
Dependeny Pairs for Equational Rewriting

?

J�urgen Giesl

1

and Deepak Kapur

2

1

LuFG Informatik II, RWTH Aahen, Ahornstr. 55, 52074 Aahen, Germany,

giesl�informatik.rwth-aahen.de

2

Computer Siene Dept., University of New Mexio, Albuquerque, NM 87131, USA

kapur�s.unm.edu

Abstrat. The dependeny pair tehnique of Arts and Giesl [1{3℄ for

termination proofs of term rewrite systems (TRSs) is extended to rewrit-

ing modulo equations. Up to now, suh an extension was only known in

the speial ase of AC-rewriting [16, 18℄. In ontrast to that, the pro-

posed tehnique works for arbitrary non-ollapsing equations (satisfying

a ertain linearity ondition). With the proposed approah, it is now pos-

sible to perform automated termination proofs for many systems where

this was not possible before. In other words, the power of dependeny

pairs an now also be used for rewriting modulo equations.

1 Introdution

Termination of ordinary term rewriting has been extensively studied (e.g., in

lassial approahes based on simpli�ation orderings [9, 23℄ and new powerful

tehniques like dependeny pairs [1{3℄). There has also been signi�ant progress

for termination of equational term rewrite systems whose equations only ontain

assoiativity and ommutativity axioms (e.g., [8, 14, 15, 21, 22℄). In partiular,

the dependeny pair approah has also been extended to the AC-ase [16, 18℄.

For equations other than AC-axioms, however, there are not many tehniques

available to prove termination. In an early paper [17℄, suÆient onditions are

given for reduing termination of equational rewriting to termination of its un-

derlying rewrite system. Another early paper [6℄ desribes how to apply polyno-

mial interpretations for AC-termination proofs (and this approah an also be

used for equations other than AC-axioms). In newer papers, dummy elimination

[11℄ and the semanti labelling method [19℄ are extended to rewriting modulo

equations. However, dummy elimination is only appliable for ertain sublasses

of TRSs and semanti labelling is not amenable to automation.

This paper presents an extension of the dependeny pair approah to rewrit-

ing modulo equations. In the speial ase of AC-axioms, our tehnique orre-

sponds to the methods of [16, 18℄, but in ontrast to these methods, our teh-

nique an also be used if the equations are not AC-axioms. This allows muh

?

Extended version of a paper whih appeared in the Proeedings of the 12th Inter-

national Conferene on Rewriting Tehniques and Appliations, RTA-2001, Utreht,

The Netherlands, Leture Notes in Computer Siene, Springer-Verlag. Supported

by the Deutshe Forshungsgemeinshaft Grant GI 274/4-1 and the National Siene

Foundation Grants nos. CCR-9996150, CDA-9503064, and CCR-9712396.



more automated termination proofs for equational rewrite systems than those

possible with diretly applying simpli�ation orderings for equational rewriting

(like equational polynomial orderings or AC-versions of path orderings).

We �rst review the dependeny pair approah for ordinary term rewriting in

Set. 2. In Set. 3, we show why a straightforward extension of dependeny pairs

to rewriting modulo equations is not possible. As observed in [16℄, the reason

is that there an be minimal non-terminating terms (i.e., terms without proper

non-terminating subterms) whose in�nite redutions only involve redution steps

below the root level. Therefore, we follow an idea similar to the one of [18℄ for the

speial ase of AC-axioms: We onsider a restrited form of rewriting modulo

equations, whih is more suitable for termination proofs with dependeny pairs.

In Set. 4, we show how to ensure that termination of this restrited equa-

tional rewrite relation is equivalent to termination of full rewriting modulo equa-

tions. Under ertain onditions on the equations E , we give a method for om-

puting an extended rewrite system Ext

E

(R) from the given TRSR suh that the

restrited rewrite relation of Ext

E

(R) modulo E is terminating i� R is terminat-

ing modulo E . This is proved for (almost) arbitrary E-rewriting, thus generaliz-

ing a related result for AC-rewriting. This general result may be of independent

interest, and may also be found useful in investigating other properties of E-

rewriting.

Then in Set. 5, we extend the dependeny pair approah to rewriting modulo

equations. The notion of de�ned symbols is modi�ed by taking into onsidera-

tion the funtion symbols appearing as the outermost symbols in equations in E

as well. It is shown how for every non-terminating term, it is possible to build

a redution using the restrited form of rewriting indued by Ext

E

(R) where

only terminating or minimal non-terminating subterms are redued. In order to

ensure that an in�nite redution from a minimal non-terminating term an be

ahieved by applying only instantiations of rules where all variables are instanti-

ated with terminating terms, it also beomes neessary to onsider �nitely many

instantiations of the rules in Ext

E

(R). The main result is then proved, general-

izing the dependeny pair method for showing termination of rewrite systems R

[1{3℄ to rewrite systems R modulo sets E of non-ollapsing equations with iden-

tial unique variables. This result an serve as the basis of an automati method

for showing termination of rewrite systems modulo equations. Finally, in Set.

6 we show how the re�nement of dependeny graphs [1{3℄ an also be applied

for rewriting modulo equations. Appendix A ontains a olletion of examples

to demonstrate the power and the usefulness of our tehnique.

2 Dependeny Pairs for Ordinary Rewriting

The dependeny pair approah allows the use of standard methods like simpli-

�ation orderings [9, 23℄ for automated termination proofs where they were not

appliable before. In this setion we briey summarize the basi onepts of this

approah. All results in this setion are due to Arts and Giesl and we refer to

[1{3℄ for further details, re�nements, and explanations.

2



In ontrast to the standard tehniques for termination proofs, whih om-

pare left and right-hand sides of rules, in this approah one onentrates on the

subterms in the right-hand sides that have a de�ned

1

root symbol, beause these

are the only terms responsible for starting new redutions.

More preisely, for every rule f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ; t

m

)℄ (where f and g

are de�ned symbols), we ompare the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

.

To avoid the handling of tuples, for every de�ned symbol f , we introdue a

fresh tuple symbol F . To ease readability, we assume that the original signature

onsists of lower ase funtion symbols only, whereas the tuple symbols are

denoted by the orresponding upper ase symbols. Now instead of the tuples

s

1

; : : : ; s

n

and t

1

; : : : ; t

m

we ompare the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

).

De�nition 1 (Dependeny Pair [1{3℄). If f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)℄

is a rule of a TRSR and g is a de�ned symbol, then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i

is a dependeny pair of R.

Example 2. As an example, onsider the TRS fa + b ! a + (b + )g, f. [18℄.

Termination of this system annot be shown by simpli�ation orderings, sine the

left-hand side of the rule is embedded in the right-hand side. In this system, the

de�ned symbol is + and thus, we obtain the dependeny pairs hP(a; b);P(a; b+)i

and hP(a; b);P(b; )i (where P is the tuple symbol for the plus-funtion \+").

Arts and Giesl developed the following new termination riterion. As usual,

a quasi-ordering % is a reexive and transitive relation, and we say that an

ordering > is ompatible with % if we have > Æ % � > or % Æ >� >.

Theorem 3 (Termination with Dependeny Pairs [1{3℄). A TRS R is

terminating i� there exists a weakly monotoni quasi-ordering % and a well-

founded ordering > ompatible with %, where both % and > are losed under

substitution, suh that

(1) s > t for all dependeny pairs hs; ti of R and

(2) l % r for all rules l! r of R.

