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Abstrat. Semanti labelling is a powerful tool for proving termination

of term rewrite systems. The usefulness of the extension to equational

term rewriting desribed in Zantema [24℄ is however rather limited. In

this paper we introdue a stronger version of equational semantial la-

belling, parameterized by three hoies: (1) the order on the underlying

algebra (partial order vs. quasi-order), (2) the relation between the al-

gebra and the rewrite system (model vs. quasi-model), and (3) the la-

belling of the funtion symbols appearing in the equations (forbidden vs.

allowed). We present soundness and ompleteness results for the various

instantiations and analyze the relationships between them. Appliations

of our equational semanti labelling tehnique inlude a short proof of the

main result of Ferreira et al. [7℄|the orretness of a version of dummy

elimination for AC-rewriting whih ompletely removes the AC-axioms|

and an extension of Zantema's distribution elimination tehnique [23℄ to

the equational setting.

1 Introdution

This paper is onerned with termination of equational term rewrite systems.

Termination of ordinary term rewrite systems has been extensively studied and

several powerful methods for establishing termination are available (e.g. [1, 4,

21℄). For equational term rewriting muh less is known, although in reent years

signi�ant progress has been made with respet to AC-termination, i.e., termi-

nation of equational rewrite systems where the set of equations onsists of the

assoiativity and ommutativity axioms AC(f) = ff(f(x; y); z) � f(x; f(y; z));

f(x; y) � f(y; x)g for (some of) the binary funtion symbols ourring in the

rewrite rules. An early paper on termination of equational rewriting is Jouan-

naud and Mu~noz [11℄. In that paper suÆient onditions are given for reduing

?

Proeedings of the Annual Conferene of the European Assoiation for Computer

Siene Logi (CSL '00), Fishbahau, Germany, LNCS 1862, pp. 457-471, 2000.



termination of an equational term rewrite system to termination of its underly-

ing term rewrite system. In another early paper (Ben Cherifa and Lesanne [2℄)

a haraterization of the polynomials is given that an be used in a polynomial

interpretation proof of AC-termination. In more reent papers [12, 19{21℄ syn-

tati methods like the well-known reursive path order for proving termination

of rewriting are extended to AC-rewriting. Marh�e and Urbain [14℄ extended

the powerful dependeny pair tehnique of Arts and Giesl [1℄ to AC-rewriting.

In [6, 7℄ two extensions of dummy elimination ([8℄) to equational rewriting are

presented. In [15℄ the type introdution tehnique of Zantema [23℄ is extended

to equational term rewriting.

In this paper we extend another tehnique of Zantema to equational term

rewriting. By labelling funtion symbols aording to the semantis of the rewrite

system, semanti labelling ([24℄) transforms a rewrite system into another rewrite

system with the same termination behaviour. The aim is to obtain a transformed

rewrite system where termination is easier to establish. The strength of semanti

labelling is amply illustrated in [16, 24℄. Here we present powerful extensions

of semanti labelling to equational rewriting and analyze their soundness and

ompleteness. Our equational semanti labelling yields a short orretness proof

of a version of dummy elimination for AC-rewriting. This result of Ferreira et

al. was obtained in [7℄ by onsiderably more ompliated arguments. Another

appliation of our tehnique is the extension of some of the results of Zantema [23℄

onerning distribution elimination to the AC ase.

2 Preliminaries

Familiarity with the basis of term rewriting ([3℄) is assumed. An equational

system (ES for short) onsists of a signature F and a set E of equations between

terms in T (F ;V). We write s !

E

t if there exist an equation l � r in E ,

a substitution �, and a ontext C suh that s = C[l�℄ and t = C[r�℄. The

symmetri losure of !

E

is denoted by à

E

and the transitive reexive losure

of à

E

by �

E

. A rewrite rule is an equation l � r suh that l is not a variable

and variables whih our in r also our in l. Rewrite rules l � r are written as

l ! r. A term rewrite system (TRS for short) is an ES with the property that

all its equations are rewrite rules. An equational term rewrite system (ETRS for

short) R=E onsists of a TRS R and an ES E over the same signature. We write

s!

R=E

t if there exist terms s

0

and t

0

suh that s �

E

s

0

!

R

t

0

�

E

t. Similar to

ordinary term rewrite systems, an ETRS is alled terminating if there does not

exist an in�nite !

R=E

redution.

Let F be a signature and A = (A; ff

A

g

f2F

) an F-algebra equipped with a

quasi-order (i.e., a reexive and transitive relation) % on its (non-empty) ar-

rier A. For any variable assignment � : V ! A we de�ne the term evaluation

[�℄

A

: T (F ;V) ! A indutively by [�℄

A

(x) = �(x) and [�℄

A

(f(t

1

; : : : ; t

n

)) =

f

A

([�℄

A

(t

1

); : : : ; [�℄

A

(t

n

)) for x 2 V , f 2 F , and t

1

; : : : ; t

n

2 T (F ;V). If A is

lear from the ontext, then we often write [�℄ instead of [�℄

A

. We say that

A is monotone if the algebra operations of A are monotone with respet to %

2



in all oordinates, i.e., if f 2 F has arity n > 1 then f

A

(a

1

; : : : ; a

i

; : : : ; a

n

) %

f

A

(a

1

; : : : ; b; : : : ; a

n

) for all a

1

; : : : ; a

n

; b 2 A and i 2 f1; : : : ; ng with a

i

% b.

An ETRS R=E over a signature F is ompatible with a monotone F-algebra

(A;%) if l %

A

r for every rewrite rule l ! r 2 R and l �

A

r for every equation

l � r 2 E . Here the relation %

A

is de�ned by s %

A

t if [�℄

A

(s) % [�℄

A

(t) for

every assignment � and �

A

is the equivalene relation indued by %

A

. If R=E

and (A;%) are ompatible, we also say that (A;%) is a quasi-model of R=E . We

all (A;%) a model of R=E if l �

A

r for all l ! r 2 R and l � r 2 E .

