
A Dependency Pair Framework for Innermost
Complexity Analysis of Term Rewrite Systems?

Lars Noschinski1, Fabian Emmes2, and Jürgen Giesl2

1 Institut für Informatik, TU Munich, Germany
2 LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. We present a modular framework to analyze the innermost
runtime complexity of term rewrite systems automatically. Our method
is based on the dependency pair framework for termination analysis. In
contrast to previous work, we developed a direct adaptation of successful
termination techniques from the dependency pair framework in order to
use them for complexity analysis. By extensive experimental results, we
demonstrate the power of our method compared to existing techniques.

1 Introduction

In practice, termination is often not sufficient, but one also has to ensure that
algorithms terminate in reasonable (e.g., polynomial) time. While termination
of term rewrite systems (TRSs) is well studied, only recently first results were
obtained which adapt termination techniques in order to obtain polynomial com-
plexity bounds automatically, e.g., [2–5,7,9,15,16,19–21,23,27,28]. Here, [3,15,16]
consider the dependency pair (DP) method [1,10,11,14], which is one of the most
popular termination techniques for TRSs.3 Moreover, [28] introduces a related
modular approach for complexity analysis based on relative rewriting.

Techniques for automated innermost termination analysis of term rewriting
are very powerful and have been successfully used to analyze termination of
programs in many different languages (e.g., Java [25], Haskell [12], Prolog [26]).
Hence, by adapting these termination techniques, the ultimate goal is to obtain
approaches which can also analyze the complexity of programs automatically.

In this paper, we present a fresh adaptation of the DP framework for inner-
most runtime complexity analysis [15]. In contrast to [3, 15, 16], we follow the
original DP framework closely. This allows us to directly adapt the several termi-
nation techniques (“processors”) of the DP framework for complexity analysis.
Like [28], our method is modular. But in contrast to [28], which allows to inves-
tigate derivational complexity [17], we focus on innermost runtime complexity.
Hence, we can inherit the modularity aspects of the DP framework and benefit
from its transformation techniques, which increases power significantly.

? Supported by the DFG grant GI 274/5-3.
3 There is also a related area of implicit computational complexity which aims at

characterizing complexity classes, e.g., using type systems [18], bottom-up logic pro-
grams [13], and also using termination techniques like dependency pairs (e.g., [20]).

After introducing preliminaries in Sect. 2, in Sect. 3 we adapt the concept
of dependency pairs from termination analysis to so-called dependency tuples
for complexity analysis. While the DP framework for termination works on DP
problems, we now work on DT problems (Sect. 4). Sect. 5 adapts the “processors”
of the DP framework in order to analyze the complexity of DT problems. We
implemented our contributions in the termination analyzer AProVE. Due to the
results of this paper, AProVE was the most powerful tool for innermost runtime
complexity analysis in the International Termination Competition 2010. This
is confirmed by our experiments in Sect. 6, where we compare our technique
empirically with previous approaches. All proofs can be found in [24].

2 Runtime Complexity of Term Rewriting

See e.g. [6] for the basics of term rewriting. Let T (Σ,V) be the set of all terms
over a signature Σ and a set of variables V where we just write T if Σ and V are
clear from the context. The arity of a function symbol f ∈ Σ is denoted by ar(f)
and the size of a term is |x| = 1 for x ∈ V and |f(t1, . . . , tn)| = 1+ |t1|+ . . .+ |tn|.
The derivation height of a term t w.r.t. a relation → is the length of the longest
sequence of →-steps starting with t, i.e., dh(t,→) = sup{n | ∃t′ ∈ T , t→n t′ },
cf. [17]. Here, for any set M ⊆ N∪{ω}, “supM” is the least upper bound of M .
Thus, dh(t,→) = ω if t starts an infinite sequence of →-steps.

As an example, consider R = {dbl(0) → 0, dbl(s(x)) → s(s(dbl(x)))}. Then
dh(dbl(sn(0)),→R) = n+ 1, but dh(dbln(s(0)),→R) = 2n + n− 1.

For a TRS R with defined symbols Σd = { root(`) | ` → r ∈ R}, a term
f(t1, . . . , tn) is basic if f ∈ Σd and t1, . . . , tn do not contain symbols from Σd.
So for R above, the basic terms are dbl(sn(0)) and dbl(sn(x)) for n ∈ N, x ∈ V.
The innermost runtime complexity function ircR maps any n ∈ N to the length
of the longest sequence of i→R-steps starting with a basic term t with |t| ≤ n.
Here, “ i→R” is the innermost rewrite relation and TB is the set of all basic terms.

Definition 1 (ircR [15]). For a TRS R, its innermost runtime complexity
function ircR :N→N∪{ω} is ircR(n) = sup{ dh(t, i→R) | t ∈ TB , |t| ≤ n }.

If one only considers evaluations of basic terms, the (runtime) complexity of
the dbl-TRS is linear (ircR(n) = n− 1 for n ≥ 2). But if one also permits evalu-
ations starting with dbln(s(0)), the complexity of the dbl-TRS is exponential.

When analyzing the complexity of programs, one is typically interested in (in-
nermost) evaluations where a defined function like dbl is applied to data objects
(i.e., terms without defined symbols). Therefore, (innermost) runtime complexi-
ty corresponds to the usual notion of “complexity” for programs [4,5]. So for any
TRS R, we want to determine the asymptotic complexity of the function ircR.

Definition 2 (Asymptotic Complexities). Let C = {Pol0,Pol1,Pol2, ..., ?}
with the order Pol0 < Pol1 < Pol2 < . . . < ?. Let v be the reflexive closure of <.
For any function f : N→ N ∪ {ω} we define its complexity ι(f) ∈ C as follows:
ι(f) = Polk if k is the smallest number with f(n) ∈ O(nk) and ι(f) = ? if there
is no such k. For any TRS R, we define its complexity ιR as ι(ircR).

So the dbl-TRS R has linear complexity, i.e., ιR = Pol1. As another example,
consider the following TRS R where “m” stands for “minus”.

Example 3. m(x, y)→ if(gt(x, y), x, y) gt(0, k)→ false p(0)→ 0
if(true, x, y)→ s(m(p(x), y)) gt(s(n), 0)→ true p(s(n))→n
if(false, x, y)→ 0 gt(s(n), s(k))→ gt(n, k)

Here, ιR = Pol2 (e.g., m(sn(0), sk(0)) starts evaluations of quadratic length).