Consider the TRS from Ex. 2 again. In order to prove its termination a-

ording to Thm. 3, we have to �nd a suitable quasi-ordering % and ordering >

suh that P(a; b) > P(a; b+ ), P(a; b) > P(b; ), and a+ b % a+ (b+ ).

Most standard orderings amenable to automation are strongly monotoni

(f. e.g. [9, 23℄), whereas here we only need weak monotoniity. Hene, before

synthesizing a suitable ordering, some of the arguments of funtion symbols may

be eliminated, f. [3℄. For example, in our inequalities, one may eliminate the

�rst argument of +. Then every term s+t in the inequalities is replaed by +

0

(t)

(where +

0

is a new unary funtion symbol). By omparing the terms resulting

from this replaement instead of the original terms, we an take advantage of

the fat that + does not have to be strongly monotoni in its �rst argument.

1

Root symbols of left-hand sides are de�ned and all other funtions are onstrutors.

3



Note that there are only �nitely many possibilities to eliminate arguments of

funtion symbols. Therefore all these possibilities an be heked automatially.

In this way, we obtain the inequalities P(a; b) > P(a;+

0

()), P(a; b) > P(b; ),

and +

0

(b) % +

0

(+

0

()). These inequalities are satis�ed by the reursive path

ordering (rpo) [9℄ with the preedene a A b A  A +

0

(i.e., we hoose % to

be %

rpo

and > to be �

rpo

). So termination of this TRS an now be proved

automatially.

Apart from eliminating arguments of funtion symbols, another possibility is

to replae funtions by one of their arguments. So instead of deleting the �rst ar-

gument of + one ould also replae all terms s+t by +'s seond argument t. Then

the resulting inequalities are again satis�ed by the rpo. For implementations of

the dependeny pair approah see [4, 7℄.

3 Rewriting Modulo Equations

For a set E of equations between terms, we write s !

E

t if there exist an

equation l � r in E , a substitution �, and a ontext C suh that s = C[l�℄ and

t = C[r�℄. The symmetri losure of !

E

is denoted by à

E

and the transitive

reexive losure of à

E

is denoted by �

E

. In the following, we restrit ourselves

to equations E where �

E

is deidable.

De�nition 4 (Rewriting Modulo Equations). Let R be a TRS and let E be

a set of equations. A term s rewrites to a term t modulo E, denoted s !

R=E

t,

i� there exist terms s

0

and t

0

suh that s �

E

s

0

!

R

t

0

�

E

t. The TRS R is alled

terminating modulo E i� there does not exist an in�nite !

R=E

redution.

Example 5. An interesting speial ase are equations E whih state that ertain

funtion symbols are assoiative and ommutative (AC). As an example, on-

sider the TRSR = fa+b! a+(b+)g again and let E onsist of the assoiativity

and ommutativity axioms for +, i.e., E = fx

1

+ x

2

� x

2

+ x

1

; x

1

+ (x

2

+ x

3

) �

(x

1

+ x

2

) + x

3

g, f. [18℄. R is not terminating modulo E , sine we have

a+b!

R

a+(b+) �

E

(a+b)+!

R

(a+(b+))+ �

E

((a+b)+)+!

R

: : :

There are, however, many other sets of equations E apart from assoiativity

and ommutativity, whih are also important in pratie. Hene, our aim is to

extend dependeny pairs to rewriting modulo (almost) arbitrary equations.

The soundness of dependeny pairs for ordinary rewriting relies on the fat

that whenever a term starts an in�nite redution, then one an also onstrut

an in�nite redution where only terminating or minimal non-terminating sub-

terms are redued (i.e., one only applies rules to redexes without proper non-

terminating subterms). The ontexts of minimal non-terminating redexes an

be ompletely disregarded. If a rule is applied at the root position of a minimal

non-terminating subterm s (i.e., s !

�

R

t where � denotes the root position),

then s and eah minimal non-terminating subterm t

0

of t orrespond to a depen-

deny pair. Hene, Thm. 3 (1) implies s > t

0

. If a rule is applied at a non-root

4



position of a minimal non-terminating subterm s (i.e., s !

>�

R

t), then we have

s % t by Thm. 3 (2). However, due to the minimality of s, after �nitely many

suh non-root rewrite steps, a rule must be applied at the root position of the

minimal non-terminating term. Thus, every in�nite redution of minimal non-

terminating subterms orresponds to an in�nite >-sequene. This ontradits

the well-foundedness of >.

So for ordinary rewriting, any in�nite redution from a minimal non-termina-

ting subterm involves an R-redution at the root position. But when extending

the dependeny pair approah to rewriting modulo equations, this is no longer

true, f. [16℄. For an illustration, onsider Ex. 5 again, where a + (b + ) is a

minimal non-terminating term. However, in its in�nite R=E-redution no R-

step is ever appliable at the root position. (Instead one applies an E-step at the

root position and further R- and E-steps below the root.)

In the rest of the paper, from a rewrite system R, we generate a new rewrite

system R

0

with the following three properties: (i) the termination of a weaker

form of rewriting by R

0

modulo E is equivalent to the termination of R modulo

E , (ii) every in�nite redution of a minimal non-terminating term in this weaker

form of rewriting by R

0

modulo E involves a redution step at the root level, and

(iii) every suh minimal non-terminating term has an in�nite redution where

the variables of the R

0

-rules are instantiated with terminating terms only.

4 E-Extended Rewriting

We showed why the dependeny pair approah annot be extended to rewriting

modulo equations diretly. As a solution for this problem, we propose to onsider

a restrited form of rewriting modulo equations, i.e., the so-alled E-extended R-

rewrite relation !

EnR

. (This approah was already taken in [18℄ for rewriting

modulo AC.) The relation!

EnR

was originally introdued in [20℄ in order to ir-

umvent the problems with in�nite or impratially large E-equivalene lasses.

2

De�nition 6 (E-extended R-rewriting [20℄). Let R be a TRS and let E be

a set of equations. The E-extended R-rewrite relation is de�ned as s!

�

EnR

t i�

sj

�

�

E

l� and t = s[r�℄

�

for some rule l ! r in R, some position � of s, and

some substitution �. We also write !

EnR

instead of !

�

EnR

.

To demonstrate the di�erene between !

R=E

and !

EnR

, onsider Ex. 5

again. We have already seen that !

R=E

is not terminating, sine a + b !

R=E

(a+ b) + !

R=E

((a+ b) + ) + !

R=E

: : : But !

EnR

is terminating, beause

a+ b!

EnR

a+ (b+ ), whih is a normal form w.r.t. !

EnR

.

The above example also demonstrates that in general, termination of !

EnR

is not suÆient for termination of !

R=E

. In this setion we will show how ter-

mination of !

R=E

an nevertheless be ensured by only regarding an E-extended

rewrite relation indued by a larger R

0

� R.

2

In [12℄, the relation !

EnR

is denoted \!

R;E

".

5



For the speial ase of AC-rewriting, this problem an be solved by extending

R as follows: Let G be the set of all AC-symbols and

Ext

AC(G)

= R[ ff(l; y)! f(r; y) j l! r 2 R; root(l) = f 2 Gg;

where y is a new variable not ourring in the respetive rule l ! r. A similar

extension has also been used in previous work on extending dependeny pairs

to AC-rewriting [18℄. The reason is that for AC-equations E , the termination

of !

R=E

is in fat equivalent to the termination of !

EnExt

AC(G)

(R)

. In fat,

it is even possible to redue the set Ext

AC(G)

a bit, sine rules of the form

f(l; y) ! f(r; y) do not have to be inluded in Ext

AC(G)

if l �

E

f(l

0

; z) and

r �

E

f(r

0

; z) holds for some terms l

0

; r

0

and a variable z whih does not our in

l

0

or r

0

, f. [20℄.