A TRS R is preedene terminating if there exists a well-founded order = on

its signature F suh that root(l) = f for every rule l! r 2 R and every funtion

symbol f ourring in r. Preedene terminating TRSs are terminating ([16℄).

The next lemma states that this remains true in the presene of AC-axioms.

Lemma 1. Let R=E be an ETRS over a signature F suh that E =

S

f2G

AC(f)

for some subset G of F . If R is preedene terminating then R=E is terminating.

Proof. By de�nition there is a well-founded order = on F suh that root(l) = f

for every rule l ! r 2 R and every funtion symbol f ourring in r. Any

AC-ompatible reursive path order indued by = that is de�ned on terms with

variables (e.g. [13, 19℄) orients the rules of R from left to right. (The ompliated

ase in whih two terms with equal root symbols in G have to be ompared never

arises due to the assumption on =.) We onlude that R=E is terminating. ut

3 Semanti Labelling for Equational Rewriting

In this setion we present our equational semanti labelling framework by appro-

priately extending the de�nitions of Zantema [24℄ for ordinary semanti labelling.

De�nition 1. Let F be a signature and A an F-algebra. A labelling L for F

onsists of sets of labels L

f

� A for every f 2 F . The labelled signature F

lab

onsists of n-ary funtion symbols f

a

for every n-ary funtion symbol f 2 F

and label a 2 L

f

together with all funtion symbols f 2 F suh that L

f

= ?.

A labelling ` for A onsists of a labelling L for the signature F together with

mappings `

f

: A

n

! L

f

for every n-ary funtion symbol f 2 F with L

f

6= ?. If

A is equipped with a quasi-order % then the labelling is said to be monotone if

its labelling funtions `

f

are monotone (with respet to %) in all arguments.

De�nition 2. Let R=E be an ETRS over a signature F , (A;%) an F-algebra,

and ` a labelling for A. For every assignment � we indutively de�ne a labelling

funtion lab

�

from T (F ;V) to T (F

lab

;V): lab

�

(t) = t if t 2 V and lab

�

(t) =

f

`

f

([�℄(t

1

);:::;[�℄(t

n

))

(lab

�

(t

1

); : : : ; lab

�

(t

n

)) if t = f(t

1

; : : : ; t

n

). We de�ne TRSs

R

lab

, De(F ;�) and ESs E

lab

, Eq(F ;�) over the signature F

lab

as follows:

R

lab

= f lab

�

(l)! lab

�

(r) j l! r 2 R and � : V ! Ag;

E

lab

= f lab

�

(l) � lab

�

(r) j l � r 2 E and � : V ! Ag;

De(F ;�) = ff

a

(x

1

; : : : ; x

n

)! f

b

(x

1

; : : : ; x

n

) j f 2 F ; a; b 2 L

f

; a � bg;

Eq(F ;�) = ff

a

(x

1

; : : : ; x

n

) � f

b

(x

1

; : : : ; x

n

) j f 2 F ; a; b 2 L

f

; a � b; a 6= bg:
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The purpose of the ondition a 6= b in the de�nition of Eq(F ;�) is to exlude

trivial equations. When the signature F and the quasi-order % an be inferred

from the ontext we just write De and Eq. We write R for the union of R

lab

and De and E for the union of E

lab

and Eq.

The next theorem states our �rst equational semanti labelling result.

Theorem 1. Let R=E be an ETRS over a signature F , (A;%) a monotone F-

algebra, and ` a monotone labelling for A. If A is a quasi-model of R=E and

R=E is terminating then R=E is terminating.

Proof. We show that for all terms s; t 2 T (F ;V) and assignments � we have

1. if s!

R

t then lab

�

(s) �

E

�

+

�!

R

lab

�

(t),

2. if s à

E

t then lab

�

(s) �

E

lab

�

(t).

Suppose s = C[l�℄ and t = C[r�℄ for some rewrite rule l! r 2 R, ontext C, and

substitution �. We show (1) by indution on C. If C = � then lab

�

(s) = lab

�

(l�)

and lab

�

(t) = lab

�

(r�). De�ne the assignment � = [�℄

A

Æ � and the substitu-

tion � = lab

�

Æ � (i.e., � is applied �rst). An easy indution proof (e.g. [23,

Lemma 2℄) reveals that lab

�

(l�) = lab

�

(l)� and lab

�

(r�) = lab

�

(r)� . By de�-

nition lab

�

(l)! lab

�

(r) 2 R

lab

and hene lab

�

(s) = lab

�

(l)� !

R

lab

lab

�

(r)� =

lab

�

(t). For the indution step, let C = f(u

1

; : : : ; C

0

; : : : ; u

n

). The indution hy-

pothesis yields lab

�

(C

0

[l�℄) �

E

�

+

�!

R

lab

�

(C

0

[r�℄). Beause A is a quasi-model

of R=E and C

0

[l�℄!

R

C

0

[r�℄, we have [�℄

A

(C

0

[l�℄) % [�℄

A

(C

0

[r�℄). Let

a = `

f

([�℄

A

(u

1

); : : : ; [�℄

A

(C

0

[l�℄); : : : ; [�℄

A

(u

n

))

and

b = `

f

([�℄

A

(u

1

); : : : ; [�℄

A

(C

0

[r�℄); : : : ; [�℄

A

(u

n

)):

Monotoniity of the labelling funtion `

f

yields a % b. We distinguish two ases.

If a � b then

lab

�

(s) �

E

�

+

�!

R

f

a

(lab

�

(u

1

); : : : ; lab

�

(C

0

[r�℄); : : : ; lab

�

(u

n

))

!

