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Abstrat. Context-sensitive rewriting is a restrition of term rewriting

used to model evaluation strategies in funtional programming and in

programming languages like OBJ. For example, under ertain onditions

termination of an OBJ program is equivalent to innermost termination

of the orresponding ontext-sensitive rewrite system [18℄. To prove ter-

mination of ontext-sensitive rewriting, several methods have been pro-

posed in the literature whih transform ontext-sensitive rewrite systems

into ordinary rewrite systems suh that termination of the transformed

ordinary system implies termination of the original ontext-sensitive sys-

tem. Most of these transformations are not very satisfatory when it

omes to proving innermost termination. We investigate the relation-

ship between termination and innermost termination of ontext-sensitive

rewriting and we examine the appliability of the di�erent transforma-

tions for innermost termination proofs. Finally, we present a simple trans-

formation whih is both sound and omplete for innermost termination.

1 Introdution

Evaluation in funtional languages is often guided by spei� evaluation

strategies. For example, in the program onsisting of the rules

from(x)! x : from(s(x)) nth(0; x : y)! x nth(s(n); x : y)! nth(n; y)

the term nth(s(0); from(0)) admits a �nite redution to s(0) as well as

in�nite redutions. The in�nite redutions an for instane be avoided

by always ontrating the outermost redex. Context-sensitive rewriting

[16, 17℄ provides an alternative way of solving the non-termination prob-

lem and of dealing with in�nite data objets. Here, every n-ary funtion
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symbol f is equipped with a replaement map �(f) � f1; : : : ; ng whih

indiates whih arguments of f may be evaluated and a ontration of a

redex is allowed only if it does not take plae in a forbidden argument of a

funtion symbol somewhere above it. So by de�ning �(:) = f1g, ontra-

tions in the argument t of a term s : t are forbidden. Now in the example

in�nite redutions are no longer possible while normal forms an still be

omputed. (See [20℄ for the relationship between normalization under or-

dinary rewriting and under ontext-sensitive rewriting.) Context-sensitive

rewriting an also model the usual evaluation strategy for onditionals.

Example 1. 0 6 y! true p(0)! 0

s(x) 6 0! false p(s(x))! x

s(x) 6 s(y)! x 6 y if(true; x; y)! x

x� y! if(x 6 y; 0; s(p(x)� y)) if(false; x; y)! y

Beause of the \�"-rule, this system is not terminating. But in funtional

languages if's �rst argument is evaluated �rst and either the seond or

third argument is evaluated afterwards. Again, this an easily be mod-

eled with ontext-sensitive rewriting by the replaement map �(if) = f1g

whih forbids all redutions in the arguments t

2

and t

3

of if(t

1

; t

2

; t

3

).

In programming languages like OBJ [4, 5, 12℄, the user an supply

strategy annotations to ontrol the evaluation [6, 21, 22℄. For every n-

ary symbol f , a (positive) strategy annotation is a list '(f) of numbers

(i

1

; : : : ; i

k

) from f0; 1; : : : ; ng. When reduing a term f(t

1

; : : : ; t

n

) one �rst

has to evaluate the i

1

-th argument of f (if i

1

> 0), then one evaluates the

i

2

-th argument (if i

2

> 0), and so on, until a 0 is enountered. At this

point one tries to evaluate the whole term f(: : : ) at its root position. So

in order to enfore the desired evaluation strategy for if in Example 1, it

has to be equipped with the strategy annotation (1; 0).

Context-sensitive rewriting an simulate OBJ's evaluation strategy. A

strategy is elementary if for every de�ned

1

symbol f , '(f) ontains a

single ourrene of 0, at the end. Luas [18℄ showed that for elementary

strategies, the OBJ program terminates i� the orresponding ontext-

sensitive rewrite system (CSRS) is innermost terminating.

2

Here �(f) =

fi 2 '(f) j i > 0g. For example, the program with the rules f(a) !

f(a) and a ! b is terminating if '(f) = (1; 0) and '(a) = (0). The

orresponding CSRS with �(f) = f1g is not terminating, but innermost

terminating. Thus, to simulate OBJ evaluations with CSRSs, we have to

1

Every symbol on the root position of a left-hand side of a rule is alled de�ned.

2

The \if" diretion even holds without the restrition to elementary strategies [18℄.
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restrit ourselves to innermost redutions where (allowed) arguments to

a funtion are evaluated before evaluating the funtion.

Beause of this onnetion to OBJ and also beause innermost termi-

nation is easier to prove automatially than termination [1℄, it is worth-

while to investigate innermost termination of ontext-sensitive rewriting.