For Ex. 5, we obtain Ext

AC(G)

(R) = fa + b ! a + (b + ); (a + b) + y !

(a+(b+))+yg. Thus, in order to prove termination of!

R=E

, it is now suÆient

to verify termination of !

EnExt

AC(G)

(R)

.

The above extension of [20℄ only works for AC-axioms E . A later paper [12℄

treats arbitrary equations, but it does not ontain any de�nition for extensions

Ext

E

(R), and termination of !

R=E

is always a prerequisite in [12℄. The reason

is that [12℄ and also subsequent work on symmetrization and oherene were

devoted to the development of ompletion algorithms (i.e., here the goal was

to generate a onvergent rewrite system and not to investigate the termination

behavior of possibly non-terminating TRSs). Thus, these papers did not ompare

the termination behavior of full rewriting modulo equations with the termination

of restrited versions of rewriting modulo equations. In fat, [12℄ fouses on the

notion of oherene, whih is not suitable for our purpose sine oherene of EnR

modulo E does not imply that termination of!

R=E

is equivalent to termination

of !

EnR

.

3

To extend dependeny pairs to rewriting modulo non-AC-equations E , we

have to ompute extensions Ext

E

(R) suh that termination of !

R=E

is equiv-

alent to termination of !

EnExt

E

(R)

. The only restrition we will impose on the

equations in E is that they must have idential unique variables. As usual, a term

t is alled linear if no variable ours more than one in t.

De�nition 7 (Equations with Idential Unique Variables [20℄). An equa-

tion u � v is said to have idential unique variables if u and v are both linear

and the variables in u are the same as the variables in v.

While this requirement may seem restritive at �rst sight, it turns out that

most pratial examples where R=E is terminating satisfy this restrition: The

restrition that the set of variables must be the same in both terms of an equation

3

In [12℄, EnR is oherent modulo E i� for all terms s; t; u, we have that s �

E

t!

+

EnR

u

implies s !

+

EnR

v �

E

w  

�

EnR

u for some v; w. Consider R = fa + b ! a + (b +

); x + y ! dg with E being the AC-axioms for +. The above system is oherent,

sine s �

E

t !

+

EnR

u implies s !

+

R

d  

�

R

u. However, !

EnR

is terminating but

!

R=E

is not terminating.

6



is not severe, beause otherwise rewriting modulo suh an equation would not

terminate (as long as there exists a funtion symbol f with arity � 2 and R 6=

?).

4

The reason is that if x ours in u but not in v and if l ! r is a rewrite

rule, then we obtain

v �

E

u[x=f(v; l; : : :)℄

!

R

u[x=f(v; r; : : :)℄

�

E

u[x=f(u[x=f(v; l; : : :)℄; r; : : :)℄

!

R

u[x=f(u[x=f(v; r; : : :)℄; r; : : :)℄

�

E

: : :

Thus, rewriting modulo equations suh as x�0 � 0 or x�x

�1

� 1 never terminates

if R 6= ?.

Moreover, as already pointed out in [10℄, the linearity ondition is also not

too restritive, sine if u is a non-linear term f(: : : x : : : x : : :), then at least if v

is the single variable x, the relation !

R=E

would again be non-terminating if

R 6= ?. (In fat, ollapsing equations will be forbidden anyway in Set. 5 in order

to make the dependeny pair approah sound.) The reason is that if l! r 2 R,

then we would have

l �

E

f(: : : l : : : l : : :)

!

R

f(: : : r : : : l : : :)

�

E

f(: : : r : : : f(: : : l : : : l : : :) : : :)

!

R

f(: : : r : : : f(: : : r : : : l : : :) : : :)

�

E

: : :

This means that rewriting modulo an equation like x � x � x is always non-

terminating if R 6= ?.

Let uni

E

(s; t) denote a omplete set of E-uni�ers of two terms s and t. As

usual, Æ is an E-uni�er of s and t i� sÆ �

E

tÆ and a set uni

E

(s; t) of E-uni�ers is

omplete i� for every E-uni�er Æ there exists a � 2 uni

E

(s; t) and a substitution

� suh that Æ �

E

��, f. [5℄. (\��" is the omposition of � and � where � is

applied �rst and \Æ �

E

��" means that for all variables x we have xÆ �

E

x��.)

To onstrut Ext

E

(R), we onsider all overlaps between equations u � v or

v � u from E and rules l ! r from R. More preisely, we hek whether a non-

variable subterm vj

�

of v E-uni�es with l (where we always assume that rules

in R are variable disjoint from equations in E). In this ase one adds the rules

(v[l℄

�

)� ! (v[r℄

�

)� for all � 2 uni

E

(vj

�

; l).

5

In Ex. 5, the subterm x

1

+ x

2

of

the right-hand side of x

1

+ (x

2

+ x

3

) � (x

1

+ x

2

) + x

3

uni�es with the left-hand

4

A similar observation was already mentioned in [10℄, but here the requirement of

funtion symbols with arity � 2 was negleted. Note however that without this

ondition !

R=E

may still be terminating. As an example onsider E = ff(x) � ag

and R = fa! bg.

5

Obviously, uni

E

(vj

�

; l) always exists, but it an be in�nite in general. So when au-

tomating our approah for equational termination proofs, we have to restrit our-

7



side of the only rule a+ b! a+ (b+ ). Thus, in the extension of R, we obtain

the rule (a+ b) + y ! (a+ (b+ )) + y.

Ext

E

(R) is built via a kind of �xpoint onstrution, i.e., we also have to

onsider overlaps between equations of E and the newly onstruted rules of

Ext

E

(R). For example, the subterm x

1

+ x

2

also uni�es with the left-hand side

of the new rule (a+ b) + y ! (a+ (b+ )) + y. Thus, one would now onstrut

a new rule ((a+ b) + y) + z ! ((a+ (b+ )) + y) + z.

Obviously, in this way one obtains an in�nite number of rules by subsequently

overlapping equations with the newly onstruted rules. However, in order to

use Ext

E

(R) for automated termination proofs, our aim is to restrit ourselves

to �nitely many rules. It turns out that we do not have to inlude new rules

(v[l℄

�

)� ! (v[r℄

�

)� in Ext

E

(R) if u� !

�

0

EnExt

E

(R)

q �

E

(v[r℄

�

)� already holds

for some position �

0

of u and some term q (using just the old rules of Ext

E

(R)).

When onstruting the rule ((a+ b)+ y)+ z ! ((a+(b+ ))+ y)+ z above,

the equation u � v used was x

1

+ (x

2

+ x

3

) � (x

1

+ x

2

) + x

3

and the uni�er �

replaed x

1

by (a+b) and x

2

by y. Hene, here u� is the term (a+b)+(y+x

3

).

But this term redues with!

1

EnExt

E

(R)

to (a+(b+))+(y+x

3

) whih is indeed

�

E

-equivalent to (v[r℄

�

)�, i.e., to ((a+ (b+ )) + y) + x

3

. Thus, we do not have

to inlude the rule ((a+ b) + y) + z ! ((a+ (b+ )) + y) + z in Ext

E

(R).

The following de�nition shows how suitable extensions an be omputed for

arbitrary equations with idential unique variables. It will turn out that with

these extensions one an indeed simulate !

R=E

by !

EnExt

E

(R)

, i.e., s !

R=E

t

implies s !