De

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[r�℄); : : : ; lab

�

(u

n

))

= lab

�

(t):

If a � b then

lab

�

(s) à

=

Eq

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[l�℄); : : : ; lab

�

(u

n

))

�

E

�

+

�!

R

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[r�℄); : : : ; lab

�

(u

n

))

= lab

�

(t):

Here à

=

Eq

denotes à

Eq

[ =. Sine �

E

�

+

�!

R

� !

De

� �

E

�

+

�!

R

and à

=

Eq

� �

E

�

+

�!

R

� �

E

�

+

�!

R

, in both ases we obtain the desired lab

�

(s) �

E

�

+

�!

R

lab

�

(t).

The proof of (2) follows along the same lines. In the indution step we have

[�℄

A

(C

0

[l�℄) � [�℄

A

(C

0

[r�℄). Monotoniity of `

f

yields both a % b and b % a.

Hene a � b and thus

lab

�

(s) = f

a

(lab

�

(u

1

); : : : ; lab

�

(C

0

[l�℄); : : : ; lab

�

(u

n

))

à

=

Eq

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[l�℄); : : : ; lab

�

(u

n

))

�

E

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[r�℄); : : : ; lab

�

(u

n

))

= lab

�

(t)

4



by the de�nition of Eq and the indution hypothesis.

From (1) and (2) it follows that any in�nite R=E-rewrite sequene gives rise

to an in�nite R=E-rewrite sequene. ut

The onverse of the above theorem does not hold. Consider the terminating

ETRS R=E with R = ? and E = ff(a) � ag. Let A be the algebra over the

arrier f0; 1g with 1 � 0 and operations f

A

(x) = x for all x 2 f0; 1g and a

A

= 1.

Note that A is a (quasi-)model of R=E . By letting `

f

be the identity funtion

and by hoosing L

a

= ?, we obtain the labelled ETRS R=E with R

lab

= ?,

De = ff

1

(x) ! f

0

(x)g, E

lab

= ff

1

(a) � ag, and Eq = ?. The ETRS R=E is not

terminating: a �

E

lab

f

1

(a) !

De

f

0

(a) �

E

lab

f

0

(f

1

(a)) !

De

� � � Nevertheless, in

this example there are no in�nite R=E-rewrite sequenes that ontain in�nitely

many R

lab

=E-steps, whih is known as the relative termination (Geser [10℄) of

R

lab

=E with respet to De. It is not diÆult to show that under the assumptions

of Theorem 1 termination of R=E is equivalent to relative termination of R

lab

=E

with respet to De.

Zantema [24℄ showed the neessity of the inlusion of De in R for the or-

retness of Theorem 1 (with E = ?) by means of the TRS R = ff(g(x)) !

g(g(f(f(x))))g, the algebra A over the arrier f0; 1g with operations f

A

(x) = 1

and g

A

(x) = 0 for all x 2 f0; 1g, and the order 1 � 0. By labelling f with the value

of its argument, we obtain the TRS R

lab

= ff

0

(g(x)) ! g(g(f

1

(f

0

(x)))); f

0

(g(x))

! g(g(f

1

(f

1

(x))))g whih is ompatible with the reursive path order with pree-

dene f

0

= f

1

; g. However, R is not terminating: f(f(g(x))) ! f(g(g(f(f(x))))) !

g(g(f(f(g(f(f(x))))))) ! � � �

The inlusion of Eq in E is also essential for the orretness of Theorem 1.

Consider the ETRSR=E with R = ff(a; b; x)! f(x; x; x); g(x; y) ! x; g(x; y)!

yg and E = ?. Let A be the algebra over the arrier f0; 1g with 0 � 1 and

operations f

A

(x; y; z) = 1, g

A

(x; y) = 0, a

A

= 0, and b

A

= 1. We label funtion

symbol f as follows: `

f

(x; y; z) = 0 if x = y and `

f

(x; y; z) = 1 if x 6= y. Note

that A is a quasi-model for R=E and `

f

is trivially monotone. We have R

lab

=

ff

1

(a; b; x) ! f

0

(x; x; x); g(x; y) ! x; g(x; y) ! yg, De = ?, and E

lab

= ?.

Termination of R is easily shown. It is well-known (Toyama [22℄) that R is not

terminating. Note that in this example Eq = ff

0

(x; y; z) � f

1

(x; y; z)g and hene

R=E is not terminating.

Finally, both monotoniity requirements are essential. Consider the TRSR =

ff(g(a)) ! f(g(b)); b ! ag. Let A be the algebra over the arrier f0; 1g with

1 � 0 and operations f

A

(x) = 0, g

A

(x) = 1 � x, a

A

= 0, and b

A

= 1. We

have l %

A

r for both rules l ! r 2 R. If `

f

(x) = x then we obtain the TRS

R = ff

1

(g(a)) ! f

0

(g(b)); b ! a; f

1

(x) ! f

0

(x)g whih is ompatible with the

reursive path order with preedene f

1

= f

0

; g and f

1

= b = a. However, R is

not terminating. Note that g

A

is not monotone. Next onsider the algebra B

over the arrier f0; 1g with 1 � 0 and operations f

B

(x) = 0, g

B

(x) = x, a

B

= 0,

and b

B

= 1. If `

f

(x) = 1 � x then we obtain the same TRS R as before. Note

that now `

f

is not monotone.

If the algebra A is a model of the ETRS R=E then (similar to ordinary

semanti labelling [24℄) we an dispense with De. Moreover, in this ase the

5



onverse of Theorem 1 also holds. This is expressed in the next theorem.

Theorem 2. Let R=E be an ETRS over a signature F , (A;%) a monotone

F-algebra, and ` a monotone labelling for A. If A is a model of R=E then ter-

mination of R

lab

=E is equivalent to termination of R=E.

Proof. The following statements are obtained by a straightforward modi�ation

of the proof of Theorem 1:

1. if s!

