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Abstra
t. Context-sensitive rewriting is a restri
tion of term rewriting

used to model evaluation strategies in fun
tional programming and in

programming languages like OBJ. For example, under 
ertain 
onditions

termination of an OBJ program is equivalent to innermost termination

of the 
orresponding 
ontext-sensitive rewrite system [18℄. To prove ter-

mination of 
ontext-sensitive rewriting, several methods have been pro-

posed in the literature whi
h transform 
ontext-sensitive rewrite systems

into ordinary rewrite systems su
h that termination of the transformed

ordinary system implies termination of the original 
ontext-sensitive sys-

tem. Most of these transformations are not very satisfa
tory when it


omes to proving innermost termination. We investigate the relation-

ship between termination and innermost termination of 
ontext-sensitive

rewriting and we examine the appli
ability of the di�erent transforma-

tions for innermost termination proofs. Finally, we present a simple trans-

formation whi
h is both sound and 
omplete for innermost termination.

1 Introdu
tion

Evaluation in fun
tional languages is often guided by spe
i�
 evaluation

strategies. For example, in the program 
onsisting of the rules

from(x)! x : from(s(x)) nth(0; x : y)! x nth(s(n); x : y)! nth(n; y)

the term nth(s(0); from(0)) admits a �nite redu
tion to s(0) as well as

in�nite redu
tions. The in�nite redu
tions 
an for instan
e be avoided

by always 
ontra
ting the outermost redex. Context-sensitive rewriting

[16, 17℄ provides an alternative way of solving the non-termination prob-

lem and of dealing with in�nite data obje
ts. Here, every n-ary fun
tion
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symbol f is equipped with a repla
ement map �(f) � f1; : : : ; ng whi
h

indi
ates whi
h arguments of f may be evaluated and a 
ontra
tion of a

redex is allowed only if it does not take pla
e in a forbidden argument of a

fun
tion symbol somewhere above it. So by de�ning �(:) = f1g, 
ontra
-

tions in the argument t of a term s : t are forbidden. Now in the example

in�nite redu
tions are no longer possible while normal forms 
an still be


omputed. (See [20℄ for the relationship between normalization under or-

dinary rewriting and under 
ontext-sensitive rewriting.) Context-sensitive

rewriting 
an also model the usual evaluation strategy for 
onditionals.

Example 1. 0 6 y! true p(0)! 0

s(x) 6 0! false p(s(x))! x

s(x) 6 s(y)! x 6 y if(true; x; y)! x

x� y! if(x 6 y; 0; s(p(x)� y)) if(false; x; y)! y

Be
ause of the \�"-rule, this system is not terminating. But in fun
tional

languages if's �rst argument is evaluated �rst and either the se
ond or

third argument is evaluated afterwards. Again, this 
an easily be mod-

eled with 
ontext-sensitive rewriting by the repla
ement map �(if) = f1g

whi
h forbids all redu
tions in the arguments t

2

and t

3

of if(t

1

; t

2

; t

3

).

In programming languages like OBJ [4, 5, 12℄, the user 
an supply

strategy annotations to 
ontrol the evaluation [6, 21, 22℄. For every n-

ary symbol f , a (positive) strategy annotation is a list '(f) of numbers

(i

1

; : : : ; i

k

) from f0; 1; : : : ; ng. When redu
ing a term f(t

1

; : : : ; t

n

) one �rst

has to evaluate the i

1

-th argument of f (if i

1

> 0), then one evaluates the

i

2

-th argument (if i

2

> 0), and so on, until a 0 is en
ountered. At this

point one tries to evaluate the whole term f(: : : ) at its root position. So

in order to enfor
e the desired evaluation strategy for if in Example 1, it

has to be equipped with the strategy annotation (1; 0).

Context-sensitive rewriting 
an simulate OBJ's evaluation strategy. A

strategy is elementary if for every de�ned

1

symbol f , '(f) 
ontains a

single o

urren
e of 0, at the end. Lu
as [18℄ showed that for elementary

strategies, the OBJ program terminates i� the 
orresponding 
ontext-

sensitive rewrite system (CSRS) is innermost terminating.

2

Here �(f) =

fi 2 '(f) j i > 0g. For example, the program with the rules f(a) !

f(a) and a ! b is terminating if '(f) = (1; 0) and '(a) = (0). The


orresponding CSRS with �(f) = f1g is not terminating, but innermost

terminating. Thus, to simulate OBJ evaluations with CSRSs, we have to

1

Every symbol on the root position of a left-hand side of a rule is 
alled de�ned.

2

The \if" dire
tion even holds without the restri
tion to elementary strategies [18℄.

2



restri
t ourselves to innermost redu
tions where (allowed) arguments to

a fun
tion are evaluated before evaluating the fun
tion.

