
Deciding Inductive Validity of Equations⋆⋆⋆

Jürgen Giesl1 and Deepak Kapur2

1 LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
giesl@informatik.rwth-aachen.de

2 Computer Science Dept., University of New Mexico, Albuquerque, NM 87131, USA
kapur@cs.unm.edu

Abstract. Kapur and Subramaniam [12] defined syntactical classes of
equations where inductive validity can be decided automatically. How-
ever, these classes are quite restrictive, since defined function symbols
with recursive definitions may only appear on one side of the equations.
In this paper, we expand the decidable class of equations significantly by
allowing both sides of equations to be expressed using defined function
symbols. The definitions of these function symbols must satisfy certain
restrictions which can be checked mechanically. These results are crucial
to increase the applicability of decision procedures for induction.

1 Introduction

Mechanized induction often requires user interaction and is incomplete (provers
fail for many valid conjectures). This is especially daunting to an application
expert trying to use an induction prover in cases when conjectures are simple.

Recently, there has been a surge of interest in the role of decision procedures
in tools for reasoning about computations, especially because of the success of
BDD-based tools and model checkers in hardware verification. However, because
of the above-mentioned challenges in automating induction proofs, such tools
lack support for inductive reasoning on recursively defined data structures.

In [12], Kapur & Subramaniam proposed a methodology for integrating in-
duction with decision procedures. In this way, they defined a syntactical class of
equations where inductive validity is decidable. For example, an induction prover
like RRL [10, 11, 15] using the cover set method is guaranteed to terminate with
a “yes” or “no” answer on equations in this class. Similar statements also hold
for other inductive theorem provers, e.g., NQTHM [4], ACL-2 [13], CLAM [5,
6], INKA [1, 14], SPIKE [3]. In [8], these results are extended to quantifier-free
formulas built from such equations. However, the class of equations defined in
[12] is quite restrictive, since defined function symbols (i.e., functions defined by
algorithms) may only appear on certain positions in one side of the equations.

Example 1. Let TC be the theory of the free constructors 0, s for natural numbers
and nil, cons for linear lists. We regard the following algorithms and conjectures.

α+

1 : 0 + y → y αdbl
1 : dbl(0) → 0

α+

2 : s(x) + y → s(x + y) αdbl
2 : dbl(s(x)) → s(s(dbl(x)))

⋆ This research was partially supported by an NSF ITR award CCR-0113611.
⋆⋆ Proceedings of the 19th International Conference on Automated Deduction (CADE-

19), Miami, FL, USA, LNAI 2741, Springer-Verlag, 2003.

αmin
1 : min(0, y) → 0 αlen

1 : len(nil) → 0

αmin
2 : min(s(x), 0) → 0 αlen

2 : len(cons(n, x)) → s(len(x))

αmin
3 : min(s(x), s(y)) → s(min(x, y)) αapp

1 : app(nil, y) → y
αapp

2 : app(cons(n, x), y) → cons(n, app(x, y))

dbl(u + v) = u + dbl(v) (1)

dbl(u + v) = dbl(u) + dbl(v) (2)

(u + v) + w = u + (v + w) (3)

min(u + v, u + w) = u + min(v, w) (4)

len(app(u, v)) = len(u) + len(v) (5)

s(len(app(u, v))) = len(app(u, cons(n, v))) (6)

Such equations are not permitted in [12], since both sides have defined sym-
bols. The restrictions in [12] ensure that each subgoal generated in an induction
proof attempt simplifies to a formula with function symbols from a decidable
theory. Indeed, if one attempts to prove (1) by induction on u, then the formula
dbl(x + v) = x + dbl(v) ⇒ dbl(s(x) + v) = s(x) + dbl(v) in the induction step
case simplifies to the following formula. It contains “+” and dbl, i.e., its symbols
are not from the signature of the (decidable) theory of free constructors.

s(s(x + dbl(v))) = s(x + dbl(v)) (7)

Example 2. We consider the (decidable) theory TPA of Presburger Arithmetic
with constructors 0, 1, “+”. Regard an algorithm “∗” with the rules α∗

1 : 0∗y → 0

and α∗
2 : (x + 1) ∗ y → x ∗ y + y. We want to prove the distributivity law (8).

u ∗ (v + w) = u ∗ v + u ∗ w (8)

Again, a defined symbol “∗” is on both sides of (8). In a proof by induction on u,
the step case x∗(v+w) = x∗v+x∗w ⇒ (x + 1)∗(v+w) = (x + 1)∗v+(x + 1)∗w
simplifies to a formula with “∗” (i.e., it is not from the signature of TPA):

(x ∗ v + x ∗ w) + (v + w) = (x ∗ v + v) + (x ∗ w + w) (9)

In this paper, the class of equations handled in [12] is extended by allowing
arbitrary terms involving defined function symbols on arbitrary positions of both
sides of an equation. The main idea is to develop criteria for safe generalizations
of equations. As shown above, in a proof attempt by induction, the resulting
equation (subgoal) may not be from the signature of a decidable theory since it
includes defined function symbols. In that case, the equation is generalized by
replacing subterms with defined root symbols by new variables. For example,
the subgoal (7) can be generalized to an (invalid) formula over TC ’s signature

s(s(z)) = s(z) (10)

by replacing x + dbl(v) with a new variable z. Similarly, Equation (9) is gener-
alized to a valid formula of the decidable theory of Presburger Arithmetic.

(z1 + z2) + (v + w) = (z1 + v) + (z2 + w) (11)

In Sect. 2, we introduce required notions and sketch our overall approach.
In Sect. 3, we present a technique to estimate which subterms with defined
symbols occur in subgoals during an induction proof attempt (without actually
performing the induction proof). Then in Sect. 4, we define a syntactical class of
terms where generalizations are safe, i.e., if the generalized subgoal is not induc-
tively valid, then so is the original subgoal. For example, without performing the

2

proof attempts of (1) or (8), our syntactic criteria ensure that all generalizations
in their proofs will be equivalence-preserving. So the generalized subgoals (10)
(resp. (11)) are inductively valid iff the original subgoals (7) (resp. (9)) are valid.
With these results, in Sect. 5 we define a large class DEC of equations (contain-
ing (1) – (6) and (8)) whose inductive validity can be decided. Checking whether
an equation belongs to DEC is fast, since it relies on pre-compiled information
about defined functions. All proofs and further details can be found in [9].

2 Background

We use many-sorted first-order logic where “=” is the only predicate symbol
and “=” is reflexive, symmetric, transitive, and congruent. For a signature F
and an infinite set of variables V we denote the set of (well-typed) terms over F
by Terms(F ,V) and the set of ground terms by Terms(F). A theory T is given
by a finite signature FT and a set of axioms (i.e., closed formulas) AXT over
the signature FT . The theory T is defined to be the set of all closed formulas
ϕ over FT such that AXT |= ϕ (then we also say that ϕ is valid). Here, “|=”
is the usual (semantic) first-order consequence relation. We often omit leading
universal quantifiers and we write s =T t as a shorthand for AXT |= ∀ . . . s = t.

