are restri
ted to

simpli�
ation (pre)orders, i.e., to (pre)orders satisfying the subterm property

f(: : : t : : :) � t or f(: : : t : : :) % t, respe
tively. Hen
e, these methods
annot

prove termination of TRSs like (1), as the left-hand side of its rule is embedded

in the right-hand side (so the TRS is not simply terminating). However, with

the development of the dependen
y pair te
hnique now the TRSs where an

automated termination proof is potentially possible are those systems where

the inequalities generated by the dependen
y pair te
hnique are satis�ed by

simpli�
ation (pre)orders.

A straightforward way to generate a simpli�
ation preorder � from a sim-

pli�
ation order � is to de�ne s � t if s � t or s = t, where = denotes syn-

ta
ti
 equality. Su
h relations � are parti
ularly relevant, sin
e many existing

te
hniques generate simpli�
ation orders rather than preorders. By restri
ting

ourselves to this
lass of simpli�
ation preorders, we obtain the notion of DP

simple termination.

De�nition 1. A TRS R is
alled DP simply terminating if for every
luster C

in DG(R) there exists an argument �ltering � and a simpli�
ation order � su
h

that �(R [C) � � and �(C) \ � 6= ?.

4

Simple termination implies DP simple termination, but not vi
e versa. For

example, the TRS (1) is DP simply terminating, but not simply terminating. The

above de�nition
oin
ides with the one in [13℄ ex
ept that we use the real de-

penden
y graph instead of the estimated dependen
y graph of [1{3℄. The reason

for this is that we do not want to restri
t ourselves to a parti
ular
omputable

approximation of the dependen
y graph, for the same reason that we do not

insist on a parti
ular simpli�
ation order to make the
onditions e�e
tive.

3 Dummy Elimination

In [11℄, Ferreira and Zantema de�ned an automati
 transformation te
hnique

whi
h transforms a TRS R into a new TRS dummy(R) su
h that termination

of dummy(R) implies termination of R. The advantage of this transformation

is that non-simply terminating systems like (1) may be transformed into simply

terminating ones. Thus, after the transformation, standard te
hniques may be

used to prove termination.

Below we de�ne Ferreira and Zantema's dummy elimination transformation.

While our formulation of dummy(R) is di�erent from the one in [11℄, it is easily

seen to be equivalent.

De�nition 2. Let R be a TRS over a signature F . Let e be a distinguished

fun
tion symbol in F of arity m > 1 and let � be a fresh
onstant. We write

F

�

for (F n feg) [f�g. The mapping
ap: T (F ;V) ! T (F

�

;V) is indu
tively

de�ned as follows:

ap(t) =

8

>

<

>

:

t if t 2 V;

� if t = e(t

1

; : : : ; t

m

);

f(
ap(t

1

); : : : ;
ap(t

n

)) if t = f(t

1

; : : : ; t

n

) with f 6= e:

The mapping dummy assigns to every term in T (F ;V) a subset of T (F

�

;V), as

follows:

dummy(t) = f
ap(t)g [f
ap(s) j s is an argument of an e symbol in tg:

Finally, we de�ne

dummy(R) = f
ap(l)! r

0

j l ! r 2 R and r

0

2 dummy(r)g:

The mappings
ap and dummy are illustrated in Figure 1, where we assume

that the numbered
ontexts do not
ontain any o

urren
es of e. Ferreira and

Zantema [11℄ showed that dummy elimination is sound.

Theorem 3. Let R be a TRS. If dummy(R) is terminating then R is termi-

nating.

For the one-rule TRS (1), dummy elimination yields the TRS
onsisting of

the two rewrite rules

f(f(x)) ! f(�) f(f(x)) ! f(x)

5

1

e

2

3

e

4 5

e

6 7

t =

1

� �

ap(t) =

2

3

�

4

5

6

7

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

= dummy(t)

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Fig. 1. The mappings
ap and dummy.

In
ontrast to the original system, the new TRS is simply terminating and its ter-

mination is easily shown automati
ally by standard te
hniques like the re
ursive

path order. Hen
e, dummy elimination
an transform non-simply terminating

TRSs into simply terminating ones. However, as indi
ated in the introdu
tion,

nowadays the right question to ask is whether it
an transform non-DP simply

terminating TRSs into DP simply terminating ones. Before answering this ques-

tion we show that if dummy elimination su

eeds in transforming a TRS into a

simply terminating TRS then the original TRS is DP simply terminating. Even

stronger, whenever termination of dummy(R)
an be proved by a simpli�
ation

order, then the same simpli�
ation order satis�es the
onstraints of the depen-

den
y pair approa
h. Thus, the termination proof using dependen
y pairs is not

more diÆ
ult or more
omplex than the one with dummy elimination.