3 Dependency Tuples

In the DP method, for every f ∈ Σd one introduces a fresh symbol f] with ar(f)
= ar(f]). For a term t = f(t1, . . . , tn) with f ∈ Σd we define t] = f](t1, . . . , tn)
and let T] = { t] | t ∈ T , root(t) ∈ Σd }. Let Pos(t) contain all positions of t and
let Posd(t) = {π | π ∈ Pos(t), root(t|π) ∈ Σd }. Then for every rule ` → r with
Posd(r) = {π1, . . . , πn}, its dependency pairs are `] → r|]π1

, . . . , `] → r|]πn
.

While DPs are used for termination, for complexity we have to regard all
defined functions in a right-hand side at once. Thus, we extend the concept
of weak dependency pairs [15, 16] and only build a single dependency tuple ` →
[r|]π1

, . . . , r|]πn
] for each `→ r. To avoid handling tuples, for every n ≥ 0, we intro-

duce a fresh compound symbol Comn of arity n and use `] → Comn(r|]π1
,..., r|]πn

).

Definition 4 (Dependency Tuple). A dependency tuple is a rule of the form

s] → Comn(t]1, . . . , t
]
n) for s], t]1, . . . , t

]
n ∈ T]. Let `→ r be a rule with Posd(r) =

{π1, . . . , πn}. Then DT (`→ r) is defined4 to be `] → Comn(r|]π1
, . . . , r|]πn

). For
a TRS R, let DT (R) = {DT (`→ r) | `→ r ∈ R}.

Example 5. For the TRS R from Ex. 3, DT (R) is the following set of rules.

m](x, y)→Com2(if](gt(x, y), x, y), gt](x, y)) (1)

if](true, x, y)→Com2(m](p(x), y), p](x)) (2)

if](false, x, y)→Com0 (3)

p](0)→Com0 (4)

p](s(n))→Com0 (5)

gt](0, k)→Com0 (6)

gt](s(n), 0)→Com0 (7)

gt](s(n), s(k))→Com1(gt](n, k)) (8)

For termination, one analyzes chains of DPs, which correspond to sequences
of function calls that can occur in reductions. Since DTs represent several DPs,
we now obtain chain trees. (This is analogous to the path detection in [16]).

Definition 6 (Chain Tree). Let D be a set of DTs and R be a TRS. Let T
be a (possibly infinite) tree whose nodes are labeled with both a DT from D and
a substitution. Let the root node be labeled with (s] → Comn(. . .) | σ). Then T
is a (D,R)-chain tree for s]σ if the following holds for all nodes of T : If a node

is labeled with (u] → Comm(v]1, . . . , v
]
m) | µ), then u]µ is in normal form w.r.t.

R. Moreover, if this node has the children (p]1 → Comm1
(. . .) | τ1), . . . , (p]k →

Commk
(. . .) | τk), then there are pairwise different i1, . . . , ik ∈ {1, . . . ,m} with

4 To make DT (`→ r) unique, we use a total order < on positions where π1 < ... < πn.

m](x, y)→ Com2(if](gt(x, y), x, y), gt](x, y)) | σ

if](true, x, y)→ Com2(m](p(x), y), p](x)) | σ gt](s(n), 0)→ Com0 | µ

m](x, y)→ Com2(if](gt(x, y), x, y), gt](x, y)) | τ p](s(n))→ Com0 | µ

if](false, x, y)→ Com0 | τ gt](0, k)→ Com0 | µ

Fig. 1. Chain Tree for the TRS from Ex. 3

v]ijµ
i→∗R p]jτj for all j ∈ {1, . . . , k}. A path in the chain tree is called a chain.5

Example 7. For the TRS R from Ex. 3 and its DTs from Ex. 5, the tree in Fig.
1 is a (DT (R),R)-chain tree for m](s(0), 0). Here, we use substitutions with
σ(x) = s(0) and σ(y) = 0, τ(x) = τ(y) = 0, and µ(n) = µ(k) = 0.

For any term s] ∈ T], we define its complexity as the maximal number of
nodes in any chain tree for s]. However, sometimes we do not want to count all
DTs in the chain tree, but only the DTs from some subset S. This will be crucial
to adapt termination techniques for complexity, cf. Sect. 5.2 and 5.4.

Definition 8 (Complexity of Terms, Cplx 〈D,S,R〉). Let D be a set of depen-

dency tuples, S ⊆ D, R a TRS, and s] ∈ T]. Then Cplx 〈D,S,R〉(s
]) ∈ N∪ {ω} is

the maximal number of nodes from S occurring in any (D,R)-chain tree for s].
If there is no (D,R)-chain tree for s], then Cplx 〈D,S,R〉(s

]) = 0.

Example 9. For R from Ex. 3, we have Cplx 〈DT (R),DT (R),R〉(m
](s(0), 0)) = 7,

since the maximal tree for m](s(0), 0) in Fig. 1 has 7 nodes. In contrast, if S is
DT (R) without the gt]-DTs (6) – (8), then Cplx 〈DT (R),S,R〉(m

](s(0), 0)) = 5.

Thm. 10 shows how dependency tuples can be used to approximate the
derivation heights of terms. More precisely, Cplx 〈DT (R),DT (R),R〉(t

]) is an up-
per bound for t’s derivation height, provided that t is in argument normal form.

Theorem 10 (Cplx bounds Derivation Height). Let R be a TRS. Let t =
f(t1, . . . , tn) ∈ T be in argument normal form, i.e., all ti are normal forms
w.r.t. R. Then we have dh(t, i→R) ≤ Cplx 〈DT (R),DT (R),R〉(t

]). If R is confluent,

we have dh(t, i→R) = Cplx 〈DT (R),DT (R),R〉(t
]).

Note that DTs are much closer to the original DP method than the weak
DPs of [15,16]. While weak DPs also use compound symbols, they only consider
the topmost defined function symbols in right-hand sides of rules. Hence, [15,16]
does not use DP concepts when defined functions occur nested on right-hand

5 These chains correspond to the “innermost chains” in the DP framework [1,10,11].
To handle full (i.e., not necessarily innermost) runtime complexity, one would have
to adapt Def. 6 (e.g., then u]µ would not have to be in normal form).

sides (as in the m- and the first if-rule) and thus, it cannot fully benefit from the
advantages of the DP technique. Instead, [15, 16] has to impose several restric-
tions which are not needed in our approach, cf. Footnote 10. The close analogy
of our approach to the DP method allows us to adapt the termination tech-
niques of the DP framework in order to work on DTs (i.e., in order to analyze
Cplx 〈DT (R),DT (R),R〉(t

]) for all basic terms t of a certain size). Using Thm. 10,
this yields an upper bound for the complexity ιR of the TRS R, cf. Thm. 14.
Note that there exist non-confluent TRSs6 where Cplx 〈DT (R),DT (R),R〉(t

]) is ex-
ponentially larger than dh(t, i→R) (in contrast to [15, 16], where the step from
TRSs to weak DPs does not change the complexity). However, our main interest
is in TRSs corresponding to “typical” (confluent) programs. Here, the step from
TRSs to DTs does not “lose” anything (i.e., one has equality in Thm. 10).

