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Abstract. We introduce the class of constant probability (CP) programs
and show that classical results from probability theory directly yield a
simple decision procedure for (positive) almost sure termination of pro-
grams in this class. Moreover, asymptotically tight bounds on their ex-
pected runtime can always be computed easily. Based on this, we present
an algorithm to infer the exact expected runtime of any CP program.
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1 Introduction

Probabilistic programs are used to describe randomized algorithms and probability
distributions, with applications in many areas. As an example, consider the well-
known program which models the race between a tortoise and a hare (see, e.g.,
[10,24,30]). As long as the tortoise (variable t) is not behind the hare (variable h),

while (h ≤ t) {
t = t+ 1;
{h = h+ Unif (0, 10)} ⊕ 1

2
{h = h};

}

it does one step in each iteration. With
probability 1

2 , the hare stays at its posi-
tion and with probability 1

2 it does a ran-
dom number of steps uniformly chosen
between 0 and 10. The race ends when the
hare is in front of the tortoise. Here, the hare wins with probability one and the
technique of [30] infers the upper bound 2

3 ·max(t−h+9, 0) on the expected num-
ber of loop iterations. Thus, the program is positively almost surely terminating.

Sect. 2 recapitulates preliminaries on probabilistic programs and on the
connection between their expected runtime and their corresponding recurrence
equation. Then we show in Sect. 3 and 4 that classical results on random walk
theory directly yield a very simple decision procedure for (positive) almost sure
termination of CP programs like the tortoise and hare example. In this way,
we also obtain asymptotically tight bounds on the expected runtime of any CP
program. Based on these bounds, in Sect. 5 we develop the first algorithm to
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compute closed forms for the exact expected runtime of such programs. In Sect. 6,
we present its implementation in our tool KoAT [9] and discuss related and future
work. We refer to [20] for a collection of examples to illustrate the application of
our algorithm and for all proofs.

2 Expected Runtimes of Probabilistic Programs

Example 1 (Tortoise and Hare). The pro- while ((1,−1) • (t, h) > −1) {
(t, h) = (t, h) + (1, 0) [ 6

11 ];

(t, h) = (t, h) + (1, 1) [ 1
22 ];

(t, h) = (t, h) + (1, 2) [ 1
22 ];

(t, h) = (t, h) + (1, 3) [ 1
22 ];

...
(t, h) = (t, h) + (1, 10) [ 1

22 ];
}

gram Prace on the right formulates the race
of the tortoise and the hare as a CP program.
In the loop guard, we use the scalar product
(1,−1) • (t, h) which stands for t− h. Exactly
one of the instructions with numbers in brack-
ets [. . .] is executed in each loop iteration and
the number indicates the probability that the
corresponding instruction is chosen.

We now define the kind of probabilistic programs considered in this paper.

Definition 2 (Probabilistic Program). A pro-
while (a • x > b) {
x = x + c1 [pc1(x)];...
x = x + cn [pcn(x)];

x = d [p′(x)];
}

gram has the form on the right, where x = (x1, . . . , xr)
for some r ≥ 1 is a tuple of pairwise different pro-
gram variables, a, c1, . . . , cn ∈ Zr are tuples of inte-
gers, the cj are pairwise distinct, b∈Z, • is the scalar
product (i.e., (a1, . . . , ar) • (x1, . . . , xr) = a1 · x1 +
. . .+ ar · xr), and d ∈ Zr with a • d ≤ b. We require

pc1
(x), . . . , pcn

(x), p′(x) ∈ R≥0 = {r ∈ R | r ≥ 0} and
∑

1≤j≤n
pcj

(x)+p′(x) =

1 for all x ∈ Zr. It is a program with direct termination if there is an x ∈ Zr
with a • x > b and p′(x) > 0. If all probabilities are constant, i.e., if there are
pc1 , . . . , pcn , p

′ ∈ R≥0 such that pcj (x) = pcj and p′(x) = p′ for all 1 ≤ j ≤ n
and all x ∈ Zr, we call it a constant probability (CP) program.

Such a program means that the integer variables x are changed to x + cj with
probability pcj

(x). For inputs x with a • x ≤ b the program terminates immedi-
ately. Note that the program in Ex. 1 has no direct termination (i.e., p′(x) = 0 for
all x ∈ Zr). Since the values of the program variables only depend on their values
in the previous loop iteration, our programs correspond to Markov Chains [32]
and they are related to random walks [16, 21,33], cf. [20] for details.

Clearly, in general termination is undecidable and closed forms for the runtimes
of programs are not computable. Thus, decidability results can only be obtained
for suitably restricted forms of programs. Our class nevertheless includes many
examples that are often regarded in the literature on probabilistic programs.
So while other approaches are concerned with incomplete techniques to analyze
termination and complexity, we investigate classes of probabilistic programs
where one can decide the termination behavior, always find complexity bounds,
and even compute the expected runtime exactly. Our decision procedure could
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be integrated into general tools for termination and complexity analysis of
probabilistic programs: As soon as one has to investigate a sub-program that falls
into our class, one can use the decision procedure to compute its exact runtime.
Our contributions provide a starting point for such results and the considered
class of programs can be extended further in future work.

In probability theory (see, e.g., [2]), given a set Ω of possible events, the goal
is to measure the probability that events are in certain subsets of Ω. To this end,
one regards a set F of subsets of Ω, such that F contains the full set Ω and is
closed under complement and countable unions. Such a set F is called a σ-field,
and a pair of Ω and a corresponding σ-field F is called a measurable space.