(An alternative approah to prove termination of OBJ-like programs by

diret indution proofs is proposed in [8℄.) Termination of CSRSs has been

studied in a number of papers (e.g., [3, 7, 9, 11, 15{17, 20, 23℄). Apart from

a diret semanti haraterization [23℄ and some reent extensions of stan-

dard termination methods for term rewriting to ontext-sensitive rewrit-

ing [3, 15℄, all other proposed methods transform CSRSs into ordinary

term rewrite systems (TRSs) suh that termination of the transformed

TRS implies termination of the original CSRS (i.e., all these transforma-

tions are sound). Diret approahes to termination analysis of CSRSs and

transformational approahes both have their advantages. Tehniques for

proving termination of ordinary term rewriting have been studied exten-

sively and the main advantage of the transformational approah is that

in this way, all termination tehniques for ordinary TRSs inluding future

developments an be used to infer termination of CSRSs. For instane,

the methods of [3, 15℄ are unable to handle systems like Example 1.

After introduing the termination problem of ontext-sensitive rewrit-

ing in Setion 2, in Setion 3 we review the results of Luas [18℄ on inner-

most termination of CSRSs and we show that the two transformations

�

1

and �

2

of [9℄ are sound for innermost termination as well. Despite

its soundness �

2

is not very useful for proving innermost termination,

beause termination and innermost termination oinide for the TRSs it

produes. In Setion 4 we show that for the lass of orthogonal CSRSs,

innermost termination already implies termination. This result is inde-

pendent from the transformation framework and is of general interest

when investigating the termination behavior of CSRSs. A onsequene of

this result is that for this partiular lass, �

1

is omplete for innermost

termination. In Setion 5 we present a new transformation �

3

whih is

both sound and omplete for innermost termination, for arbitrary CSRSs.

Surprisingly, suh a transformation an be obtained by just a small modi-

�ation of �

1

. In spite of the similarity between the two transformations,

the new ompleteness proof is non-trivial. We make some remarks on a

possible simpli�ation of �

3

and on ground innermost termination in Se-

tion 6. In Setion 7 we show that �

3

is equally powerful as �

1

when it

omes to (non-innermost) termination. Due to lak of spae, many proofs

have been omitted. They an be found in [10℄.
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2 Termination of Context-Sensitive Rewriting

Familiarity with the basis of term rewriting [2℄ is assumed. We require

that every signature F ontains a onstant. A funtion � : F ! P(N )

is a replaement map if �(f) is a subset of f1; : : : ; arity(f)g for all f 2

F . A CSRS (R; �) is a TRS R over a signature F equipped with a

replaement map �. The ontext-sensitive rewrite relation!

R;�

is de�ned

as the restrition of the usual rewrite relation !

R

to ontrations of

redexes at ative positions. A position � in a term t is ative if � = � (the

root position), or t = f(t

1

; : : : ; t

n

), � = i�

0

, i 2 �(f), and �

0

is ative in t

i

.

So s!

R;�

t i� there is a rule l ! r in R, a substitution �, and an ative

position � in s suh that sj

�

= l� and t = s[r�℄

�

. If all ative arguments

of l� are in �-normal form, then the redution step is innermost and we

write s

i

!

R;�

t. Here a �-normal form is a normal form w.r.t. !

R;�

. We

abbreviate !

R;�

to !

�

and

i

!

R;�

to

i

!

�

if R is lear from the ontext.

A CSRS (R; �) is left-linear if the left-hand sides of the rewrite rules in

R are linear terms (i.e., they do not ontain multiple ourrenes of the

same variable). Let l ! r and l

0

! r

0

be renamed versions of rewrite rules

of R suh that they have no variables in ommon and suppose lj

�

and

l

0

are uni�able with most general uni�er � for some non-variable ative

position � in l. The pair of terms hl[r

0

℄

�

�; r�i is a ritial pair of (R; �),

exept when l ! r and l

0

! r

0

are renamed versions of the same rewrite

rule and � = �. A non-overlapping CSRS has no ritial pairs and an

overlay CSRS has no ritial pairs with � 6= �. A CSRS is orthogonal

if it is left-linear and non-overlapping. Notions like \termination" for a

CSRS (R; �) always onern the relation !

�

(i.e., they orrespond to

\�-termination" in [17℄).