4 DT Problems

Our goal is to find out automatically how large Cplx 〈D,S,R〉(t
]) could be for basic

terms t of size n. To this end, we will repeatedly replace the triple 〈D,S,R〉 by
“simpler” triples 〈D′,S ′,R′〉 and examine Cplx 〈D′,S′,R′〉(t

]) instead.
This is similar to the DP framework where termination problems are repre-

sented by so-called DP problems (consisting of a set of DPs and a set of rules)
and where DP problems are transformed into “simpler” DP problems repeatedly.
For complexity analysis, we consider “DT problems” instead of “DP problems”
(our “DT problems” are similar to the “complexity problems” of [28]).

Definition 11 (DT Problem). Let R be a TRS, D a set of DTs, S ⊆ D. Then
〈D,S,R〉 is a DT problem and R’s canonical DT problem is 〈DT (R),DT (R),R〉.

Thm. 10 showed the connection between the derivation height of a term and
the maximal number of nodes in a chain tree. This leads to the definition of the
complexity of a DT problem 〈D,S,R〉. It is defined as the asymptotic complexity
of the function irc〈D,S,R〉 which maps any number n to the maximal number of

S-nodes in any (D,R)-chain tree for t], where t is a basic term of at most size n.

Definition 12 (Complexity of DT Problems). For a DT problem 〈D,S,R〉,
its complexity function is irc〈D,S,R〉(n) = sup{ Cplx 〈D,S,R〉(t

]) | t ∈ TB , |t| ≤ n }.
We define the complexity ι〈D,S,R〉 of the DT problem as ι(irc〈D,S,R〉).

Example 13. Consider R from Ex. 3 and let D = DT (R) = {(1), . . . , (8)}. For
t ∈ TB with |t| = n, the maximal chain tree for t] has approximately n2 nodes,
i.e., irc〈D,D,R〉(n)∈O(n2). Thus, 〈D,D,R〉’s complexity is ι〈D,D,R〉=Pol2.

Thm. 14 shows that to analyze the complexity of a TRS R, it suffices to ana-
lyze the complexity of its canonical DT problem: By Def. 2, ιR is the complexity
of the runtime complexity function ircR which maps n to the length of the longest
innermost rewrite sequence starting with a basic term of at most size n. By Thm.
10, this length is less than or equal to the size Cplx 〈DT (R),DT (R),R〉(t

]) of the max-

6 Consider the TRS f(s(x))→ f(g(x)), g(x)→ x, g(x)→ a(f(x)). Its runtime complex-
ity is linear, but for any n > 0, we have Cplx 〈DT (R),DT (R),R〉(f

](sn(0))) = 2n+1 − 2.

imal chain tree for any basic term t of at most size n, i.e., to irc〈DT (R),DT (R),R〉(n).

Theorem 14 (Upper bound for TRSs via Canonical DT Problems).
Let R be a TRS and let 〈D,D,R〉 be the corresponding canonical DT problem.
Then we have ιR v ι〈D,D,R〉 and if R is confluent, we have ιR = ι〈D,D,R〉.

Now we can introduce our notion of processors which is analogous to the “DP
processors” for termination [10, 11] (and related to the “complexity problem
processors” in [28]). A DT processor transforms a DT problem P to a pair
(c, P ′) of an asymptotic complexity c ∈ C and a DT problem P ′, such that P ’s
complexity is bounded by the maximum of c and of the complexity of P ′.

Definition 15 (Processor, ⊕). A DT processor Proc is a function Proc(P)
= (c, P ′) mapping any DT problem P to a complexity c ∈ C and a DT problem
P ′. A processor is sound if ιP v c⊕ ιP ′ . Here, “⊕” is the “maximum” function
on C, i.e., for any c, d ∈ C, we define c⊕ d = d if c v d and c⊕ d = c otherwise.

To analyze the complexity ιR of a TRS R, we start with the canonical DT
problem P0 = 〈DT (R), DT (R),R〉. Then we apply a sound processor to P0

which yields a result (c1, P1). Afterwards, we apply another (possibly different)
sound processor to P1 which yields (c2, P2), etc. This is repeated until we obtain
a solved DT problem (whose complexity is obviously Pol0).

Definition 16 (Proof Chain, Solved DT Problem). We call a DT problem

P = 〈D,S,R〉 solved, if S = ∅. A proof chain7 is a finite sequence P0
c1
; P1

c2
;

. . .
ck
; Pk ending with a solved DT problem Pk, such that for all 0 ≤ i < k there

exists a sound processor Proci with Proci(Pi) = (ci+1, Pi+1).

By Def. 15 and 16, for every Pi in a proof chain, ci+1 ⊕ . . .⊕ ck is an upper
bound for its complexity ιPi

. Here, the empty sum (for i = k) is defined as Pol0.

Theorem 17 (Approximating Complexity by Proof Chain). Let P0
c1
;

P1
c2
; . . .

ck
; Pk be a proof chain. Then ιP0

v c1 ⊕ . . .⊕ ck.

Thm. 14 and 17 now imply that our approach for complexity analysis is correct.

Corollary 18 (Correctness of Approach). If P0 is the canonical DT problem

for a TRS R and P0
c1
; . . .

ck
; Pk is a proof chain, then ιR v c1 ⊕ . . .⊕ ck.

5 DT Processors

In this section, we present several processors to simplify DT problems automat-
ically. To this end, we adapt processors of the DP framework for termination.

The usable rules processor (Sect. 5.1) simplifies a problem 〈D,S,R〉 by delet-
ing rules from R. The reduction pair processor (Sect. 5.2) removes DTs from S,
based on term orders. In Sect. 5.3 we introduce the dependency graph, on which
the leaf removal and knowledge propagation processor (Sect. 5.4) are based. Fi-
nally, Sect. 5.5 adapts processors based on transformations like narrowing.

7 Of course, one could also define DT processors that transform a DT problem P into
a complexity c and a set {P ′1, . . . , P ′n} such that ιP v c ⊕ ιP ′

1
⊕ . . . ⊕ ιP ′

n
. Then

instead of a proof chain one would obtain a proof tree.

5.1 Usable Rules Processor

As in termination analysis, we can restrict ourselves to those rewrite rules that
can be used to reduce right-hand sides of DTs (when instantiating their variables
with normal forms). This leads to the notion of usable rules.8

Definition 19 (Usable Rules UR [1]). For a TRS R and any symbol f , let
RlsR(f) = {`→ r | root(`) = f}. For any term t, UR(t) is the smallest set with

• UR(x) = ∅ if x ∈ V and
• UR(f(t1, . . . , tn)) = RlsR(f) ∪

⋃
`→r∈RlsR(f) UR(r) ∪

⋃
1≤i≤n UR(ti)

For any set D of DTs, we define UR(D) =
⋃
s→t∈D UR(t).