A probability space (Ω,F,P) extends a measurable space (Ω,F) by a probability
measure P which maps every set from F to a number between 0 and 1, where

P(Ω) = 1, P(∅) = 0, and P(
⊎

j≥0
Aj) =

∑
j≥0

P(Aj) for any pairwise disjoint

sets A0, A1, . . . ∈ F. So P(A) is the probability that an event from Ω is in the
subset A. In our setting, we use the probability space ((Zr)ω,FZr

,PPx0
) arising

from the standard cylinder-set construction of MDP theory, cf. [20]. Here, (Zr)ω
corresponds to all infinite sequences of program states and PPx0

is the probability
measure induced by the program P when starting in the state x0 ∈ Zr. For
example, if A ⊆ (Z2)ω consists of all infinite sequences starting with (5, 1), (6, 1),
(7, 6), then PPrace

(5,1) (A) = 6
11 ·

1
22 = 3

121 . So, if one starts with (5, 1), then 3
121 is

the probability that the next two states are (6, 1) and (7, 6). Once a state is
reached that violates the loop guard, then the probability to remain in this state
is 1. Hence, if B contains all infinite sequences starting with (7, 8), (7, 8), then
PPrace

(7,8) (B) = 1. In the following, for any set of numbers M let M = M ∪ {∞}.

Definition 3 (Termination Time). For a program P as in Def. 2, its ter-
mination time is the random variable TP : (Zr)ω → N that maps every infinite
sequence 〈z0, z1, . . .〉 to the first index j where zj violates P’s loop guard.

Thus, TPrace(〈(5, 1), (6, 1), (7, 8), (7, 8), . . .〉) = 2 and TPrace(〈(5, 1), (6, 1), (5, 6),
(8, 6), (9, 6), . . .〉) =∞ (i.e., this sequence always satisfies Prace’s loop guard as
the jth entry is (5 + j, 6) for j ≥ 3). Now we can define the different notions of
termination and the expected runtime of a probabilistic program. As usual, for
any random variable X on a probability space (Ω,F,P), P(X = j) stands for
P(X−1({j})). So PPx0

(TP = j) is the probability that a sequence has termination

time j. Similarly, PPx0
(TP <∞) =

∑
j∈N

PPx0
(TP = j). The expected value E(X)

of a random variable X : Ω → N for a probability space (Ω,F,P) is the weighted

average under the probability measure P, i.e., E(X) =
∑

j∈N
j ·P(X = j), where

∞ · 0 = 0 and ∞ · u =∞ for all u ∈ N>0.

Definition 4 (Termination and Expected Runtime). A program P as
in Def. 2 is almost surely terminating (AST) if PPx0

(TP < ∞) = 1 for any

initial value x0 ∈ Zr. For any x0 ∈ Zr, its expected runtime rtPx0
(i.e., the

expected number of loop iterations) is defined as the expected value of the ran-
dom variable TP under the probability measure PPx0

, i.e., rtPx0
= EPx0

(
TP
)

=
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j∈N

j · PPx0
(TP=j) if PPx0

(TP<∞) = 1, and rtPx0
= EPx0

(
TP
)

=∞ otherwise.

The program P is positively almost surely terminating (PAST) if for any initial
value x0 ∈ Zr, the expected runtime of P is finite, i.e., if rtPx0

= EPx0

(
TP
)
<∞.

Example 5 (Expected Runtime for Prace). By the observations in Sect. 4 we will
infer that 2

3 · (t−h+ 1) ≤ rtPrace

(t,h) ≤
2
3 · (t−h+ 1) + 16

3 holds whenever t−h > −1,

cf. Ex. 22. So the expected number of steps until termination is finite (and linear
in the input variables) and thus, Prace is PAST. The algorithm in Sect. 5 will
even be able to compute rtPrace

(t,h) exactly, cf. Ex. 34.

If the initial values x0 violate the loop guard, then the runtime is trivially 0.

Corollary 6 (Expected Runtime for Violating Initial Values). For any
program P as in Def. 2 and any x0 ∈ Zr with a • x0 ≤ b, we have rtPx0

= 0.

To obtain our results, we use an alternative, well-known characterization of
the expected runtime, cf. e.g., [3, 8, 15, 24–27, 32, 34]. To this end, we search
for the smallest (or “least”) solution of the recurrence equation that describes
the runtime of the program as 1 plus the sum of the runtimes in the next loop
iteration, multiplied with the corresponding probabilities. Here, functions are
compared pointwise, i.e., for f, g : Zr → R≥0 we have f ≤ g if f(x) ≤ g(x) holds
for all x ∈ Zr. So we search for the smallest function f : Zr → R≥0 that satisfies

f(x) =
∑

1≤j≤n
pcj

(x)·f(x+cj)+p′(x)·f(d)+1 for all x with a • x > b. (1)

Equivalently, we can search for the least fixpoint of the “expected runtime trans-
former” LP which transforms the left-hand side of (1) into its right-hand side.

Definition 7 (LP , cf. [32]). For P as in Def. 2, we define the expected runtime
transformer LP : (Zr→ R≥0)→ (Zr→ R≥0), where for any f : Zr→ R≥0:

LP(f)(x) =

{∑
1≤j≤n

pcj (x) · f(x + cj) + p′(x) · f(d) + 1, if a • x > b

f(x), if a • x ≤ b

Example 8 (Expected Runtime Transformer for Prace). For Prace from Ex. 1,
LPrace maps any function f : Z2 → R≥0 to LPrace(f), where LPrace(f)(t, h) ={

6
11 · f(t+ 1, h) + 1

22 ·
∑

1≤j≤10
f(t+ 1, h+ j) + 1, if t− h > −1

f(t, h), if t− h ≤ −1
(2)

Thm. 9 recapitulates that the least fixpoint of LP indeed yields an equivalent
characterization of the expected runtime. In the following, let 0 : Zr → R≥0 be
the function with 0(x) = 0 for all x ∈ Zr.