R

t then lab

�

(s) �

E

� !

R

lab

lab

�

(t),

2. if s à

E

t then lab

�

(s) �

E

lab

�

(t).

Note that sine A is a model we have [�℄

A

(C

0

[l�℄) � [�℄

A

(C

0

[r�℄) and hene

a � b in the indution step. This explains why there is no need for De. So

termination of R

lab

=E implies termination of R=E . The onverse also holds;

eliminating all labels in an in�nite R

lab

=E-rewrite sequene yields an in�nite

R=E-rewrite sequene (beause there are in�nitely many R

lab

-steps). ut

If the quasi-model A in Theorem 1 is equipped with a partial order (i.e., a

reexive, transitive, and anti-symmetri relation) � instead of a quasi-order %

then we an dispense with Eq.

Theorem 3. Let R=E be an ETRS over a signature F , (A;�) a monotone F-

algebra, and ` a monotone labelling for A. If A is a quasi-model of R=E and

R=E

lab

is terminating then R=E is terminating.

Proof. The proof of Theorem 1 applies; beause the equivalene assoiated with

a partial order is the identity relation we have Eq = ?. ut

The �rst example in this setion shows that the onverse of Theorem 3 does

not hold. Combining the preeding two theorems yields the following result.

Corollary 1. Let R=E be an ETRS over a signature F , (A;�) a monotone

F-algebra, and ` a monotone labelling for A. If A is a model of R=E then ter-

mination of R

lab

=E

lab

is equivalent to termination of R=E. ut

Note that if the pair (A;�) is a model of R=E then so is (A;=). Sine in this

ase monotoniity of both the algebra operations and the labelling funtions is

trivially satis�ed, we an rephrase the above orollary as follows.

Corollary 2. Let R=E be an ETRS over a signature F , A an F-algebra, and

` a labelling for A. If A is a model of R=E then termination of R

lab

=E

lab

is

equivalent to termination of R=E. ut

Note that the unspei�ed quasi-order is assumed to be the identity relation,

so model here means l =

A

r for all rules l ! r 2 R and all equations l � r 2 E .

Let us onlude this setion by illustrating the power of equational semanti

labelling on a onrete example. Consider the ETRS R=E with R = fx � 0 !

x; s(x) � s(y) ! x � y; 0 � s(y) ! 0; s(x) � s(y) ! s((x � y) � s(y))g and

6



E = f(x� y)� z � (x� z)� yg. Let A be the algebra with arrier N, standard

order >, and operations 0

A

= 0, s

A

(x) = x+ 1, and x�

A

y = x�

A

y = x. This

algebra is a quasi-model of R=E . If `

�

(x; y) = x then we have R

lab

= fx� 0 !

x; s(x) � s(y) ! x � y; 0�

0

s(y) ! 0g [ fs(x)�

n+1

s(y) ! s((x � y)�

n

s(y)) j

n > 0g, De = fx �

m

y ! x �

n

y j m > ng, and E

lab

= f(x �

n

y) �

n

z �

(x �

n

z) �

n

y j n > 0g. Termination of R=E

lab

an be shown by the following

polynomial interpretation: [0℄ = 0, [s℄(x) = x + 1, x [�℄ y = x + y + 1, and

x [�

n

℄ y = x + ny + n + y for all n > 0. Aording to Theorem 3 the original

ETRS R=E is terminating as well. Note that a diret termination proof with

standard tehniques is impossible sine an instane of the last rule of R is self-

embedding. In order to make this rule non-self-embedding it is essential that we

label �. This explains why Zantema's version of equational semanti labelling|

presented in the next setion|will fail here.

4 Semanti Labelling Cube

The original version of equational semanti labelling desribed in Zantema [24℄

is presented below.

Theorem 4 ([24℄). Let R=E be an ETRS over a signature F , A an F-algebra,

and ` a labelling for A suh that funtion symbols ourring in E are unlabelled.

If A is a model of R=E then termination of R

lab

=E is equivalent to termination

of R=E. ut

In [24℄ it is remarked that the restrition that symbols in E are unlabelled is

essential. Corollary 2, of whih Theorem 4 is an immediate onsequene, shows

that this is not true. Zantema provides the non-terminating ETRS R=E with

R = f(x + y) + z ! x + (y + z)g and E = fx + y � y + xg, and the model A

onsisting of the positive integers N

+

with the funtion symbol + interpreted as

addition. By labelling + with the value of its �rst argument, we obtain R

lab

=

f(x+

i

y) +

i+j

z ! x+

i

(y +

j

z) j i; j 2 N

+

g and E

lab

= fx+

i

y � y +

j

x j i; j 2

N

+

g. Aording to Corollary 2 the labelled ETRS R

lab

=E

lab

is not terminating

and indeed there are in�nite rewrite sequenes, e.g.

(x+

1

x) +

2

x! x+

1

(x+

1

x) � (x+

1

x) +

2

x! � � �

In [24℄ it is remarked that R

lab

=E

0

with E

0

= fx +

i

y ! y +

i

x j i 2 N

+

g is

terminating, sine it is ompatible with the polynomial interpretation in whih

the funtion symbol +

i

is interpreted as addition plus i, for every i 2 N

+

.

However, E

0

is not a labelled version of E .

The various versions of equational semanti labelling presented above di�er

in three hoies: (1) the order on the algebra A (partial order vs. quasi-order),

(2) the relation between the algebra A and the ETRS R=E (model vs. quasi-

model), and (3) the labelling of the funtion symbols appearing in E (forbidden

vs. allowed). This naturally gives rise to the ube of eight versions of equational

semanti labelling possibilities shown in Figure 1. Every possibility is given as

7



a string of three hoies, eah of them indiated by �=+ and ordered as above,

so �++ denotes the version of equational semanti labelling with partial order,

quasi-model, and (possibly) labelled funtion symbols in E . All eight versions of

equational semanti labelling are sound, i.e., termination of the labelled ETRS

implies termination of the original ETRS. The versions in whih termination

of the labelled ETRS is equivalent to termination of the original ETRS are

indiated by a surrounding box.