Theorem 4. Let R be a TRS. If dummy(R) is simply terminating then R is

DP simply terminating.

Proof. Let F be the signature of R. We show that R is DP simply terminating

even without
onsidering the dependen
y graph re�nement. So we de�ne an

argument �ltering � for F

℄

and a simpli�
ation order � on T (F

℄

�

;V) su
h that

�(R) � � and �(DP(R)) � �. The argument �ltering � is de�ned as follows:

�(e) = [℄ and �(f) = [1; : : : ; n℄ for every n-ary symbol f 2 (F nfeg)

℄

. Moreover,

if e is a de�ned symbol, we de�ne �(e

℄

) = [℄. Let = be any simpli�
ation order

that shows the simple termination of dummy(R). We de�ne the simpli�
ation

order � on T (F

℄

�

;V) as follows: s � t if and only if s

0

= t

0

where (�)

0

denotes the

mapping from T (F

℄

�

;V) to T (F

�

;V) that �rst repla
es every marked symbol F

by f and afterwards repla
es every o

urren
e of the
onstant e by �. Note that �

and= are essentially the same. It is very easy to show that �(t)

0

= �(t

℄

)

0

=
ap(t)

for every term t 2 T (F ;V). Let l! r 2 R. Be
ause
ap(l)!
ap(r) is a rewrite

rule in dummy(R), we get �(l)

0

=
ap(l) =
ap(r) = �(r)

0

and thus �(l) � �(r).

Hen
e �(R) � � and thus
ertainly �(R) � �. Now let l

℄

! t

℄

be a dependen
y

pair of R, originating from the rewrite rule l ! r 2 R. From t E r (E denotes

the subterm relation) we easily infer the existen
e of a term u 2 dummy(r)

su
h that
ap(t) E u. Sin
e
ap(l)! u is a rewrite rule in dummy(R), we have

6

�(l

℄

)

0

=
ap(l) = u. The subterm property of = yields u w
ap(t) = �(t

℄

)

0

. Hen
e

�(l

℄

)

0

= �(t

℄

)

0

and thus �(l

℄

) � �(t

℄

). We
on
lude that �(DP(R)) � �. ut

The previous result states that dummy elimination o�ers no advantage
om-

pared to the dependen
y pair te
hnique. On the other hand, dependen
y pairs

su

eed for many systems where dummy elimination fails [1, 2℄ (an example is

given in the next se
tion). One
ould imagine that dummy elimination may

nevertheless be helpful in
ombination with dependen
y pairs. Then to show

termination of a TRS one would �rst apply dummy elimination and afterwards

prove termination of the transformed TRS with the dependen
y pair te
hnique.

In the remainder of this se
tion we show that su
h a s
enario
annot handle

TRSs whi
h
annot already be handled by the dependen
y pair te
hnique di-

re
tly. In short, dummy elimination is useless for automated termination proofs.

We pro
eed in a stepwise manner. First we relate the dependen
y pairs of R to

those of dummy(R).

Lemma 1. If l

℄

! t

℄

2 DP(R) then
ap(l)

℄

!
ap(t)

℄

2 DP(dummy(R)).

Proof. In the proof of Theorem 4 we observed that there exists a rewrite rule

ap(l)! u in dummy(R) with
ap(t) E u. Sin
e root(
ap(t)) is a de�ned symbol

in dummy(R),
ap(l)

℄

!
ap(t)

℄

is a dependen
y pair of dummy(R). ut

Now we prove that redu
ibility in R implies redu
ibility in dummy(R).

De�nition 3. Given a substitution �, the substitution �

ap

is de�ned as
apÆ�

(i.e., the
omposition of
ap and � where � is applied �rst).

Lemma 2. For all terms t and substitutions �, we have
ap(t�) =
ap(t)�

ap

.

Proof. Easy indu
tion on the stru
ture of t. ut

Lemma 3. If s!

�

R

t then
ap(s)!

�

dummy(R)

ap(t).

Proof. It is suÆ
ient to show that s !

R

t implies
ap(s) !

�

dummy(R)

ap(t).

There must be a rule l ! r 2 R and a position p su
h that sj

�

= l� and

t = s[r�℄

p

. If p is below the position of an o

urren
e of e, then we have

ap(s) =
ap(t). Otherwise,
ap(s)j

p

=
ap(l�) =
ap(l)�

ap

by Lemma 2. Thus,

ap(s)!

dummy(R)

ap(s)[
ap(r)�

ap

℄

p

=
ap(s)[
ap(r�)℄

p

=
ap(t). ut

Next we show that if there is an arrow between two dependen
y pairs in

the dependen
y graph of R then there is an arrow between the
orresponding

dependen
y pairs in the dependen
y graph of dummy(R).