For the theory TC of free constructors, AXTC
consists of the following for-

mulas. Here, x∗ denotes a tuple of pairwise different variables x1, . . . , xn, etc.

¬c(x∗) = c′(y∗) for all c, c′ ∈ FTC
where c 6= c′

c(x1, .., xn)=c(y1, .., yn) ⇒ x1=y1 ∧ ... ∧ xn =yn for all c ∈ FTC
∨

c∈FTC
∃y∗. x = c(y∗)

¬ (c1(. . . c2(. . . cn(. . . x . . .) . . .) . . .) = x) for all sequences c1, ..., cn, ci ∈ FTC

Note that the last type of axioms usually results in infinitely many formulas.
Here, “. . . ” in the arguments of ci stands for pairwise different variables.

We use the following definition for the theory TPA of Presburger Arithmetic:
FTPA

= {0, 1, +} and AXTP A
consists of the following formulas:

(x + y) + z = x + (y + z) ¬ (1 + x = 0)
x + y = y + x x + y = x + z ⇒ y = z
0 + y = y x = 0 ∨ ∃y. x = y + 1

For t ∈ Terms(FTPA
,V) with V(t) = {x1, . . . , xm}, there exist ai ∈ IN such

that t =TPA
a0 +a1 ·x1 + . . .+am ·xm. Here, “a ·x” denotes the term x+ . . .+x

(a times) and “a0” denotes 1+ . . .+1 (a0 times). We often write flattened terms
(i.e., without parentheses) since “+” is associative and commutative. For s =TPA

b0+b1·x1+. . .+bm·xm and t as above, we have s =TPA
t iff a0 = b0, . . . , am = bm.

Instead of validity, we are usually interested in inductive validity.

Definition 3 (Inductive Validity). A universal formula ∀x∗. ϕ is inductively
valid in the theory T (denoted AXT |=ind ϕ) iff AXT |= ϕσ for all ground sub-
stitutions σ, i.e., σ substitutes all variables of ϕ by ground terms of Terms(FT).

In general, validity implies inductive validity, but not vice versa. We restrict
ourselves to theories like TC and TPA which are decidable and inductively com-

3

plete (i.e., inductive validity of an equation r1 = r2 (over FT) also implies its
validity, cf. e.g. [7]). Then inductive validity of r1 = r2 can be checked by a
decision procedure for T . Of course, validity and inductive validity do no longer
coincide if we introduce additional function symbols defined by algorithms.

We use term rewrite systems (TRSs) over a signature F ⊇ FT as our pro-
gramming language [2] and require that all left-hand sides of rules have the form
f(s∗) for a tuple of terms s∗ from Terms(FT ,V) and f /∈ FT . Thus, all our TRSs
are constructor systems. Let Fd = F \ FT denote the set of defined symbols.

To perform evaluations with the TRS R and the underlying theory T , we use
rewriting modulo a theory, where →R/T must be decidable (e.g., this holds if
T -equivalence classes of terms are finite and computable). We have s →R/T t iff
there are s′ and t′ with s =T s′ →R t′ =T t. We restrict ourselves to terminating,
confluent, and sufficiently complete TRSs R, where R is terminating iff →R/T is
well founded, it is confluent if →R/T is confluent, and it is sufficiently complete
if for all (well-typed) ground terms t ∈ Terms(F) there exists a q ∈ Terms(FT)
such that t →∗

R/T q (i.e., q is a normal form t↓R/T). When regarding →∗
R/T

and↓R/T , we usually do not distinguish between terms that are equal w.r.t. =T .
The rules in R are considered as equational axioms extending the underlying

theory T . This results in a new theory with the signature F and the axioms
AXT ∪ {l = r | l → r ∈ R}. To ease readability, we write AXT ∪ R instead of
AXT ∪ {l = r | l → r ∈ R}. It turns out that this extension is conservative, i.e.,
it does not change inductive validity of equations over FT .

Theorem 4 (Inductive Validity of Equations over FT). For all r1, r2 ∈
Terms(FT ,V), we have AXT |=ind r1 = r2 iff AXT ∪R |=ind r1 = r2.

Decision procedures for theories T are integrated in many theorem provers. In
this paper, we extend decision procedures in order to handle functions defined by
recursive rewrite rules as well. More precisely, we give syntactic conditions for
equations whose inductive validity w.r.t. AXT ∪R is decidable. These conditions
ensure that an induction proof attempt reduces the original equation to equations
over the signature FT of the underlying theory T . Then by Thm. 4, their induc-
tive validity (over the extended theory of T and R) can be decided by a decision
procedure for T . In proofs, induction is usually performed on inductive positions,
since rewriting can only move a context outwards if it is on an inductive position.

Definition 5 (Inductive Positions). For f ∈ Fd, a position i with 1 ≤ i ≤
arity(f) is non-inductive if for all f -rules f(s1, . . . , sm) → C[f(t11, . . . , t

1
m), . . . ,

f(tn1 , . . . , tnm)] where C is a context over FT , we have si ∈ V, tki = si, and si /∈
V(sj) ∪ V(tkj) for all j 6= i and 1 ≤ k ≤ n. Otherwise, the position is inductive.

For “+”, dbl, len, app (Ex. 1) and “∗” (Ex. 2), only the first argument posi-
tions are inductive. Without loss of generality, we assume that for every function
f , the arguments 1, . . . , j are inductive and j + 1, . . . , arity(f) are non-induc-
tive for some 0 ≤ j ≤ arity(f). We often write rules in the form f(s∗, y∗) →
C[f(t∗1, y

∗), . . . , f(t∗n, y∗)] to denote that C is a context over FT and s∗, t∗1, . . . , t
∗
n

are the arguments on f ’s inductive positions. Most induction provers generate
schemes for induction proofs (cover sets) from function definitions [4, 6, 14, 15].

4

Definition 6 (Cover Set). Let f ∈ Fd. Its cover set is Cf = {〈s∗, {t∗1, . . . , t
∗
n}〉|

f(s∗, y∗) → C[f(t∗1, y
∗), . . . , f(t∗n, y∗)] ∈ R}.

An induction on f transforms a conjecture ϕ[x∗] with pairwise different vari-
ables x∗ into the following induction formulas for every 〈s∗, {t∗1, . . . , t

∗
n}〉 ∈ Cf .

ϕ[t∗1] ∧ . . . ∧ ϕ[t∗n] ⇒ ϕ[s∗] (12)

If all induction formulas (12) are inductively valid, then so is the original for-
mula ϕ[x∗] (by Noetherian induction). The induction relation corresponds to the
recursion structure of f and its well-foundedness follows from termination of R.