�++ +++

��+

�
�

�
�

�
�

�

+�+

�
�

�
�

�
�

�

�+� ++�

���

�
�

�
�

�
�

�

+��

�
�

�
�

�
�

�

+++ Theorem 1

+�+ Theorem 2

�++ Theorem 3

��+ Corollary 1 (2)

��� Theorem 4

Fig. 1. Equational semanti labelling ube.

We present one more version of equational semanti labelling, stating that

the impliation of Theorem 1 beomes an equivalene in the speial ase that

E is variable preserving (i.e., every equation l � r 2 E has the property that l

and r have the same number of ourrenes of eah variable), the (strit part

of the) quasi-order % is well founded, and funtion symbols ourring in E are

unlabelled. In other words, if E is variable preserving (whih in partiular is true

for AC) and the quasi-order % is well founded then we an put a box around

++� in Figure 1. Before presenting the proof, we show the neessity of the

three onditions. First onsider the ETRS R=E with R = ? and E = ff(x; x) �

xg where the signature ontains a unary funtion symbol g in addition to the

funtion symbol f. Let A be the algebra over the arrier f0; 1g with 1 � 0 and

operations f

A

(x; y) = x and g

A

(x) = x. Note that A is a (quasi-)model of R=E .

By labelling g with the value of its argument, we obtain the ETRS R=E with

R = De = fg

1

(x)! g

0

(x)g and E = E . The ETRSR=E is trivially terminating,

but R=E admits the following in�nite rewrite sequene:

g

1

(x) � f(g

1

(x); g

1

(x))! f(g

0

(x); g

1

(x)) � f(g

0

(x); f(g

1

(x); g

1

(x))) ! � � �

Note that E is not variable preserving. The neessity of the well-foundedness of

the quasi-order % follows by onsidering the terminating TRS R=E with R =

ff(x)! g(x)g and E = ?, the algebra A over the arrier Z with standard order

> and operations f

A

(x) = g

A

(x) = x, and the labelling `

f

(x) = x. In this ase

we have R

lab

= ff

i

(x) ! g(x) j i 2 Zg and De = ff

i

(x) ! f

j

(x) j i > jg, so R

8



laks termination. Finally, the requirement that funtion symbols ourring in

E must be unlabelled is justi�ed by the ounterexample following Theorem 1.

Theorem 5. Let R=E be an ETRS over a signature F with E variable pre-

serving, (A;%) a monotone F-algebra with % well-founded, and ` a monotone

labelling for (A;%) suh that funtion symbols ourring in E are unlabelled. If

A is a quasi-model of R=E then termination of R=E is equivalent to termination

of R=E.

Proof. First note that R=E = (R

lab

[ De)=(E [ Eq) beause funtion symbols

ourring in E are unlabelled. The \if" part is a onsequene of Theorem 1. For

the \only if" part we show that the ETRS De=(E [ Eq) is terminating. For a

term t 2 T (F

lab

;V) let �(t) denote the multiset of all labels ourring in t. The

following fats are not diÆult to show:

{ if s!

De

t then �(s) �

mul

�(t),

{ if s à

Eq

t then �(s) �

mul

�(t),

{ if s à

E

t then �(s) = �(t).

Here �

mul

denotes the multiset extension of � ([5℄) and �

mul

denotes the multi-

set extension of the equivalene relation � (whih oinides with the equivalene

relation assoiated with the multiset extension %

mul

of %, see e.g. [17, De�ni-

tion 5.6℄). For the validity of the last observation it is essential that E is variable

preserving and that funtion symbols ourring in E are unlabelled. From these

fats and the well-foundedness of%

mul

we obtain the termination of De=(E[Eq).

Now, if R=E is not terminating then it admits an in�nite rewrite sequene whih

ontains in�nitely many R

lab

-steps. Erasing all labels yields an in�nite R=E-

rewrite sequene, ontraditing the assumption that R=E is terminating. ut

5 Dummy Elimination for Equational Rewriting

Ferreira, Kesner, and Puel [7℄ extended dummy elimination [8℄ to AC-rewriting

by ompletely removing the AC-axioms. We show that their result is easily ob-

tained in our equational semanti labelling framework. Our de�nition of

dummy(R) is di�erent from the one in [7, 8℄, but easily seen to be equivalent.

De�nition 3. Let R be a TRS over a signature F . Let e be a distinguished

funtion symbol in F of arity m > 1 and let � be a fresh onstant. We write F

�

for (F nfeg)[f�g. The mapping ap: T (F ;V)! T (F

�

;V) is indutively de�ned

as follows: ap(t) = t if t 2 V, ap(e(t

1

; : : : ; t

m

)) = �, and ap(f(t

1

; : : : ; t

n

)) =

f(ap(t

1

); : : : ; ap(t

n

)) if f 6= e. The mapping dummy assigns to every term in

T (F ;V) a subset of T (F

�

;V):

dummy(t) = fap(t)g [ fap(s) j s is an argument of an e symbol in tg:

Finally, we de�ne

dummy(R) = fap(l)! r

0

j l ! r 2 R and r

0

2 dummy(r)g:

9



Note that dummy(R) may ontain invalid rewrite rules beause ap(l) an

have fewer variables than l. In that ase, however, dummy(R) is not terminating

and the results presented below hold vauously. Ferreira and Zantema [8℄ showed

that if dummy(R) is terminating then R is terminating. A simple proof of this

fat using self-labelling, a speial ase of semanti labelling, an be found in

Middeldorp et al. [16℄. Two extensions of this result to equational rewriting are

known. In [6℄ Ferreira showed that termination of R=E follows from termination

of dummy(R)=E provided that E is variable preserving and does not ontain the

funtion symbol e. The extension presented in Ferreira et al. [7℄ is stated below.