EnExt

E

(R)

t

0

for some t

0

�

E

t. This onstitutes a ruial ontribu-

tion of the paper, sine it is the main requirement needed in order to extend

dependeny pairs to rewriting modulo equations.

De�nition 8 (Extending R for Arbitrary Equations). Let R be a TRS

and let E be a set of equations. Let R

0

be a set ontaining only rules of the form

C[l�℄ ! C[r�℄ (where C is a ontext, � is a substitution, and l ! r 2 R). R

0

is an extension of R for the equations E i�

(a) R � R

0

and

(b) for all l ! r 2 R

0

, u � v 2 E and v � u 2 E, all positions � of v

and � 2 uni

E

(vj

�

; l), there is a position �

0

in u and a q �

E

(v[r℄

�

)� with

u� !

�

0

EnR

0

q.

In the following, let Ext

E

(R) always denote an arbitrary extension of R for E .

In order to satisfy Condition (b) of Def. 8, it is always suÆient to add the rule

(v[l℄

�

)� ! (v[r℄

�

)� to R

0

. The reason is that then we have u� !

�

EnR

0

(v[r℄

�

)�.

But if u� !

�

0

EnR

0

q �

E

(v[r℄

�

)� already holds with the other rules of R

0

, then

the rule (v[l℄

�

)� ! (v[r℄

�

)� does not have to be added to R

0

.

selves to equations E where uni

E

(vj

�

; l) an be hosen to be �nite for all subterms

vj

�

of equations and left-hand sides of rules l. This inludes all sets E of �nitary uni-

�ation type, but our restrition is weaker, sine we only need �niteness for ertain

terms vj

�

and l.

8



Condition (b) of Def. 8 also makes sure that as long as the equations have

idential unique variables, we do not have to onsider overlaps at variable po-

sitions.

6

The reason is that if vj

�

is a variable x 2 V , then we have u� =

u[x�℄

�

0

�

E

u[l�℄

�

0

!

R

u[r�℄

�

0

�

E

v[r�℄

�

= (v[r℄

�

)�, where �

0

is the position of

x in u. Hene, suh rules (v[l℄

�

)� ! (v[r℄

�

)� do not have to be inluded in R

0

.

Overlaps at root positions do not have to be onsidered either. To see this,

assume that � is the top position � of v, i.e., that v� �

E

l�. In this ase we have

u� �

E

v� �

E

l� !

R

r� and thus, u� !

�

EnR

r� = (v[r℄

�

)�. So again, suh rules

(v[l℄

�

)! (v[r℄

�

)� do not have to be inluded in R

0

.

The following proedure is used to ompute extensions. Here, we assume both

R and E to be �nite, where the equations E must have idential unique variables.

1. R

0

:= R

2. For all l! r 2 R

0

,

all u � v or v � u from E ,

and all positions � of v where � 6= � and vj

�

62 V do:

2.1. Let � := uni

E

(vj

�

; l).

2.2. For all � 2 � do:

2.2.1. Let T := fq j u� !

�

0

EnR

0

q for a position �

0

of ug:

2.2.2. If there exists a q 2 T with (v[r℄

�

)� �

E

q, then � := � n f�g.

2.3. R

0

:= R

0

[ f(v[l℄

�

)� ! (v[r℄

�

)� j � 2 �g.

This algorithm has the following properties:

(a) If in Step 2.1, uni

E

(vj

�

; l) is �nite and omputable, then every step in the

algorithm is omputable.

(b) If the algorithm terminates, then the �nal value of R

0

is an extension of R

for the equations E .

Note that the ondition for stopping further omputations of new rules in Steps

2.2.1. and 2.2.2. an indeed be heked automatially, sine a term u� an only

!

EnR

0

-redue to �nitely many terms q.

With the TRS of Ex. 5, Ext

E

(R) = fa+b! a+(b+); (a+b)+y! (a+(b+

)) + yg. In general, if E only onsists of AC-axioms for some funtion symbols

G, then Def. 8 \oinides" with the well-known extension for AC-axioms.

7

Lemma 9 (Coinidene of Ext

AC(G)

and Def. 8 for AC-axioms). Let R

be a TRS and let E onsist of the assoiativity and ommutativity axioms for all

funtion symbols from a subset G of the signature. Then R[ff(l; y)! f(r; y) j

l! r 2 R; root(l) = f 2 Gg is an extension of R for the equations E (as de�ned

in Def. 8).

6

Note that onsidering overlaps at variable positions as well would still not allow us

to treat equations with non-linear terms. As an example regard E = ff(x) � g(x; x)g

and R = fg(a; b) ! f(a); a ! bg. Here, !

EnExt

E

(R)

is well founded although R is

not terminating modulo E .

7

This statement also holds for the redued version of Ext

AC(G)

, where rules of the

form f(l; y) ! f(r; y) are deleted if l �

E

f(l

0

; z), r �

E

f(r

0

; z) and the variable z

does not our in l

0

or r

0

.

9



Proof. Let R

0

= R[ ff(l; y)! f(r; y) j l ! r 2 R; root(l) = f 2 Gg. We have

to show that this set satis�es the onditions (a) and (b) of Def. 8. Condition (a)

is obvious sine R � R

0

. Hene, it remains to show that Condition (b) does not

enfore the addition of other rules.

As illustrated in the disussion after Def. 8, if � is the top position � or if

vj

�

2 V , then Condition (b) is always ful�lled. We now regard the ase where

v = f(f(x

1

; x

2

); x

3

) and vj

�

= f(x

1

; x

2

). The ase where v = f(x

1

; f(x

2

; x

3

))

and vj

�

= f(x

2

; x

3

) works analogously.

If l ! r 2 R, then we obtain u� �

E

v� �

E

f(l; x

3

)� !

�

R

0

f(r; x

3

)� =

(v[r℄

�

)� with the rule f(l; y) ! f(r; y) from R

0

. Otherwise, if l = f(l

0

; y) and

r = f(r

0

; y) for some rule l

0

! r

0

2 R, we have u� �

E

v� �

E

f(f(l

0

; y); x

3

)� �

E

f(l

0

; f(y; x

3

))� !

�

R

0

f(r

0

; f(y; x

3

))� �

E

f(f(r

0

; y); x

3

)� = (v[r℄

�

)� with the rule

f(l

0

; y)! f(r

0

; y) from R

0

. ut

So in ase of AC-equations, our approah indeed orresponds to the ap-

proahes of [16, 18℄. However, Def. 8 an also be used for other forms of equa-

tions.

Example 10. As a simple example where the equations are no assoiativity and

ommutativity axioms, onsider E = ff(f(x)) � f(x)g (i.e., E states that f is

idempotent) and R = ff(s(y)) ! f(y)g. There is only one non-variable proper

subterm of a term in E whih uni�es with the left-hand side f(s(y)) of the rule

(viz. f(x)). The (minimal) omplete set of E-uni�ers onsists of fx=s(y)g and

fx=f(s(y))g (all other uni�ers fx=f

n

(s(y))g for n � 2 are subsumed by the seond

E-uni�er). This would yield the new rules f(f(s(y)))! f(f(y)) and f(f(f(s(y))))!

f(f(f(y))). However, the �rst rule does not have to be inluded in Ext

E

(R),

beause the orresponding other term of the equation, f(s(y)), redues at the

top position to f(y) whih is E-equivalent to f(f(y)) and the seond rule is not

inluded either for a similar reason. Thus, we may hoose Ext

E

(R) = R.

Example 11. As another example, onsider the following system from [19℄.