Be
ause of this 
onne
tion to OBJ and also be
ause innermost termi-

nation is easier to prove automati
ally than termination [1℄, it is worth-

while to investigate innermost termination of 
ontext-sensitive rewriting.

(An alternative approa
h to prove termination of OBJ-like programs by

dire
t indu
tion proofs is proposed in [8℄.) Termination of CSRSs has been

studied in a number of papers (e.g., [3, 7, 9, 11, 15{17, 20, 23℄). Apart from

a dire
t semanti
 
hara
terization [23℄ and some re
ent extensions of stan-

dard termination methods for term rewriting to 
ontext-sensitive rewrit-

ing [3, 15℄, all other proposed methods transform CSRSs into ordinary

term rewrite systems (TRSs) su
h that termination of the transformed

TRS implies termination of the original CSRS (i.e., all these transforma-

tions are sound). Dire
t approa
hes to termination analysis of CSRSs and

transformational approa
hes both have their advantages. Te
hniques for

proving termination of ordinary term rewriting have been studied exten-

sively and the main advantage of the transformational approa
h is that

in this way, all termination te
hniques for ordinary TRSs in
luding future

developments 
an be used to infer termination of CSRSs. For instan
e,

the methods of [3, 15℄ are unable to handle systems like Example 1.

After introdu
ing the termination problem of 
ontext-sensitive rewrit-

ing in Se
tion 2, in Se
tion 3 we review the results of Lu
as [18℄ on inner-

most termination of CSRSs and we show that the two transformations

�

1

and �

2

of [9℄ are sound for innermost termination as well. Despite

its soundness �

2

is not very useful for proving innermost termination,

be
ause termination and innermost termination 
oin
ide for the TRSs it

produ
es. In Se
tion 4 we show that for the 
lass of orthogonal CSRSs,

innermost termination already implies termination. This result is inde-

pendent from the transformation framework and is of general interest

when investigating the termination behavior of CSRSs. A 
onsequen
e of

this result is that for this parti
ular 
lass, �

1

is 
omplete for innermost

termination. In Se
tion 5 we present a new transformation �

3

whi
h is

both sound and 
omplete for innermost termination, for arbitrary CSRSs.

Surprisingly, su
h a transformation 
an be obtained by just a small modi-

�
ation of �

1

. In spite of the similarity between the two transformations,

the new 
ompleteness proof is non-trivial. We make some remarks on a

possible simpli�
ation of �

3

and on ground innermost termination in Se
-

tion 6. In Se
tion 7 we show that �

3

is equally powerful as �

1

when it


omes to (non-innermost) termination. Due to la
k of spa
e, many proofs

have been omitted. They 
an be found in [10℄.
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2 Termination of Context-Sensitive Rewriting

Familiarity with the basi
s of term rewriting [2℄ is assumed. We require

that every signature F 
ontains a 
onstant. A fun
tion � : F ! P(N )

is a repla
ement map if �(f) is a subset of f1; : : : ; arity(f)g for all f 2

F . A CSRS (R; �) is a TRS R over a signature F equipped with a

repla
ement map �. The 
ontext-sensitive rewrite relation!

R;�

is de�ned

as the restri
tion of the usual rewrite relation !

R

to 
ontra
tions of

redexes at a
tive positions. A position � in a term t is a
tive if � = � (the

root position), or t = f(t

1

; : : : ; t

n

), � = i�

0

, i 2 �(f), and �

0

is a
tive in t

i

.

So s!

R;�

t i� there is a rule l ! r in R, a substitution �, and an a
tive

position � in s su
h that sj

�

= l� and t = s[r�℄

�

. If all a
tive arguments

of l� are in �-normal form, then the redu
tion step is innermost and we

write s

i

!

R;�

t. Here a �-normal form is a normal form w.r.t. !

R;�

. We

abbreviate !

R;�

to !

�

and

i

!

R;�

to

i

!

�

if R is 
lear from the 
ontext.

A CSRS (R; �) is left-linear if the left-hand sides of the rewrite rules in

R are linear terms (i.e., they do not 
ontain multiple o

urren
es of the

same variable). Let l ! r and l

0

! r

0

be renamed versions of rewrite rules

of R su
h that they have no variables in 
ommon and suppose lj

�

and

l

0

are uni�able with most general uni�er � for some non-variable a
tive

position � in l. The pair of terms hl[r

0

℄

�

�; r�i is a 
riti
al pair of (R; �),

ex
ept when l ! r and l

0

! r

0

are renamed versions of the same rewrite

rule and � = �. A non-overlapping CSRS has no 
riti
al pairs and an

overlay CSRS has no 
riti
al pairs with � 6= �. A CSRS is orthogonal

if it is left-linear and non-overlapping. Notions like \termination" for a

CSRS (R; �) always 
on
ern the relation !

�

(i.e., they 
orrespond to

\�-termination" in [17℄).