Theorem 6. Let R=E be an ETRS with E = AC(e). If dummy(R) is terminat-

ing then R=E is terminating.

In other words, AC-termination ofR is redued to termination of dummy(R).

Proof. We turn the set of terms T (F

�

;V) into an F-algebra A by de�ning

e

A

(t

1

; : : : ; t

n

) = � and f

A

(t

1

; : : : ; t

n

) = f(t

1

; : : : ; t

n

) for all other funtion sym-

bols f 2 F and terms t

1

; : : : ; t

n

2 T (F

�

;V). We equip A with the (well-founded)

partial order �=!

�

dummy(R)

. One an verify that A is monotone with respet to

�. An easy indution proof shows that [�℄(t) = ap(t)� for all terms t 2 T (F ;V).

We show that A is a quasi-model of R=E . Let � : V ! T (F

�

;V) be an arbitrary

assignment and let l ! r 2 R. We have [�℄(l) = ap(l)� and [�℄(r) = ap(r)� by

the above property. The rewrite rule ap(l)! ap(r) belongs to dummy(R) by

de�nition and hene [�℄(l) � [�℄(r). For the two equations l � r 2 E we learly

have [�℄(l) = � = [�℄(r). Hene A is a quasi-model of R=E .

De�ne the (monotone) labelling ` as follows: `

f

= f

A

for all funtion symbols

f 2 F . Aording to Theorem 3 it is suÆient to show thatR=E

lab

is terminating.

De�ne a preedene = on F

lab

as follows: f

s

= g

t

if and only if s (� [ B)

+

t,

where B is the proper superterm relation. Note that = inherits well-foundedness

from �. We laim that R is preedene terminating with respet to =. Rewrite

rules in De are of the form f

s

(x

1

; : : : ; x

n

)! f

t

(x

1

; : : : ; x

n

) with s � t and thus

f

s

= f

t

. For rules in R

lab

we make use of the following property:

if t E r then ap(t) E r

0

for some term r

0

2 dummy(r). (�)

Now let l ! r 2 R

lab

. By de�nition there exist an assignment � : V ! T (F

�

;V)

and a rewrite rule l

0

! r

0

2 R suh that l = lab

�

(l

0

) and r = lab

�

(r

0

). The

label of the root symbol of l is [�℄(l

0

) = ap(l

0

)�. Let s be the label of a funtion

symbol in r. By onstrution s = [�℄(t) = ap(t)� for some subterm t of r

0

.

Aording to (1) we have ap(t) E r

00

for some r

00

2 dummy(r

0

). By de�nition

ap(l

0

) ! r

00

2 dummy(R) and hene ap(l

0

)� � r

00

� D ap(t)� = s. Conse-

quently, root(l) = f for every funtion symbol f in r. This ompletes the proof of

preedene termination of R. Sine E

lab

= AC(e

�

), termination of R=E

lab

follows

from Lemma 1. ut

The reader is invited to ompare our proof with the one in [7℄. For the above

simple proof we indeed needed our new powerful version of equational semanti

labelling, i.e., Zantema's restrited version (Theorem 4) would not have worked.
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One may wonder whether the soundness proof of the version of equational

dummy elimination presented in [6℄ an also be simpli�ed by equational semanti

labelling. This turns out not to be the ase. One reason is that funtion symbols

of E that also appear in R will be labelled, ausing E

lab

(and E) to be essentially

di�erent from E . In partiular, if E onsists of AC-axioms then E

lab

ontains

non-AC axioms and hene AC-ompatible orders are not appliable to R=E .

Moreover, Lemma 1 does not extend to arbitrary ESs E and it is unlear how to

hange the de�nition of preedene termination suh that it does.

Reently, Nakamura and Toyama [18℄ improved dummy elimination by re-

striting r

0

in the de�nition of dummy(R) to terms in (dummy(r) n T (F

C

;V))[

fap(r)g with F

C

denoting the onstrutors of R. In other words, elements

of dummy(r) n fap(r)g that do not ontain a de�ned funtion symbol need

not be onsidered when forming the right-hand sides of the rewrite rules in

dummy(R). For example, the TRS R = ff(a) ! f(b); b ! e(a)g is trans-

formed into the non-terminating TRS dummy(R) = ff(a)! f(b); b ! �; b! ag

by dummy elimination whereas the above improvement yields the terminating

TRS ff(a) ! f(b); b ! �g. Aoto

1

suggested that a further improvement is

possible by stripping o� the outermost onstrutor ontext of every element in

dummy(r) n fap(r)g. For R = ff(a(x))! f(b); b ! e(a(f()))g this would yield

the terminating TRS ff(a(x))! f(b); b ! �; b! f()g whereas the transforma-

tion of [18℄ produes dummy(R) = ff(a(x)) ! f(b); b ! �; b ! a(f())g, whih

is learly not terminating.

These ideas are easily inorporated in our de�nition of dummy elimination.

Here F

D

= F n F

C

denotes the de�ned symbols of R.

De�nition 4. Let R be a TRS over a signature F . The mapping dummy

0

as-

signs to every term in T (F ;V) a subset of T (F

�

;V), as follows:

dummy

0

(t) = ap(t) [

�

ap(s)

�

�

�

�

s is a maximal subterm of an argument

of e in t suh that root(s) 2 F

D

n feg

�

:

We de�ne

dummy

0

(R) = fap(l)! r

0

j l ! r 2 R and r

0

2 dummy

0

(r)g:

Theorem 7. Let R=E be an ETRS with E = AC(e). If dummy

0

(R) is termi-

nating then R=E is terminating.

