
Proving Partial Correctness of Partial Functions

?

J�urgen Giesl

FB Informatik, TH Darmstadt, Alexanderstr. 10, 64283 Darmstadt, Germany,

E-mail: giesl@inferenzsysteme.informatik.th-darmstadt.de

Abstract. We present a method for automated induction proofs about

partial functions. This method cannot only be used to verify the partial

correctness of functional programs, but it also solves some other chal-

lenge problems where reasoning about partial functions is necessary. For

a further analysis of partial functions we also developed a method to

determine (non-trivial subsets of) their domains automatically.

1 Introduction

Induction is the essential proof method for the veri�cation of functional pro-

grams. For that reason, several techniques

1

have been developed to perform

induction proofs automatically, cf. e.g. [BM79, Bu

+

93, Wa94a]. However, most

of these techniques are only sound if all occurring functions are total.

In this paper we show that by slightly restricting the prerequisites of these

techniques it is nevertheless possible to use them for partial functions, too. In

particular, the successful proof technique of performing inductions w.r.t. algo-

rithms can also be applied for partial functions, i.e. (under certain conditions)

one may even perform inductions w.r.t. non-terminating algorithms.

Hence, with our approach the well-known techniques for automated induction

proofs can be directly extended to partial functions (i.e. we do not follow the

suggestion of [BM88] to treat partial functions only as inputs to an interpreter

function). Previous suggestions for the mechanization of partial functions either

did not focus on induction [KK94] or they could not deal with non-terminating

algorithms [WG94, Wa94a].

2 Partial Correctness

In this section we introduce the notion of partial correctness used in the paper.

We regard an eager �rst order functional language with (non-parameterized and

free) algebraic data types and pattern matching (where the patterns must be

exclusive). As an example consider the algorithms minus and quot. They operate

?

To appear in the Proceedings of the Workshop on the Mechanization of Partial

Functions, held in conjunction with the 13th International Conference on Automated

Deduction, New Brunswick, NJ, USA, 1996.

This work was supported by the Deutsche Forschungsgemeinschaft under grant no.

Wa 652/7-1 as part of the focus program \Deduktion".

1

In fact there are two research paradigms in the automation of induction proofs, viz.

implicit and explicit induction, where we will only focus on the latter one.

on the algebraic data type nat for natural numbers whose objects are built with

the constructors 0 and s (where we sometimes write \1" instead of \s(0)" etc.).

function minus : nat � nat! nat

minus(x; 0) = x

minus(s(x); s(y)) = minus(x;y)

function quot : nat� nat! nat

quot(0; s(y)) = 0

quot(s(x); y) = s(quot(minus(s(x); y); y))

Obviously, both algorithms minus and quot compute partial functions. The

reason is that the de�ning equations of minus do not cover all possible inputs,

i.e. the algorithm minus is incomplete and hence, the result of minus(x; y) is only

de�ned if the number x is not smaller than the number y. The algorithm quot is

not only incomplete, but there are also inputs which lead to a non-terminating

evaluation (e.g. quot(1; 0)). Hence, the result of quot(x; y) is only de�ned if the

number y is a divisor of the number x (and y 6= 0). So if we want to \verify"

programs like minus and quot which compute partial functions we can at most

verify their partial correctness. For instance, suppose that the speci�cations for

minus and quot are

8n;m : nat plus(m;minus(n;m)) = n; (1)

8n;m : nat times(m; quot(n;m)) = n; (2)

where plus and times are de�ned by the obvious algorithms. Then minus and

quot are in fact partially correct w.r.t. these speci�cations. So for quot we have

for all natural numbers n and m: if evaluation of quot(n;m) is de�ned,

then times(m; quot(n;m)) = n.

In this paper we only regard universally closed formulas of the form 8 : : : '

where ' is quanti�er free and we often omit the quanti�ers to ease readability.