R = f x� 0! x; E = f(u� v)� w � (u� w)� vg

s(x)� s(y)! x� y;

0� s(y)! 0;

s(x)� s(y)! s((x� y)� s(y))g

By overlapping the subterm u � w in the right-hand side of the equation with

the left-hand sides of the last two rules we obtain

Ext

E

(R) = R [ f (0� s(y))� z ! 0� z;

(s(x)� s(y))� z ! s((x� y)� s(y))� z g:

Note that these are indeed all the rules of Ext

E

(R). Overlapping the sub-

term u � v of the equation's left-hand side with the third rule would result in

(0 � s(y)) � z

0

! 0 � z

0

. But this new rule does not have to be inluded in

Ext

E

(R), sine the orresponding other term of the equation, (0 � z

0

) � s(y),

would !

�

EnExt

E

(R)

-redue with the rule (0 � s(y))� z ! 0 � z to 0 � z

0

. Over-

lapping u� v with the left-hand side of the fourth rule is also superuous.

10



Similarly, overlaps with the new rules (0 � s(y)) � z ! 0 � z or (s(x) �

s(y)) � z ! s((x � y) � s(y)) � z also do not give rise to additional rules in

Ext

E

(R). To see this, overlap the subterm u � w in the right-hand side of the

equation with the left-hand side of (0 � s(y)) � z ! 0 � z. This gives the rule

((0 � s(y)) � z) � z

0

! (0 � z) � z

0

. However, the orresponding other term of

the equation is ((0� s(y))� z

0

)� z. This redues at position 1 (or position 11)

to (0� z

0

)� z, whih is E-equivalent to (0� z)� z

0

. Overlaps with the other new

rule (s(x)� s(y))� z ! s((x� y)� s(y))� z are not needed either.

Nevertheless, the above algorithm for omputing extensions does not always

terminate. For example, for R = fa(x)! (x)g, E = fa(b(a(x))) � b(a(b(x)))g,

it an be shown that all extensions Ext

E

(R) are in�nite.

We prove below that Ext

E

(R) (aording to Def. 8) has the desired property

needed to redue rewriting modulo equations to E-extended rewriting. The fol-

lowing important lemma states that whenever s rewrites to t with!

R=E

modulo

E , then s also rewrites with !

EnExt

E

(R)

to a term whih is E-equivalent to t.

8

Lemma 12 (Connetion between !

R=E

and !

EnExt

E

(R)

). Let R be a TRS

and let E be a set of equations with idential unique variables. If s!

R=E

t, then

there exists a term t

0

�

E

t suh that s!

EnExt

E

(R)

t

0

.

Proof. Let s !

R=E

t, i.e., there exist terms s

0

; : : : ; s

n

; p with n � 0 suh that

s = s

n

à

E

s

n�1

à

E

: : : à

E

s

0

!

R

p �

E

t. For the lemma, it suÆes to show

that there is a t

0

�

E

p suh that s!

EnExt

E

(R)

t

0

, sine t

0

�

E

p implies t

0

�

E

t.

We perform indution on n. If n = 0, we have s = s

n

= s

0

!

R

p. This

implies s!

EnExt

E

(R)

p sine R � Ext

E

(R). So with t

0

= p the laim is proved.

If n > 0, the indution hypothesis implies s = s

n

à

E

s

n�1

!

EnExt

E

(R)

t

0

suh that t

0

�

E

p. So there exists an equation u � v or v � u from E and a

rule l ! r from Ext

E

(R) suh that sj

�

= uÆ, s

n�1

= s[vÆ℄

�

, s

n�1

j

�

�

E

lÆ, and

t

0

= s

n�1

[rÆ℄

�

for positions � and � and a substitution Æ. We an use the same

substitution Æ for instantiating the equation u � v (or v � u) and the rule l! r,

sine equations and rules are assumed variable disjoint. We now perform a ase

analysis depending on the relationship of the positions � and �.

Case 1: � = �� for some �. In this ase, we have sj

�

= sj

�

[uÆ℄

�

à

E

sj

�

[vÆ℄

�

=

s

n�1

j

�

�

E

lÆ. This implies s!

EnExt

E

(R)

s[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

, as desired.

Case 2: �?�. Now we have sj

�

= s

n�1

j

�

�

E

lÆ and thus, s!

EnExt

E

(R)

s[rÆ℄

�

=

s[rÆ℄

�

[uÆ℄

�

à

E

s[rÆ℄

�

[vÆ℄

�

= s[vÆ℄

�

[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

.

Case 3: � = �� for some �. Thus, (vÆ)j

�

�

E

lÆ. We distinguish two sub-ases.

Case 3.1: uÆ !

EnExt

E

(R)

q �

E

(v[r℄

�

)Æ for some term q. This implies s = s[uÆ℄

�

!

EnExt

E

(R)

s[q℄

�

�

E

s[v[r℄

�

Æ℄

�

= (s[vÆ℄

�

)[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

.

8

Our extension Ext

E

has some similarities to the onstrution of ontexts in [24℄.

However, in ontrast to [24℄ we also onsider the rules of R

0

in Condition (b) of Def.

8 in order to redue the number of rules in Ext

E

. Moreover, in [24℄ equations may

also be non-linear (and thus, Lemma 12 does not hold there).

11



Case 3.2: Otherwise. First assume that � = �

1

�

2

where vj

�

1

is a variable x.

Hene, (vÆ)j

�

= Æ(x)j

�

2

. Let Æ

0

(y) = Æ(y) for y 6= x and let Æ

0

(x) = Æ(x)[rÆ℄

�

2

.

Sine u � v (or v � u) is an equation with idential unique variables, x also

ours in u at some position �

0

. This implies uÆj

�

0

�

2

= Æ(x)j

�

2

�

E

lÆ !

Ext

E

(R)

rÆ. Hene, we obtain uÆ !

�

0

�

2

EnExt

E

(R)

uÆ[rÆ℄

�

0

�

2

= uÆ

0

�

E

vÆ

0

= (v[r℄

�

)Æ in

ontradition to the ondition of Case 3.2.

Hene, � is a position of v and vj

�

is not a variable. Thus, (vÆ)j

�

= vj

�

Æ �

E

lÆ.

Sine rules and equations are assumed variable disjoint, the subterm vj

�

E-uni�es

with l. Thus, there exists a � 2 uni

E

(vj

�

; l) suh that Æ �

E

��.

Due to the Condition (b) of Def. 8, there is a term q

0

suh that u� !

�

0

EnExt

E

(R)

q

0

�

E

(v[r℄

�

)�. Sine �

0

is a position in u, we have uj

�

0

� �

E

Æ !

Ext

E

(R)

q

00

, where

q

0

= u�[q

00

℄

�

0

. This also implies uj

�

0

Æ �

E

uj

�

0

�� �

E

Æ !

Ext

E

(R)

q

00

�, and thus

uÆ !

�

0

EnExt

E

(R)

uÆ[q

00

�℄

�

0

�

E

u�[q

00

℄

�

0

� = q

0

� �

E

(v[r℄

�

)�� �

E

(v[r℄

�

)Æ. This is a

ontradition to the ondition of Case 3.2. ut

The following theorem shows that Ext

E

indeed has the desired property.

Theorem 13 (Termination of R=E by E-Extended Rewriting). Let R be

a TRS, let E be a set of equations with idential unique variables, and let t be

a term. Then t does not start an in�nite !

R=E

-redution i� t does not start

an in�nite !

EnExt

E

(R)

-redution. So in partiular, R is terminating modulo E

(i.e., !