Proof. Very similar to the proof of Theorem 6. The di�erene is that we do not

label the funtion symbols in F

C

. In order to obtain preedene termination of

R we extend the preedene = on F

lab

by f

t

= g for every f 2 F

D

, t 2 T (F

�

;V),

and g 2 F

C

. In addition, (�) is replaed by the following property:

if t E r and root(t) 2 F

D

then ap(t) E r

0

for some term r

0

2 dummy

0

(r).

Taking these hanges into onsideration, termination of R=E is obtained as in

the proof of Theorem 6. ut

1

Remark made at the 14th Japanese Term Rewriting Meeting, Nara Institute of Si-

ene and Tehnology, Marh 15{16, 1999.
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6 Distribution Elimination for Equational Rewriting

Next we show that our results on equational semanti labelling an also be used

to extend the distribution elimination transformation of [23℄ to the AC ase.

Again, for that purpose we need our powerful version of equational semanti

labelling, i.e., Theorem 4 does not suÆe. Let R be a TRS over a signature F

and let e 2 F be a designated funtion symbol whose arity is at least one. A

rewrite rule l ! r 2 R is alled a distribution rule for e if l = C[e(x

1

; : : : ; x

m

)℄

and r = e(C[x

1

℄; : : : ; C[x

m

℄) for some non-empty ontext C in whih e does

not our and pairwise di�erent variables x

1

; : : : ; x

m

. Distribution elimination

is a tehnique that transforms R by eliminating all distribution rules for e and

removing the symbol e from the right-hand sides of the other rules. Let F

distr

=

F n feg. We indutively de�ne a mapping distr that assigns to every term in

T (F ;V) a non-empty subset of T (F

distr

;V), as follows:

distr(t) =

8

>

>

>

<

>

>

>

:

ftg if t 2 V;

m

[

i=1

distr(t

i

) if t = e(t

1

; : : : ; t

m

);

ff(s

1

; : : : ; s

n

) j s

i

2 distr(t

i

)g if t = f(t

1

; : : : ; t

n

) with f 6= e:

It is extended to rewrite systems as follows:

distr(R) = fl! r

0

j l! r 2 R is no distribution rule for e and r

0

2 distr(r)g:

A rewrite system is alled right-linear if no right-hand side of a rule ontains

multiple ourrenes of the same variable. The following theorem extends Zan-

tema's soundness result for distribution elimination to the AC ase.

Theorem 8. Let R=E be an ETRS with E = AC(e) suh that e does not our

in the left-hand sides of rewrite rules of R that are not distribution rules for e.

If distr(R) is terminating and right-linear then R=E is terminating.

Proof. We turn the set of �nite non-empty multisets over T (F

distr

;V) into an

F-algebra A by de�ning

f

A

(M

1

; : : : ;M

n

) =

(

ff(t

1

; : : : ; t

n

) j t

i

2M

i

for all 1 6 i 6 ng if f 6= e;

M

1

[M

2

if f = e

for all funtion symbols f 2 F and �nite non-empty multisets M

1

; : : : ;M

n

of

terms in T (F

distr

;V). (Note that n = 2 if f = e.) We equip A with the (well-

founded) partial order �� = �

=

mul

where � = !

+

distr(R)

. One easily shows that

(A;��) is a monotone F-algebra. It an be shown (f. the nontrivial proof of

Theorem 12 in [23℄) that

1. l =

A

r for every distribution rule l! r 2 R,

2. l ��

A

r for every other rule l ! r 2 R.
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For (2) we need the right-linearity assumption of distr(R). From the de�nition of

e

A

we obtain e(x; y) =

A

e(y; x) and e(e(x; y); z) =

A

e(x; e(y; z)). Hene (A;��)

is a quasi-model of R=E .

De�ne the (monotone) labelling ` as follows: `

f

= f

A

for all funtion symbols

f 6= e. Aording to Theorem 3 it is suÆient to show that R=E

lab

is terminating.

De�ne the preedene = on F

lab

as follows: f = g if and only if either f 6= e

and g = e or f = f

0

M

and g = g

0

N

with M ((� [ B)

+

)

mul

N . Note that = is well

founded. We laim that R is preedene terminating with respet to =. Rewrite

rules in De are of the form f

M

(x

1

; : : : ; x

n

) ! f

N

(x

1

; : : : ; x

n

) with M �

mul

N

and thus f

M

= f

N

. For rules in R

lab

we make use of the following property,

whih is not diÆult to prove:

3. if t C r then [�℄(r) B

mul

[�℄(t) for every assignment �.

Now let l ! r 2 R

lab

. By de�nition there is an assignment � : V ! T (F

distr

;V)

and a rewrite rule l

0

! r

0

2 R suh that l = lab

�

(l

0

) and r = lab

�

(r

0

). Sine

root(l

0

) 6= e, the label of the root symbol of l is [�℄(l

0

). If e ours in r

0

then

root(l) = e by de�nition. Let M be the label of a funtion symbol in r. By

onstrutionM = [�℄(t) for some subterm t of r

0

. We distinguish two ases. First

onsider the ase that l

0

! r

0

2 R is a distribution rule. Beause root(r

0

) = e, t is

a proper subterm of r

0

. Property (3) yields [�℄(r

0

) B

mul

[�℄(t). We have [�℄(l

0

) =

[�℄(r

0

) by (1). Hene [�℄(l

0

) ((� [ B)

+

)

mul

M as required. Next let l

0

! r

0

2 R

be a non-distribution rule. From (3) we infer that [�℄(r

0

) D

mul

[�℄(t) (if t = r

0

then [�℄(r

0

) = [�℄(t) holds). Aording to (2) we have [�℄(l

0

) �

mul

[�℄(r

0

). Hene

also in this ase we obtain [�℄(l

0

) ((� [ B)

+

)

mul

M . This ompletes the proof

of preedene termination of R. Sine E

lab

= E = AC(e), termination of R=E

lab

follows from Lemma 1. ut

Next we show that the right-linearity requirement in the preeding theorem

an be dropped if termination is strengthened to total termination. A TRS is

alled totally terminating if it is ompatible with a well-founded monotone al-

gebra in whih the underlying order is total. Sine adding a onstant to the

signature does not a�et total termination, from now on we assume that the

set of ground terms is non-empty. Total termination is equivalent (see [9, The-

orem 13℄) to ompatibility with a well-founded monotone total order on ground

terms. Here, \ompatibility" means that l� � r� holds for all rules l ! r 2 R

and all substitutions suh that l� is a ground term. It should be noted that

standard termination tehniques like polynomial interpretations, reursive path

order, and Knuth-Bendix order all yield total termination.