So forR and DT (R) in Ex. 3 and 5, UR(DT (R)) contains just the gt- and the
p-rules. The following processor removes non-usable rules from DT problems.9

Theorem 20 (Usable Rules Processor). Let 〈D,S,R〉 be a DT problem.
Then the following processor is sound: Proc(〈D,S,R〉) = (Pol0, 〈D,S,UR(D)〉).

So when applying the usable rules processor on the canonical DT problem
〈D,D,R〉 ofR from Ex. 3, we obtain 〈D,D,R1〉 whereR1 are the gt- and p-rules.

5.2 Reduction Pair Processor

Using orders is one of the most important methods for termination or complexity
analysis. In the most basic approach, one tries to find a well-founded order� such
that every reduction step (strictly) decreases w.r.t. �. This proves termination
and most reduction orders also imply some complexity bound, cf. e.g. [7, 17].
However, direct applications of orders have two main drawbacks: The obtained
bounds are often far too high to be useful and there are many TRSs that cannot
be oriented strictly with standard orders amenable to automation, cf. [28].

Therefore, the reduction pair processor of the DP framework only requires
a strict decrease (w.r.t. �) for at least one DP, while for all other DPs and
rules, a weak decrease (w.r.t. %) suffices. Then the strictly decreasing DPs can
be deleted. Afterwards one can use other orders (or termination techniques)
to solve the remaining DP problem. To adapt the reduction pair processor for
complexity analysis, we have to restrict ourselves to Com-monotonic orders.10

Definition 21 (Reduction Pair). A reduction pair (%,�) consists of a stable
monotonic quasi-order % and a stable well-founded order � which are compatible

8 The idea of applying usable rules also for complexity analysis is due to [15], which
introduced a technique similar to Thm. 20.

9 While Def. 19 is the most basic definition of usable rules, the processor of Thm. 20 can
also be used with more sophisticated definitions of “usable rules” (e.g., as in [11]).

10 In [15] “Com-monotonic” is called “safe”. Note that our reduction pair processor is
much closer to the original processor of the DP framework than [15]. In the main
theorem of [15], all (weak) DPs have to be oriented strictly in one go. Moreover, one
even has to orient the (usable) rules strictly. Finally, one is either restricted to non-
duplicating TRSs or one has to use orderings � that are monotonic on all symbols.

(i.e., %◦�◦% ⊆ �). An order � is Com-monotonic iff Comn(s]1, ..., s
]
i , ..., s

]
n) �

Comn(s]1, ..., t
], ..., s]n) for all n ∈ N, all 1 ≤ i ≤ n, and all s]1, . . . , s

]
n, t

] ∈ T]
with s]i � t]. A reduction pair (%,�) is Com-monotonic iff � is Com-monotonic.

For a DT problem (D,S,R), we orient D ∪R by % or �. But in contrast to
the processor for termination, if a DT is oriented strictly, we may not remove it
from D, but only from S. So the DT is not counted anymore for complexity, but
it may still be used in reductions.11 We will improve this later in Sect. 5.4.

Example 22. This TRS R shows why DTs may not be removed from D.12

f(0)→ 0 f(s(x))→ f(id(x)) id(0)→ 0 id(s(x))→ s(id(x))

Let D=DT (R) = {f](0)→ Com0, f
](s(x))→ Com2(f](id(x)), id](x)), id](0)→

Com0, id](s(x)) → Com1(id](x))}, where UR(D) are just the id-rules. For the
DT problem 〈D,S,UR(D)〉 with S = D, there is a linear polynomial interpre-
tation [·] that orients the first two DTs strictly and the remaining DTs and
usable rules weakly: [0] = 0, [s](x) = x+ 1, [id](x) = x, [f]](x) = x+ 1, [id]](x) =
0, [Com0] = 0, [Com1](x) = x, [Com2](x, y) = x + y. If one would remove the
first two DTs from D, there is another linear polynomial interpretation that
orients the remaining DTs strictly (e.g., by [id]](x) = x + 1). Then, one would
falsely conclude that the whole TRS has linear runtime complexity.

Hence, the first two DTs should only be removed from S, not from D. This
results in 〈D,S ′,UR(D)〉 where S ′ consists of the last two DTs. These DTs can
occur quadratically often in reductions with D ∪ UR(D). Hence, when trying to
orient S ′ strictly and the remaining DTs and usable rules weakly, we have to
use a quadratic polynomial interpretation (e.g., [0] = 0, [s](x) = x+ 2, [id](x) =
x, [f]](x) = x2, [id]](x) = x + 1, [Com0] = 0, [Com1](x) = x, [Com2](x, y) =
x+ y). Hence, now we (correctly) conclude that the TRS has quadratic runtime

complexity (indeed, dh(f(sn(0)), i→R) = (n+1)·(n+2)
2).

So when applying the reduction pair processor to 〈D,S,R〉, we obtain (c,
〈D,S \ D�,R〉). Here, D� are the strictly decreasing DTs from D and c is an
upper bound for the number of D�-steps in innermost reductions with D ∪R.

Theorem 23 (Reduction Pair Processor). Let P = 〈D,S,R〉 be a DT prob-
lem and (%,�) be a Com-monotonic reduction pair. Let D ⊆ % ∪ �, R ⊆ %,
and c w ι(irc�) for the function irc�(n) = sup{ dh(t],�) | t ∈ TB , |t| ≤ n}.13
Then the following processor is sound: Proc(〈D,S,R〉) = (c, 〈D, S \D�, R〉).
11 This idea is also used in [28]. However, [28] treats derivational complexity instead

of (innermost) runtime complexity, and it operates directly on TRSs and not on
DPs or DTs. Therefore, [28] has to impose stronger restrictions (it requires � to be
monotonic on all symbols) and it does not use other DP- resp. DT-based processors.

12 An alternative such example is shown in [8, Ex. 11].
13 As noted by [22], this can be weakened by replacing dh(t],�) with dh(t],�∩ i→D/R),

where→D/R =→∗R ◦ →D ◦ →∗R and i→D/R is the restriction of→D/R where in each
rewrite step with→R or→D, the arguments of the redex must be in (D∪R)-normal
form, cf. [3]. Such a weakening is required to use reduction pairs based on path orders
where a term t] may start �-decreasing sequences of arbitrary (finite) length.