Lemma 4. Let s, t be terms with de�ned root symbols. If s

℄

� !

�

R

t

℄

� for some

substitution �, then
ap(s)

℄

�

ap

!

�

dummy(R)

ap(t)

℄

�

ap

.

Proof. Let s = f(s

1

; : : : ; s

n

). We have s

℄

� = f

℄

(s

1

�; : : : ; s

n

�). Sin
e f

℄

is a

onstru
tor, no step in the sequen
e s

℄

� !

�

R

t

℄

� takes pla
e at the root position

and thus t

℄

= f

℄

(t

1

; : : : ; t

n

) with s

i

� !

�

R

t

i

� for all 1 6 i 6 n. We obtain

ap(s

i

)�

ap

=
ap(s

i

�) !

�

dummy(R)

ap(t

i

�) =
ap(t

i

)�

ap

for all 1 6 i 6 n by

Lemmata 2 and 3. Hen
e
ap(s)

℄

�

ap

!

�

dummy(R)

ap(t)

℄

�

ap

. ut

7

Finally we are ready for the main theorem of this se
tion.

Theorem 5. Let R be a TRS. If dummy(R) is DP simply terminating then R

is DP simply terminating.

Proof. Let C be a
luster in the dependen
y graph of R. From Lemmata 1 and 4

we infer the existen
e of a
orresponding
luster, denoted by dummy(C), in

the dependen
y graph of dummy(R). By assumption, there exists an argument

�ltering �

0

and a simpli�
ation order = su
h that �

0

(dummy(R)[dummy(C)) �

w and �

0

(dummy(C)) \ = 6= ?. Let F be the signature of R. We de�ne an

argument �ltering � for F

℄

as follows: �(f) = �

0

(f) for every f 2 (F n feg)

℄

,

�(e) = [℄ and, if e is a de�ned symbol of R, �(e

℄

) = [℄. Slightly di�erent from

the proof of Theorem 4, let (�)

0

denote the mapping that just repla
es every

o

urren
e of the
onstant e by � and every o

urren
e of e

℄

by �

℄

. It is easy to

show that �(t)

0

= �

0

(
ap(t)) for every term t 2 T (F ;V) and �(t

℄

)

0

= �

0

(
ap(t)

℄

)

for every term t 2 T (F ;V) with a de�ned root symbol. Similar to Theorem 4,

we de�ne the simpli�
ation order � on F

�

as s � t if and only if s

0

= t

0

.

We
laim that � and � satisfy the
onstraints for C, i.e., �(R [C) � � and

�(dummy(C)) \ � 6= ?. If l ! r 2 R, then
ap(l) !
ap(r) 2 dummy(R) and

thus �(l)

0

= �

0

(
ap(l)) w �

0

(
ap(r)) = �(r)

0

. Hen
e �(l) � �(r). If l

℄

! t

℄

2 C,

then
ap(l)

℄

!
ap(t)

℄

2 dummy(C) by Lemma 1 and thus �(l

℄

)

0

= �

0

(
ap(l)

℄

) w

�

0

(
ap(t)

℄

) = �(t

℄

)

0

. Hen
e �(l

℄

) � �(t

℄

) and if �

0

(
ap(l)

℄

) = �

0

(
ap(t)

℄

), then

�(l

℄

) � �(t

℄

). ut

We stress that the proof is
onstru
tive in the sense that a DP simple termi-

nation proof of dummy(R)
an be automati
ally transformed into a DP simple

termination proof of R (i.e., the orders and argument �lterings required for the

DP simple termination proofs of dummy(R) and R are essentially the same).

Thus, the termination proof of dummy(R) is not simpler than a dire
t proof for

R.

Theorem 5 also holds if one uses the estimated dependen
y graph of [1{3℄

instead of the real dependen
y graph. As mentioned in Se
tion 2, su
h a
om-

putable approximation of the dependen
y graph must be used in implementa-

tions, sin
e
onstru
ting the real dependen
y graph is unde
idable in general.

The proof is similar to the one of Theorem 5, sin
e again for every
luster in the

estimated dependen
y graph of R there is a
orresponding one in the estimated

dependen
y graph of dummy(R).

4 Argument Filtering Transformation

By in
orporating argument �lterings, a key ingredient of the dependen
y pair

te
hnique, into dummy elimination, Kusakari, Nakamura, and Toyama [16℄ re-

ently developed the argument �ltering transformation. In their paper they

proved the soundness of their transformation and they showed that it improves

upon dummy elimination. In this se
tion we
ompare their transformation to

the dependen
y pair te
hnique. We pro
eed as in the previous se
tion. First we

re
all the de�nition of the argument �ltering transformation.

8

De�nition 4. Let � be an argument �ltering, f a fun
tion symbol, and 1 6 i 6

arity(f). We write f ?