We sometimes write '(x

�

) to indicate that ' contains (at least) the variables

x

�

(where x

�

abbreviates a tuple of pairwise di�erent variables x

1

; : : : ; x

n

) and

'(t

�

) denotes the result of replacing the variables x

�

in ' by the terms t

�

. We

say that a formula 8x

�

'(x

�

) is partially correct, if '(t

�

) is true for all those

data objects t

�

where evaluation of all terms in '(t

�

) is de�ned.

While this notion of partial correctness is widely used in program veri�cation

[LS87] several other de�nitions for \correctness" of statements about partial

functions have been suggested in the literature, cf. e.g. [KK94].

Methods to prove the partial correctness of partial functions are not only

essential for the veri�cation of functional programs, but they are also necessary

to solve some further challenge problems in automated deduction:

2.1 Termination of Nested and Mutually Recursive Algorithms

In the area of automated termination analysis, termination proofs for algorithms

with nested or mutual recursion are regarded as one of the main challenge prob-

lems. The reason is that if an algorithm f has nested recursion, then f 's own

semantics have to be considered in its termination proof (and a similar problem

occurs with mutual recursion).

2

To prove the termination of a functional program f there has to be a well-

founded ordering � such that the arguments in each recursive call are smaller

than the corresponding inputs. Hence, if evaluation of f(t) leads to a (nested)

recursive call f(f(r)), then we have to show that both the argument r of the

inner recursive call and the argument f(r) of the outer recursive call are smaller

than the corresponding input t, i.e. we have to prove t � r and t � f(r). But the

statement t � f(r) contains the function f which may possibly be partial (as we

have not yet veri�ed the termination of its algorithm). For that reason previously

developed methods for automated termination proofs of functional programs

usually failed for algorithms with nested recursion [BM79, Wa94b, Gie95].

However, using the techniques to be presented in Section 3, it will be possible

to verify partial correctness of statements like t � f(r). Note that (surprisingly),

partial correctness of these statements is already su�cient for the termination of

the algorithm f . Hence, a method for partial correctness proofs allows us to prove

termination of algorithms with nested or mutual recursion without having to

prove the correctness of the algorithms simultaneously. This enables automated

termination proofs for well-known challenge problems such as J. McCarthy's f 91

function. For a detailed description of these results see [Gie96a].

2.2 Reasoning about Imperative Programs

Although imperative languages are almost exclusively used in practice, up to now

most systems for automated induction proofs are restricted to the veri�cation of

functional languages.

Therefore one attempt for automated reasoning about imperative programs

is to translate imperative programs into functional programs. In this translation

every while-loop is transformed into a separate function [Hen80]. But note that in

general these functions are partial, because in imperative programs, termination

of while-loops often depends on their contexts (i.e. on the preconditions that hold

before entering a while-loop). Hence, to apply existing systems for automated

program veri�cation to imperative programs, one needs a method to prove partial

correctness of statements involving partial functions.

3 Induction Proofs with Partial Functions

After having illustrated why one is interested in partial correctness, in this sec-

tion we will sketch a method for proving partial correctness automatically. For

the partial correctness of a formula '(x

�

) we have to verify in�nitely many in-

stantiations '(t

�

). As data types are constructed inductively, this can often be

reduced to a �nite proof by using induction.

Several techniques have been developed for the automation of induction

proofs. But unfortunately, statements \proved" with these techniques are only

correct provided that all occurring functions are total. However, in the following

we will show that by slightly restricting the application of these techniques one

in fact obtains a sound calculus for induction proofs with partial functions. A

more detailed description of our calculus can be found in [Gie96b].

3

3.1 Induction w.r.t. Algorithms

One of the key ideas in automated induction theorem proving is to perform

inductions w.r.t. the recursions of the algorithms. For example, as (2) contains

a call of the function quot, this call suggests a plausible induction, i.e. we use

an induction w.r.t. the algorithm quot and choose the variables n and m as

induction variables. For that purpose one performs a case analysis w.r.t. the

cases of quot and in its recursive case one can assume that (2) already holds

for the arguments of quot's recursive call. So instead of (2) one has to prove

the following formulas where we have underlined instantiations of the induction

variables n and m to ease readability.

times(s(y); quot(0; s(y))) = 0; (3)

times(y; quot(minus(s(x); y); y)) = minus(s(x); y) ! times(y; quot(s(x); y)) = s(x): (4)

But induction proofs are only sound if the induction relation used is well

founded. Here, the well-foundedness of the induction relation corresponds to

the termination of the algorithm quot. So in general, by inductions w.r.t. non-

terminating algorithms like quot one can easily \prove" false facts. For example,

by induction w.r.t. the algorithm f with the de�ning equation f(x) = f(x) one

can prove formulas like :x = x which are not partially correct.