To automate Thm. 23, we need reduction pairs (%,�) where an upper bound
c for ι(irc�) is easy to compute. This holds for reduction pairs based on polyno-
mial interpretations with coefficients from N (which are well suited for automa-
tion). For Com-monotonicity, we restrict ourselves to complexity polynomial in-
terpretations (CPIs) [·] where [Comn](x1, ..., xn) = x1 + ... + xn for all n ∈ N.
This is the “smallest” polynomial which is monotonic in x1, ..., xn. As Comn only
occurs on right-hand sides of inequalities, [Comn] should be as small as possible.

Moreover, a CPI interprets constructors f ∈ Σ\Σd by polynomials [f](x1, ...,
xn) = a1x1 + . . .+ anxn + b where b ∈ N and ai ∈ {0, 1}. This ensures that the
mapping from constructor ground terms t ∈ T (Σ\Σd,∅) to their interpretations
is in O(|t|), cf. [7, 17]. Note that the interpretations in Ex. 22 were CPIs.

Thm. 24 shows how such interpretations can be used14 for the processor of
Thm. 23. Here, as an upper bound c for ι(irc�), one can simply take Polm, where
m is the maximal degree of the polynomials in the interpretation.

Theorem 24 (Reduction Pair Processor with Polynomial Interpreta-
tions). Let P = 〈D,S,R〉 be a DT problem and let % and � be induced by a
CPI [·]. Let m ∈ N be the maximal degree of all polynomials [f]], for all f] with
f ∈ Σd. Let D ⊆ % ∪ � and R ⊆ %. Then the following processor is sound:
Proc(〈D,S,R〉) = (Polm, 〈D, S \ D�, R〉).

Example 25. This TRS [1] illustrates Thm. 24, where q(x, y, y) computes bxy c.

q(0, s(y), s(z))→0 q(s(x), s(y), z)→q(x, y, z) q(x, 0, s(z))→ s(q(x, s(z), s(z)))

The dependency tuples D of this TRS are

q](0, s(y), s(z))→ Com0 (9) q](s(x), s(y), z)→ Com1(q](x, y, z)) (10)

q](x, 0, s(z))→ Com1(q](x, s(z), s(z))) (11)

As the usable rules are empty, Thm. 20 transforms the canonical DT problem to
〈D,D,∅〉. Consider the CPI [0] = 0, [s](x) = x+1, [q]](x, y, z) = x+1, [Com0] =
0, [Com1](x) = x. With the corresponding reduction pair, the DTs (9) and
(10) are strictly decreasing and (11) is weakly decreasing. Moreover, the degree
of [q]] is 1. Hence, the reduction pair processor returns (Pol1, 〈D, {(11)},∅〉).
Unfortunately, no reduction pair based on CPIs orients (11) strictly and both
(9) and (10) weakly. So for the moment we cannot simplify this problem further.

5.3 Dependency Graph Processors

As in the DP framework for termination, it is useful to have a finite representa-
tion of (a superset of) all possible chain trees.

14 Alternatively, our reduction pair processor can also use matrix interpretations [8,19,
21,23,27], polynomial path orders (POP∗ [3]), etc. For POP∗, we would extend C by
a complexity Pol∗ for polytime computability, where Poln < Pol∗ < ? for all n ∈ N.

Definition 26 (Dependency Graph). Let D be a set of DTs and R a TRS.
The (D,R)-dependency graph is the directed graph whose nodes are the DTs in
D and there is an edge from s→ t to u→ v in the dependency graph iff there is
a chain tree with an edge from a node (s→ t | σ1) to a node (u→ v | σ2).

Every (D,R)-chain corresponds to a path in the (D,R)-dependency graph.
While dependency graphs are not computable in general, there are several tech-
niques to compute over-approximations of dependency graphs for termination,
cf. e.g. [1]. These techniques can also be applied for (D,R)-dependency graphs.

Example 27. For the TRS R from Ex. 3, we obtain the following (D,R1)-
dependency graph, where D = DT (R) and R1 are the gt- and p-rules.

m](x, y)→ Com2(if](gt(x, y), x, y), gt](x, y)) (1)

if](false, x, y)→ Com0 (3)if](true, x, y)→ Com2(m](p(x), y), p](x)) (2)

p](0)→ Com0 (4) p](s(n))→ Com0 (5)

gt](0, k)→ Com0 (6)

gt](s(n), 0)→ Com0 (7)

gt](s(n), s(k))→ Com1(gt](n, k)) (8)

For termination analysis, one can regard strongly connected components of
the graph separately and ignore nodes that are not on cycles. This is not possible
for complexity analysis: If one regards the DTs D′ = {(1), (2)} and D′′ = {(8)}
on the two cycles of the graph separately, then both resulting DT problems
〈D′,D′,R1〉 and 〈D′′,D′′,R1〉 have linear complexity. However, this allows no
conclusions on the complexity of 〈D,D,R1〉 (which is quadratic). Nevertheless,
it is possible to remove DTs s→ t that are leaves (i.e., s→ t has no successors
in the dependency graph). This yields 〈D1,D1,R1〉, where D1 = {(1), (2), (8)}.
Theorem 28 (Leaf Removal Processor). Let 〈D,S,R〉 be a DT problem
and let s→ t ∈ D be a leaf in the (D,R)-dependency graph. Then the following
processor is sound: Proc(〈D,S,R〉) = (Pol0, 〈D \ {s→ t},S \ {s→ t},R〉).

5.4 Knowledge Propagation

In the DP framework for termination, the reduction pair processor removes
“strictly decreasing” DPs. While this is unsound for complexity analysis (cf.
Ex. 22), we now show that by an appropriate extension of DT problems, one
can obtain a similar processor also for complexity analysis.

Lemma 29 shows that we can estimate the complexity of a DT if we know
the complexity of all its predecessors in the dependency graph.

Lemma 29 (Complexity Bounded by Predecessors). Let 〈D,S,R〉 be a
DT problem and s → t ∈ D. Let Pre(s → t) ⊆ D be the predecessors of s → t,
i.e., Pre(s → t) contains all DTs u → v where there is an edge from u → v to
s→ t in the (D,R)-dependency graph. Then ι〈D,{s→t},R〉 v ι〈D,Pre(s→t),R〉.

q](s(x), s(y), z)→ Com1(q](x, y, z)) (10)

q](x, 0, s(z))→ Com1(q](x, s(z), s(z))) (11)

Example 30. Consider the TRS
from Ex. 25. By usable rules
and reduction pairs, we ob-
tained 〈D, {(11)}, ∅〉 for D =
{(9), (10), (11)}. The leaf re-
moval processor yields 〈D′, {(11)}, ∅〉 with D′ = {(10), (11)}. Consider the
the (D′,∅)-dependency graph above. We have ι〈D′, {(11)},∅〉 v ι〈D′, {(10)},∅〉 by
Lemma 29, since (10) is the only predecessor of (11). Thus, the complexity of
〈D′, {(11)},∅〉 does not matter for the overall complexity, if we can guarantee
that we have already taken the complexity of 〈D′, {(10)},∅〉 into account.