�

i if neither i 2 �(f) nor i = �(f). Given two terms s

and t, we say that s is a preserved subterm of t with respe
t to � and we write

s E

�

t, if s E t and either s = t or t = f(t

1

; : : : ; t

n

), s is a preserved subterm of

t

i

, and f 6?

�

i.

De�nition 5. Given an argument �ltering �, the argument �ltering �� is de�ned

as follows:

��(f) =

(

�(f) if �(f) = [i

1

; : : : ; i

m

℄,

[�(f)℄ if �(f) = i.

The mapping AFT

�

assigns to every term in T (F ;V) a subset of T (F

�

;V), as

follows:

AFT

�

(t) = f�(t) j ��(t)
ontains a de�ned symbolg [

[

s2S

AFT

�

(s)

with S denoting the set of outermost non-preserved subterms of t. Finally, we

de�ne

AFT

�

(R) = f�(l)! r

0

j l ! r 2 R and r

0

2 AFT

�

(r) [f�(r)gg:

Consider the term t of Figure 1. Figure 2 shows AFT

�

(t) for the two argument

�lterings with �(e) = [1℄ and �(e) = 2, respe
tively, and �(f) = [1; : : : ; n℄ for

every other n-ary fun
tion symbol f . Here we assume that all numbered
ontexts

ontain de�ned symbols, but no o

urren
e of e.

1

e

2

e

6

�(t) =

3

e

4

5

7

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

= AFT

�

(t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1

3

5

7

= �(t)

2

4

6

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

�(e) = [1℄

�(e) = 2

Fig. 2. The mappings � and AFT

�

.

So essentially, AFT

�

(t)
ontains �(s) for s = t and for all (maximal) sub-

terms s of t whi
h are eliminated if the argument �ltering � is applied to t.

9

However, one only needs terms �(s) in AFT

�

(t) where s
ontained a de�ned

symbol outside eliminated arguments (otherwise the original subterm s
an-

not have been responsible for a potential non-termination). Kusakari et al. [11℄

proved the soundness of the argument �ltering transformation.

Theorem 6. If AFT

�

(R) is terminating then R is terminating.

We show that if AFT

�

(R) is simply terminating then R is DP simply termi-

nating and again, a termination proof by dependen
y pairs works with the same

argument �ltering � and the simpli�
ation order used to orient AFT

�

(R). Thus,

the argument �ltering transformation has no advantage
ompared to dependen
y

pairs. We start with two easy lemmata.

1

Lemma 5. Let s and t be terms. If s E

�

t then �(s) E �(t).

Proof. By indu
tion on the de�nition of E

�

. If s = t then the result is trivial.

Suppose t = f(t

1

; : : : ; t

n

), s E

�

t

i

, and f 6?

�

i. The indu
tion hypothesis yields

�(s) E �(t

i

). Be
ause f 6?

�

i, �(t

i

) is a subterm of �(t) and thus �(s) E �(t) as

desired. ut

Lemma 6. Let r be a term. For every subterm t of r with a de�ned root symbol

there exists a term u 2 AFT

�

(r) su
h that �(t) E u.

Proof. We use indu
tion on the stru
ture of r. In the base
ase we must have

t = r and we take u = �(r). Note that �(r) 2 AFT

�

(r) be
ause root(��(r)) =

root(r) is de�ned. In the indu
tion step we distinguish two
ases. If t E

�

r then

we also have t E

��

r and hen
e ��(t) E ��(r) by Lemma 5. As root(��(t)) = root(t)

is de�ned, the term ��(r)
ontains a de�ned symbol. Hen
e �(r) 2 AFT

�

(r) by

de�nition and thus we
an take u = �(r). In the other
ase t is not a preserved

subterm of r. This implies that t E s for some outermost non-preserved subterm

s of r. The indu
tion hypothesis, applied to t E s, yields a term u 2 AFT

�

(s)

su
h that �(t) E u. We have AFT

�

(s) � AFT

�

(r) and hen
e u satis�es the

requirements. ut

Theorem 7. LetR be a TRS and � an argument �ltering. If AFT

�

(R) is simply

terminating then R is DP simply terminating.

Proof. Like in the proof of Theorem 4 there is no need to
onsider the dependen
y

graph. Let � be a simpli�
ation order that shows the (simple) termination of

AFT

�

(R). We
laim that the dependen
y pair
onstraints are satis�ed by � and

�, where � and � are extended to F

℄

by treating ea
h marked symbol F in the

same way as the
orresponding unmarked f . For rewrite rules l ! r 2 R we have

�(l) � �(r) as �(l)! �(r) 2 AFT

�

(R). Let l

℄

! t

℄

be a dependen
y pair of R,

originating from the rewrite rule l ! r. We show that �(l) � �(t) and hen
e,

1

Argumentations similar to the proofs of Lemma 6 and Theorem 7
an also be found

in [16, Lemma 4.3 and Theorem 4.4℄. However, [16℄
ontains neither Theorem 7

nor our main Theorem 8, sin
e the authors do not
ompare the argument �ltering

transformation with the dependen
y pair approa
h.