To prove termination of CSRSs, several transformations from CSRSs

to ordinary TRSs were suggested. We re
all Giesl & Middeldorp's trans-

formation �

1

[9℄. It uses new unary symbols a
tive and mark to indi
ate

a
tive positions in a term on the obje
t level. If l ! r is a rule in the

CSRS then the transformed TRS 
ontains the rule a
tive(l) ! mark(r).

The symbol mark is used to traverse a term top-down in order to pla
e

the symbol a
tive at all a
tive positions.

De�nition 2 (�

1

). Let (R; �) be a CSRS over a signature F . The TRS

R

1

�

over the signature F

1

= F [ fa
tive;markg has the following rules:

(℄) a
tive(l)! mark(r) 8 l ! r 2 R

(℄) mark(f(x

1

; : : : ; x

n

))! a
tive(f([x

1

℄

f

; : : : ; [x

n

℄

f

)) 8f 2 F

a
tive(x)! x

4



Here [x

i

℄

f

= mark(x

i

) if i 2 �(f) and [x

i

℄

f

= x

i

otherwise. The transfor-

mation (R; �) 7! R

1

�

is denoted by �

1

and we shorten !

R

1

�

to !

1

.

Be
ause every in�nite redu
tion of a term t in the original CSRS

would 
orrespond to an in�nite redu
tion of mark(t) in the transformed

TRS, �

1

is sound for termination: Termination of the transformed TRS

implies termination of the original CSRS. The se
ond transformation �

2

of [9, 11℄, �

L

of Lu
as [16℄, �

Z

of Zantema [23℄, and �

FR

of Ferreira &

Ribeiro [7℄ are also sound for termination.

3

However, only �

2

is 
omplete,

i.e., the other transformations do not transform every terminating CSRS

into a terminating TRS. Nevertheless, �

2

does not render the other trans-

formations super
uous, sin
e in pra
ti
e, termination of �

2

(R; �) 
an be

harder to show than termination of the TRSs resulting from the other

transformations.

Example 3 ([9℄). The non-terminating TRS R = ff(b; 
; x) ! f(x; x; x);

d ! b; d ! 
g demonstrates the in
ompleteness of �

1

. If �(f) = f3g

then the CSRS is terminating be
ause the 
y
li
 redu
tion of f(b; 
; d) to

f(d; d; d) and further to f(b; 
; d) 
annot be done, as one would have to

redu
e the �rst and se
ond argument of f. However, the TRS R

1

�

a
tive(f(b; 
; x))! mark(f(x; x; x)) mark(f(x; y; z))! a
tive(f(x; y;mark(z)))

a
tive(d)! mark(b) mark(b)! a
tive(b)

a
tive(d)! mark(
) mark(
)! a
tive(
)

a
tive(x)! x mark(d)! a
tive(d)

is not terminating:

mark(f(b; 
; d))!

1

a
tive(f(b; 
;mark(d)))!

1

a
tive(f(b; 
; a
tive(d)))

!

1

mark(f(a
tive(d); a
tive(d); a
tive(d)))!

+

1

mark(f(mark(b);mark(
); d))

!

+

1

mark(f(a
tive(b); a
tive(
); d))!

+

1

mark(f(b; 
; d))

Note that in the third step the `a
tive' subterm a
tive(d) is 
opied to the

�rst and se
ond argument positions of f, whi
h are ina
tive a

ording to

�(f). This 
an only happen if the redu
tion step is non-innermost.

3 Innermost Termination of Context-Sensitive Rewriting

Now we examine the usefulness of the �ve transformations for innermost

termination of CSRSs. Lu
as [18℄ showed that �

L

and �

Z

are unsound

4

3

The interested reader is referred to [11℄ for de�nitions and a 
omparison of these

transformations.

4

�

L

is sound for the sub
lass of left-linear CSRSs with the property that all fun
tion

symbols in the left-hand sides are on a
tive positions [18℄.
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for innermost termination, i.e., innermost termination of the transformed

TRS does not imply innermost termination of the original CSRS. The ex-

ample showing the latter ([18, Example 12℄) also demonstrates that �

FR

is unsound for innermost termination. Moreover, none of these transfor-

mations is 
omplete for innermost termination. The following new result

shows that �

1

is sound for innermost termination.

5

Theorem 4. Let (R; �) be a CSRS. If R

1

�

is innermost terminating then

(R; �) is innermost terminating.

Proof. Let F be the signature ofR and let 
 be an arbitrary 
onstant in F .

We show that every innermost redu
tion step s

i

!

�

t in (R; �) 
orresponds

to an innermost redu
tion sequen
e mark(s�)#

M

i

!

+

1

mark(t�)#

M

in R

1

�

.

Here M 
onsists of all rules in R

1

�

of the form

mark(f(x

1

; : : : ; x

n

))! a
tive(f([x

1

℄

f

; : : : ; [x

n

℄

f

))

and � is the substitution that maps all variables to 
.