To prove termination of CSRSs, several transformations from CSRSs

to ordinary TRSs were suggested. We reall Giesl & Middeldorp's trans-

formation �

1

[9℄. It uses new unary symbols ative and mark to indiate

ative positions in a term on the objet level. If l ! r is a rule in the

CSRS then the transformed TRS ontains the rule ative(l) ! mark(r).

The symbol mark is used to traverse a term top-down in order to plae

the symbol ative at all ative positions.

De�nition 2 (�

1

). Let (R; �) be a CSRS over a signature F . The TRS

R

1

�

over the signature F

1

= F [ fative;markg has the following rules:

(℄) ative(l)! mark(r) 8 l ! r 2 R

(℄) mark(f(x

1

; : : : ; x

n

))! ative(f([x

1

℄

f

; : : : ; [x

n

℄

f

)) 8f 2 F

ative(x)! x

4



Here [x

i

℄

f

= mark(x

i

) if i 2 �(f) and [x

i

℄

f

= x

i

otherwise. The transfor-

mation (R; �) 7! R

1

�

is denoted by �

1

and we shorten !

R

1

�

to !

1

.

Beause every in�nite redution of a term t in the original CSRS

would orrespond to an in�nite redution of mark(t) in the transformed

TRS, �

1

is sound for termination: Termination of the transformed TRS

implies termination of the original CSRS. The seond transformation �

2

of [9, 11℄, �

L

of Luas [16℄, �

Z

of Zantema [23℄, and �

FR

of Ferreira &

Ribeiro [7℄ are also sound for termination.

3

However, only �

2

is omplete,

i.e., the other transformations do not transform every terminating CSRS

into a terminating TRS. Nevertheless, �

2

does not render the other trans-

formations superuous, sine in pratie, termination of �

2

(R; �) an be

harder to show than termination of the TRSs resulting from the other

transformations.

Example 3 ([9℄). The non-terminating TRS R = ff(b; ; x) ! f(x; x; x);

d ! b; d ! g demonstrates the inompleteness of �

1

. If �(f) = f3g

then the CSRS is terminating beause the yli redution of f(b; ; d) to

f(d; d; d) and further to f(b; ; d) annot be done, as one would have to

redue the �rst and seond argument of f. However, the TRS R

1

�

ative(f(b; ; x))! mark(f(x; x; x)) mark(f(x; y; z))! ative(f(x; y;mark(z)))

ative(d)! mark(b) mark(b)! ative(b)

ative(d)! mark() mark()! ative()

ative(x)! x mark(d)! ative(d)

is not terminating:

mark(f(b; ; d))!

1

ative(f(b; ;mark(d)))!

1

ative(f(b; ; ative(d)))

!

1

mark(f(ative(d); ative(d); ative(d)))!

+

1

mark(f(mark(b);mark(); d))

!

+

1

mark(f(ative(b); ative(); d))!

+

1

mark(f(b; ; d))

Note that in the third step the `ative' subterm ative(d) is opied to the

�rst and seond argument positions of f, whih are inative aording to

�(f). This an only happen if the redution step is non-innermost.

3 Innermost Termination of Context-Sensitive Rewriting

Now we examine the usefulness of the �ve transformations for innermost

termination of CSRSs. Luas [18℄ showed that �

L

and �

Z

are unsound

4

3

The interested reader is referred to [11℄ for de�nitions and a omparison of these

transformations.

4

�

L

is sound for the sublass of left-linear CSRSs with the property that all funtion

symbols in the left-hand sides are on ative positions [18℄.
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for innermost termination, i.e., innermost termination of the transformed

TRS does not imply innermost termination of the original CSRS. The ex-

ample showing the latter ([18, Example 12℄) also demonstrates that �

FR

is unsound for innermost termination. Moreover, none of these transfor-

mations is omplete for innermost termination. The following new result

shows that �

1

is sound for innermost termination.

5

Theorem 4. Let (R; �) be a CSRS. If R

1

�

is innermost terminating then

(R; �) is innermost terminating.

Proof. Let F be the signature ofR and let  be an arbitrary onstant in F .

We show that every innermost redution step s

i

!

�

t in (R; �) orresponds

to an innermost redution sequene mark(s�)#

M

i

!

+

1

mark(t�)#

M

in R

1

�

.

Here M onsists of all rules in R

1

�

of the form

mark(f(x

1

; : : : ; x

n

))! ative(f([x

1

℄

f

; : : : ; [x

n

℄

f

))

and � is the substitution that maps all variables to .

6

Note that sine

M is onuent and terminating, every term u has a unique M-normal

form u#

M

. First we show mark(u�)#

M

i

!