In this paper, we develop criteria for equations r1 = r2 such that inductive
validity is decidable. They ensure that there is a cover set C such that for every
〈s∗, {t∗1, . . . , t

∗
n}〉 ∈ C, the induction conclusion r1[s

∗] = r2[s
∗] can be simplified to

C[r1[t
∗
i1], . . . , r1[t

∗
ik

]] = D[r2[t
∗
j1], . . . , r2[t

∗
jl

]] for contexts C, D and i1, . . . , jl ∈ {1,
. . . , n}. Here, r[s∗] denotes that the induction variables are instantiated with the
terms s∗. Thus, one can then apply the induction hypotheses r1[t

∗
i] = r2[t

∗
i] to

replace all occurrences of r1 in the left-hand side by r2. In the resulting conjecture

C[r2[t
∗
i1], . . . , r2[t

∗
ik

]] = D[r2[t
∗
j1], . . . , r2[t

∗
jl

]], (13)

all remaining terms with defined root symbol can be generalized to fresh vari-
ables. We introduce a technique to estimate which subterms of r1 and r2 with
defined symbols may occur in (13) without actually performing this induction
proof attempt. Moreover, we present conditions on these subterms which guar-
antee that this generalization is safe. Finally, the decision procedure of the un-
derlying theory can be used to decide the validity of the resulting formulas.

3 Compatibility among Function Definitions

Our criteria for decidable equations rely on the notion of compatibility between
T -based functions.

Definition 7 (T -based Function [12]). A function f ∈ F is T -based iff f ∈
FT or if all rules l → r ∈ R with root(l) = f have the form f(s∗) → C[f(t∗1), . . . ,
f(t∗n)], where s∗, t∗1, . . . , t

∗
n are from Terms(FT ,V) and C is a context over FT .

For instance, all algorithms in Ex. 1 are TC -based and in Ex. 2, “∗” is TPA-based.
We will require that equations must have compatible sequences of T -based

functions on both sides. A function g is compatible with f on argument j if in
any term g(. . . , f(. . .), . . .), where f is on the j-th argument of g, every context
created by rewriting f will move outside the term by rewriting g. So if f has a
rule α : f(s∗, y∗) → C[f(t∗1, y

∗), . . . , f(t∗n, y∗)] with n ≥ 0, then rewriting f can
create the context C. Compatibility means that

g(x1, . . . , xj−1, C[z1, . . . , zn], xj+1, . . . , xm) (14)

for x1, . . . , xm, z1, . . . , zn ∈ V will rewrite (in several steps) to some term

D[g(x1, ..., xj−1, zi1 , xj+1, ..., xm), . . . , g(x1, ..., xj−1, zik
, xj+1, ..., xm)] (15)

5

where i1, . . . , ik ∈ {1, . . . , n} and D is a context over FT . Hence, if induction
on f is performed within a term of the form g(. . . f(. . .) . . .), then in the induc-
tion conclusion, the resulting term g(. . . f(s∗...) . . .) can be rewritten to a term
D′[g(. . . f(t∗i1 ...) . . .), . . . , g(. . . f(t∗ik

...) . . .)]. Here, the induction hypotheses
g(. . . f(t∗i ...) . . .) occur within a context D′ (where D′ is an instantiation of D).

For any f -rule α, let Ruleg,f (α) be the set of those g-rules used to rewrite
(14) to (15) and let Varg,f (α) = {i |xi occurs in D}.1 We make these rules and
variable positions explicit to estimate which subterms with defined symbols may
occur in subgoals during induction proofs. The reason is that the original term
g(. . . f(. . .) . . .) may have defined symbols on positions from Varg,f (α). These
will be propagated outwards to the context D′ during the induction proof.

In Ex. 1, “+” is compatible with dbl on argument 1. For αdbl
1 : dbl(0) → 0,

C is 0 (a context without holes), and 0+x2 rewrites to x2 using α+
1 , i.e., D = x2,

Rule+,dbl(α
dbl
1) = {α+

1 }, Var+,dbl(α
dbl
1) = {2}, since D contains the variable x2.

For αdbl
2 : dbl(s(x)) → s(s(dbl(x))), C is s(s(�)) and s(s(z1)) + x2 rewrites to

s(s(z1 +x2)) by rule α+
2 , i.e., D = s(s(�)), Rule+,dbl(α

dbl
2) = {α+

2 }, Var+,dbl(α
dbl
2)

= ∅. Similarly, “+” is compatible with min and len on argument 1.
Now we check whether “+” is compatible with itself on argument 1. For α+

2 :
s(x) + y → s(x + y), we have C = s(�) and s(z1) + x2 rewrites to s(z1 + x2),
i.e., D = s(�), Rule+,+(α+

2) = {α+
2 }, Var+,+(α+

2) = ∅. For α+
1 : 0 + y → y,

we have C = y, but y + x2 does not rewrite to a term D over FT . In general,
for compatibility of g with f on argument j, we now permit that the com-
patibility requirement may be violated for some non-recursive rules Excg,f of f
(“exceptions”). However, a rule α should only be in Excg,f if (14) does not rewrite
to (15). Then, “+” is compatible with itself on argument 1 and Exc+,+ = {α+

1 }.

Definition 8 (Compatible Functions). Let g, f be T -based, f /∈ FT , and 1 ≤
j ≤ m = arity(g). We say that g is compatible with f on argument j iff for all
rules α : f(s∗, y∗) → C[f(t∗1, y

∗), . . . , f(t∗n, y∗)], either n = 0 and α ∈ Excg,f , or

g(x1, . . . , xj−1, C[z1, . . . , zn], xj+1, . . . , xm) →∗
R/T

D[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik
, xj+1, . . . , xm)]

for a context D over FT , i1, ..., ik∈{1, ..., n}, zi /∈ V(D) for all i. Let Ruleg,f (α)
be the set of rules used in this reduction and let Varg,f (α) = {i |xi ∈ V(D)}.

With exceptions, now dbl is also compatible with “+” and len is compatible
with app. Note that in Def. 8, g can also be a symbol of FT . For instance, s is
compatible with len. We obtain C = 0 and D = s(0) for αlen

1 and C = D = s(�)
for αlen

2 . So for both len-rules α, Rules,len(α) = ∅ and Var s,len(α) = ∅. Similarly,
in Ex. 2, “+” is compatible with “∗” on argument 1 and on argument 2.

The concept of compatibility can be extended to arbitrarily deep nestings.
To this end we define the notion of a compatibility sequence. Regard a term

1 For a T -based function f , Ruleg,f (α) is unique if R is non-overlapping. Otherwise,
Ruleg,f (α) may be any set of g-rules which suffice to rewrite (14) to (15). Ruleg,f

and Varg,f also depend on the position j of g where the f -term occurs. But to ease
the presentation we write Ruleg,f and Varg,f instead of Rulej

g,f and Var j

g,f .