6

Note that sin
e

M is 
on
uent and terminating, every term u has a unique M-normal

form u#

M

. First we show mark(u�)#

M

i

!

�

1

a
tive(u�) by indu
tion on

u 2 T (F ;V). If u is a variable then u� = 
 and thus mark(u�)#

M

=

a
tive(u�). If u = f(u

1

; : : : ; u

n

) then mark(u�)#

M

= a
tive(f(u

0

1

; : : : ; u

0

n

))

with u

0

i

= mark(u

i

�)#

M

if i 2 �(f) and u

0

i

= u

i

� if i =2 �(f). Let i 2 �(f).

The indu
tion hypothesis yields u

0

i

i

!

�

1

a
tive(u

i

�). Sin
e u

i

� is an R

1

�

-

normal form, a
tive(u

i

�)

i

!

1

u

i

� and thus u

0

i

i

!

�

1

u

i

�. It follows that

mark(u�)#

M

i

!

�

1

a
tive(f(u

1

�; : : : ; u

n

�)) = a
tive(u�).

Now let � be the position of the redex 
ontra
ted in the redu
-

tion step s

i

!

�

t. We prove the lemma by indu
tion on �. If � = �

then s ! t and thus also s� ! t� is an instan
e of a rule in R. We

have mark(s�)#

M

i

!

�

1

a
tive(s�) by the above observation. Moreover,

a
tive(s�)

i

!

1

mark(t�) sin
e a
tive(s�) ! mark(t�) is an instan
e of a

rule in R

1

�

. We also have mark(t�)

i

!

�

1

mark(t�)#

M

. Combining all redu
-

tions yields mark(s�)#

M

i

!

+

1

mark(t�)#

M

.

If � = i�

0

then s = f(s

1

; : : : ; s

i

; : : : ; s

n

) and t = f(s

1

; : : : ; t

i

; : : : ; s

n

)

with s

i

i

!

�

t

i

. Note that we have i 2 �(f) due to the de�nition of 
ontext-

sensitive rewriting. For 1 6 j 6 n de�ne s

0

j

= mark(s

j

�)#

M

if j 2 �(f) and

5

The same 
laim is made in [18, Theorem 11℄. However, Lu
as only proved the sound-

ness of �

1

and �

2

for ground innermost termination (
f. Se
tion 6) and later 
laimed

that �

1

and �

2

are unsound for innermost termination [19℄.

6

It is interesting to note that the instantiated 
ontext-sensitive redu
tion step s�!

�

t� need not be innermost.

6



s

0

j

= s

j

� if j =2 �(f). The indu
tion hypothesis yields s

0

i

i

!

+

1

mark(t

i

�)#

M

.

The result follows sin
e mark(s�)#

M

= a
tive(f(s

0

1

; : : : ; s

0

i

; : : : ; s

0

n

)) and

mark(t�)#

M

= a
tive(f(s

0

1

; : : : ;mark(t

i

�)#

M

; : : : ; s

0

n

)). ut

Not surprisingly, �

1

is in
omplete for innermost termination.

Example 5 ([18℄). Consider (R; �) with R = ff(a) ! f(a); a ! bg and

�(f) = f1g. The CSRS (R; �) is innermost terminating but R

1

�

a
tive(f(a))! mark(f(a)) mark(f(x))! a
tive(f(mark(x)))

a
tive(a)! mark(b) mark(a)! a
tive(a)

a
tive(x)! x mark(b)! a
tive(b)

is not an innermost terminating TRS: a
tive(f(a))

i

!

1

mark(f(a))

i

!

1

a
tive(f(mark(a)))

i

!

1

a
tive(f(a
tive(a)))

i

!

1

a
tive(f(a)). Note that ap-

plying the rule a
tive(a)! mark(b) instead of a
tive(x)! x in the fourth

step would break the 
y
le. So the rule a
tive(x)! x 
an delete innermost

redexes, 
ausing non-innermost a
tive redexes of the underlying CSRS to

be
ome innermost. We 
ome ba
k to this in Se
tion 5.

Transformation �

2

is sound for innermost termination as well. How-

ever, it is also in
omplete and (in 
ontrast to �

1

) rather useless for inner-

most termination. These observations are 
onsequen
es of the following

new result. In parti
ular, �

2


annot prove innermost termination of non-

terminating CSRSs.

Theorem 6. Let (R; �) be a CSRS. The TRS R

2

�

resulting from trans-

formation �

2

is innermost terminating i� it is terminating.

Soundness of �

2

for innermost termination is an immediate 
onse-

quen
e of Theorem 6 and the soundness of �

2

for termination.

So �

1

is the only sound and useful transformation for innermost ter-

mination of CSRSs so far. The next theorem shows that it is 
omplete for

an important sub
lass of CSRSs. More pre
isely, while in general termi-

nation of a CSRS (R; �) does not imply termination of the transformed

TRS R

1

�

(as demonstrated by Example 3), it at least implies innermost

termination of R

1

�

.