�

1

ative(u�) by indution on

u 2 T (F ;V). If u is a variable then u� =  and thus mark(u�)#

M

=

ative(u�). If u = f(u

1

; : : : ; u

n

) then mark(u�)#

M

= ative(f(u

0

1

; : : : ; u

0

n

))

with u

0

i

= mark(u

i

�)#

M

if i 2 �(f) and u

0

i

= u

i

� if i =2 �(f). Let i 2 �(f).

The indution hypothesis yields u

0

i

i

!

�

1

ative(u

i

�). Sine u

i

� is an R

1

�

-

normal form, ative(u

i

�)

i

!

1

u

i

� and thus u

0

i

i

!

�

1

u

i

�. It follows that

mark(u�)#

M

i

!

�

1

ative(f(u

1

�; : : : ; u

n

�)) = ative(u�).

Now let � be the position of the redex ontrated in the redu-

tion step s

i

!

�

t. We prove the lemma by indution on �. If � = �

then s ! t and thus also s� ! t� is an instane of a rule in R. We

have mark(s�)#

M

i

!

�

1

ative(s�) by the above observation. Moreover,

ative(s�)

i

!

1

mark(t�) sine ative(s�) ! mark(t�) is an instane of a

rule in R

1

�

. We also have mark(t�)

i

!

�

1

mark(t�)#

M

. Combining all redu-

tions yields mark(s�)#

M

i

!

+

1

mark(t�)#

M

.

If � = i�

0

then s = f(s

1

; : : : ; s

i

; : : : ; s

n

) and t = f(s

1

; : : : ; t

i

; : : : ; s

n

)

with s

i

i

!

�

t

i

. Note that we have i 2 �(f) due to the de�nition of ontext-

sensitive rewriting. For 1 6 j 6 n de�ne s

0

j

= mark(s

j

�)#

M

if j 2 �(f) and

5

The same laim is made in [18, Theorem 11℄. However, Luas only proved the sound-

ness of �

1

and �

2

for ground innermost termination (f. Setion 6) and later laimed

that �

1

and �

2

are unsound for innermost termination [19℄.

6

It is interesting to note that the instantiated ontext-sensitive redution step s�!

�

t� need not be innermost.

6



s

0

j

= s

j

� if j =2 �(f). The indution hypothesis yields s

0

i

i

!

+

1

mark(t

i

�)#

M

.

The result follows sine mark(s�)#

M

= ative(f(s

0

1

; : : : ; s

0

i

; : : : ; s

0

n

)) and

mark(t�)#

M

= ative(f(s

0

1

; : : : ;mark(t

i

�)#

M

; : : : ; s

0

n

)). ut

Not surprisingly, �

1

is inomplete for innermost termination.

Example 5 ([18℄). Consider (R; �) with R = ff(a) ! f(a); a ! bg and

�(f) = f1g. The CSRS (R; �) is innermost terminating but R

1

�

ative(f(a))! mark(f(a)) mark(f(x))! ative(f(mark(x)))

ative(a)! mark(b) mark(a)! ative(a)

ative(x)! x mark(b)! ative(b)

is not an innermost terminating TRS: ative(f(a))

i

!

1

mark(f(a))

i

!

1

ative(f(mark(a)))

i

!

1

ative(f(ative(a)))

i

!

1

ative(f(a)). Note that ap-

plying the rule ative(a)! mark(b) instead of ative(x)! x in the fourth

step would break the yle. So the rule ative(x)! x an delete innermost

redexes, ausing non-innermost ative redexes of the underlying CSRS to

beome innermost. We ome bak to this in Setion 5.

Transformation �

2

is sound for innermost termination as well. How-

ever, it is also inomplete and (in ontrast to �

1

) rather useless for inner-

most termination. These observations are onsequenes of the following

new result. In partiular, �

2

annot prove innermost termination of non-

terminating CSRSs.

Theorem 6. Let (R; �) be a CSRS. The TRS R

2

�

resulting from trans-

formation �

2

is innermost terminating i� it is terminating.

Soundness of �

2

for innermost termination is an immediate onse-

quene of Theorem 6 and the soundness of �

2

for termination.

So �

1

is the only sound and useful transformation for innermost ter-

mination of CSRSs so far. The next theorem shows that it is omplete for

an important sublass of CSRSs. More preisely, while in general termi-

nation of a CSRS (R; �) does not imply termination of the transformed

TRS R

1

�

(as demonstrated by Example 3), it at least implies innermost

termination of R

1

�

.

Theorem 7. Let (R; �) be a CSRS. If (R; �) is terminating then R

1

�

is

innermost terminating.