Therefore, we now extend the definition of DT problems by a set K of DTs
with “known” complexity, i.e., the complexity of the DTs in K has already been
taken into account. So a processor only needs to estimate the complexity of a
set of DTs correctly if their complexity is higher than the complexity of the DTs
in K. Otherwise, the processor may return an arbitrary result. To this end, we
introduce a “subtraction” operation � on complexities from C.

Definition 31 (Extended DT Problems, �). For c, d,∈ C, let c � d = c if
d < c and c�d = Pol0 if c v d. Let R be a TRS, D a set of DTs, and S,K ⊆ D.
Then 〈D,S,K,R〉 is an extended DT problem and 〈DT (R), DT (R),∅,R〉 is the
canonical extended DT problem for R. We define the complexity of an extended
DT problem to be γ〈D,S,K,R〉 = ι〈D,S,R〉 � ι〈D,K,R〉 and also use γ instead of
ι in the soundness condition for processors. So on extended DT problems, a
processor with Proc(P) = (c, P ′) is sound if γP v c ⊕ γP ′ . An extended DT
problem 〈D,S,K,R〉 is solved if S = ∅.

So for K = ∅, the definition of “complexity” for extended DT problems is
equivalent to complexity for ordinary DT problems, i.e., γ〈D,S,∅,R〉 = ι〈D,S,R〉.
Cor. 32 shows that our approach is still correct for extended DT problems.

Corollary 32 (Correctness). If P0 is the canonical extended DT problem for

a TRS R and P0
c1
; . . .

ck
; Pk is a proof chain, then ιR = γP0

v c1 ⊕ . . .⊕ ck.

Now we introduce a processor which makes use of K. It moves a DT s→ t
from S to K whenever the complexity of all predecessors of s→ t in the depen-
dency graph has already been taken into account.15

Theorem 33 (Knowledge Propagation Processor). Let 〈D,S,K,R〉 be an
extended DT problem, s→ t ∈ S, and Pre(s→ t) ⊆ K. Then the following pro-
cessor is sound: Proc(〈D,S,K,R〉) = (Pol0, 〈D, S\{s→ t}, K∪{s→ t}, R〉).

Before we can illustrate this processor, we need to adapt the previous proces-
sors to extended DT problems. The adaption of the usable rules and leaf removal
processors is straightforward. But now the reduction pair processor does not only
delete DTs from S, but moves them to K. The reason is that the complexity of
these DTs is bounded by the complexity value c ∈ C returned by the proces-
sor. (Of course, the special case of the reduction pair processor with polynomial

15 In particular, this means that nodes without predecessors (i.e., “roots” of the de-
pendency graph that are not in any cycle) can always be moved from S to K.

interpretations of Thm. 24 can be adapted analogously.)

Theorem 34 (Processors for Extended DT Problems). Let P = 〈D,S,
K,R〉 be an extended DT problem. Then the following processors are sound.

• The usable rules processor: Proc(P) = (Pol0, 〈D,S,K,UR(D)〉).
• The leaf removal processor Proc(P) = (Pol0, 〈D \ {s → t},S \ {s → t},
K \ {s→ t},R〉), if s→ t is a leaf in the (D,R)-dependency graph.
• The reduction pair processor: Proc(P) = (c, 〈D, S \ D�, K ∪ D�, R〉),

if (%,�) is a Com-monotonic reduction pair, D ⊆ % ∪ �, R ⊆ %, and
c w ι(irc�) for the function irc�(n) = sup{ dh(t],�) | t ∈ TB , |t| ≤ n}.

Example 35. Reconsider the TRS R for division from Ex. 25. Starting with its
canonical extended DT problem, we now obtain the following proof chain.

〈 {(9), (10), (11)}, {(9), (10), (11)}, ∅, R〉
Pol0
; 〈 {(10), (11)}, {(10), (11)}, ∅, R〉 (leaf removal)
Pol0
; 〈 {(10), (11)}, {(10), (11)}, ∅, ∅〉 (usable rules)
Pol1
; 〈 {(10), (11)}, {(11)}, {(10)}, ∅〉 (reduction pair)
Pol0
; 〈 {(10), (11)}, ∅, {(10), (11)}, ∅〉 (knowledge propag.)

For the last step we use Pre((11)) = {(10)}, cf. Ex. 30. The last DT problem is
solved. Thus, ιR v Pol0⊕Pol0⊕Pol1⊕Pol0 = Pol1, i.e.,R has linear complexity.

5.5 Transformation Processors

To increase power, the DP framework for termination analysis has several pro-
cessors which transform a DP into new ones (by “narrowing”, “rewriting”, “in-
stantiation”, or “forward instantiation”) [11]. We now show how to adapt such
processors for complexity analysis. For reasons of space, we only present the
narrowing processor (the other processors can be adapted in a similar way).

For an extended DT problem 〈D,S,K,R〉, let s→ t ∈ D with t = Comn(t1,
..., ti, ..., tn). If there exists a (variable-renamed) u→ v ∈ D where ti and u have
an mgu µ and both sµ and uµ are in R-normal form, then we call µ a narrowing
substitution of ti and define the corresponding narrowing result to be tiµ.

Moreover, if s → t has a successor u → v in the (D,R)-dependency graph
where ti and u have no such mgu, then we obtain additional narrowing substitu-
tions and narrowing results for ti. The reason is that in any possible reduction
tiσ

i→∗R uτ in a chain, the term tiσ must be rewritten at least one step before it
reaches uτ . The idea of the narrowing processor is to already perform this first
reduction step directly on the DT s → t. Whenever a subterm ti|π /∈ V of ti
unifies with the left-hand side of a (variable-renamed) rule ` → r ∈ R using an
mgu µ where sµ is in R-normal form, then µ is a narrowing substitution of ti
and the corresponding narrowing result is w = ti[r]πµ.

If µ1, . . . , µd are all narrowing substitutions of ti with the corresponding nar-
rowing results w1, . . . , wd, then s→ t can be replaced by sµj → Comn(t1µj , . . . ,
ti−1µj , wj , ti+1µj , . . . , tnµj) for all 1 ≤ j ≤ d.