10

�(l

℄

) � �(t

℄

) as well. We have t E r. Sin
e root(t) is a de�ned fun
tion symbol

by the de�nition of dependen
y pairs, we
an apply Lemma 6. This yields a term

u 2 AFT

�

(r) su
h that �(t) E u. The subterm property of � yields u � �(t).

By de�nition, �(l) ! u 2 AFT

�

(R) and thus �(l) � u by
ompatibility of �

with AFT

�

(R). Hen
e �(l) � �(t) as desired. ut

Note that in the above proof we did not make use of the possibility to treat

marked symbols di�erently from unmarked ones. This
learly shows why the

dependen
y pair te
hnique is mu
h more powerful than the argument �ltering

transformation; there are numerous DP simply terminating TRSs whi
h are no

longer DP simply terminating if we are for
ed to interpret a de�ned fun
tion

symbol and its marked version in the same way. As a simple example,
onsider

R

1

=

8

<

:

x� 0 ! x 0� s(y)! 0

x� s(y)! p(x� y) s(x)� s(y)! s((x� y)� s(y))

p(s(x)) ! x

9

=

;

:

Note that R

1

is not simply terminating as the rewrite step s(x) � s(s(x)) !

s((x�s(x))�s(s(x))) is self-embedding. To obtain a terminating TRS AFT

�

(R

1

),

the rule p(s(x)) ! x enfor
es p 6?

�

1 and s 6?

�

1. From p 6?

�

1 and the rules for �

we infer that �(�) = [1; 2℄. But then, for all
hoi
es of �(�), the rule s(x)�s(y)!

s((x�y)�s(y)) is transformed into one that is in
ompatible with a simpli�
ation

order. So AFT

�

(R

1

) is not simply terminating for any �. (Similarly, dummy

elimination
annot transform this TRS into a simply terminating one either.) On

the other hand, DP simple termination of R

1

is easily shown by the argument

�ltering �(p) = 1, �(�) = 1, �(�

℄

) = [1; 2℄, and �(f) = [1; : : : ; arity(f)℄ for

every other fun
tion symbol f in
ombination with the re
ursive path order.

This example illustrates that treating de�ned symbols and their marked versions

di�erently is often required in order to bene�t from the fa
t that the dependen
y

pair approa
h only requires weak de
reasingness for the rules of R

1

.

The next question we address is whether the argument �ltering transforma-

tion
an be useful as a prepro
essing step for the dependen
y pair te
hnique.

Surprisingly, the answer to this question is yes. Consider the TRS

R

2

=

8

<

:

f(a) ! f(
(a)) f(a) ! f(d(a)) e(g(x)) ! e(x)

f(
(x)) ! x f(d(x)) ! x

f(
(a)) ! f(d(b)) f(
(b)) ! f(d(a))

9

=

;

:

This TRS is not DP simply terminating whi
h
an be seen as follows. The

dependen
y pair E(g(x)) ! E(x)
onstitutes a
luster in the dependen
y graph

of R

2

. Hen
e, if R

2

were DP simply terminating, there would be an argument

�ltering � and a simpli�
ation order � su
h that (amongst others)

�(f(a)) � �(f(
(a))) �(f(a)) � �(f(d(a)))

�(f(
(x))) � x �(f(d(x))) � x

�(f(
(a))) � �(f(d(b))) �(f(
(b))) � �(f(d(a)))

From �(f(
(x))) � x and �(f(d(x))) � x we infer that f 6?

�

1,
 6?

�

1, and

d 6?

�

1. Hen
e �(f(a)) � �(f(
(a))) and �(f(a)) � �(f(d(a)))
an only be satis�ed

11

if �(
) = �(d) = 1. But then �(f(
(a))) � �(f(d(b))) and �(f(
(b))) � �(f(d(a)))

amount to either f(a) � f(b) and f(b) � f(a) (if �(f) = [1℄) or a � b and b � a

(if �(f) = 1). Sin
e f(a) 6= f(b) and a 6= b the required simpli�
ation order does

not exist.

On the other hand, if �(e) = 1 then AFT

�

(R

2

)
onsists of the �rst six rewrite

rules of R together with g(x)! x. One easily veri�es that there are no
lusters

in DG(AFT

�

(R

2

)) and hen
e AFT

�

(R

2

) is trivially DP simply terminating.