6

r := f1(p
∗
1, f2(p

∗
2, f3(x

∗, q∗3), q∗2), q∗1),

where the pairwise different variables x∗ on f3’s inductive positions do not occur
in the terms p∗i , q

∗
j . Moreover, f1(p

∗
1, f2(...), q

∗
1) |j1 =f2(...) and f2(p

∗
2, f3(...), q

∗
2) |j2

= f3(...). The definition of compatibility sequences should guarantee that if
〈f1, f2, f3〉 is a compatibility sequence on the arguments 〈j1, j2〉, then in an in-
duction on f3, the resulting context is propagated outside of r. Hence, we require
that fi must be compatible with fi+1 on argument ji for all i ∈ {1, 2}. So in Equa-
tion (6), 〈s, len, app〉 is a compatibility sequence on 〈1, 1〉 and s(len(app(u, v))) is
a term that has this compatibility sequence with the induction variable u.

An induction on f3 would instantiate x∗ according to the left-hand sides of
f3-rules α : f3(s

∗, y∗) → C[f3(t
∗
1, y

∗), . . . , f3(t
∗
n, y∗)]. For any term r as above, it

should be guaranteed that r[s∗] reduces to a term of the form E[r[t∗i1], . . . , r[t
∗
ik

]]
for some context E. For an instantiation C′ of C, we clearly have

r[s∗] = f1(p
∗
1, f2(p

∗
2, f3(s

∗, q∗3), q∗2), q∗1)

→R/T f1(p
∗
1, f2(p

∗
2, C′[f3(t

∗
1, q

∗
3), . . . , f3(t

∗
n, q∗3)], q∗2), q∗1).

Since f2 is compatible with f3, C′ can be moved outside and turned into a
new context D by rewriting f2. But this is only possible if no f3-rule α from
Excf2,f3

was used to create the context C′. Then, the above term rewrites to

f1(p
∗
1, D[f2(p

∗
2, f3(t

∗
j1 , q

∗
3), q∗2), . . . , f2(p

∗
2, f3(t

∗
jl

, q∗3), q∗2)], q∗1).

As f1 is compatible with f2, f1-rules can move D outside into a new context
E. But again, this is only possible if no f2-rules from Excf1,f2

were used to
produce the context D. For every f3-rule α /∈ Excf2,f3

, the set Rulef2,f3
(α)

contains those f2-rules which were used to create context D. Hence, we must
demand Excf1,f2

∩ Rulef2,f3
(α) = ∅ for all f3-rules α /∈ Excf2,f3

. In this case,
one can apply f1-rules to the above term and obtains E[r[t∗i1], . . . , r[t

∗
ik

]], i.e.,

E[f1(p
∗
1, f2(p

∗
2, f3(t

∗
i1 , q

∗
3), q∗2), q∗1), . . . , f1(p

∗
1, f2(p

∗
2, f3(t

∗
ik

, q∗3), q∗2), q∗1)].

The f1-rules used to create context E are in Rulef1,f2,f3
(α) = Rulef1,f2

(β1)∪
. . .∪Rulef1,f2

(βc), where Rulef2,f3
(α) = {β1, . . . , βc}. Computing Rulef1,f2,f3

(α)
would be required for compatibility sequences of four function symbols 〈f0, f1, f2,
f3〉. In a term of the form f0(p

∗
0, f1(. . .), q

∗
0), we would also have to demand

Excf0,f1
∩Rulef1,f2,f3

(α) = ∅ for all f3-rules α /∈ Excf2,f3
in order to guarantee

that in an f3-induction, all resulting contexts are propagated outwards. So in
general, from Rulef1,f2

(α), . . . ,Rulefd−1,fd
(α) one can immediately compute the

set Rulef1,...,fd
(α). It contains those f1-rules which are needed for rewriting

if the innermost fd-term is instantiated according to the fd-rule α. In Ex. 1,
Rules,len,app(α

app
2) = ∅, since Rule len,app(α

app
2) = {αlen

2 } and Rules,len(α
len
2) = ∅.

Using Varf1,f2
(α), . . . ,Varfd−1,fd

(α), we can define a set Posf1,...,fd
(α). It

contains the positions of those subterms of the original term that can occur in
subgoals during proof attempts. Knowing the positions of these subterms allows
us to formulate conditions for their safe generalization in Sect. 4.

Let us construct the set Posf1,f2,f3
(α) for f3-rules α /∈ Excf2,f3

. It contains
the positions of r’s subterms which may appear in the context E. Assume that we

7

already know the positions Posf2,f3
(α) of subterms in f2(p

∗
2, f3(. . .), q

∗
2) which

occur in D. So these subterms are f2(p
∗
2, f3(. . .), q

∗
2) |π for all π ∈ Posf2,f3

(α).
These terms can also appear in the final context E. Since f2(p

∗
2, f3(. . .), q

∗
2) =

r|j1 , a subterm at position π in f2(p
∗
2, f3(. . .), q

∗
2) is at position j1 π in r. Thus,

Posf1,f2,f3
(α) should contain the positions j1 π for all π ∈ Posf2,f3

(α). Moreover,
for every f2-rule β ∈ Rulef2,f3

(α) which was used to create context D, the
subterms of r at positions Varf1,f2

(β) may occur in the final context E as well. In
Ex. 1, we have Pos s,len,app(α

app
2) = Var s,len(α

len
2) ∪ {1 π |π ∈ Pos len,app(α

app
2)} = ∅

(as Rule len,app(α
app
2) = {αlen

2 } and Pos len,app(α
app
2) = ∅).

Def. 9 defines compatibility sequences of arbitrary length. In particular, 〈f〉 is
a singleton compatibility sequence for any T -based f ∈ Fd. Here, if f(p1, ..., pm)
is rewritten with a rule α : f(s1, ..., sm) → C[f(...), ..., f(...)], the resulting con-
text is produced by α itself (i.e., Rulef (α) = {α}). Let i be a non-inductive
position of f . A defined function symbol in pi can only be propagated into the
context if V(si) ∩ V(C) 6= ∅. In Ex. 1, 〈+〉 is a compatibility sequence with
Pos+(α+

2) = ∅ and Pos+(α+
1) = {2}, since in the first rule 0 + y → y, the

second argument y is moved to the context.