However, there could be a tk (with k 6= i) which was involved in a chain
(i.e., tkσ

i→∗R uτ for some u→ v ∈ D and some σ, τ), but this chain is no longer
possible when instantiating tk to tkµ1, . . . , tkµd. We say that tk is captured by µ1,
. . . , µd if for each narrowing substitution ρ of tk, there is a µj that is more general
(i.e., ρ = µj ρ

′ for some substitution ρ′). The narrowing processor has to add
another DT s → Comm(tk1 , . . . , tkm) where tk1 , . . . , tkm are all terms from t1,
. . . , tn which are not captured by the narrowing substitutions µ1, . . . , µd of ti.

This leads to the following processor. For any sets D,M of DTs, D[s→ t /M]
denotes the result of replacing s → t by the DTs in M. So if s→ t ∈ D, then
D[s→ t /M] = (DT \ {s→ t}) ∪M and otherwise, D[s→ t /M] = D.

Theorem 36 (Narrowing Processor). Let P = 〈D,S,K,R〉 be an extended
DT problem and let s→ t ∈ D with t = Comn(t1, . . . , ti, . . . , tn). Let µ1, . . . , µd
be the narrowing substitutions of ti with the corresponding narrowing results
w1, . . . , wd, where d ≥ 0. Let tk1 , . . . , tkm be the terms from t1, . . . , tn that are
not captured by µ1, . . . , µd, where k1, . . . , km are pairwise different. We define

M = {sµj → Comn(t1µj , . . . , ti−1µj , wj , ti+1µj , . . . , tnµj) | 1 ≤ j ≤ d}
∪ {s → Comm(tk1 , . . . , tkm)}.

Then the following processor is sound: Proc(P) = (Pol0, 〈D′,S ′,K′,R〉), where
D′ = D[s→ t /M] and S ′ = S[s→ t /M]. K′ results from K by removing s→ t
and all DTs that are reachable from s→ t in the (D,R)-dependency graph.16

Example 37. To illustrate the narrowing processor, consider the following TRS.

f(c(n, x))→ c(f(g(c(n, x))), f(h(c(n, x)))) g(c(0, x))→ x h(c(1, x))→ x

So f operates on “lists” of 0s and 1s, where g removes a leading 0 and h removes a
leading 1. Since g’s and h’s applicability “exclude” each other, the TRS has linear
(and not exponential) complexity. The leaf removal and usable rules processors
yield the problem 〈 {(12)}, {(12)}, ∅, {g(c(0, x))→ x, h(c(1, x))→ x} 〉 with

f](c(n, x))→ Com4(f](g(c(n, x))), g](c(n, x)), f](h(c(n, x))), h](c(n, x))). (12)

The only narrowing substitution of t1 = f](g(c(n, x))) is [n/0] and the correspon-
ding narrowing result is f](x). However, t3 = f](h(c(n, x))) is not captured by
the substitution [n/0], since [n/0] is not more general than t3’s narrowing sub-
stitution [n/1]. Hence, the DT (12) is replaced by the following two new DTs:

f](c(0, x))→ Com4(f](x), g](c(0, x)), f](h(c(0, x))), h](c(0, x))) (13)

f](c(n, x))→ Com1(f](h(c(n, x)))) (14)

Another application of the narrowing processor replaces (14) by f](c(1, x)) →
16 We cannot define K′ = K[s→ t / M], because the narrowing step performed on
s→ t does not necessarily correspond to an innermost reduction. Hence, there can
be (D′,R)-chains that correspond to non-innermost reductions with D∪R. So there
may exist terms whose maximal (D′,R)-chain tree is larger than their maximal
(D,R)-chain tree and thus, ι〈D′,K[s→t/M],R〉 w ι〈D,K,R〉. But we need ι〈D′,K′,R〉 v
ι〈D,K,R〉 in order to guarantee the soundness of the processor, i.e., to ensure that
γ〈D,S,K,R〉 = ι〈D,S,R〉 � ι〈D,K,R〉 v ι〈D′,S′,R〉 � ι〈D′,K′,R〉 = γ〈D′,S′,K′,R〉.

Com1(f](x)).17 Now ιR v Pol1 is easy to show by the reduction pair processor.

Example 38. Reconsider the TRS of Ex. 3. The canonical extended DT problem
is transformed to 〈D1,D1,∅,R1〉, where D1 = {(1), (2), (8)} and R1 are the
gt- and p-rules, cf. Ex. 27. In m](x, y) → Com2(if](gt(x, y), x, y), gt](x, y)) (1),
one can narrow t1 = if](gt(x, y), x, y). Its narrowing substitutions are [x/0, y/k],
[x/s(n), y/0], [x/s(n), y/s(k)]. Note that t2 = gt](x, y) is captured, as its only
narrowing substitution is [x/s(n), y/s(k)]. So (1) can be replaced by

m](0, k)→ Com2(if](false, 0, k), gt](0, k)) (15)

m](s(n), 0)→ Com2(if](true, s(n), 0), gt](s(n), 0)) (16)

m](s(n), s(k))→ Com2(if](gt(n, k), s(n), s(k)), gt](s(n), s(k))) (17)

m](x, y)→ Com0 (18)

The leaf removal processor deletes (15), (18) and yields 〈D2,D2,∅,R1〉 with D2 =
{(16), (17), (2), (8)}. We replace if](true, x, y)→ Com2(m](p(x), y), p](x)) (2) by

if](true, 0, y)→ Com2(m](0, y), p](0)) (19)

if](true, s(n), y)→ Com2(m](n, y), p](s(n))) (20)

by the narrowing processor. The leaf removal processor deletes (19) and the
usable rules processor removes the p-rules from R1. This yields 〈D3,D3,∅,R2〉,
where D3 = {(16), (17), (20), (8)} and R2 are the gt-rules. By the polynomial in-
terpretation [0] = [true] = [false] = [p]](x) = 0, [s](x) = x+2, [gt](x, y) = [gt]](x,
y) = x, [m]](x, y) = (x+ 1)2, [if]](x, y, z) = y2, all DTs in D3 are strictly decrea-
sing and all rules in R2 are weakly decreasing. So the reduction pair processor

yields 〈D3,D3,∅,R2〉
Pol2
; 〈D3,∅,D3,R2〉. As this DT problem is solved, we

obtain ιR v Pol0 ⊕ . . .⊕ Pol0 ⊕ Pol2 = Pol2, i.e., R has quadratic complexity.

6 Evaluation and Conclusion

We presented a new technique for innermost runtime complexity analysis by
adapting the termination techniques of the DP framework. To this end, we in-
troduced several processors to simplify “DT problems”, which gives rise to a
flexible and modular framework for automated complexity proofs. Thus, recent
advances in termination analysis can now also be used for complexity analysis.