R=E

is well founded) i� !

EnExt

E

(R)

is well founded.

Proof. The \only if" diretion is straightforward beause !

Ext

E

(R)

=!

R

and

therefore, !

EnExt

E

(R)

�!

Ext

E

(R)=E

=!

R=E

.

For the \if" diretion, assume that t starts an in�nite !

R=E

-redution

t = t

0

!

R=E

t

1

!

R=E

t

2

!

R=E

: : :

For every i 2 IN, let f

i+1

be a funtion from terms to terms suh that for every

t

0

i

�

E

t

i

, f

i+1

(t

0

i

) is a term E-equivalent to t

i+1

suh that t

0

i

!

EnExt

E

(R)

f

i+1

(t

0

i

).

These funtions f

i+1

must exist due to Lemma 12, sine t

0

i

�

E

t

i

and t

i

!

R=E

t

i+1

implies t

0

i

!

R=E

t

i+1

. Hene, t starts an in�nite !

EnExt

E

(R)

-redution:

t!

EnExt

E

(R)

f

1

(t)!

EnExt

E

(R)

f

2

(f

1

(t))!

EnExt

E

(R)

f

3

(f

2

(f

1

(t)))!

EnExt

E

(R)

: : : ut

5 Dependeny Pairs for Rewriting Modulo Equations

In this setion we �nally extend the dependeny pair approah to rewriting

modulo equations: To show that R modulo E terminates, one �rst onstruts

the extension Ext

E

(R) of R. Subsequently, dependeny pairs an be used to

prove well-foundedness of !

EnExt

E

(R)

(whih is equivalent to termination of R

modulo E). The idea for the extension of the dependeny pair approah is simply

to modify Thm. 3 as follows.

1. The equations should be satis�ed by the equivalene � orresponding to the

quasi-ordering %, i.e., we demand u � v for all equations u � v in E .

12



2. A similar requirement is needed for equations u � v when the root symbols

of u and v are replaed by the orresponding tuple symbols. We denote

tuples of terms s

1

; : : : ; s

n

by s and for any term t = f(s) with a de�ned root

symbol f , let t

℄

be the term F (s). Hene, we also have to demand u

℄

� v

℄

.

3. The notion of \de�ned symbols" must be hanged aordingly. As before, all

root symbols of left-hand sides of rules are regarded as being de�ned, but

if there is an equation f(u) = g(v) in E and f is de�ned, then g must be

onsidered de�ned as well, as otherwise we would not be able to trae the

redex in a redution by only regarding subterms with de�ned root symbols.

De�nition 14 (De�ned Symbols for Rewriting Modulo Equations). Let

R be a TRS and let E be a set of equations. Then the set of de�ned symbols D

of R=E is the smallest set suh that D = froot(l) j l! r 2 Rg [ froot(v) ju �

v 2 E or v � u 2 E ; root(u) 2 Dg.

The onstraints of the dependeny pair approah as skethed above are not

yet suÆient for termination of !

EnR

as the following example illustrates.

Example 15. Consider R = ff(x) ! s(x)g and E = ff(a) � ag. There is no

dependeny pair in this example and thus, the only onstraints would be f(x) %

s(x), f(a) � a, and F(a) � A. Obviously, these onstraints are satis�able (by

using an equivalene relation � where all terms are equal). However, !

EnR

is

not terminating sine we have a à

E

f(a)!

R

s(a) à

E

s(f(a))!

R

s(s(a)) à

E

: : :

The soundness of the dependeny pair approah for ordinary rewriting (Thm.

3) relies on the fat that an in�nite redution from a minimal non-terminating

term an be ahieved by applying only normalized instantiations of R-rules. But

for E-extended rewriting (or full rewriting modulo equations), this is not true

any more. For instane, the minimal non-terminating subterm a in Ex. 15 is �rst

modi�ed by applying an E-equation (resulting in f(a)) and then an R-rule is

applied whose variable is instantiated with the non-terminating term a. Hene,

the problem is that the new minimal non-terminating subterm a whih results

from appliation of the R-rule does not orrespond to the right-hand side of a

dependeny pair, beause this minimal non-terminating subterm is ompletely

inside the instantiation of a variable of the R-rule. With ordinary rewriting, this

situation an never our.

In Ex. 15, the problem an be avoided by adding a suitable instane of the

rule f(x) ! s(x) (viz. f(a) ! s(a)) to R, sine this instane is used in the

in�nite redution. Now there would be a dependeny pair hF(a);Ai and with the

additional onstraint F(a) > A the resulting inequalities are no longer satis�able.

Note that sine in pratie, we are interested in proving termination of!

R=E

,

we would of ourse �rst build the extension Ext

E

(R) and then we would try

to prove well-foundedness of !

EnExt

E

(R)

instead of well-foundedness of !

EnR

.

Note that for the system of Ex. 15 we obtain Ext

E

(R) = ff(x)! s(x); f(f(a))!

f(s(a))g, beause the subterm a of f(a) E-uni�es with f(x) (using the E-uni�er

� = fx=ag). The (minimal) omplete set of E-uni�ers only onsists of �, sine

all other E-uni�ers Æ = fx=f

n

(a)g satisfy Æ(x) �

E

�(x). Thus, a system like the

13



one of Ex. 15 would never be tested for !

EnR

-termination in pratie, sine one

would always extend R �rst and for Ext

E

(R), the dependeny pair approah

would no longer falsely onlude termination.

Thus, one might be tempted to assume that the problem of Ex. 15 never o-

urs in pratie, beause after extendingR to Ext

E

(R) the systems would always

have a form where the \right instantiation" of the rules is already inluded. In

other words, one might hope that although the dependeny pair approah an-

not be used to prove termination of !

EnR

in general, it would still be sound for

TRSs R whih result from the extension proess of Set. 4. Unfortunately, this

is not true, as the following example shows.

Example 16. Let us modify the rule from Ex. 15 to f(x) ! x, i.e., regard R =

ff(x) ! xg and E = ff(a) � ag. Now we may hoose Ext

E

(R) = R: The

subterm a of v = f(a) uni�es with f(x) using the E-uni�er � = fx=ag (where

again uni

E

(a; f(x)) = f�g is a minimal omplete set of E-uni�ers). But the rule

f(f(a)) ! f(a) does not have to be added, sine we have u� = a �

E

f(a) !

�

R

a �

E

f(a) = (v[r℄

�

)�. Obviously, !

EnR

is still non-terminating and there is still

no dependeny pair in this example.

The following de�nition shows how to add the right instantiations of the

rules in R in order to allow a sound appliation of dependeny pairs. As usual,

a substitution � is alled a variable renaming i� the range of � only ontains

variables and if �(x) 6= �(y) for x 6= y.

De�nition 17 (Adding Instantiations). Given a TRS R, a set E of equa-

tions, let R

0

be a set ontaining only rules of the form l� ! r� (where � is a

substitution and l! r 2 R). R

0

is an instantiation of R for the equations E i�

(a) R � R

0

,

(b) for all l! r 2 R, all u � v 2 E and v � u 2 E, and all � 2 uni

E

(v; l), there

exists a rule l

0

! r

0

2 R

0

and a variable renaming � suh that l� �

E

l

0

� and

r� �

E

r

0

�.

In the following, let Ins

E

(R) always denote an instantiation of R for E .