Theorem 9 (Connection Between Expected Runtime and Least Fix-
point of LP , cf. [32]). For any P as in Def. 2, the expected runtime trans-
former LP is continuous. Thus, it has a least fixpoint lfp(LP ) : Zr → R≥0

with
lfp(LP) = sup{0,LP(0), (LP)2(0), . . .}. Moreover, the least fixpoint of LP is the
expected runtime of P, i.e., for any x0 ∈ Zr, we have lfp(LP)(x0) = rtPx0

.
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So the expected runtime rtPrace

(t,h) can also be characterized as the smallest

function f : Z2→ R≥0 satisfying f(t, h)=(2), i.e., as the least fixpoint of LPrace .

3 Expected Runtime of Programs with Direct Termination

We start with stating a decidability result for the case where for all x with
a • x > b, the probability p′(x) for direct termination is at least p′ for some
p′ > 0. Intuitively, these programs have a termination time whose distribution
is closely related to the geometric distribution with parameter p′ (which has
expected value 1

p′ ). By using the alternative characterization of rtPx0
from Thm. 9,

one obtains that such programs are always PAST and their expected runtime
is indeed bounded by the constant 1

p′ . This result will be used in Sect. 5 when
computing the exact expected runtime of such programs. The more involved case
where p′(x) = 0 is considered in Sect. 4.

Theorem 10 (PAST and Expected Runtime for Programs With Direct
Termination). Let P be a program as in Def. 2 where there is a p′ > 0 such
that p′(x) ≥ p′ for all x ∈ Zr with a • x > b. Then P is PAST and its expected
runtime is at most 1

p′ , i.e., rtPx0
≤ 1

p′ if a • x0 > b, and rtPx0
= 0 if a • x0 ≤ b.

Example 11 (Ex. 1 with Direct Termination). while ((1,−1) • (t, h) > −1) {
(t, h) = (t, h) + (1, 0) [ 9

10 ];

(t, h) = (7, 8) [ 1
10 ];

}

Consider the variant Pdirect of Prace on the
right, where in each iteration, the hare either
does nothing with probability 9

10 or one di-
rectly reaches a configuration where the hare
is ahead of the tortoise. By Thm. 10 the program is PAST and its expected
runtime is at most 1

1
10

= 10, i.e., independent of the initial state it takes at most

10 loop iterations on average. In Sect. 5 it will turn out that 10 is indeed the
exact expected runtime, cf. Ex. 32.

4 Expected Runtimes of Constant Probability Programs

Now we present a very simple decision procedure for termination of CP programs
(Sect. 4.2) and show how to infer their asymptotic expected runtimes (Sect. 4.3).
This will be needed for the computation of exact expected runtimes in Sect. 5.

4.1 Reduction to Random Walk Programs
while (x > 0) {
x = x+m [pm];...
x = x+ 1 [p1];

x = x [p0];

x = x− 1 [p−1];...
x = x− k [p−k];

x = d [p′];
}

As a first step, we show that we can restrict ourselves
to random walk programs, i.e., programs with a single
program variable x and the loop condition x > 0.

Definition 12 (Random Walk Program). A CP pro-
gram P is called a random walk program if there exist
m, k ∈ N and d ∈ Z with d ≤ 0 such that P has the form
on the right. Here, we require that m > 0 implies pm > 0
and that k > 0 implies p−k > 0.
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Def. 13 shows how to transform any CP program as in Def. 2 into a random walk
program. The idea is to replace the tuple x by a single variable x that stands for
a • x− b. Thus, the loop condition a • x > b now becomes x > 0. Moreover, a
change from x to x + cj now becomes a change from x to x+ a • cj .

while (a • x > b) {
x = x + c1 [pc1

];...
x = x + cn [pcn

];

x = d [p′];
}

Definition 13 (Transforming CP Programs to Ran-
dom Walk Programs). Let P be the CP program on the
left with x = (x1, . . . , xr) and a • d ≤ b. Let rdwP denote
the affine map rdwP : Zr→ Z with rdwP(z) = a • z− b for

while (x > 0) {
x = x+mP [prdwmP ];...
x = x− kP [prdw−kP ];

x = rdwP(d) [p′];
}

all z ∈ Zr. Thus, rdwP(d) ≤ 0.
Let kP ,mP ∈ N be minimal such
that −kP ≤ a • cj ≤ mP holds

for all 1 ≤ j ≤ n. For all −kP ≤ j ≤ mP , we define

prdwj =
∑

1≤u≤n, a•cu=j
pcu . This results in the random

walk program Prdw on the right.

Example 14 (Transforming Prace). For the program Prace
while (x > 0) {
x = x+ 1 [ 6

11 ];

x = x [ 1
22 ];

x = x− 1 [ 1
22 ];

x = x− 2 [ 1
22 ];...

x = x− 9 [ 1
22 ];

}

of Ex. 1, the mapping rdwPrace
: Z2 → Z is rdwPrace

(t, h) =
(1,−1) • (t, h) + 1 = t− h+ 1. Hence we obtain the random
walk program Prdw

race on the right, where x = rdwPrace(t, h)
represents the distance between the tortoise and the hare.

Approaches based on supermartingales (e.g., [1, 4, 10,12,13,
17]) use mappings similar to rdwP in order to infer a real-
valued term which over-approximates the expected runtime.
However, in the following (non-trivial) theorem we show
that our transformation is not only an over- or under-approximation, but the
termination behavior and the expected runtime of P and Prdw are identical.

Theorem 15 (Transformation Preserves Termination & Expected Run-
time). Let P be a CP program as in Def. 2. Then the termination times

TP and TP
rdw

are identically distributed w.r.t. rdwP , i.e., for all x0 ∈ Zr with

x0 = rdwP(x0) and all j∈N we have PPx0
(TP=j) = PP

rdw

x0
(TP

rdw

=j). So in partic-

ular, PPx0
(TP<∞)= PP

rdw

x0
(TP

rdw

<∞) and rtPx0
=EPx0

(TP)=EP
rdw

x0
(TP

rdw

)=rtP
rdw

x0
.