To evaluate our contributions, we implemented them in the termination pro-
ver AProVE and compared it with the complexity tools CaT 1.5 [28] and TCT
1.6 [2]. We ran the tools on 1323 TRSs from the Termination Problem Data Base
used in the International Termination Competition 2010.18 As in the competi-
tion, each tool had a timeout of 60 seconds for each example. The left half of the

17 One can also simplify (13) further by narrowing. Its subterm g](c(0, x)) has no
narrowing substitutions. This (empty) set of narrowing substitutions captures
f](h(c(0, x))) and h](c(0, x)) which have no narrowing substitutions either. Since
f](x) is not captured, (13) can be transformed into f](c(0, x))→ Com1(f](x)).

18 See http://www.termination-portal.org/wiki/Termination_Competition.

table compares CaT and AProVE. For instance, the first row means that AProVE
showed constant complexity for 209 examples. On those examples, CaT proved
linear complexity in 182 cases and failed in 27 cases. So in the light gray part of
the table, AProVE gave more precise results than CaT. In the medium gray part,
both tools obtained equal results. In the dark gray part, CaT was more precise
than AProVE. Similarly, the right half of the table compares TCT and AProVE.

CaT TCT
Pol0 Pol1 Pol2 Pol3 no result

∑
Pol0 Pol1 Pol2 Pol3 no result

∑

A
P
ro
V
E

Pol0 - 182 - - 27 209 10 157 - - 42 209
Pol1 - 187 7 - 76 270 - 152 1 - 117 270
Pol2 - 32 2 - 83 117 - 35 - - 82 117
Pol3 - 6 - - 16 22 - 5 - - 17 22

no result - 27 3 1 674 705 - 22 3 - 680 705∑
0 434 12 1 876 1323 10 371 4 0 938 1323

So AProVE showed polynomial innermost runtime for 618 of the 1323 ex-
amples (47 %). (Note that the collection also contains many examples whose
complexity is not polynomial.) In contrast, CaT resp. TCT proved polynomial
innermost runtime for 447 (33 %) resp. 385 (29 %) examples. Even a “combined
tool” of CaT and TCT (which always returns the better result of these two tools)
would only show polynomial runtime for 464 examples (35 %). Hence, our contri-
butions represent a significant advance. This also confirms the results of the Ter-
mination Competition 2010, where AProVE won the category of innermost run-
time complexity analysis.19 AProVE also succeeds on Ex. 3, 25, and 37, whereas
CaT and TCT fail. (Ex. 22 can be analyzed by all three tools.) For details on
our experiments (including information on the exact DT processors used in each
example) and to run our implementation in AProVE via a web interface, we refer
to http://aprove.informatik.rwth-aachen.de/eval/RuntimeComplexity/.

Acknowledgments. We are grateful to the CaT and the TCT team for their support

with the experiments and to G. Moser and H. Zankl for many helpful comments.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. M. Avanzini, G. Moser, and A. Schnabl. Automated implicit computational com-
plexity analysis. In Proc. IJCAR ’08, LNAI 5195, pages 132–138, 2008.

3. M. Avanzini and G. Moser. Dependency pairs and polynomial path orders. In
Proc. RTA ’09, LNCS 5595, pages 48–62, 2009.

4. M. Avanzini and G. Moser. Closing the gap between runtime complexity and
polytime computability. In Proc. RTA ’10, LIPIcs 6, pages 33–48, 2010.

5. M. Avanzini and G. Moser. Complexity analysis by graph rewriting. In Proc.
FLOPS ’10, LNCS 6009, pages 257–271, 2010.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge U. Pr., 1998.
7. G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial

interpretation termination proof. J. Functional Programming, 11(1):33–53, 2001.

19 In contrast to CaT and TCT, AProVE did not participate in any other complexity
categories as it cannot analyze derivational or non-innermost runtime complexity.

8. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. J. Automated Reasoning, 40(2-3):195–220, 2008.

9. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that
certify termination of left-linear term rewriting systems. Information and Compu-
tation, 205(4):512–534, 2007.

10. J. Giesl, R. Thiemann, P. Schneider-Kamp. The DP framework: Combining tech-
niques for automated termination proofs. LPAR ’04, LNAI 3452, p. 301–331, 2005.

11. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

12. J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann.
Automated termination proofs for Haskell by term rewriting. ACM Transactions
on Programming Languages and Systems, 33(2), 2011.

13. R. Givan and D. A. McAllester. Polynomial-time computation via local inference
relations. ACM Transactions on Computational Logic, 3(4):521–541, 2002.

14. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

15. N. Hirokawa and G. Moser. Automated complexity analysis based on the depen-
dency pair method. In Proc. IJCAR ’08, LNAI 5195, pages 364–379, 2008.

16. N. Hirokawa and G. Moser. Complexity, graphs, and the dependency pair method.
In Proc. LPAR ’08, LNAI 5330, pages 652–666, 2008.

17. D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations.
In Proc. RTA ’89, LNCS 355, pages 167–177, 1989.

18. M. Hofmann. Linear types and non-size-increasing polynomial time computation.
In Proc. LICS ’99, pages 464–473. IEEE Press, 1999.

19. A. Koprowski and J. Waldmann. Max/plus tree automata for termination of term
rewriting. Acta Cybernetica, 19(2):357–392, 2009.

20. J.-Y. Marion and R. Péchoux. Characterizations of polynomial complexity classes
with a better intensionality. In Proc. PPDP ’08, pages 79–88. ACM Press, 2008.

21. G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting
based on matrix and context dependent interpretations. In Proc. FSTTCS ’08,
LIPIcs 2, pages 304–315, 2008.

22. G. Moser. Personal communication, 2010.
23. F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations for

polynomial derivational complexity of term rewriting. In Proc. LPAR ’10, LNCS
6397, pages 550–564, 2010.

24. L. Noschinski, F. Emmes, and J. Giesl. A dependency pair framework for inner-
most complexity analysis of term rewrite systems. Technical Report AIB-2011-03,
RWTH Aachen, 2011. Available from http://aib.informatik.rwth-aachen.de.

25. C. Otto, M. Brockschmidt, C. von Essen, J. Giesl. Automated termination analysis
of Java Bytecode by term rewriting. In Proc. RTA ’10, LIPIcs 6, pp. 259–276, 2010.

26. P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, and R. Thiemann. Auto-
mated termination analysis for logic programs with cut. Proc. ICLP ’10, Theory
and Practice of Logic Programming, 10(4-6):365–381, 2010.

27. J. Waldmann. Polynomially bounded matrix interpretations. In Proc. RTA ’10,
LIPIcs 6, pages 357–372, 2010.

28. H. Zankl and M. Korp. Modular complexity analysis via relative complexity. In
Proc. RTA ’10, LIPIcs 6, pages 385–400, 2010.