Unlike extensions Ext

E

(R), instantiations Ins

E

(R) are never in�nite if R

and E are �nite and if uni

E

(v; l) is always �nite (i.e., they are not de�ned via a

�xpoint onstrution). In fat, one might even demand that for all l! r 2 R, all

equations, and all � from the orresponding omplete set of E-uni�ers, Ins

E

(R)

should ontain l� ! r�. The ondition that it is enough if some E-equivalent

variable-renamed rule is already ontained in Ins

E

(R) is only added for eÆieny

onsiderations in order to redue the number of rules in Ins

E

(R). Even without

this ondition, Ins

E

(R) would still be �nite and all the following theorems would

hold as well.

However, the above instantiation tehnique only serves its purpose if there

are no ollapsing equations (i.e., no equations u � v or v � u with v 2 V).

Example 18. Consider R = ff(x)! xg and E = ff(x) � xg. Note that Ins

E

(R)

= R. Although !

EnR

is learly not terminating, the dependeny pair approah

would falsely prove termination of !

EnR

, sine there is no dependeny pair.

14



For non-ollapsing equations, the onstrution used to build Ins

E

(R) leads

to the desired property: Whenever we have a terminating or a minimal non-

terminating term whih is E-equivalent to an instantiated left-hand side lÆ of a

rule l ! r 2 R, there exists a orresponding rule l

0

! r

0

in Ins

E

(R), suh that

l

0

� �

E

lÆ and � only instantiates the variables of l

0

with terminating terms.

Now we an present the main result of the paper.

Theorem 19 (Termination of Equational Rewriting using Dependeny

Pairs). Let R be a TRS and let E be a set of non-ollapsing equations with iden-

tial unique variables. R is terminating modulo E (i.e., !

R=E

is well founded) if

there exists a weakly monotoni quasi-ordering % and a well-founded ordering >

ompatible with % where both % and > are losed under substitution, suh that

(1) s > t for all dependeny pairs hs; ti of Ins

E

(Ext

E

(R)),

(2) l % r for all rules l! r of R,

(3) u � v for all equations u � v of E, and

(4) u

℄

� v

℄

for all equations u � v of E where root(u) and root(v) are de�ned.

Proof. Suppose that there is a term t

0

with an in�nite !

R=E

-redution. Thm.

13 implies that t

0

also has an in�nite !

EnExt

E

(R)

-redution. By a minimality

argument, t

0

= C[t

0

0

℄, where t

0

0

is an minimal non-terminating term (i.e., t

0

0

is

non-terminating, but all its subterms only have �nite !

EnExt

E

(R)

-redutions).

We will show that there exists a term t

1

with t

0

!

+

EnExt

E

(R)

t

1

, t

1

ontains a

minimal non-terminating subterm t

0

1

, and t

0

0

℄

% Æ > t

0

1

℄

. By repeated appliation

of this onstrution we obtain an in�nite sequene t

0

!

+

EnExt

E

(R)

t

1

!

+

EnExt

E

(R)

t

2

!

+

EnExt

E

(R)

: : : suh that t

0

0

℄

% Æ > t

0

1

℄

% Æ > t

0

2

℄

% Æ > : : :. This, however, is

a ontradition to the well-foundedness of >.

Let t

0

0

have the form f(u). In the in�nite!

EnExt

E

(R)

-redution of f(u), �rst

some!

EnExt

E

(R)

-steps may be applied to u whih yields new terms v. Note that

due to the de�nition of E-extended rewriting, in these redutions, no E-steps an

be applied outside of u. Due to the termination of u, after a �nite number of

those steps, an !

EnExt

E

(R)

-step must be applied on the root position of f(v).

Thus, there exists a rule l ! r 2 Ext

E

(R) suh that f(v) �

E

l� and hene,

the redution yields r�. Now the in�nite !

EnExt

E

(R)

-redution ontinues with

r�, i.e., the term r� starts an in�nite !

EnExt

E

(R)

-redution, too. So up to now

the redution has the following form (where !

Ext

E

(R)

equals !

R

):

t

0

= C[f(u)℄!

�

EnExt

E

(R)

C[f(v)℄ �

E

C[l�℄!

Ext

E

(R)

C[r�℄:

We perform a ase analysis depending on the positions of E-steps in f(v) �

E

l�.

First onsider the ase where all E-steps in f(v) �

E

l� take plae below the

root. Then we have l = f(w) and v �

E

w�. Let t

1

:= C[r�℄. Note that v do not

start in�nite !

EnExt

E

(R)

-redutions and by Thm. 13, they do not start in�nite

!

R=E

-redutions either. But thenw� also annot start in�nite!

R=E

-redutions

and therefore they also do not start in�nite!

EnExt

E

(R)

-redutions. This implies

that for all variables x ourring in f(w) the terms �(x) are terminating. Thus,

15



sine r� starts an in�nite redution, there ours a non-variable subterm s in

r, suh that t

0

1

:= s� is a minimal non-terminating term. Sine hl

℄

; s

℄

i is a

dependeny pair, we obtain t

0

0

℄

= F (u) % F (v) � l

℄

� > s

℄

� = t

0

1

℄

. Here,

F (u) % F (v) holds sine u!

�

EnExt

E

(R)

v and sine l % r for every rule l! r 2

Ext

E

(R).

Now we onsider the ase where there are E-steps in f(v) �

E

l� at the root

position. Thus we have f(v) �

E

f(q) à

E

p �

E

l�, where f(q) à

E

p is the �rst

E-step at the root position. In other words, there is an equation u � v or v � u

in E suh that f(q) is an instantiation of v.

Note that sine v �

E

q, the terms q only have �nite !

EnExt

E

(R)

-redutions

(the argumentation is similar as in the �rst ase). Let Æ be the substitution whih

operates like � on the variables of l and whih yields vÆ = f(q). Thus, Æ is an

E-uni�er of l and v. Sine l is E-uni�able with v, there also exists a orresponding

omplete E-uni�er � from uni

E

(l; v). Thus, there is also a substitution � suh

that Æ �

E

��. As l is a left-hand side of a rule from Ext

E

(R), there is a rule

l

0

! r

0

in Ins

E

(Ext

E

(R)) and a variable renaming � suh that l� �

E

l

0

� and

r� �

E

r

0

�.

Hene, v�� �

E

vÆ = f(q), l

0

�� �

E

l�� �

E

lÆ = l�, and r

0

�� �

E

r�� �

E

rÆ =

r�. So instead we now onsider the following redution (where !

Ins

E

(Ext

E

(R))

equals !

R

):

t

0

= C[f(u)℄!

�

EnExt

E

(R)

C[f(v)℄ �

E

C[l

0

��℄!

Ins

E

(Ext

E

(R))

C[r

0

��℄ = t

1

:

Sine all proper subterms of vÆ only have �nite !

R=E

-redutions, for all

variables x of l

0

�, the term x� only has �nite !

R=E

-redutions and hene, also

only �nite!

EnExt

E

(R)

-redutions. To see this, note that sine all equations have

idential unique variables, v� �

E

l� �

E

l

0

� implies that all variables of l

0

� also

our in v�. Thus, if x is a variable from l

0

�, then there exists a variable y in

v suh that x ours in y�. Sine E does not ontain ollapsing equations, y is

a proper subterm of v and thus, yÆ is a proper subterm of vÆ. As all proper

subterms of vÆ only have �nite !

R=E

-redutions, this implies that yÆ only has

�nite !

R=E

-redutions, too. But then, sine yÆ �

E

y��, the term y�� only has

�nite !

R=E

-redutions, too. Then this also holds for all subterms of y��, i.e.,

all !

R=E

-redutions of x� are also �nite.