Theorem 7 implies that for sublasses of CSRSs where innermost ter-

mination is equivalent to termination, �

1

is omplete for innermost ter-

mination. In the next setion we show that this sublass ontains all

orthogonal systems (e.g., CSRSs like Example 1).
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4 Termination versus Innermost Termination

There are two motivations for studying innermost termination of CSRSs.

First, innermost ontext-sensitive rewriting models evaluation in OBJ and

thus, innermost termination analysis of CSRSs an be used for termina-

tion proofs of OBJ programs. But seond, innermost termination analysis

of CSRSs an also be helpful for (non-innermost) termination proofs of

CSRSs. This is similar to the situation with ordinary TRSs: Proving inner-

most termination is muh easier than proving termination, f. [1℄. There

are lasses of TRSs where innermost termination already implies termi-

nation and therefore for suh systems, one should rather use innermost

termination tehniques for investigating their termination behavior.

In order to use a orresponding approah for ontext-sensitive rewrit-

ing, in this setion we examine the onnetion between termination and

innermost termination for CSRSs. In general, termination implies inner-

most termination, but not vie versa as demonstrated by Example 5. For

ordinary TRSs, being non-overlapping suÆes to ensure that innermost

termination is equivalent to termination [13℄. Unfortunately, as noted by

Luas [19℄, this riterion annot be extended to CSRSs. However, we show

the new result that the desired equivalene between innermost and full

termination at least holds for orthogonal CSRSs. Thus, this inludes all

CSRSs whih orrespond to typial funtional programs like Example 1.

Theorem 9 states that for suh systems we only have to prove innermost

termination in order to verify their termination.

In order to prove the theorem, we need some preliminaries. For non-

overlapping CSRSs (R; �) the relation

i

!

�

is onuent. Hene, for every

term s there is at most one �-normal form reahable by innermost redu-

tions. We all this term the innermost �-normal form of s and denote it

by s#

i

�

. Now for any term s, let r(s) be the set of those terms whih result

from repeatedly replaing subterms of s by their innermost �-normal form

(if it exists). Here, one may also onsider subterms on inative positions.

However, the replaement must go \from the inside to the outside" (i.e.,

after replaing at position � one annot replae at positions below � any

more). Moreover, one may only perform replaements on suh positions

� where the original term sj

�

is terminating.

De�nition 8. Let (R; �) be a non-overlapping CSRS. For any term s we

de�ne non-empty sets r(s) and r

0

(s) as follows. If s is terminating, then

r(s) = r

0

(s) [ fu#

i

�

j u 2 r

0

(s) is innermost terminatingg. Otherwise,

we have r(s) = r

0

(s). Moreover, r

0

(s) = ff(u

1

; : : : ; u

n

) j u

i

2 r(s

i

)g if

s = f(s

1

; : : : ; s

n

) and r

0

(s) = fsg if s is a variable.

8



Theorem 9. An orthogonal CSRS (R; �) is terminating i� it is inner-

most terminating.

Proof. The \only if" diretion is trivial. We prove the \if" diretion. Let

s!

�

t where the ontrated redex is either terminating or a minimal non-

terminating term (i.e., all proper subterms of the redex on ative positions

are terminating). We prove the following statements for all innermost

terminating s

0

2 r(s):

(1) There exists a t

0

2 r(t) suh that s

0

i

!

�

�

t

0

.

(2) If the ontrated redex in s!

�

t is not terminating, then there even

exists a t

0

2 r(t) suh that s

0

i

!

+

�

t

0

.

With (1) and (2) one an prove the theorem: If (R; �) is not terminating,

then there is an in�nite redution s

0

!

�

s

1

!

�

: : : in whih only termi-

nating or minimal non-terminating redexes are ontrated. Assume that

(R; �) is innermost terminating. Then all r(s

i

) ontain only innermost

terminating terms and sine s

0

2 r(s

0

), we an onstrut an in�nite in-

nermost redution s

0

i

!

�

�

t

1

i

!

�

�

t

2

i

!

�

�

: : : with t

i

2 r(s

i

). However, sine

the redution ontains in�nitely many steps of type (2), this gives rise to

an in�nite innermost redution, ontraditing our assumption.

Now we prove (1) and (2) by strutural indution on s. Sine s!

�

t,

s must have the form f(s

1

; : : : ; s

n

). We �rst regard the ase where s!

�

t

is not a root redution step. Then we have t = f(s

1

; : : : ; t

i

; : : : ; s

n

) with

s

i

!