De�nition 6. An argument �ltering � is
alled
ollapsing if �(f) = i for some

de�ned fun
tion symbol f .

The argument �ltering in the previous example is
ollapsing. In the remainder

of this se
tion we show that for non-
ollapsing argument �lterings the impli
ation

\AFT

�

(R) is DP simply terminating) R is DP simply terminating" is valid.

Thus, using the argument �ltering transformation with a non-
ollapsing � as a

prepro
essing step to the dependen
y pair te
hnique has no advantages.

First we prove a lemma to relate the dependen
y pairs of R and AFT

�

(R).

Lemma 7. Let � be a non-
ollapsing argument �ltering. If l

℄

! t

℄

2 DP(R)

then �(l)

℄

! �(t)

℄

2 DP(AFT

�

(R)).

Proof. By de�nition there is a rewrite rule l ! r 2 R and a subterm t E r with

de�ned root symbol. A

ording to Lemma 6 there exists a term u 2 AFT

�

(r)

su
h that �(t) E u. Thus, �(l) ! u 2 AFT

�

(R). Sin
e � is non-
ollapsing,

root(�(t)) = root(t). Hen
e, as root(t) is de�ned, �(l)

℄

! �(t)

℄

is a dependen
y

pair of AFT

�

(R). ut

Example R

2

shows that the above lemma is not true for arbitrary argument

�lterings. The reason is that e(g(x))

℄

! e(x)

℄

is a dependen
y pair of R, but

with �(e) = 1 there is no
orresponding dependen
y pair in AFT

�

(R).

The next three lemmata will be used to show that
lusters in DG(R)
orre-

spond to
lusters in DG(AFT

�

(R)).

De�nition 7. Given an argument �ltering � and a substitution �, the substitu-

tion �

�

is de�ned as � Æ � (i.e., � is applied �rst).

Lemma 8. For all terms t, argument �lterings �, and substitutions �, �(t�) =

�(t)�

�

.

Proof. Easy indu
tion on the stru
ture of t. ut

Lemma 9. Let R be a TRS and � a non-
ollapsing argument �ltering. If s!

�

R

t

then �(s)!

�

AFT

�

(R)

�(t).

Proof. It suÆ
es to show that �(s)!

�

AFT

�

(R)

�(t) whenever s!

�

R

t
onsists of

a single rewrite step. Let s = C[l�℄ and t = C[r�℄ for some
ontext C, rewrite

rule l ! r 2 R, and substitution �. We use indu
tion on C. If C is the empty

ontext, then �(s) = �(l�) = �(l)�

�

and �(t) = �(r�) = �(r)�

�

a

ording to

12

Lemma 8. As �(l) ! �(r) 2 AFT

�

(R), we have �(s) !

AFT

�

(R)

�(t). Suppose

C = f(s

1

; : : : ; C

0

; : : : ; s

n

) where C

0

is the i-th argument of C. If f ?

�

i then

�(s) = �(t). If �(f) = i (whi
h is possible for
onstru
tors f) then �(s) =

�(C

0

[l�℄) and �(t) = �(C

0

[r�℄), and thus we obtain �(s)!

�

AFT

�

(R)

�(t) from the

indu
tion hypothesis. In the remaining
ase we have �(f) = [i

1

; : : : ; i

m

℄ with i

j

=

i for some j and hen
e �(s) = f(�(s

i

1

); : : : ; �(C

0

[l�℄); : : : ; �(s

i

m

)) and �(t) =

f(�(s

i

1

); : : : ; �(C

0

[r�℄); : : : ; �(s

i

m

)). In this
ase we obtain �(s) !

�

AFT

�

(R)

�(t)

from the indu
tion hypothesis as well. ut

The following lemma states that if two dependen
y pairs are
onne
ted inR's

dependen
y graph, then the
orresponding pairs are
onne
ted in the dependen
y

graph of AFT

�

(R) as well.

Lemma 10. Let R be a TRS, � a non-
ollapsing argument �ltering, and s, t

be terms with de�ned root symbols. If s

℄

� !

�

R

t

℄

� for some substitution � then

�(s)

℄

�

�

!

�

AFT

�

(R)

�(t)

℄

�

�

.

Proof. We have s = f(s

1

; : : : ; s

n

) and t = f(t

1

; : : : ; t

n

) for some n-ary de�ned

fun
tion symbol f with s

i

� !

�

R

t

i

� for all 1 6 i 6 n. Let �(f) = [i

1

; : : : ; i

m

℄.

This implies �(s�)

℄

= f

℄

(�(s

i

1

�); : : : ; �(s

i

m

�)) and �(t�)

℄

= f

℄

(�(t

i

1

�); : : : ;

�(t

i

m

�)). From the pre
eding lemma we know that �(s

i

j

�) !