Theorem 7. Let (R; �) be a CSRS. If (R; �) is terminating then R

1

�

is

innermost terminating.

Theorem 7 implies that for sub
lasses of CSRSs where innermost ter-

mination is equivalent to termination, �

1

is 
omplete for innermost ter-

mination. In the next se
tion we show that this sub
lass 
ontains all

orthogonal systems (e.g., CSRSs like Example 1).
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4 Termination versus Innermost Termination

There are two motivations for studying innermost termination of CSRSs.

First, innermost 
ontext-sensitive rewriting models evaluation in OBJ and

thus, innermost termination analysis of CSRSs 
an be used for termina-

tion proofs of OBJ programs. But se
ond, innermost termination analysis

of CSRSs 
an also be helpful for (non-innermost) termination proofs of

CSRSs. This is similar to the situation with ordinary TRSs: Proving inner-

most termination is mu
h easier than proving termination, 
f. [1℄. There

are 
lasses of TRSs where innermost termination already implies termi-

nation and therefore for su
h systems, one should rather use innermost

termination te
hniques for investigating their termination behavior.

In order to use a 
orresponding approa
h for 
ontext-sensitive rewrit-

ing, in this se
tion we examine the 
onne
tion between termination and

innermost termination for CSRSs. In general, termination implies inner-

most termination, but not vi
e versa as demonstrated by Example 5. For

ordinary TRSs, being non-overlapping suÆ
es to ensure that innermost

termination is equivalent to termination [13℄. Unfortunately, as noted by

Lu
as [19℄, this 
riterion 
annot be extended to CSRSs. However, we show

the new result that the desired equivalen
e between innermost and full

termination at least holds for orthogonal CSRSs. Thus, this in
ludes all

CSRSs whi
h 
orrespond to typi
al fun
tional programs like Example 1.

Theorem 9 states that for su
h systems we only have to prove innermost

termination in order to verify their termination.

In order to prove the theorem, we need some preliminaries. For non-

overlapping CSRSs (R; �) the relation

i

!

�

is 
on
uent. Hen
e, for every

term s there is at most one �-normal form rea
hable by innermost redu
-

tions. We 
all this term the innermost �-normal form of s and denote it

by s#

i

�

. Now for any term s, let r(s) be the set of those terms whi
h result

from repeatedly repla
ing subterms of s by their innermost �-normal form

(if it exists). Here, one may also 
onsider subterms on ina
tive positions.

However, the repla
ement must go \from the inside to the outside" (i.e.,

after repla
ing at position � one 
annot repla
e at positions below � any

more). Moreover, one may only perform repla
ements on su
h positions

� where the original term sj

�

is terminating.

De�nition 8. Let (R; �) be a non-overlapping CSRS. For any term s we

de�ne non-empty sets r(s) and r

0

(s) as follows. If s is terminating, then

r(s) = r

0

(s) [ fu#

i

�

j u 2 r

0

(s) is innermost terminatingg. Otherwise,

we have r(s) = r

0

(s). Moreover, r

0

(s) = ff(u

1

; : : : ; u

n

) j u

i

2 r(s

i

)g if

s = f(s

1

; : : : ; s

n

) and r

0

(s) = fsg if s is a variable.

8



Theorem 9. An orthogonal CSRS (R; �) is terminating i� it is inner-

most terminating.

Proof. The \only if" dire
tion is trivial. We prove the \if" dire
tion. Let

s!

�

t where the 
ontra
ted redex is either terminating or a minimal non-

terminating term (i.e., all proper subterms of the redex on a
tive positions

are terminating). We prove the following statements for all innermost

terminating s

0

2 r(s):

(1) There exists a t

0

2 r(t) su
h that s

0

i

!

�

�

t

0

.

(2) If the 
ontra
ted redex in s!

�

t is not terminating, then there even

exists a t

0

2 r(t) su
h that s

0

i

!

+

�

t

0

.

With (1) and (2) one 
an prove the theorem: If (R; �) is not terminating,

then there is an in�nite redu
tion s

0

!

�

s

1

!

�

: : : in whi
h only termi-

nating or minimal non-terminating redexes are 
ontra
ted. Assume that

(R; �) is innermost terminating. Then all r(s

i

) 
ontain only innermost

terminating terms and sin
e s

0

2 r(s

0

), we 
an 
onstru
t an in�nite in-

nermost redu
tion s

0

i

!

�

�

t

1

i

!

�

�

t

2

i

!

�

�

: : : with t

i

2 r(s

i

). However, sin
e

the redu
tion 
ontains in�nitely many steps of type (2), this gives rise to

an in�nite innermost redu
tion, 
ontradi
ting our assumption.

Now we prove (1) and (2) by stru
tural indu
tion on s. Sin
e s!