�

t

i

for some i 2 �(f). Let s

0

2 r(s) be innermost terminating. First,

let s

0

= f(u

1

; : : : ; u

n

) with u

j

2 r(s

j

) for all j. Beause i 2 �(f), u

i

is

innermost terminating. Hene by the indution hypothesis, u

i

2 r(s

i

)

implies that there exists a v

i

2 r(t

i

) suh that u

i

i

!

�

�

v

i

. Therefore,

we also have s

0

= f(u

1

; : : : ; u

i

; : : : ; u

n

)

i

!

�

�

f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t).

Moreover, if the ontrated redex in s!

�

t and hene, in s

i

!

�

t

i

is not

terminating, then by the indution hypothesis we even have u

i

i

!

+

�

v

i

and

therefore s

0

i

!

+

�

f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t).

Now let s

0

= f(u

1

; : : : ; u

n

)#

i

�

with u

j

2 r(s

j

) for all j. Hene, s is

terminating and thus, we only have to prove (1). As before, there is a

v

i

2 r(t

i

) suh that u

i

i

!

�

�

v

i

and f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t). Sine

innermost redution is onuent, we have s

0

= f(u

1

; : : : ; u

i

; : : : ; u

n

)#

i

�

=

f(u

1

; : : : ; v

i

; : : : ; u

n

)#

i

�

2 r(t), sine t inherits termination from s.

Finally, we regard the ase where s = f(s

1

; : : : ; s

n

) and s !

�

t is

a root redution step. Hene, there must be a rule l ! r 2 R with

l = f(l

1

; : : : ; l

n

) and a substitution � suh that s

i

= l

i

� and t = r�. First

let s

0

= f(u

1

; : : : ; u

n

) with u

i

2 r(s

i

) for all i. Sine (R; �) is orthogonal

9



and sine s

i

= l

i

�, there must be a substitution �

0

suh that u

i

= l

i

�

0

for

all i.

7

Beause s

0

is innermost terminating, x�

0

must also be innermost

terminating for all variables x whih our on ative positions of l. Let

�

00

be the substitution where x�

00

= x�

0

#

i

�

for all x in ative positions of

l and x�

00

= x�

0

for all other x. Then we have the innermost redution

s

0

= f(l

1

�

0

; : : : ; l

n

�

0

)

i

!

�

�

f(l

1

�

00

; : : : ; l

n

�

00

)

i

!

�

r�

00

. We laim that r�

00

2

r(t) = r(r�). To this end, it suÆes to show that x�

00

2 r(x�) for all

variables x in r, beause in the onstrution of r arbitrary subterms q

an be replaed by terms from r(q). Eah variable x ours in some l

i

and we have l

i

�

0

2 r(l

i

�). It follows that x�

0

2 r(x�) for all variables

x.

7

If x is on an inative position of l, then x�

00

= x�

0

2 r(x�). If x is on

an ative position of l, then x�

00

= x�

0

#

i

�

2 r(x�), sine x�

0

is innermost

terminating and beause in this ase, x� is terminating due to the fat

that s is either a terminating or a minimal non-terminating term.

Now let s

0

= f(u

1

; : : : ; u

n

)#

i

�

with u

i

2 r(s

i

) for all i. Hene, s is

terminating and thus we only have to prove (1). As before, u

i

= l

i

�

0

and

f(l

1

�

0

; : : : ; l

n

�

0

)

i

!

�

�

f(l

1

�

00

; : : : ; l

n

�

00

)

i

!

�

r�

00

with r�

00

2 r(t). Sine

innermost redution is onuent and t inherits termination from s, s

0

=

f(u

1

; : : : ; u

n

)#

i

�

= r�

00

#

i

�

2 r(t). ut

Very reently, Gramlih and Luas [14℄ showed that termination and

innermost termination oinide for loally onuent overlay CSRSs with

the additionally property that variables that our at an ative position

in a left-hand side l of a rewrite rule l ! r do not our at inative

positions in l or r. The latter ondition is quite restritive, e.g., it is not

satis�ed by the CSRS of Example 1.