Definition 9 (Compatibility Sequence). Let d ≥ 1, let r ∈ Terms(F ,V),
and let f1, . . . , fd be T -based functions with fd /∈ FT . The sequence 〈f1, . . . , fd〉
is a compatibility sequence on arguments 〈j1, . . . , jd−1〉 and the term r has this
compatibility sequence with pairwise different induction variables x∗ iff

• fi is compatible with fi+1 on argument ji and Excfi,fi+1
∩ Rulefi+1,...,fd

(α) = ?,

for all 1 ≤ i ≤ d − 1 and all fd-rules α /∈ Excfd−1,fd

• r = f1(p
∗
1, f2(p

∗
2, . . . fd−1(p

∗
d−1, fd(x

∗, q∗d), q∗d−1) . . . , q∗2), q∗1),
where x∗ are variables on fd’s inductive positions which do not occur else-
where in r, and fi(p

∗
i , fi+1(. . .), q∗i) |ji

= fi+1(. . .) for all 1 ≤ i ≤ d − 1

• Rulefd
(α) = {α} and Posfd

(α) = {i | V(si) ∩ V(C) 6= ∅, i non-inductive},
for all fd-rules α : fd(s1, . . . , sm) → C[fd(...), . . . , fd(...)]

• Rulefi,..,fd
(α) =

⋃

β∈Rulefi+1,..,fd
(α) Rulefi,fi+1

(β) and

Posfi,...,fd
(α) =

⋃

β∈Rulefi+1,..,fd
(α) Var fi,fi+1

(β)

∪ {ji π |π ∈ Posfi+1,..,fd
(α)},

for all 1 ≤ i ≤ d − 1 and all fd-rules α /∈ Excfd−1,fd

Whether 〈f1, . . . , fd〉 is a compatibility sequence depends only on which func-
tions are compatible with each other. This information can be pre-compiled.
Then, it can be decided quickly whether a particular term has a compatibility
sequence. Compatibility sequences and the functions Rule and Pos can also be
computed at compile-time (but of course, these sequences can be arbitrarily long,
so they can also be computed by need and stored for later re-use).

Lemma 10 shows that for a term with the compatibility sequence 〈f1, . . . , fd〉
one can do induction on fd, as all resulting contexts can be propagated outwards.

8

Lemma 10 (Simplifying Terms with Compatibility Sequences). Let r be
a term with compatibility sequence 〈f1, . . . , fd〉 on the arguments 〈j1, . . . , jd−1〉.
For every rule α : fd(s

∗, y∗) → C[fd(t
∗
1, y

∗), . . . , fd(t
∗
n, y∗)] /∈ Excfd−1,fd

, we
have r[s∗] →∗

R/T D[r[t∗i1], . . . , r[t
∗
ik

]] for some i1, . . . , ik ∈ {1, . . . , n} and context

D. In D, defined symbols only occur within terms from {r|π |π∈Posf1,...,fd
(α)}.

Our notion of compatibility extends the one in [12] considerably (see [9] for
a detailed comparison). In particular, we extended compatibility by exceptions
Exc and in a term f1(p

∗
1, f2(x

∗, q∗2), q∗1) with a compatibility sequence 〈f1, f2〉
and induction variables x∗, we permitted defined symbols in the terms p∗1, q

∗
1 , q∗2 .

Analogous statements hold for terms with longer compatibility sequences. For
this reason, we had to introduce the sets Rule and Pos to trace which of the
subterms with defined symbols are propagated outwards when rewriting f1.

In Ex. 1, let r be the term u + dbl(v). Then r has the compatibility sequence
〈+〉 with induction variable u. So + may have terms with defined symbols like
dbl(v) on its non-inductive position 2. Pos indicates which subterms may occur
in the context of the simplified induction conclusion. Since Pos+(α+

1) = {2},
r|2 = dbl(v) can occur in the context when simplifying r. Note that with the
notions of [12], the necessary compatibility requirements would not hold for the
conjectures in Ex. 1 and Ex. 2. Indeed, the class of decidable equations recognized
with our approach is a significant superset of the corresponding class in [12].

As in [12], compatibility can be extended to simultaneous compatibility. A
binary function g is simultaneously compatible with f1 and f2 on argument posi-
tions 1 and 2, if f1 and f2 have the same cover set (up to variable renaming) and g
can simultaneously process the contexts C1 and C2 resulting from corresponding
f1- and f2-rules. So we require f(C1[y1, ..., yn], C2[z1, ..., zn]) →∗

R/T D[f(yi1 , zi1),

. . . , f(yik
, zik

)] for a context D over FT . The general definition for simultaneous
compatibility of functions g (of arbitrary arity) with arbitrary many functions
f1, . . . , fm is analogous. Simultaneous compatibility can also be extended to ar-
bitrarily deep nestings by defining corresponding compatibility sequences.

Of course, f1 and f2 may be identical. In Ex. 1, min is simultaneously com-
patible with “+” and “+” on the arguments 1 and 2 and thus, 〈min, (+, +)〉 is
a simultaneous compatibility sequence. For α+

2 , we have C1 = C2 = s(�) and
min(s(y1), s(z1)) → min(y1, z1), i.e., D = �. Thus, Rulemin,(+,+)(α

+
2) = {αmin

3 },

Posmin,(+,+)(α
+
2) = ∅, Excmin,(+,+) = {α+

1 }. Moreover, in Ex. 2 the constructor
“+” is simultaneously compatible with “∗” and “∗” on the arguments 1 and
2. To simplify the presentation, in the remainder we use a formulation with
non-simultaneous compatibility in the definitions and theorems.

To guarantee2 that the induction proof attempt for r1 = r2 transforms the
equation into equivalent proof obligations over the theory T , both r1 and r2 must
have a compatibility sequence 〈f1, . . . , fd〉 and 〈g1, . . . , ge〉 (alternatively, they

2 Clearly, there are inductively valid equations where compatibility does not hold. Let
half be defined by half(0) → 0, half(s(0)) → 0, half(s(s(x))) → s(half(x)). Then half is
not compatible with “+” and thus, the conjecture min(half(x),half(x+y)) = half(x)
is not in our class DEC of equations where inductive validity is decidable.

9

may also be terms over FT which covers the equational conjectures discussed in
[12]). If fd and ge have the same cover set (i.e., their recursion schemas corre-
spond), then by compatibility, the context added on the arguments of fd and ge

in induction conclusions will move outwards by rewriting. After application of the
induction hypotheses, we obtain a proof obligation C[t1, . . . , tn] = D[s1, . . . , sm]
where C and D are contexts over FT and t1, . . . , tn, s1, . . . , sm are subterms con-
taining defined symbols. These subterms can already be determined before the
induction proofs by inspecting the positions Posf1,...,fd

(α) and Posg1,...,ge
(α) of

r1 and r2, respectively.