Thus, the expected runtimes of P on the input x0 and of Prdw on x0 coincide.

The following definition identifies pathological programs that can be disregarded.

Definition 16 (Trivial Program). Let P be a CP pro- while (x > 0) {
x = x [1];

}
gram as in Def. 2. We call P trivial if a = 0 = (0, 0, . . . , 0)
or if Prdw is the program on the right.

Note that a random walk program P is trivial iff it has the form while(x >
0){x = x [1]; }, since P=Prdw holds for random walk programs P . From now on,
we will exclude trivial programs P as their termination behavior is obvious: for
inputs x0 that satisfy the loop condition a•x0 > b, the program never terminates
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(i.e., rtPx0
=∞) and for inputs x0 with a • x0 ≤ b we have rtPx0

= 0. Note that if

a = 0, then the termination behavior just depends on b: if b < 0, then rtPx0
=∞

for all x0 and if b ≥ 0, then rtPx0
= 0 for all x0.

4.2 Deciding Termination

We now present a simple decision procedure for (P)AST of random walk programs
P. By the results of Sect. 4.1, this also yields a decision procedure for arbitrary
CP programs. If p′ > 0, then Thm. 10 already shows that P is PAST and its
expected runtime is bounded by the constant 1

p′ . Thus, in the rest of Sect. 4 we

regard random walk programs without direct termination, i.e., p′ = 0.
Def. 17 introduces the drift of a random walk program, i.e., the expected

value of the change of the program variable in one loop iteration, cf. [4].

Definition 17 (Drift). Let P be a random walk program P as in Def. 12. Then

its drift is µP =
∑
−k≤j≤m

j · pj.

Thm. 18 shows that to decide (P)AST, one just has to compute the drift.

Theorem 18 (Decision Procedure for (P)AST of Random Walk Pro-
grams). Let P be a non-trivial random walk program without direct termination.

• If µP > 0, then the program is not AST.
• If µP = 0, then the program is AST but not PAST.
• If µP < 0, then the program is PAST.

Example 19 (Prace is PAST). The drift of Prdw
race in Ex. 14 is µPrdw

race
= 1 · 6

11 +
1
22 ·

∑
−9≤j≤0

j = − 3
2 < 0. So on average the distance x between the tortoise

and the hare decreases in each loop iteration. Hence by Thm. 18, Prdw
race is PAST

and the following Cor. 20 implies that Prace is PAST as well.

Corollary 20 (Decision Procedure for (P)AST of CP programs). For
a non-trivial CP program P, P is (P)AST iff Prdw is (P)AST. Hence, Thm. 15
and 18 yield a decision procedure for AST and PAST of CP programs.

In [20], we show that Thm. 18 follows from classical results on random walks [33].
Alternatively, Thm. 18 could also be proved by combining several recent results
on probabilistic programs: The approach of [28] could be used to show that
µP = 0 implies AST. Moreover, one could prove that µP < 0 implies PAST by
showing that x is a ranking supermartingale of the program [4,10,13,17]. That
the program is not PAST if µP ≥ 0 and not AST if µP > 0 could be proved by
showing that −x is a µP -repulsing supermartingale [12].

While the proof of Thm. 18 is based on known results, the formulation of
Thm. 18 shows that there is an extremely simple decision procedure for (P)AST
of CP programs, i.e., checking the sign of the drift is much simpler than applying
existing (general) techniques for termination analysis of probabilistic programs.



8 J. Giesl, P. Giesl, and M. Hark

4.3 Computing Asymptotic Expected Runtimes

It turns out that for random walk programs (and thus by Thm. 15, also for CP
programs), one can not only decide termination, but one can also infer tight
bounds on the expected runtime. Thm. 21 shows that the computation of the
bounds is again very simple.

Theorem 21 (Bounds on the Expected Runtime of CP Programs).
Let P be a non-trivial CP program as in Def. 2 without direct termination
which is PAST (i.e., µPrdw < 0). Moreover, let kP be obtained according to the
transformation from Def. 13. If rdwP(x0) ≤ 0, then rtPx0

= 0. If rdwP(x0) > 0,
then P’s expected runtime is asymptotically linear and we have

− 1
µPrdw

· rdwP(x0) ≤ rtPx0
≤ − 1

µPrdw
· rdwP(x0) + 1−kP

µPrdw
.

Example 22 (Bounds on the Runtime of Prace). In Ex. 19 we saw that the
program Prdw

race from Ex. 14 is PAST as it has the drift µPrdw
race

= − 3
2 < 0. Note

that here k = 9. Hence by Thm. 21 we get that whenever rdwPrace
(t, h) = t−h+1

is positive, the expected runtime rtPrace

(t,h) is between − 1
µPrdw

race

· rdwPrace(t, h) =

2
3 · (t − h + 1) and − 1

µPrdw
race

· rdwPrace
(t, h) + 1−k

µPrdw
race

= 2
3 · (t − h + 1) + 16

3 .

The same upper bound 2
3 · (t− h+ 1) + 16

3 was inferred in [30] by an incomplete
technique based on several inference rules and linear programming solvers. In
contrast, Thm. 21 allows us to read off such bounds directly from the program.

Our proof of Thm. 21 in [20] again uses the connection to random walks and
shows that the classical Lemma of Wald [21, Lemma 10.2(9)] directly yields both
the upper and the lower bound for the expected runtime. Alternatively, the upper
bound in Thm. 21 could also be proved by considering that rdwP(x0) + (1− kP)
is a ranking supermartingale [1, 4, 10, 13, 17] whose expected decrease in each
loop iteration is µP . The lower bound could also be inferred by considering the
difference-bounded submartingale −rdwP(x0) [7, 19].