Theorem 9. Let R=E be an ETRS with E = AC(e) suh that e does not our

in the left-hand sides of rewrite rules of R that are not distribution rules for e.

If distr(R) is totally terminating then R=E is terminating.

Proof. There is a well-founded monotone total order � on T (F

distr

) whih is

ompatible with distr(R). We turn T (F

distr

) into an F-algebra A by de�ning

f

A

(t

1

; : : : ; t

n

) = f(t

1

; : : : ; t

n

) if f 6= e and f

A

(t

1

; : : : ; t

n

) = max ft

1

; t

2

g if f =
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e for all symbols f 2 F and terms t

1

; : : : ; t

n

in T (F

distr

). We equip A with

the (well-founded) partial order �. One an show that (A;�) is a monotone

F-algebra. It is not diÆult to verify that l =

A

r for every distribution rule

l ! r 2 R and the two equations l � r 2 E . An easy indution proof shows that

1. for all terms r 2 T (F ;V) and assignments � there exists a term s 2 distr(r)

suh that [�℄(r) = [�℄(s).

Using this property, we obtain (by indution on r) that l �

A

r for every non-

distribution rule l! r 2 R. Hene (A;�) is a quasi-model of R=E .

De�ne the (monotone) labelling ` as follows: `

f

= f

A

for all funtion symbols

f 6= e. Aording to Theorem 3 it is suÆient to show that R=E

lab

is terminating.

De�ne the preedene = on F

lab

as follows: f = g if and only if either f 6= e and

g = e or f = f

0

s

and g = g

0

t

with s (� [ B)

+

t. Note that = is well founded. The

following property is not diÆult to prove:

2. if t C r then [�℄(r) D [�℄(t) for every assignment �.

However, [�℄(r) B [�℄(t) need not hold (onsider e.g. t C e(t; t)) and as a on-

sequene the labelled distribution rules in R are not preedene terminating

with respet to =. Nevertheless, the preedene termination of the labelled non-

distribution rules in R

lab

as well as the rules in De is obtained as in the proof of

Theorem 8. Hene any AC-ompatible reursive path order =

AC

rpo

indued by the

preedene = that is de�ned on terms with variables (f. the proof of Lemma 1)

will orient these rules from left to right. Let l = C[e(x; y)℄ ! e(C[x℄; C[y℄) = r

be a distribution rule in R and let � be an arbitrary assignment. We laim that

lab

�

(l) =

AC

rpo

lab

�

(r). Sine C 6= �, root(lab

�

(l)) = e = root(lab

�

(r)) by de�ni-

tion. It suÆes to show that lab

�

(l) =

AC

rpo

lab

�

(C[x℄) and lab

�

(l) =

AC

rpo

lab

�

(C[y℄).

We have lab

�

(C[x℄) = C

1

[x℄, lab

�

(C[y℄) = C

2

[y℄ for some labelled ontexts C

1

and C

2

, and lab

�

(l) = C

1

[e(x; y)℄ if �(x) � �(y) and lab

�

(l) = C

2

[e(x; y)℄ other-

wise. We onsider only the ase �(x) � �(y) here. We have C

1

[e(x; y)℄ =

AC

rpo

C

1

[x℄

by the subterm property of =

AC

rpo

. If �(x) = �(y) then C

2

[y℄ = C

1

[y℄ and

thus also C

1

[e(x; y)℄ =

AC

rpo

C

2

[y℄ by the subterm property. If �(x) � �(y) then

C

1

[e(x; y)℄ =

AC

rpo

C

2

[y℄ beause the rewrite rule C

1

[e(x; y)℄ ! C

2

[y℄ is pree-

dene terminating. This an be seen as follows. The label of the root symbol

of C

1

[e(x; y)℄ is [�℄(C[x℄). Let q be the label of a funtion symbol in C

2

[y℄.

By onstrution q = [�℄(t) for some subterm t of C[y℄. We obtain [�℄(C[y℄) D

[�℄(t) = q from (2). The monotoniity of A yields [�℄(C[x℄) � [�℄(C[y℄). Hene

[�℄(C[x℄) (� [ B)

+

q as desired. We onlude that R=E

lab

is terminating. The-

orem 3 yields the termination of R=E . ut

The above theorem extends a similar result for TRSs in Zantema [23℄. A-

tually, in [23℄ it is shown that R is totally terminating if distr(R) is totally

terminating. Our semanti labelling proof does not give total termination of

R=E . Nevertheless, the more ompliated proof in [23℄ an be extended to deal

with AC(e), so R=E is in fat totally terminating.

In Middeldorp et al. [16℄ it is shown that for E = ? the right-linearity re-

quirement in Theorem 8 an be dropped if there are no distribution rules in R.

14



It remains to be seen whether this result is also true if E = AC(e). We note

that the semanti labelling proof in [16℄ does not extend to R=E beause the in-

terpretation of e de�ned there, an arbitrary projetion funtion, is inonsistent

with the ommutativity of e.
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