4 Safe Generalizations by the No-Theory Condition

To define the class of equations where inductive validity is decidable, we need
syntactic criteria to ensure that an equation C[t1, ..., tn] = D[s1, ..., sm] as above
may be generalized to C[xt1 , ..., xtn

] = D[xs1
, ..., xsm

]. Here, ti and sj are re-
placed by fresh variables and identical terms are replaced by the same variable.
This generalized equation is an equation over FT and thus, its (inductive) valid-
ity can be decided by a decision procedure for T . In general, however, inductive
validity of the generalized equation implies inductive validity of the original
equation, but not vice versa. We define a no-theory condition which ensures
that this generalization is safe in the theory of free constructors or Presburger
Arithmetic.3 Then an equation is inductively valid if and only if the generalized
equation is inductively valid. Our condition mainly relies on information about
the definitions of functions which can again be pre-compiled. A term satisfies the
no-theory condition if it is not equivalent to any term without defined symbols.

Definition 11 (No-Theory). A term t satisfies the no-theory condition iff
there is no q ∈ Terms(FT ,V) with AXT ∪R |=ind t = q. If additionally, t = f(x∗)
for pairwise different variables x∗, then f satisfies the no-theory condition too.

Obviously, the no-theory condition is satisfied for almost all defined functions
f (otherwise, the function f is not needed, since one can use the term q instead).
For TC and TPA, the no-theory condition for T -based functions is decidable and
we present syntactic sufficient conditions for the no-theory condition on terms.

If f ∈ Fd does not satisfy the no-theory condition, then there is a term q ∈
Terms(FT ,V) such that q[x∗/s∗] =T r for every non-recursive f -rule f(s∗) → r
(i.e., r ∈ Terms(FT ,V)). In the theory of free constructors, this means that
q[x∗/s∗] and r are syntactically identical. Thus, there are only finitely many
possibilities for the choice of q. By checking whether these choices for q contradict
the remaining rules of f , we can decide the no-theory condition for f .

Definition 12 (Candidate Set Q(f)). Let T be TC , let f ∈ Fd be a T -based
function of arity m. The candidate set Q(f) is defined as Qs∗(r) for a non-
recursive rule f(s1, . . . , sm) → r. Let x∗ = x1, . . . , xm be pairwise different fresh

3 This criterion is generally applicable for safe generalizations, i.e., also outside of the
framework of decidable induction proofs. Moreover, one could refine our approach by
performing such generalizations also at the beginning before the start of the proof.

10

variables not occurring in this rule. For any t ∈ Terms(FT ,V), we define Qs∗(t):

Qs∗(x) = {xi | si = x} for x ∈ V,
Qs∗(c(t1, . . . , tk)) = {xi | si = c(t1, . . . , tk)}∪

{c(q1, . . . , qk) | qi ∈ Qs∗(ti) for all 1 ≤ i ≤ k} for c ∈ FT .

Theorem 13. Let T , f be as in Def. 12. The function f satisfies the no-theory
condition iff for every q ∈ Q(f), there is an f -rule l → r with l ↓f(x∗)→q 6=
r↓f(x∗)→q. Here, l↓f(x∗)→q is the normal form of l w.r.t. the rule f(x∗) → q.

For “+” in Ex. 1, from the non-recursive rule 0 + y → y we obtain Q(+) =
Q0,y(y) = {x2}. However, the choice of q = x2 contradicts the second rule
s(x)+y → s(x+y): normalizing by x1 +x2 → x2 produces non-identical terms y
and s(y). Indeed, “+” (and also min, dbl, len, app) satisfy the no-theory condition.

For the theory of Presburger Arithmetic, if f(x1, . . . , xm) =TPA
q for a q ∈

Terms(FTPA
,V), then q =TPA

a0 +a1 ·x1 + . . .+am ·xm for ai ∈ IN (see Sect. 1).
We use the f -rules to compute constraints on the values of the coefficients ai. Let
τ map terms to linear polynomials where τ(x) = x for x ∈ V , τ(0) = 0, τ(1) = 1,
τ(s + t) = τ(s) + τ(t), and τ(f(t1, . . . , tm)) = a0 +

∑

1≤i≤m ai · τ(ti). For every
f -rule l → r, we now require τ(l) = τ(r). If V(l) = {y1, . . . , yk}, the polynomials
τ(l) = P0+P1 ·y1+. . .+Pk ·yk and τ(r) = Q0+Q1 ·y1+. . .+Qk ·yk are considered
equal iff the constraints P0 = Q0, . . . , Pk = Qk are satisfied. We generate such
constraints for every f -rule. Since f is T -based, its rules do not contain nested
occurrences of f , and thus, Pi and Qi are linear polynomials over a0, . . . , am.
Thus, it is decidable whether the set of all these constraints is satisfiable. The
constraints are unsatisfiable iff f satisfies the no-theory condition.

For “∗” in Ex. 2, we assume that x∗y =TPA
a0 +a1 ·x+a2 ·y. The mapping τ

is now applied to both defining equations of “∗”. From α∗
1 we get τ(0∗y) = τ(0),

i.e., a0 + a2y = a0. From α∗
2 we obtain τ((x + 1) ∗ y) = τ(x ∗ y + y), i.e.,

a0 +a1 +a1x+a2y = a0 +a1x+(a2 +1)y. Since polynomials are only considered
equal if the corresponding coefficients are equal, the resulting set of constraints
is {a2 =0, a0 + a1 =a0, a2 =a2 + 1} (plus trivial constraints). It is easy to detect
their unsatisfiability and thus, “∗” satisfies the no-theory condition.

We have described how to decide the no-theory condition for functions.
Thm. 14 gives sufficient conditions for the no-theory condition on terms.

Theorem 14. Let T be TC or TPA. A term t ∈ Terms(F ,V) satisfies the no-
theory condition if one of the following five conditions is satisfied:

(a) t = f(x∗) for pairwise different x∗ and f satisfies the no-theory condition
(b) tσ satisfies the no-theory condition for a substitution σ : V → Terms(FT ,V)
(c) t →∗

R/T r and r satisfies the no-theory condition

(d) T =TC , t|π satisfies the no-theory condition, t has only FT -symbols above π
(e) T =TPA and t =T C[t1, . . . , tn] for n ≥ 1 and a context C over FTPA

. More-
over, there is an i ∈ {1, . . . , n} such that ti satisfies the no-theory condition
and such that all tj are either identical or variable disjoint to ti.