5 Computing Exact Expected Runtimes

While Thm. 10 and 21 state how to deduce the asymptotic expected runtime,
we now show that based on these results one can compute the runtime of CP
programs exactly. In general, whenever it is possible, then inferring the exact
runtimes of programs is preferable to asymptotic runtimes which ignore the
“coefficients” of the runtime.

Again, we first consider random walk programs and generalize our technique
to CP programs using Thm. 15 afterwards. Throughout Sect. 5, for any random
walk program P as in Def. 12, we require that P is PAST, i.e., that p′ > 0 (cf.
Thm. 10) or that the drift µP is negative if p′ = 0 (cf. Thm. 18). Note that
whenever k = 0 and P is PAST, then p′ > 0.3

To compute P’s expected runtime exactly, we use its characterization as the
least fixpoint of the expected runtime transformer LP (cf. Thm. 9), i.e., rtPx is

3 If p′ = 0 and k = 0 then µP ≥ 0.
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the smallest function f : Z→ R≥0 satisfying the constraint

f(x) =
∑
−k≤j≤m

pj · f(x+ j) + p′ · f(d) + 1 for all x > 0, (3)

cf. (1). Since P is PAST, f never returns ∞, i.e., f : Z → R≥0. Note that the
smallest function f : Z→ R≥0 that satisfies (3) also satisfies

f(x) = 0 for all x ≤ 0. (4)

Therefore, as d ≤ 0, the constraint (3) can be simplified to

f(x) =
∑
−k≤j≤m

pj · f(x+ j) + 1 for all x > 0. (5)

In Sect. 5.1 we recapitulate how to compute all solutions of such inhomogeneous
recurrence equations (cf., e.g., [14, Ch. 2]). However, to compute rtPx , the challenge
is to find the smallest solution f : Z → R≥0 of the recurrence equation (5).
Therefore, in Sect. 5.2 we will exploit the knowledge gained in Thm. 10 and 21 to
show that there is only a single function f that satisfies both (4) and (5) and is
bounded by a constant (if p′ > 0, cf. Thm. 10) resp. by a linear function (if p′ = 0,
cf. Thm. 21). This observation then allows us to compute rtPx exactly. So the
crucial prerequisites for this result are Thm. 9 (which characterizes the expected
runtime as the smallest solution of the recurrence equation (5)), Thm. 18 (which
allows the restriction to negative drift if p′ = 0), and in particular Thm. 10 and 21
(since Sect. 5.2 will show that the results of Thm. 10 and 21 on the asymptotic
runtime can be translated into suitable conditions on the solutions of (5)).

5.1 Finding All Solutions of the Recurrence Equation

Example 23 (Modification of Prdw
race). To illustrate our ap-

while (x > 0) {
x = x+ 1 [ 6

11 ];

x = x [ 1
11 ];

x = x− 1 [ 1
22 ];

x = x− 2 [ 7
22 ];

}

proach, we use a modified version of Prdw
race from Ex. 14 to ease

readability. In Sect. 6, we will consider the original program
Prdw
race resp. Prace from Ex. 14 resp. Ex. 1 again and show its

exact expected runtime inferred by the implementation of our
approach. In the modified program Pmodrace on the right, the
distance between the tortoise and the hare still increases with
probability 6

11 , but the probability of decreasing by more
than two is distributed to the cases where it stays the same and where it decreases
by two. We have p′ = 0 and the drift is µPmod

race
= 1 · 6

11 + 0 · 1
11 − 1 · 1

22 − 2 · 7
22 =

− 3
22 < 0. So by Thm. 18, Pmodrace is PAST. By Thm. 9, rt

Pmod
race

x is the smallest
function f : Z→ R≥0 satisfying

f(x) = 6
11 ·f(x+1)+ 1

11 ·f(x)+ 1
22 ·f(x−1)+ 7

22 ·f(x−2)+1 for all x > 0. (6)

Instead of searching for the smallest f : Z→ R≥0 satisfying (5), we first calculate
the set of all functions f : Z→ C that satisfy (5), i.e., we also consider functions
returning negative or complex numbers. Clearly, (5) is equivalent to

0 = pm · f(x+m) + . . .+ p1 · f(x+ 1) + (p0 − 1) · f(x) +
p−1 · f(x− 1) + . . .+ p−k · f(x− k) + 1 for all x > 0.

(7)
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The set of solutions on Z→ C of this linear, inhomogeneous recurrence equation
is an affine space which can be written as an arbitrary particular solution of the
inhomogeneous equation plus any linear combination of k+m linearly independent
solutions of the corresponding homogeneous recurrence equation.

We start with computing a solution to the inhomogeneous equation (7). To
this end, we use the bounds for rtPx from Thm. 10 and 21 (where we take the
upper bound 1

p′ if p′ > 0 and the lower bound − 1
µP
· x if p′ = 0). So we define

Cconst = 1
p′ , if p′ > 0 and Clin = − 1

µP
, if p′ = 0.

One easily shows that if p′ > 0, then f(x) = Cconst is a solution of the inhomo-
geneous recurrence equation (7) and if p′ = 0, then f(x) = Clin · x solves (7).

Example 24 (Ex. 23 cont.). In the program Pmodrace of Ex. 23, we have p′ = 0 and
µPmod

race
= − 3

22 . Hence Clin = 22
3 and Clin · x is a solution of (6).

After having determined one particular solution of the inhomogeneous recurrence
equation (7), now we compute the solutions of the homogeneous recurrence
equation which results from (7) by replacing the add-on “+ 1” with 0. To this
end, we consider the corresponding characteristic polynomial χP :4

χP(λ) = pm · λk+m + . . .+ p1 · λk+1 + (p0 − 1) · λk + p−1 · λk−1 + . . .+ p−k (8)

Let λ1, . . . , λc denote the pairwise different (possibly complex) roots of the cha-
racteristic polynomial χP . For all 1 ≤ j ≤ c, let vj ∈ N \ {0} be the multiplicity
of the root λj . Thus, we have v1 + . . .+ vc = k +m.