�

t,

s must have the form f(s

1

; : : : ; s

n

). We �rst regard the 
ase where s!

�

t

is not a root redu
tion step. Then we have t = f(s

1

; : : : ; t

i

; : : : ; s

n

) with

s

i

!

�

t

i

for some i 2 �(f). Let s

0

2 r(s) be innermost terminating. First,

let s

0

= f(u

1

; : : : ; u

n

) with u

j

2 r(s

j

) for all j. Be
ause i 2 �(f), u

i

is

innermost terminating. Hen
e by the indu
tion hypothesis, u

i

2 r(s

i

)

implies that there exists a v

i

2 r(t

i

) su
h that u

i

i

!

�

�

v

i

. Therefore,

we also have s

0

= f(u

1

; : : : ; u

i

; : : : ; u

n

)

i

!

�

�

f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t).

Moreover, if the 
ontra
ted redex in s!

�

t and hen
e, in s

i

!

�

t

i

is not

terminating, then by the indu
tion hypothesis we even have u

i

i

!

+

�

v

i

and

therefore s

0

i

!

+

�

f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t).

Now let s

0

= f(u

1

; : : : ; u

n

)#

i

�

with u

j

2 r(s

j

) for all j. Hen
e, s is

terminating and thus, we only have to prove (1). As before, there is a

v

i

2 r(t

i

) su
h that u

i

i

!

�

�

v

i

and f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t). Sin
e

innermost redu
tion is 
on
uent, we have s

0

= f(u

1

; : : : ; u

i

; : : : ; u

n

)#

i

�

=

f(u

1

; : : : ; v

i

; : : : ; u

n

)#

i

�

2 r(t), sin
e t inherits termination from s.

Finally, we regard the 
ase where s = f(s

1

; : : : ; s

n

) and s !

�

t is

a root redu
tion step. Hen
e, there must be a rule l ! r 2 R with

l = f(l

1

; : : : ; l

n

) and a substitution � su
h that s

i

= l

i

� and t = r�. First

let s

0

= f(u

1

; : : : ; u

n

) with u

i

2 r(s

i

) for all i. Sin
e (R; �) is orthogonal

9



and sin
e s

i

= l

i

�, there must be a substitution �

0

su
h that u

i

= l

i

�

0

for

all i.

7

Be
ause s

0

is innermost terminating, x�

0

must also be innermost

terminating for all variables x whi
h o

ur on a
tive positions of l. Let

�

00

be the substitution where x�

00

= x�

0

#

i

�

for all x in a
tive positions of

l and x�

00

= x�

0

for all other x. Then we have the innermost redu
tion

s

0

= f(l

1

�

0

; : : : ; l

n

�

0

)

i

!

�

�

f(l

1

�

00

; : : : ; l

n

�

00

)

i

!

�

r�

00

. We 
laim that r�

00

2

r(t) = r(r�). To this end, it suÆ
es to show that x�

00

2 r(x�) for all

variables x in r, be
ause in the 
onstru
tion of r arbitrary subterms q


an be repla
ed by terms from r(q). Ea
h variable x o

urs in some l

i

and we have l

i

�

0

2 r(l

i

�). It follows that x�

0

2 r(x�) for all variables

x.

7

If x is on an ina
tive position of l, then x�

00

= x�

0

2 r(x�). If x is on

an a
tive position of l, then x�

00

= x�

0

#

i

�

2 r(x�), sin
e x�

0

is innermost

terminating and be
ause in this 
ase, x� is terminating due to the fa
t

that s is either a terminating or a minimal non-terminating term.

Now let s

0

= f(u

1

; : : : ; u

n

)#

i

�

with u

i

2 r(s

i

) for all i. Hen
e, s is

terminating and thus we only have to prove (1). As before, u

i

= l

i

�

0

and

f(l

1

�

0

; : : : ; l

n

�

0

)

i

!

�

�

f(l

1

�

00

; : : : ; l

n

�

00

)

i

!

�

r�

00

with r�

00

2 r(t). Sin
e

innermost redu
tion is 
on
uent and t inherits termination from s, s

0

=

f(u

1

; : : : ; u

n

)#

i

�

= r�

00

#

i

�

2 r(t). ut

Very re
ently, Gramli
h and Lu
as [14℄ showed that termination and

innermost termination 
oin
ide for lo
ally 
on
uent overlay CSRSs with

the additionally property that variables that o

ur at an a
tive position

in a left-hand side l of a rewrite rule l ! r do not o

ur at ina
tive

positions in l or r. The latter 
ondition is quite restri
tive, e.g., it is not

satis�ed by the CSRS of Example 1.