�

AFT

�

(R)

�(t

i

j

�)

for all 1 6 j 6 m. Hen
e, using Lemma 8, �(s)

℄

�

�

= �(s�)

℄

!

�

AFT

�

(R)

�(t�)

℄

=

�(t)

℄

�

�

. ut

Now we
an �nally prove the main theorem of this se
tion.

Theorem 8. Let R be a TRS and � a non-
ollapsing argument �ltering. If

AFT

�

(R) is DP simply terminating then R is DP simply terminating.

Proof. Let C be a
luster in DG(R). A

ording to Lemmata 7 and 10, there is a

orresponding
luster in DG(AFT

�

(R)), whi
h we denote by �(C). By assump-

tion, there exist an argument �ltering �

0

and a simpli�
ation order � su
h that

�

0

(AFT

�

(R)[�(C)) � � and �

0

(�(C))\� 6= ?. We de�ne an argument �ltering

�

00

for R as the
omposition of � and �

0

. For a pre
ise de�nition, let [denote

the unmarking operation, i.e., f

[

= f and (f

℄

)

[

= f for all f 2 F . Then for all

f 2 F

℄

we de�ne

�

00

(f) =

8

>

<

>

:

[i

j

1

; : : : ; i

j

k

℄ if �(f

[

) = [i

1

; : : : ; i

m

℄ and �

0

(f) = [j

1

; : : : ; j

k

℄;

i

j

if �(f

[

) = [i

1

; : : : ; i

m

℄ and �

0

(f) = j;

i if �(f) = i:

It is not diÆ
ult to show that �

00

(t) = �

0

(�(t)) and �

00

(t

℄

) = �

0

(�(t)

℄

) for all

terms t without marked symbols. We
laim that �

00

and � satisfy the
onstraints

for C, i.e., �

00

(R[C) � � and �

00

(C)\� 6= ?. These two properties follow from the

two assumptions �

0

(AFT

�

(R)[�(C)) � � and �

0

(�(C))\� 6= ? in
onjun
tion

with the obvious in
lusion �(R) � AFT

�

(R). ut

Theorem 8 also holds for the estimated dependen
y graph instead of the real

dependen
y graph.

13

5 Con
lusion

In this paper, we have
ompared two transformational te
hniques for termination

proofs, viz. dummy elimination [11℄ and the argument �ltering transformation

[16℄, with the dependen
y pair te
hnique of Arts and Giesl [1{3℄. Essentially, all

these te
hniques transform a given TRS into new inequalities or rewrite systems

whi
h then have to be oriented by suitable well-founded orders. Virtually all well-

founded orders whi
h
an be generated automati
ally are simpli�
ation orders.

As our fo
us was on automated termination proofs, we therefore investigated the

strengths of these three te
hniques when
ombined with simpli�
ation orders.

To that end, we showed that whenever an automated termination proof is

possible using dummy elimination or the argument �ltering transformation, then

a
orresponding termination proof
an also be obtained by dependen
y pairs.

Thus, the dependen
y pair te
hnique is more powerful than dummy elimination

or the argument �ltering transformation on their own.

Moreover, we examined whether dummy elimination or the argument �l-

tering transformation would at least be helpful as a prepro
essing step to the

dependen
y pair te
hnique. We proved that for dummy elimination and for an

argument �ltering transformation with a non-
ollapsing argument �ltering, this

is not the
ase. In fa
t, whenever there is a (pre)order satisfying the dependen
y

pair
onstraints for the rewrite system resulting from dummy elimination or a

non-
ollapsing argument �ltering transformation, then the same (pre)order also

satis�es the dependen
y pair
onstraints for the original TRS.

As
an be seen from the proofs of our main theorems, this latter result

even holds for arbitrary (i.e., non-simpli�
ation) (pre)orders. Thus, in parti
ular,

Theorems 5 and 8 also hold for DP quasi-simple termination [13℄. This notion

aptures those TRSs where the dependen
y pair
onstraints are satis�ed by

an arbitrary simpli�
ation preorder % (instead of just a preorder � where the

equivalen
e relation is synta
ti
 equality as in DP simple termination).

Future work will in
lude a further investigation on the usefulness of
ollaps-

ing argument �ltering transformations as a prepro
essing step to dependen
y

pairs. Note that our
ounterexampleR

2

is DP quasi-simply terminating (but not

DP simply terminating). In other words, at present it is not
lear whether the

argument �ltering transformation is useful as a prepro
essing step to the depen-

den
y pair te
hnique if one admits arbitrary simpli�
ation preorders to solve the

generated
onstraints. However, an extension of Theorem 8 to DP quasi-simple

termination and to
ollapsing argument �lterings � is not straightforward, sin
e

lusters of dependen
y pairs in R may disappear in AFT

�

(R) (i.e., Lemma 7

does not hold for
ollapsing argument �lterings). We also intend to examine the

relationship between dependen
y pairs and other transformation te
hniques su
h

as \freezing" [20℄.