Then we obtain the following k + m linearly independent solutions of the
homogeneous recurrence equation resulting from (7):

λxj · xu for all 1 ≤ j ≤ c and all 0 ≤ u ≤ vj − 1

So f :Z→C is a solution of (5) (resp. (7)) iff there exist coefficients aj,u∈C with

f(x) = C(x) +
∑

1≤j≤c

∑
0≤u≤vj−1

aj,u · λxj · xu for all x > −k, (9)

where C(x) = Cconst = 1
p′ if p′ > 0 and C(x) = Clin · x = − 1

µP
· x if p′ = 0. The

reason for requiring (9) for all x > −k is that −k + 1 is the smallest argument
where f ’s value is taken into account in (5).

Example 25 (Ex. 24 cont.). The characteristic polynomial for the program Pmodrace

of Ex. 23 has the degree k +m = 2 + 1 = 3 and is given by

χPmod
race

(λ) = 6
11 · λ

3 − 10
11 · λ

2 + 1
22 · λ+ 7

22 .

4 If m = 0 then χP(λ) = (p0 − 1) · λk + p−1 · λk−1 + . . . + p−k, and if k = 0 then
χP(λ) = pm · λm + . . .+ p1 · λ+ (p0 − 1). Note that p0 6= 1 since P is PAST and in
Def. 12 we required that m > 0 implies pm > 0 and k > 0 implies p−k > 0. Hence,
the characteristic polynomial has exactly the degree k +m, even if m = 0 or k = 0.
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Its roots are λ1 = 1, λ2 = − 1
2 , and λ3 = 7

6 . So here, all roots are real numbers and
they all have the multiplicity 1. Hence, three linearly independent solutions of the
homogeneous part of (6) are the functions 1x = 1, (− 1

2 )x, and ( 76 )x. Therefore, a
function f : Z→ C satisfies (6) iff there are a1, a2, a3 ∈ C such that

f(x) = Clin · x+ a1 · 1x + a2 · (− 1
2 )x+ a3 · ( 7

6 )x

= 22
3 · x+ a1 + a2 · (− 1

2 )x+ a3 · ( 7
6 )x for x > −2.

(10)

5.2 Finding the Smallest Solution of the Recurrence Equation

In Sect. 5.1, we recapitulated the standard approach for solving inhomogeneous
recurrence equations which shows that any function f : Z → C that satisfies
the constraint (5) is of the form (9). Now we will present a novel technique to
compute rtPx , i.e., the smallest non-negative solution f : Z → R≥0 of (5). By
Thm. 10 and 21, this function f is bounded by a constant (if p′ > 0) resp. linear
(if p′ = 0). So, when representing f in the form (9), we must have aj,u = 0
whenever |λj | > 1. The following lemma shows how many roots with absolute
value less or equal to 1 there are (i.e., these are the only roots that we have
to consider). It is proved using Rouché’s Theorem which allows us to infer the
number of roots whose absolute value is below a certain bound. Note that 1 is a
root of the characteristic polynomial iff p′ = 0, since

∑
−k≤j≤m

pj = 1− p′.

Lemma 26 (Number of Roots With Absolute Value ≤ 1). Let P be
a random walk program as in Def. 12 that is PAST. Then the characteristic
polynomial χP has k roots λ ∈ C (counted with multiplicity) with |λ| ≤ 1.

Example 27 (Ex. 25 cont.). In Pmodrace of Ex. 23 we have k = 2. So by Lemma 26,
χP has exactly two roots with absolute value ≤ 1. Indeed, the roots of χP are
λ1 = 1, λ2 = − 1

2 , and λ3 = 7
6 , cf. Ex. 25. So |λ3| > 1, but |λ1| ≤ 1 and |λ2| ≤ 1.

Based on Lemma 26, the following lemma shows that when imposing the restric-
tion that aj,u = 0 whenever |λj | > 1, then there is only a single function of the
form (9) that also satisfies the constraint (4). Hence, this must be the function
that we are searching for, because the desired smallest solution f : Z→ R≥0 of
(5) also satisfies (4).

Lemma 28 (Unique Solution of (4) and (5) when Disregarding Roots
With Absolute Value > 1). Let P be a random walk program as in Def. 12
that is PAST. Then there is exactly one function f : Z→ C which satisfies both
(4) and (5) (thus, it has the form (9)) and has aj,u = 0 whenever |λj | > 1.

The main theorem of Sect. 5 now shows how to compute the expected runtime
exactly. By Thm. 10 and 21 on the bounds for the expected runtime and by
Lemma 28, we no longer have to search for the smallest function that satisfies
(4) and (5), but we just search for any solution of (4) and (5) which has aj,u = 0
whenever |λj | > 1 (because there is just a single such solution). So one only has
to determine the values of the remaining k coefficients aj,u for |λj | ≤ 1, which
can be done by exploiting that f(x) has to satisfy both (4) for all x ≤ 0 and it
has to be of the form (9) for all x > −k. In other words, the function in (9) must
be 0 for −k + 1 ≤ x ≤ 0.
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Theorem 29 (Exact Expected Runtime for Random Walk Programs).
Let P be a random walk program as in Def. 12 that is PAST and let λ1, . . . , λc be
the roots of its characteristic polynomial with multiplicities v1, . . . , vc. Moreover,
let C(x) = Cconst = 1

p′ if p′ > 0 and C(x) = Clin · x = − 1
µP
· x if p′ = 0. Then

the expected runtime of P is rtPx = 0 for x ≤ 0 and

rtPx = C(x) +
∑

1≤j≤c, |λj |≤1

∑
0≤u≤vj−1

aj,u · λxj · xu for x > 0,

where the coefficients aj,u are the unique solution of the k linear equations:

0 = C(x)+
∑

1≤j≤c, |λj |≤1

∑
0≤u≤vj−1

aj,u ·λxj ·xu for −k + 1 ≤ x ≤ 0 (11)

So in the special case where k = 0, we have rtPx = C(x) = Cconst = 1
p′ for x > 0.