5 A Sound and Complete Transformation

In Se
tion 3 we showed that the existing transformations are in
omplete

for innermost termination and that only �

1

and �

2

are sound. Be
ause

of Theorem 6, �

2


annot distinguish innermost termination from ter-

mination. So when developing a sound and 
omplete transformation for

innermost termination, we take �

1

as starting point. As observed in Ex-

ample 5, we must make sure that in innermost redu
tions, rules of the

form a
tive(l) ! mark(r) get preferen
e over the rule a
tive(x) ! x, be-


ause then this 
ounterexample no longer works. Hen
e, we modify the

rule a
tive(x) ! x su
h that the innermost redu
tion strategy ensures

7

A formal proof of this observation 
an be found in [10℄.
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that a
tive(l) ! mark(r) is applied with higher preferen
e. In the modi-

�
ation, a
tive(l) ! mark(r) no longer overlaps with the root position of

a
tive(x)! x, but with a non-root position of the new modi�ed rule(s).

De�nition 10 (�

3

). Let (R; �) be a CSRS over a signature F . The TRS

R

3

�

over the signature F

1


onsists of all (℄)-marked rewrite rules of R

1

�

together with the rewrite rules

f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

([) f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

for all f 2 F and 1 6 i 6 arity(f). We denote the transformation

(R; �) 7! R

3

�

by �

3

and we abbreviate !

R

3

�

to !

3

and

i

!

R

3

�

to

i

!

3

.

For the CSRS (R; �) of Example 5, R

3

�

di�ers from R

1

�

in two re-

spe
ts: a
tive(x) ! x is repla
ed by f(a
tive(x)) ! f(x) and more-

over, the rule f(mark(x)) ! f(x) is added. As a 
onsequen
e, the 
y
le

a
tive(f(a))

i

!

+

a
tive(f(a)) 
an no longer be obtained with R

3

�

, sin
e

a
tive(f(a
tive(a)))! a
tive(f(a)) is not an innermost rewrite step in R

3

�

.

Indeed, R

3

�

is innermost terminating and in general, �

3

is sound and


omplete for innermost termination.

Theorem 11. A CSRS (R; �) is innermost terminating i� R

3

�

is inner-

most terminating.

In [10℄ we show for several CSRSs (R; �) in
luding Example 1 how

innermost termination of R

3

�


an be proved with dependen
y pairs [1℄.

With the new rules f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

) ! f(x

1

; : : : ; x

n

) we


an remove almost every a
tive-symbol, 
ompensating to a large extent

the la
k of the rule a
tive(x) ! x. The ([)-marked rules 
an never be

used in an innermost redu
tion if x

i

is instantiated to a non-variable

term from T (F ;V). However, they are required if x

i

is instantiated by a

variable or by terms 
ontaining the symbols mark and a
tive. As a matter

of fa
t, the transformation without the ([)-marked rules is neither sound

nor 
omplete for innermost termination (see [10℄ for 
ounterexamples).

6 Ground Innermost Termination

Unlike for termination, to 
on
lude innermost termination it is not suÆ-


ient to prove that all ground terms are innermost terminating.

11



Example 12. The TRS ff(f(x)) ! f(f(x)); f(a) ! ag is not innermost

terminating but ground innermost terminating over the signature ff; ag,

i.e., all ground terms permit only �nite innermost redu
tions.

It is well known that innermost termination of a TRS R over a sig-

nature F is equivalent to ground innermost termination of R over the

signature F [ f
; hg where 
 is a fresh 
onstant and h is a fresh unary

fun
tion symbol. The reason is that a term t with the variables x

1

; : : : ; x

n

starts an in�nite innermost redu
tion i� the ground term t� starts an

in�nite innermost redu
tion where �(x

i

) = h

i

(
). So the fresh symbols 


and h are needed to 
reate arbitrarily many di�erent ground terms (in

order to handle non-linear rewrite rules). A similar 
orresponden
e holds

for innermost 
ontext-sensitive redu
tions with �(h) = ? or �(h) = f1g.

The following result states that �

1

and �

2


annot distinguish ground

innermost termination from innermost termination and thus they are

sound but in
omplete for ground innermost termination as well.

Theorem 13. Let (R; �) be a CSRS. For i 2 f1; 2g, the TRS R

i

�

is

ground innermost terminating i� it is innermost terminating.

On the other hand, the proof of Theorem 11 
an easily be adapted to

show that �

3

is sound and 
omplete for ground innermost termination.

Theorem 14. A CSRS (R; �) is ground innermost terminating i� R

3

�

is ground innermost terminating.

One might think that the ([)-marked rules in De�nition 10 are not

needed to obtain a sound and 
omplete transformation for ground inner-

most termination. While soundness is easily proved, 
ompleteness does

not hold, as shown in the following example.

Example 15. Consider the (ground) innermost terminating CSRS (R; �)

with R = ff(x; x) ! b; g(f(x; y)) ! g(f(y; y))g and �(f) = �(g) = f1g.

The transformed TRS without the ([)-marked rules however is not ground

innermost terminating as 
an be seen from the following 
y
le, with t =

mark(a
tive(b)):

mark(g(f(t; t)))

i

!