In TC , dbl(v) satisfies the no-theory condition since dbl satisfies the no-theory
condition. Similarly, s(dbl(v)) satisfies the no-theory condition, since it only has

11

the symbol s ∈ FT above the no-theory term dbl(v). To benefit from Conditions
(b) and (c), for example one can build all terms reachable from t by narrowing
with non-recursive T -based rules. (So termination is guaranteed, since the num-
ber of defined symbols decreases.) For instance, x+dbl(v) satisfies the no-theory
condition, since it can be narrowed to dbl(v) with the non-recursive rule α+

1 .
Condition (d) does not hold in the theory of Presburger Arithmetic. For

example, let R = {f(0) → 0, f(x + 1) → x, g(0) → 0, g(x + 1) → x + 1 + 1}.
Then f(x) and g(x) satisfy the no-theory condition, but f(x) + g(x) does not,
since AXT ∪ R |=ind f(x) + g(x) = x + x. However, in a term C[t1, . . . , tn] one
may first apply a substitution σ (to unify non-variable disjoint terms ti and tj).
If afterwards all remaining terms with defined symbols are variable disjoint from
tiσ and if the term tiσ satisfies the no-theory condition, then this also holds for
the original term. For example, x ∗ v + x ∗ w satisfies the no-theory condition,
because when instantiating v with w, then the instantiated term x ∗ w + x ∗ w
satisfies Condition (e).

Thm. 15 shows that the no-theory condition indeed allows us to replace pair-
wise variable disjoint terms by fresh variables. The “if” direction holds for arbi-
trary terms, but “only if” states that this never leads to “over-generalization”.

Theorem 15 (Safe Generalization). Let T be TC or TPA and let t1, . . . , tn,
s1, . . . , sm be pairwise identical or variable disjoint terms satisfying the no-theory
condition. For all contexts C, D over FT and fresh variables xti

and xsj
, we have

AXT ∪R |=ind C[t1, ..., tn] = D[s1, ..., sm] iff C[xt1 , . . . , xtn
] =T D[xs1

, . . . , xsm
].

5 A Decidable Class of Equational Conjectures

Now we define the set DEC of equations whose inductive validity is decidable.
Moreover, for any equation r1 = r2, it is decidable whether r1 = r2 ∈ DEC.
Checking membership in DEC can be done efficiently, since it relies on pre-
compiled information about compatibility and the no-theory condition of func-
tions. Thus, before performing the induction proof one can recognize whether
the equation will simplify to conjectures over the signature FT of the theory.

For r1 = r2 ∈ DEC, r1 and r2 must have compatibility sequences 〈f1, . . . , fd〉
and 〈g1, . . . , ge〉, where fd and ge have identical4 cover sets (up to variable renam-
ing). Then the induction conclusion can be simplified as described in Sect. 2.

The Pos-sets allow us to estimate which subterms of r1 and r2 with defined
symbols will occur after this simplification without actually attempting an in-
duction proof. Let M(α) denote the set of these subterms. Clearly, all r1|π and
r2|π′ for π ∈ Posf1,...,fd

(α) and π′ ∈ Posg1,...,ge
(α) are in M(α). Moreover, the

right-hand sides r2[t
∗
1], . . . , r2[t

∗
n] of induction hypotheses may also contain de-

fined symbols. Finally, if α ∈ Excfd−1,fd
, then compatibility does not hold for

r1. In this case, M(α) must include the whole simplified instantiated left-hand
side r1. A similar observation holds for the right-hand side r2 if α /∈ Excge−1,ge

.
We require that all terms in M(α) with defined function symbols satisfy the
no-theory condition. Then they can be safely generalized in induction proofs.

4 This requirement can be weakened by merging cover sets, cf. e.g. [4, 11, 14].

12

Definition 16 (DEC). Let r1, r2 be terms in normal form. We define r1 = r2

∈ DEC iff r1, r2 are syntactically equal or the following conditions are satisfied:

• r1 ∈ Terms(FT ,V) or r1 has a compatibility sequence 〈f1, . . . , fd〉

• r2 ∈ Terms(FT ,V) or r2 has a compatibility sequence 〈g1, . . . , ge〉

• If r1, r2 /∈ Terms(FT ,V), then the cover sets Cfd
and Cge

are identical.
Moreover, r1 and r2 have the same induction variables.

• If r1 /∈ Terms(FT ,V), then for every fd-rule α, terms in M(α)\Terms(FT ,V)
are pairwise identical or variable disjoint and satisfy the no-theory condition.

Here, for α : fd(s
∗, y∗)→C[fd(t

∗
1, y

∗), . . . , fd(t
∗
n, y∗)], α′ is the correspond-

ing5 ge-rule and M(α) = M1(α) ∪ M2(α
′) ∪ {r2[t

∗
1], . . . , r2[t

∗
n]}, where

M1(α) =

{

{r1|π | π∈Posf1,...,fd
(α)} if α /∈ Excfd−1,fd

{r1[s
∗]↓R/T } if α ∈ Excfd−1,fd

M2(α
′) =

{

{r2|π | π∈Posg1,...,ge
(α′)} if α′ /∈ Excge−1,ge

{r2[s
∗]↓R/T } if α′ ∈ Excge−1,ge

For example, the equations (1), (2), (3), (5), (6) are in DEC. For the equation
dbl(u + v) = u + dbl(v), the left-hand side dbl(u + v) has the compatibility
sequence 〈dbl, +〉 and the right-hand side has the compatibility sequence 〈+〉
with the induction variable u. Since Excdbl,+ = {α+

1 } and Pos+(α+
1) = {2},

M(α+
1) consists of r1[0]↓R/T = dbl(0 + v)↓R/T = dbl(v) and of r2|2 = dbl(v). As

Posdbl,+(α+
2) = Pos+(α+

2) = ∅, M(α+
2) only contains r2[x] = x + dbl(v). The

function dbl satisfies the no-theory condition and therefore, the terms dbl(v) and
x + dbl(v) from M(α+

1) and M(α+
2) also fulfill the no-theory condition.

As mentioned in Sect. 3, compatibility may be extended to simultaneous
compatibility and thus, this leads to a more general definition of DEC. Then,
the equations (4) and (8) are also in DEC. For the distributivity equation u ∗
(v + w) = u ∗ v + u ∗ w, the left-hand side has the compatibility sequence
〈∗〉 and the right-hand side has the (simultaneous) sequence 〈+, (∗, ∗)〉. Since
Pos∗(α

∗
1) = Pos+,(∗,∗)(α

∗
1) = ∅, Pos∗(α

∗
2) = {2}, Pos+,(∗,∗)(α

∗
2) = {1 2, 2 2},

we obtain M(α∗
1) = ∅, M1(α

∗
2) = {v + w}, and M2(α

∗
2) = {v, w}. So the only

term with defined symbols in M(α∗
2) is r2[t

∗], i.e., x ∗ v + x ∗ w. Our criteria in
Thm. 14 state that this term satisfies the no-theory condition.