Thus for x > 0, the expected runtime rtPx can be computed by summing up the

bound C(x) and an add-on
∑

1≤j≤c, |λj |≤1

∑
0≤u≤vj−1

. . . Since C(x) is an

upper bound for rtPx if p′ > 0 and a lower bound for rtPx if p′ = 0, this add-on is
non-positive if p′ > 0 and non-negative if p′ = 0.

Example 30 (Ex. 27 cont.). By Thm. 29, the expected runtime of the program

Pmodrace from Ex. 23 is rt
Pmod

race
x = 0 for x ≤ 0 and

rt
Pmod

race
x = 22

3 · x+ a1 + a2 · (− 1
2 )x for x > 0, cf. (10).

The coefficients a1 and a2 are the unique solution of the k = 2 linear equations

0 = 22
3 · 0 + a1 + a2 · (− 1

2 )0 = a1 + a2

0 = 22
3 · (−1) + a1 + a2 · (− 1

2 )−1 = − 22
3 + a1 − 2 · a2

So a1 = 22
9 , a2 = − 22

9 , and hence rt
Pmod

race
x = 22

3 · x+ 22
9 −

22
9 · (−

1
2 )x for x > 0.

By Thm. 15, we can lift Thm. 29 to arbitrary CP programs P immediately.

Corollary 31 (Exact Expected Runtime for CP Programs). For any
CP program, its expected runtime can be computed exactly.

Note that irrespective of the degree of the characteristic polynomial, its roots
can always be approximated numerically with any chosen precision. Thus, “exact
computation” of the expected runtime in the corollary above means that a closed
form for rtPx can also be computed with any desired precision.

Example 32 (Exact Expected Runtime of Pdirect). Reconsi-
while (x > 0) {
x = x+ 1 [ 9

10 ];

x = 0 [ 1
10 ];

}

der the program Pdirect of Ex. 11 with the probability p′ = 1
10

for direct termination. Pdirect is PAST and its expected run-
time is at most 1

p′ = 10, cf. Ex. 11. The random walk

program Prdw
direct on the right is obtained by the transforma-



Computing Expected Runtimes 13

tion of Def. 13. As k = 0, by Thm. 29 we obtain rt
Prdw

direct
x = 1

p′ = 10 for x > 0.

By Thm. 15, this implies rtPdirect

(t,h) = rt
Prdw

direct

rdwPdirect
(t,h) = 10 if rdwPdirect

(t, h) =

t− h+ 1 > 0, i.e., 10 is indeed the exact expected runtime of Pdirect.

Note that Thm. 29 and Cor. 31 imply that for any x0 ∈ Zr, the expected
runtime rtPx0

of a CP program P that is PAST and has only rational probabilities
pc1

, . . . , pcn
, p′ ∈ Q is always an algebraic number. Thus, one could also compute

a closed form for the exact expected runtime rtPx using a representation with
algebraic numbers instead of numerical approximations.

Nevertheless, Thm. 29 may yield a representation of rtPx which contains
complex numbers aj,u and λj , although rtPx is always real. However, one can
easily obtain a more intuitive representation of rtPx without complex numbers:

Since the characteristic polynomial χP only has real coefficients, whenever
χP has a complex root λ of multiplicity v, its conjugate λ is also a root of
χP with the same multiplicity v. So the pairwise different roots λ1, . . . , λc can
be distinguished into pairwise different real roots λ1, . . . , λs, and into pairwise
different non-real complex roots λs+1, λs+1, . . . , λs+t, λs+t, where c = s+ 2 · t.

For any coefficients aj,u, a
′
j,u ∈ C with j ∈ {s+1, . . . , s+t} and u ∈ {0, . . . , vj−

1} let bj,u = 2 ·Re(aj,u) ∈ R and b′j,u = −2 · Im(aj,u) ∈ R. Then aj,u · λxj + a′j,u ·
λj
x

= bj,u · Re(λxj ) + b′j,u · Im(λxj ). Hence, by Thm. 29 we get the following
representation of the expected runtime which only uses real numbers:

rtPx =


C(x) +

∑
1≤j≤s, |λj |≤1

∑
0≤u≤vj−1

aj,u · λxj · xu

+
∑

s+1≤j≤s+t, |λj |≤1

∑
0≤u≤vj−1

(
bj,u ·Re(λxj ) + b′j,u ·Im(λxj )

)
· xu, for x > 0

0, for x ≤ 0

(12)

To compute Re(λxj ) and Im(λxj ), take the polar representation of the non-real

roots λj = wj · eθj ·i. Then Re(λxj ) = wxj · cos(θj · x) and Im(λxj ) = wxj · sin(θj · x).
Therefore, we obtain the following algorithm to deduce the exact expected

runtime automatically.

Algorithm 33 (Computing the Exact Expected Runtime). To infer the
runtime of a CP program P as in Def. 12 that is PAST, we proceed as follows:

1. Transform P into Prdw by the transformation of Def. 13. Thus, Prdw is a
random walk program as in Def. 12.

2. Compute the solution C(x) = Cconst = 1
p′ resp. C(x) = Clin · x = − 1

µPrdw
· x

of the inhomogeneous recurrence equation (7).
3. Compute the k +m (possibly complex) roots of the characteristic polynomial

χPrdw (cf. (8)) and keep the k roots λ with |λ| ≤ 1.
4. Determine the coefficients aj,u by solving the k linear equations in (11).
5. Return the solution (12) where bj,u = 2·Re(aj,u), b′j,u = −2·Im(aj,u), and for