+

a
tive(g(a
tive(f(mark(t); t))))

i

! a
tive(g(f(mark(t); t)))

i

! mark(g(f(t; t)))

As explained above, a transformation that is sound for ground inner-

most termination 
an also be used for innermost termination analysis by

12



adding fresh fun
tion symbols to the signature. However, for 
ompleteness

the situation is di�erent. Here, it is desirable that the transformation is

not only 
omplete for ground, but also for full innermost termination. The

reason is that while there do exist te
hniques to analyze ground inner-

most termination [8℄, the best-known te
hnique for automated innermost

termination analysis [1℄ really 
he
ks full (non-ground) innermost termi-

nation of TRSs. A 
omplete transformation for innermost termination

transforms every innermost terminating CSRS into an innermost termi-

nating TRS and hen
e, innermost termination of this TRS 
an poten-

tially be 
he
ked by every te
hnique for innermost termination analysis

of ordinary TRSs. But if the transformed TRS is only ground innermost

terminating, (full) innermost termination analysis te
hniques for TRSs


annot be applied su

essfully.

7 Con
lusion and Comparison

Figure 1 
ontains a summary of the soundness and 
ompleteness results


overed in the pre
eding se
tions. The negative results for ground inner-

most termination for �

L

, �

Z

, and �

FR

are shown by the same examples

used to demonstrate the 
orresponding results for innermost termination,


f. the �rst paragraph of Se
tion 3. Of the existing transformations, only

�

1

and �

2

from [9℄ are sound for innermost termination of CSRSs. We

showed that �

2

is not very useful for proving innermost termination, but

that termination of a CSRS (R; �) already implies innermost termination

of �

1

(R; �). So for 
lasses of CSRSs where termination and innermost

termination are equivalent, �

1

is already 
omplete for innermost termi-

nation. We proved that this equivalen
e holds for the 
lass of orthogonal

CSRSs. While in general �

1

is still in
omplete, we developed a new trans-

formation �

3

whi
h is sound and 
omplete for innermost termination. The

results on termination for �

3

follow from Theorem 16 below.

In order to assess the power of our transformations, Figure 2 illustrates

the relationship between the following twelve properties (i = 1; 2; 3):

(1) (R; �) is terminating

(5) (R; �) is innermost terminating

(9) (R; �) is ground innermost terminating

(1+i) R

i

�

is terminating

(5+i) R

i

�

is innermost terminating

(9+i) R

i

�

is ground innermost terminating

13



ground innermost innermost

termination termination termination

sound 
omplete sound 
omplete sound 
omplete

�

L

X � � � � �

�

Z

X � � � � �

�

FR

X � � � � �

�

1

X � X � X �

�

2

X X X � X �

�

3

X � X X X X

Fig. 1. Summary.

(11)

KS

��

(2)

+3
KS

��

(1)

+3
KS

��

(6)

+3
KS

��

(5)

+3
KS

��

(9)

KS

��
(7) (4) (3)3;ck (10) (8) (12)

Fig. 2. Comparison.

Impli
ation (2) ) (1) is the soundness of transformation �

1

for termi-

nation [9℄, impli
ation (1) ) (6) is Theorem 7, impli
ation (6) ) (5) is

Theorem 4, and impli
ation (5)) (9) is trivial.

Equivalen
e (1) , (3) is the soundness and 
ompleteness of �

2

for

termination [9℄, equivalen
e (3), (7) is Theorem 6, equivalen
e (5), (8)

is Theorem 11, equivalen
es (10), (6) and (11), (7) are Theorem 13,

and equivalen
e (9), (12) is Theorem 14. Equivalen
e (2), (4) means

that �

1

and �

3

are equally powerful when proving termination. This may

not 
ome as a surprise, but the proof is surprisingly diÆ
ult.

Theorem 16. Let (R; �) be a CSRS. The TRS R

3

�

is terminating i� R

1

�

is terminating.

None of the missing impli
ations in Figure 2 hold, ex
ept those that

follow by transitivity: (1) 6) (2) and (5) 6) (6) are the in
ompleteness of

�

1

for termination (Example 3) and innermost termination (Example 5).

Moreover, (6) 6) (1) follows by using �(f) = f1; 2; 3g in Example 3 and

(9) 6) (5) follows from Example 12 with �(f) = f1g.

To 
on
lude, with our new transformation �

3

, innermost termina-

tion of 
ontext-sensitive rewriting 
an be redu
ed to innermost termi-

nation of ordinary rewriting. Moreover, for orthogonal CSRSs innermost

termination already suÆ
es for termination. So for su
h systems, inner-

most termination of the transformed TRS even implies termination of

the CSRS. Hen
e, our result now enables the use of powerful methods for

14



innermost termination analysis of TRSs for (innermost) termination of


ontext-sensitive rewriting.
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