A
knowledgements. J�urgen Giesl is supported by the DFG under grant GI 274/4-1.

Aart Middeldorp is partially supported by the Grant-in-Aid for S
ienti�
 Resear
h

C(2) 11680338 of the Ministry of Edu
ation, S
ien
e, Sports and Culture of Japan.

14

Referen
es

1. T. Arts and J. Giesl, Automati
ally Proving Termination where Simpli�
ation

Orderings Fail, Pro
. 7th TAPSOFT, Lille, Fran
e, LNCS 1214, pp. 261{273, 1997.

2. T. Arts and J. Giesl, Termination of Term Rewriting Using Dependen
y Pairs, The-

oreti
al Computer S
ien
e 236, pp. 133{178, 2000. Long version available at www.

inferenzsysteme.informatik.tu-darmstadt.de/~reports/ibn-97-46.ps.

3. T. Arts and J. Giesl, Modularity of Termination Using Dependen
y Pairs, Pro
.

9th RTA, Tsukuba, Japan, LNCS 1379, pp. 226{240, 1998.

4. F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University

Press, 1998.

5. F. Bellegarde and P. Les
anne, Termination by Completion, Appli
able Algebra in

Engineering, Communi
ation and Computing 1, pp. 79{96, 1990.

6. A. Ben Cherifa and P. Les
anne, Termination of Rewriting Systems by Polyno-

mial Interpretations and its Implementation, S
ien
e of Computer Programming

9, pp. 137{159, 1987.

7. N. Dershowitz, Orderings for Term-Rewriting Systems, Theoreti
al Computer S
i-

en
e 17, pp. 279{301, 1982.

8. N. Dershowitz, Termination of Rewriting, Journal of Symboli
 Computation 3,

pp. 69{116, 1987.

9. J. Di
k, J. Kalmus, and U. Martin, Automating the Knuth Bendix Ordering, A
ta

Informati
a 28, pp. 95{119, 1990.

10. M.C.F. Ferreira, Termination of Term Rewriting: Well-foundedness, Totality and

Transformations, Ph.D. thesis, Utre
ht University, The Netherlands, 1995.

11. M.C.F. Ferreira and H. Zantema, Dummy Elimination: Making Termination Eas-

ier, Pro
. 10th FCT, Dresden, Germany, LNCS 965, pp. 243{252, 1995.

12. J. Giesl, Generating Polynomial Orderings for Termination Proofs, Pro
. 6th RTA,

Kaiserslautern, Germany, LNCS 914, pp. 426{431, 1995.

13. J. Giesl and E. Ohlebus
h, Pushing the Frontiers of Combining Rewrite Systems

Farther Outwards, Pro
. 2nd FROCOS, 1998, Amsterdam, The Netherlands, Stud-

ies in Logi
 and Computation 7, Resear
h Studies Press, Wiley, pp. 141{160, 2000.

14. S. Kamin and J.J. L�evy, Two Generalizations of the Re
ursive Path Ordering,

unpublished manus
ript, University of Illinois, USA, 1980.

15. D.E. Knuth and P. Bendix, Simple Word Problems in Universal Algebras, in: Com-

putational Problems in Abstra
t Algebra (ed. J. Lee
h), Pergamon Press, pp. 263{

297, 1970.

16. K. Kusakari, M. Nakamura, and Y. Toyama, Argument Filtering Transformation,

Pro
. 1st PPDP, Paris, Fran
e, LNCS 1702, pp. 48{62, 1999.

17. D. Lankford, On Proving Term Rewriting Systems are Noetherian, Report MTP-3,

Louisiana Te
hni
al University, Ruston, USA, 1979.

18. A. Middeldorp, H. Ohsaki, and H. Zantema, Transforming Termination by Self-

Labelling, Pro
. 13th CADE, New Brunswi
k (New Jersey), USA, LNAI 1104,

pp. 373{387, 1996.

19. J. Steinba
h, Simpli�
ation Orderings: History of Results, Fundamenta Informat-

i
ae 24, pp. 47{87, 1995.

20. H. Xi, Towards Automated Termination Proofs Through \Freezing", Pro
. 9th

RTA, Tsukuba, Japan, LNCS 1379, pp. 271{285, 1998.

21. H. Zantema, Termination of Term Rewriting: Interpretation and Type Elimination,

Journal of Symboli
 Computation 17, pp. 23{50, 1994.

22. H. Zantema, Termination of Term Rewriting by Semanti
 Labelling, Fundamenta

Informati
ae 24, pp. 89{105, 1995.

15