λj = wj · eθj ·i we have Re(λxj ) = wxj · cos(θj · x) and Im(λxj ) = wxj · sin(θj · x).
Moreover, x must be replaced by rdwP(x).
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6 Conclusion, Implementation, and Related Work

We presented decision procedures for termination and complexity of classes of
probabilistic programs. They are based on the connection between the expected
runtime of a program and the smallest solution of its corresponding recurrence
equation, cf. Sect. 2. For our notion of probabilistic programs, if the probability
for leaving the loop directly is at least p′ for some p′ > 0, then the program is
always PAST and its expected runtime is asymptotically constant, cf. Sect. 3.
In Sect. 4 we showed that a very simple decision procedure for AST and PAST
of CP programs can be obtained by classical results from random walk theory
and that the expected runtime is asymptotically linear if the program is PAST.
Based on these results, in Sect. 5 we presented our algorithm to automatically
infer a closed form for the exact expected runtime of CP programs (i.e., with
arbitrarily high precision). All proofs and a collection of examples to demonstrate
our algorithm can be found in [20].

Implementation. We implemented Alg. 33 in our tool KoAT [9], which was al-
ready one of the leading tools for complexity analysis of (non-probabilistic) integer
programs. The implementation is written in OCaml and uses the Python libraries
MpMath [22] and SymPy [29] for solving linear equations and for finding the roots
of the characteristic polynomial. In addition to the closed form for the exact
expected runtime, our implementation can also compute the concrete number of
expected loop iterations if the user specifies the initial values of the variables.
For further details, a set of benchmarks, and to download our implementation,
we refer to https://aprove-developers.github.io/recurrence/.

Example 34 (Computing the Exact Expected Runtime of Prace Automatically).
For the tortoise and hare program Prace from Ex. 1, our implementation in KoAT
computes the following expected runtime within 0.49 s on an Intel Core i7-6500
with 8 GB memory (when selecting a precision of 2 decimal places):

rt
Prace
(t,h)

= 0.049 · 0.65(t−h+1) · sin (2.8 · (t− h+ 1))− 0.35 · 0.65(t−h+1) · cos (2.8 · (t− h+ 1))

+0.15 · 0.66(t−h+1) · sin (2.2 · (t− h+ 1))− 0.35 · 0.66(t−h+1) · cos (2.2 · (t− h+ 1))

+0.3 · 0.7(t−h+1) · sin (1.5 · (t− h+ 1))− 0.39 · 0.7(t−h+1) · cos (1.5 (t− h+ 1))

+0.62 · 0.75(t−h+1) · sin (0.83 · (t− h+ 1))− 0.49 · 0.75(t−h+1) · cos (0.83 · (t− h+ 1))
+ 2

3 · (t− h) + 2.3

So when starting in a state with t = 1000 and h = 0, according to our implemen-
tation the number of expected loop iterations is rtPrace

(1000,0) = 670.

Related Work. Many techniques to analyze (P)AST have been developed,
which mostly rely on ranking supermartingales, e.g., [1, 4, 10,12, 13, 17, 19,28, 30].
Indeed, several of these works (e.g., [1, 4, 17, 19]) present complete criteria for
(P)AST, although (P)AST is undecidable. However, the corresponding automation
of these techniques is of course incomplete. In [13] it is shown that for affine
probabilistic programs, a superclass of our CP programs, the existence of a linear
ranking supermartingale is decidable. However, the existence of a linear ranking

https://aprove-developers.github.io/recurrence/
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supermartingale is sufficient but not necessary for PAST or an at most linear
expected runtime.

Classes of programs where termination is decidable have already been studied
for deterministic programs. In [35] it was shown that for a class of linear loop pro-
grams over the reals, the halting problem is decidable. This result was transferred
to the rationals [5] and under certain conditions to integer programs [5,18,31].
Termination analysis for probabilistic programs is substantially harder than for
non-probabilistic ones [23]. Nevertheless, there is some previous work on classes
of probabilistic programs where termination is decidable and asymptotic bounds
on the expected runtime are computable. For instance, in [6] it was shown that
AST is decidable for certain stochastic games and [11] presents an automatic
approach for inferring asymptotic upper bounds on the expected runtime by
considering uni- and bivariate recurrence equations.

However, our algorithm is the first which computes a general formula (i.e., a
closed form) for the exact expected runtime of arbitrary CP programs. To our
knowledge, up to now such a formula was only known for the very restricted
special case of bounded simple random walks (cf. [16]), i.e., programs of the

while (b > x > 0) {
x = x+ 1 [p];

x = x− 1 [1− p];
}

form on the right for some 1 ≥ p ≥ 0 and some b ∈ Z.
Note that due to the two boundary conditions x > 0 and
b > x, the resulting recurrence equation for the expected
runtime of the program only has a single solution f : Z→
R≥0 that also satisfies f(0) = 0 and f(b) = 0. Hence,
standard techniques for solving recurrence equations suffice to compute this
solution. In contrast, we developed an algorithm to compute the exact expected
runtime of unbounded arbitrary CP programs where the loop condition only has
one boundary condition x > 0, i.e., x can grow infinitely large. For that reason,
here the challenge is to find an algorithm which computes the smallest solution
f : Z→ R≥0 of the resulting recurrence equation. We showed that this can be
done using the information on the asymptotic bounds of the expected runtime
from Sect. 3 and 4.

Future Work. There are several directions for future work. In Sect. 4.1 we
reduced CP programs to random walk programs. In future work, we will consider
more advanced reductions in order to extend the class of probabilistic programs
where termination and complexity are decidable. Moreover, we want to develop
techniques to automatically over- or under-approximate the runtime of a program
P by the runtimes of corresponding CP programs P1 and P2 such that rtP1

x ≤
rtPx ≤ rtP2

x holds for all x ∈ Zr. Furthermore, we will integrate the easy inference
of runtime bounds for CP programs into existing techniques for analyzing more
general probabilistic programs.
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