5 A Sound and Complete Transformation

In Setion 3 we showed that the existing transformations are inomplete

for innermost termination and that only �

1

and �

2

are sound. Beause

of Theorem 6, �

2

annot distinguish innermost termination from ter-

mination. So when developing a sound and omplete transformation for

innermost termination, we take �

1

as starting point. As observed in Ex-

ample 5, we must make sure that in innermost redutions, rules of the

form ative(l) ! mark(r) get preferene over the rule ative(x) ! x, be-

ause then this ounterexample no longer works. Hene, we modify the

rule ative(x) ! x suh that the innermost redution strategy ensures

7

A formal proof of this observation an be found in [10℄.
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that ative(l) ! mark(r) is applied with higher preferene. In the modi-

�ation, ative(l) ! mark(r) no longer overlaps with the root position of

ative(x)! x, but with a non-root position of the new modi�ed rule(s).

De�nition 10 (�

3

). Let (R; �) be a CSRS over a signature F . The TRS

R

3

�

over the signature F

1

onsists of all (℄)-marked rewrite rules of R

1

�

together with the rewrite rules

f(x

1

; : : : ; ative(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

([) f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

for all f 2 F and 1 6 i 6 arity(f). We denote the transformation

(R; �) 7! R

3

�

by �

3

and we abbreviate !

R

3

�

to !

3

and

i

!

R

3

�

to

i

!

3

.

For the CSRS (R; �) of Example 5, R

3

�

di�ers from R

1

�

in two re-

spets: ative(x) ! x is replaed by f(ative(x)) ! f(x) and more-

over, the rule f(mark(x)) ! f(x) is added. As a onsequene, the yle

ative(f(a))

i

!

+

ative(f(a)) an no longer be obtained with R

3

�

, sine

ative(f(ative(a)))! ative(f(a)) is not an innermost rewrite step in R

3

�

.

Indeed, R

3

�

is innermost terminating and in general, �

3

is sound and

omplete for innermost termination.

Theorem 11. A CSRS (R; �) is innermost terminating i� R

3

�

is inner-

most terminating.

In [10℄ we show for several CSRSs (R; �) inluding Example 1 how

innermost termination of R

3

�

an be proved with dependeny pairs [1℄.

With the new rules f(x

1

; : : : ; ative(x

i

); : : : ; x

n

) ! f(x

1

; : : : ; x

n

) we

an remove almost every ative-symbol, ompensating to a large extent

the lak of the rule ative(x) ! x. The ([)-marked rules an never be

used in an innermost redution if x

i

is instantiated to a non-variable

term from T (F ;V). However, they are required if x

i

is instantiated by a

variable or by terms ontaining the symbols mark and ative. As a matter

of fat, the transformation without the ([)-marked rules is neither sound

nor omplete for innermost termination (see [10℄ for ounterexamples).

6 Ground Innermost Termination

Unlike for termination, to onlude innermost termination it is not suÆ-

ient to prove that all ground terms are innermost terminating.

11



Example 12. The TRS ff(f(x)) ! f(f(x)); f(a) ! ag is not innermost

terminating but ground innermost terminating over the signature ff; ag,

i.e., all ground terms permit only �nite innermost redutions.

It is well known that innermost termination of a TRS R over a sig-

nature F is equivalent to ground innermost termination of R over the

signature F [ f; hg where  is a fresh onstant and h is a fresh unary

funtion symbol. The reason is that a term t with the variables x

1

; : : : ; x

n

starts an in�nite innermost redution i� the ground term t� starts an

in�nite innermost redution where �(x

i

) = h

i

(). So the fresh symbols 

and h are needed to reate arbitrarily many di�erent ground terms (in

order to handle non-linear rewrite rules). A similar orrespondene holds

for innermost ontext-sensitive redutions with �(h) = ? or �(h) = f1g.

The following result states that �

1

and �

2

annot distinguish ground

innermost termination from innermost termination and thus they are

sound but inomplete for ground innermost termination as well.

Theorem 13. Let (R; �) be a CSRS. For i 2 f1; 2g, the TRS R

i

�

is

ground innermost terminating i� it is innermost terminating.

On the other hand, the proof of Theorem 11 an easily be adapted to

show that �

3

is sound and omplete for ground innermost termination.

Theorem 14. A CSRS (R; �) is ground innermost terminating i� R

3

�

is ground innermost terminating.

One might think that the ([)-marked rules in De�nition 10 are not

needed to obtain a sound and omplete transformation for ground inner-

most termination. While soundness is easily proved, ompleteness does

not hold, as shown in the following example.

Example 15. Consider the (ground) innermost terminating CSRS (R; �)

with R = ff(x; x) ! b; g(f(x; y)) ! g(f(y; y))g and �(f) = �(g) = f1g.

The transformed TRS without the ([)-marked rules however is not ground

innermost terminating as an be seen from the following yle, with t =

mark(ative(b)):

mark(g(f(t; t)))

i

!