The following algorithm can decide inductive validity of all equations in
DEC. Essentially, it uses cover set induction and generalizes all resulting proof
obligations to equations over FT . Finally, a decision procedure for T is applied to
decide their validity. The induction proofs in Sect. 1 were performed in this way.6

5 W.l.o.g, r1 /∈ Terms(FT ,V) unless r1, r2 ∈ Terms(FT ,V). If r2 ∈ Terms(FT ,V) then
M2(...) is empty. Otherwise, for every fd-rule α there is a corresponding ge-rule
α′: ge(s

∗, z∗)→C′[ge(t
∗

1, z
∗), ..., ge(t

∗

n, z∗)]. We sometimes also write α instead of α′.
6 If induction hypotheses r1[t

∗

i] = r2[t
∗

i] are not in normal form, then when reducing
r1[s

∗] and r2[s
∗] in Step 6.1, one should stop as soon as r1[t

∗

i] and r2[t
∗

i] are reached.

13

Algorithm IND(r1, r2)
1. If r1 and r2 are syntactically identical then return “True”.
2. If r1, r2 ∈ Terms(FT ,V), then use the decision procedure for T to

decide the validity of r1 = r2 and return the respective result.
Otherwise, without loss of generality, assume r1 /∈ Terms(FT ,V).

3. Let T consist of all subterms f(. . .) of r1 which have pairwise different
variables on the inductive positions of f .

4. If T = ∅ then stop and return “False”.
5. Choose f(. . .) ∈ T and set T = T \ {f(. . .)}.
6. For each 〈s∗, {t∗1, . . . , t

∗
n}〉 ∈ Cf :

6.1. Let q1 = r1[s
∗]↓R/T , q2 = r2[s

∗]↓R/T .
6.2. Replace all occurrences of r1[t

∗
i] in q1 by r2[t

∗
i].

6.3. Replace all occurrences of subterms t with root(t) ∈ Fd

in q1 and q2 by fresh variables xt. So multiple occurrences of the same
subterm are replaced by the same variable.

6.4. Use the decision procedure for T to decide the validity of the
resulting equation. If it is invalid, then go to Step 4.

7. Return “True”.

In the definition of DEC we replace terms t ∈ M(α) \ Terms(FT ,V) by new
variables. In contrast in Step 6.3, only the subterms of t that have a defined root
are replaced. For example, when proving the distributivity equation (8) we have
x∗v+x∗w ∈ M(α), but in the algorithm the term x∗v+x∗w would be replaced
by z1 + z2 for new variables z1 and z2. Clearly, if this generalized conjecture is
valid, then the original conjecture is valid, too. If the generalized conjecture is
invalid, then the conjecture where the whole term x ∗ v + x ∗ w would have
been replaced by a new variable would also be invalid. Since DEC guarantees
that even this (larger) generalization does not lead to over-generalization, the
generalization in Step 6.3 is safe as well. Thus, one does not have to know about
M(α) or DEC when performing induction proofs.

Theorem 17 (Decision Procedure). Let T be TC or TPA, let r1 = r2 ∈
DEC. Then IND(r1, r2) terminates and it returns “True” iff AXT ∪ R |=ind

r1 = r2. Hence, inductive validity is decidable for all equations in DEC.

6 Conclusion and Further Work

The paper defines a syntactical class DEC of decidable equational conjectures
by allowing defined function symbols to occur on both sides of an equation and
also outside of inductive positions. This is a significant advance compared to
earlier related work: In [12] only one side of an equation could have defined
function symbols (only on inductive positions) and the other side had to be a
term over the signature of the underlying decidable theory. In [8], we considered
general quantifier-free conjectures with such equations as atomic formulas.

Our approach is based on compatibility between functions. Using this infor-
mation, we identify those subterms which might appear in subgoals during a
proof attempt and we require that these terms satisfy the no-theory condition.

14

Then all subgoals can be safely generalized to formulas over a decidable theory.
Checking whether an equation belongs to DEC can be done efficiently, since

it mainly depends on the definitions of functions. Therefore, the required in-
formation can be pre-compiled. Moreover, for every equation in DEC, a failed
induction proof attempt refutes the conjecture. So by restricting induction to
equations from DEC, one obtains a decision procedure for induction which can
be integrated into fully automatic tools like model checkers or compilers.

In future work, we plan to relax the conditions imposed on function defini-
tions further and to evaluate our approach empirically by an implementation.
Moreover, we will try to extend our conditions for safe generalizations beyond the
theories of free constructors and of Presburger Arithmetic. We also want to exam-
ine whether the ideas of [8] can be used to extend DEC to general quantifier-free
conjectures whose atomic formulas are equations with defined symbols occurring
on both sides. This class might be broadened further to include the use of in-
termediate lemmas in proofs, provided these lemmas themselves fall into the
decidable class of inductively valid formulas.

Acknowledgments. We thank M. Subramaniam & R. Thiemann for helpful remarks.

References

1. S. Autexier, D. Hutter, H. Mantel, & A. Schairer. Inka 5.0 - A Logical Voyager.
Proc. CADE-16, LNAI 1632, 1999

2. F. Baader & T. Nipkow. Term Rewriting and All That. Cambridge Univ. Pr., 1998.
3. A. Bouhoula & M. Rusinowitch. Implicit Induction in Conditional Theories. Jour-

nal of Automated Reasoning, 14:189–235, 1995.
4. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
5. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, & A. Smaill. Rippling: A

Heuristic for Guiding Inductive Proofs. Artificial Intelligence, 62:185-253, 1993.
6. A. Bundy. The Automation of Proof by Mathematical Induction. A. Robinson & A.

Voronkov (eds.), Handbook of Automated Reasoning, Vol. 1, pages 845-911, 2001.
7. H. B. Enderton. A Mathematical Introduction to Logic. 2nd edition, Harcourt/

Academic Press, 2001.
8. J. Giesl & D. Kapur. Decidable Classes of Inductive Theorems. Proc. IJCAR ’01,

LNAI 2083, pages 469-484, 2001.
9. J. Giesl & D. Kapur. Deciding Inductive Validity of Equations. Technical Report

AIB-2003-03, 2003. Available from http://aib.informatik.rwth-aachen.de
10. D. Kapur & H. Zhang. An Overview of Rewrite Rule Laboratory (RRL). Journal

of Computer and Mathematics with Applications, 29:91–114, 1995.
11. D. Kapur & M. Subramaniam. New Uses of Linear Arithmetic in Automated The-

orem Proving by Induction. Journal of Automated Reasoning, 16:39–78, 1996.
12. D. Kapur & M. Subramaniam. Extending Decision Procedures with Induction

Schemes. Proc. CADE-17, LNAI 1831, pages 324-345, 2000.
13. M. Kaufmann, P. Manolios, & J S. Moore. Computer-Aided Reasoning: An Ap-

proach. Kluwer, 2000.
14. C. Walther. Mathematical Induction. D. M. Gabbay, C. J. Hogger, & J. A. Robin-

son (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming,
Vol. 2, Oxford University Press, 1994.

15. H. Zhang, D. Kapur, & M. S. Krishnamoorthy. A Mechanizable Induction Principle
for Equational Specifications. Proc. CADE-9, LNCS 310, 1988.

15