However, for formula (2) the induction w.r.t. the recursions of quot is nev-

ertheless sound, i.e. partial correctness of (3) and (4) in fact implies partial

correctness of (2). The reason is that the only occurrence of a partial function in

(2) is the term quot(n;m). Hence, for all natural numbers n and m, evaluation

of \times(m; quot(n;m)) = n" is de�ned i� evaluation of \quot(n;m)" is de�ned.

Partial correctness of (3) and (4) implies that \times(m; quot(n;m)) = n"

holds for all numbers n and m where quot(n;m) is de�ned, provided that it

also holds for those numbers n

0

and m

0

, where evaluation of quot(n;m) leads

to the recursive call quot(n

0

;m

0

). Hence, the original induction proof w.r.t. the

recursions of quot can be regarded as an induction proof where the induction

relation is restricted to those inputs where evaluation of quot is de�ned. As

this restricted induction relation is well founded (although quot is not always

terminating), the partial correctness of (3) and (4) is indeed su�cient for the

partial correctness of (2).

Therefore by restricting the prerequisites of the technique for \inductions

w.r.t. algorithms", this technique can also be applied to perform inductions w.r.t.

partial functions like quot: In the proof of '(x

�

) one may perform an induction

w.r.t. the partial function f using x

�

as induction variables, if '(x

�

) contains

the subterm f(x

�

) and if '(x

�

) does not contain any other occurrences of partial

functions.

3.2 Using De�ning Equations of Algorithms

Another important technique often used in induction proofs is symbolic evalu-

ation, i.e. the de�ning equations of an algorithm are used as rewrite rules. For

instance, by symbolic evaluation of quot and times, (3) can be transformed into

4

the tautology 0 = 0. Note that, while the de�ning equations of partial func-

tions may indeed be used for symbolic evaluation, they must not be used as

ordinary axioms. The reason is that de�ning equations of non-terminating algo-

rithms may be inconsistent with the axioms for the data types used. For example,

consider a theory where :x = s(x) holds and let f have the de�ning equation

f(y) = s(f(y)). Together with the axiom :x = s(x), this de�ning equation is

inconsistent. Hence, if the de�ning equations of non-terminating algorithms were

to be used as ordinary axioms, one could prove anything (e.g. false).

3.3 Other Inference Steps

In automated induction theorem proving one applies rules of the form

2

'

in

backwards direction. \Soundness" of these rules guarantees that ' holds for all

data objects, provided that holds for all data objects.

However, in general these rules are no longer sound when considering partial

functions. For example,

'

1

^'

2

'

1

is a sound rule for total functions, but it becomes

unsound when handling partial functions. The reason is that '

1

could be false

and '

2

could contain an unde�ned term like quot(1; 0).

Therefore a rule

'

may only be used in partial correctness proofs, if \de�ned-

ness" of ' implies \de�nedness" of the corresponding instantiation of . Assume

that for each formula ' we know a de�nition formula (which we denote by '#)

such that ' and '# contain the same variables x

�

and such that evaluation of

'(t

�

) is de�ned i� '# (t

�

) is true. Then a rule

'

may only be applied if for all

data objects t

�

there exist data objects s

�

such that

 (s

�

)! '(t

�

) and (5)

'# (t

�

)! # (s

�

): (6)

For certain rules (e.g. symbolic evaluation or instantiation

'

�(')

) both these

conditions are always ful�lled. But for other rules in automated induction theo-

rem proving, one has to check these conditions in each rule application.