+

ative(g(ative(f(mark(t); t))))

i

! ative(g(f(mark(t); t)))

i

! mark(g(f(t; t)))

As explained above, a transformation that is sound for ground inner-

most termination an also be used for innermost termination analysis by

12



adding fresh funtion symbols to the signature. However, for ompleteness

the situation is di�erent. Here, it is desirable that the transformation is

not only omplete for ground, but also for full innermost termination. The

reason is that while there do exist tehniques to analyze ground inner-

most termination [8℄, the best-known tehnique for automated innermost

termination analysis [1℄ really heks full (non-ground) innermost termi-

nation of TRSs. A omplete transformation for innermost termination

transforms every innermost terminating CSRS into an innermost termi-

nating TRS and hene, innermost termination of this TRS an poten-

tially be heked by every tehnique for innermost termination analysis

of ordinary TRSs. But if the transformed TRS is only ground innermost

terminating, (full) innermost termination analysis tehniques for TRSs

annot be applied suessfully.

7 Conlusion and Comparison

Figure 1 ontains a summary of the soundness and ompleteness results

overed in the preeding setions. The negative results for ground inner-

most termination for �

L

, �

Z

, and �

FR

are shown by the same examples

used to demonstrate the orresponding results for innermost termination,

f. the �rst paragraph of Setion 3. Of the existing transformations, only

�

1

and �

2

from [9℄ are sound for innermost termination of CSRSs. We

showed that �

2

is not very useful for proving innermost termination, but

that termination of a CSRS (R; �) already implies innermost termination

of �

1

(R; �). So for lasses of CSRSs where termination and innermost

termination are equivalent, �

1

is already omplete for innermost termi-

nation. We proved that this equivalene holds for the lass of orthogonal

CSRSs. While in general �

1

is still inomplete, we developed a new trans-

formation �

3

whih is sound and omplete for innermost termination. The

results on termination for �

3

follow from Theorem 16 below.

In order to assess the power of our transformations, Figure 2 illustrates

the relationship between the following twelve properties (i = 1; 2; 3):

(1) (R; �) is terminating

(5) (R; �) is innermost terminating

(9) (R; �) is ground innermost terminating

(1+i) R

i

�

is terminating

(5+i) R

i

�

is innermost terminating

(9+i) R

i

�

is ground innermost terminating

13



ground innermost innermost

termination termination termination

sound omplete sound omplete sound omplete

�

L

X � � � � �

�

Z

X � � � � �

�

FR

X � � � � �

�

1

X � X � X �

�

2

X X X � X �

�

3

X � X X X X

Fig. 1. Summary.

(11)

KS

��

(2)

+3
KS

��

(1)

+3
KS

��

(6)

+3
KS

��

(5)

+3
KS

��

(9)

KS

��
(7) (4) (3)3;ck (10) (8) (12)

Fig. 2. Comparison.

Impliation (2) ) (1) is the soundness of transformation �

1

for termi-

nation [9℄, impliation (1) ) (6) is Theorem 7, impliation (6) ) (5) is

Theorem 4, and impliation (5)) (9) is trivial.

Equivalene (1) , (3) is the soundness and ompleteness of �

2

for

termination [9℄, equivalene (3), (7) is Theorem 6, equivalene (5), (8)

is Theorem 11, equivalenes (10), (6) and (11), (7) are Theorem 13,

and equivalene (9), (12) is Theorem 14. Equivalene (2), (4) means

that �

1

and �

3

are equally powerful when proving termination. This may

not ome as a surprise, but the proof is surprisingly diÆult.

Theorem 16. Let (R; �) be a CSRS. The TRS R

3

�

is terminating i� R

1

�

is terminating.

None of the missing impliations in Figure 2 hold, exept those that

follow by transitivity: (1) 6) (2) and (5) 6) (6) are the inompleteness of

�

1

for termination (Example 3) and innermost termination (Example 5).

Moreover, (6) 6) (1) follows by using �(f) = f1; 2; 3g in Example 3 and

(9) 6) (5) follows from Example 12 with �(f) = f1g.

To onlude, with our new transformation �

3

, innermost termina-

tion of ontext-sensitive rewriting an be redued to innermost termi-

nation of ordinary rewriting. Moreover, for orthogonal CSRSs innermost

termination already suÆes for termination. So for suh systems, inner-

most termination of the transformed TRS even implies termination of

the CSRS. Hene, our result now enables the use of powerful methods for

14



innermost termination analysis of TRSs for (innermost) termination of

ontext-sensitive rewriting.
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