One method to check condition (5) is to test whether (t

�

) ! '(t

�

) holds

(i.e. to choose s

�

= t

�

) and to check condition (6) one could examine whether

every term with a partial root function in also occurs in '.

4 Termination Analysis for Partial Functions

The techniques presented in Section 3 allow us to prove partial correctness of

statements like (1) and (2) automatically by performing inductions w.r.t. partial

functions as sketched in Section 3.1. Moreover, these techniques are also su�cient

for the partial correctness proofs needed for termination analysis of nested and

mutually recursive functions, cf. Section 2.1.

However, for certain proofs one really needs to generate de�nition formulas

'# to check condition (6). In other words, one has to determine the domains

of partial functions. For that purpose, together with J. Brauburger we have de-

veloped a method to synthesize a termination predicate algorithm �

f

for each

2

Corresponding statements hold for rules

1

;:::;

k

'

with several premises.

5

functional program f , i.e. �

f

computes a total function which only returns true

for inputs where the original program is terminating.

As we want to generate termination predicates automatically, we can only

demand that a termination predicate �

f

represents a su�cient criterion for the

termination of f 's algorithm. But when testing our method with numerous ex-

amples we found that it is often able to synthesize termination predicates which

describe the whole domain of a function. For instance, for minus our method

synthesizes the termination predicate \greater-equal" and for quot it synthesizes

the algorithm divides. For details on our work on termination analysis for partial

functions see [BG96].

5 Conclusion

We presented a method to extend the existing techniques for automated induc-

tion proofs to partial functions. In this way, partial correctness of partial func-

tional programs can be proved automatically and moreover, our result can also

be used for the veri�cation of imperative programs and for termination proofs

of nested and mutually recursive algorithms. For further automated reasoning

we have also developed a method for termination analysis of partial functions.

References

[BM79] R. S. Boyer & J S. Moore. A Computational Logic. Academic Press, 1979.

[BM88] R. S. Boyer & J S. Moore. The Addition of Bounded Quanti�cation and Par-

tial Functions to A Computational Logic and Its Theorem Prover. Journal of

Automated Reasoning, 4:117-172, 1988.

[BG96] J. Brauburger & J. Giesl. Termination Analysis for Partial Functions. In Proc.

3rd International Static Analysis Symposium, Aachen, Germany, LNCS, 1996.

[Bu

+

93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, & A. Smaill. Rippling: A

Heuristic for Guiding Inductive Proofs, Artif. Int. 62:185-253, 1993.

[Gie95] J. Giesl. Termination Analysis for Functional Programs using Term Order-

ings. Pr. 2nd Int. Static Analysis Symp., Glasgow, Scotland, LNCS 983, 1995.

[Gie96a] J. Giesl. Termination of Nested and Mutually Recursive Algorithms. Journal

of Automated Reasoning. To appear.

[Gie96b] J. Giesl. Induction Proofs with Partial Functions. Technical Report IBN

96/35, Technische Hochschule Darmstadt, Germany, 1996.

[Hen80] P. Henderson. Functional Programming. Prentice-Hall, London, 1980.

[KK94] M. Kerber & M. Kohlhase, A Mechanization of Strong Kleene Logic for Par-

tial Functions. In Proc. 12th CADE, Nancy, France, LNAI 814, 1994.

[LS87] J. Loeckx & K. Sieber, The Foundations of Program Veri�cation. Wiley-

Teubner, 1987.

[Wa94a] C. Walther. Mathematical Induction. In D. M. Gabbay, C. J. Hogger, and

J. A. Robinson (eds.), Handbook of Logic in Arti�cial Intelligence and Logic

Programming, vol. 2, Oxford University Press, 1994.

[Wa94b] C. Walther. On Proving the Termination of Algorithms by Machine. Arti�cial

Intelligence, 71(1):101-157, 1994.

[WG94] C.-P. Wirth & B. Gramlich. On Notions of Inductive Validity for First-Order

Equational Clauses. In Proc. 12th CADE, Nancy, France, LNAI 814, 1994.

6