So for all variables x of l

0

, x�� only has �nite !

EnExt

E

(R)

-redutions. (Note

that this only holds beause � is just a variable renaming.) Sine r� starts an

in�nite!

EnExt

E

(R)

-redution, r

0

�� �

E

r�must start an in�nite!

R=E

-redution

(and hene, an in�nite !

EnExt

E

(R)

-redution) as well. As for all variables x of

r

0

, x�� is !

EnExt

E

(R)

-terminating, there must be a non-variable subterm s of

r

0

, suh that t

0

1

:= s�� is a minimal non-terminating term. As hl

0

℄

; s

℄

i is a

dependeny pair, we obtain t

0

0

℄

= F (u) % F (v) � l

0

℄

�� > s

℄

�� = t

0

1

℄

. Here,

F (v) �

E

l

0

℄

�� is a onsequene of Condition (4). ut

To summarize, our proedure to prove termination ofRmodulo E is desribed

by the following orollary.

16



Corollary 20 (Proving Termination of Rewriting Modulo Equations).

Let R be a TRS and let E be a set of non-ollapsing equations with idential

unique variables. Then the following algorithm is sound:

1.Let C be the set of the following onstraints:

� s > t for all dependeny pairs hs; ti of Ins

E

(Ext

E

(R)),

� l % r for all rules l! r of R,

� u � v for all equations u � v of E, and

� u

℄

� v

℄

for all equations u � v of E where root(u) and root(v) are de�ned

Here, Ext

E

is omputed by the algorithm on p. 8.

2.Eliminate arguments of funtion symbols

(i.e., normalize the terms in C by rules of the form

f(x

1

; : : : ; x

n

)! f

0

(x

i

1

; : : : ; x

i

m

) where 1 � i

1

< : : : < i

m

� n or

f(x

1

; : : : ; x

n

)! x

i

where 1 � i � n )

3.Use standard tehniques to �nd suitable relations satisfying C.

In ase of suess, R is terminating modulo E.

Example 21. Regard the system from Ex. 10 again. Here, we had Ext

E

(R) = R

and we also have Ins

E

(R) = R. By Thm. 19 or Cor. 20, we obtain the following

onstraints for the dependeny pair approah:

F(s(y)) > F(y)

f(s(y)) % f(y)

f(f(x)) � f(x)

F(f(x)) � F(x)

As explained in Set. 2, one may �rst eliminate arguments of funtion symbols or

replae funtion symbols by one of their arguments before searhing for suitable

orderings. By replaing f by its argument (i.e., by normalizing the terms w.r.t.

the rule f(x)! x), these onstraints are transformed into

F(s(y)) > F(y)

s(y) % y

x � x

F(x) � F(x):

These inequalities are satis�ed by the reursive path ordering. ut

Example 22. Similarly, termination of the division-system (Ex. 11) an also be

proved by dependeny pairs. In [19℄, Ohsaki, Middeldorp, and Giesl developed

a new extension of the semanti labelling tehnique [25℄ to rewriting modulo

equations. This example was used to demonstrate the power of their method,

beause with their new de�nition of equational semanti labelling one an prove

termination of this system, whereas the original de�nition of Zantema [25℄ fails

17



here. However, semanti labelling is a tehnique designed for manual termination

proofs (and it is also useful as a proof tehnique for orretness proofs of other

methods). In ontrast, with the method of the present paper, one an now verify

termination of this example automatially for the �rst time.

Here we have Ins

E

(Ext

E

(R)) = Ext

E

(R) and thus, the resulting onstraints

are

M(s(x); s(y)) > M(x; y);

Q(s(x); s(y)) > M(x; y);

Q(s(x); s(y)) > Q(x� y; s(y))

Q(0� s(y); z) > Q(0; z)

Q(s(x)� s(y); z) > M(x; y)

Q(s(x)� s(y); z) > Q(x� y; s(y))

Q(s(x)� s(y); z) > Q(s((x� y)� s(y)); z)

as well as l % r for all rules l! r, (u� v)�w � (u�w)� v, and Q(u� v; w) �

Q(u�w; v). (Here,M and Q are the tuple symbols for the minus-symbol \�" and

the quot-symbol \�".) In this example we will eliminate the seond arguments of

�,�,M, and Q (i.e., every term s�t is replaed by�

0

(s), et.). Then the resulting

inequalities are satis�ed by the rpo with the preedene �

0

A s A �

0

, Q

0

A M

0

.

Ex. 21 and Ex. 22 also demonstrate that by using dependeny pairs, termination

of equational rewriting an sometimes even be shown by ordinary base orderings

(e.g., the ordinary rpo whih on its own annot be used for rewriting modulo

equations).

6 Dependeny Graphs for Rewriting Modulo Equations

In [1{3℄, Arts and Giesl presented a re�nement of the dependeny pair approah

based on the observation that instead of onsidering all dependeny pairs at the

same time, it is advantageous to treat groups of dependeny pairs separately.

These groups orrespond to lusters in the dependeny graph of R. One should

remark that this re�nement is only possible for �nite TRSs R. In this setion we

show how this re�nement an also be used for rewriting modulo equations. This

extension of dependeny graphs to the equational setting is quite straightforward

and similar to the extensions of the dependeny graph re�nement to the AC-ase

in [16, 18℄.

The nodes of the dependeny graph are the dependeny pairs and there is

an arrow from node hv

℄

; w

℄

i to hl

℄

; t

℄

i if there exist substitutions �

1

and �

2

suh

that w

℄

�

1

!

�

R=E

Æ �

E

℄ l

℄

�

2

. By renaming variables in di�erent ourrenes

of dependeny pairs we may assume that �

1

= �

2

. Here, E

℄

also ontains the

equations u

℄

� v

℄

where u � v is an equation from E whose roots are de�ned,

i.e.

E

℄

= E [ fu

℄

� v

℄

j u � v 2 E ; root(u) and root(v) are de�ned g:

18



For the division-system (Ex. 11) we had seven dependeny pairs.

hM(s(x); s(y));M(x; y)i (1)

hQ(s(x); s(y));M(x; y)i (2)

hQ(s(x); s(y));Q(x� y; s(y))i (3)

hQ(0� s(y); z);Q(0; z)i (4)

hQ(s(x)� s(y); z);M(x; y)i (5)

hQ(s(x)� s(y); z);Q(x� y; s(y))i (6)

hQ(s(x)� s(y); z);Q(s((x� y)� s(y)); z)i (7)

The dependeny graph ontains an arrow from (1) to itself and arrows from (2)

and (5) to (1). Moreover, from eah of the pairs (3), (6), and (7) there are arrows

to all pairs (2) - (7). The reason is that a term Q(: : :) an only redue w.r.t.

!

�

R=E

Æ �

E

℄ to terms with the root symbol Q and a term with the root symbol

M an also just redue to other terms built with M. Moreover, an instantiation

of the right-hand side Q(0; z) of (4) an never redue to any left-hand side of a

dependeny pair.

We all a non-empty subset C of dependeny pairs a luster if for every two

(not neessarily distint) pairs hv

℄

; w

℄

i and hl

℄

; t

℄

i in C there exists a non-empty

path in C from hv

℄

; w

℄

i to hl

℄

; t

℄

i. So the lusters in the division-example are

f(1)g and all non-empty subsets of f(3); (6); (7)g.

From the proof of Thm. 19 it is straightforward that for termination of R

modulo E one an onsider the lusters of dependeny pairs separately and that

for eah luster it is suÆient to �nd one dependeny pair whih is stritly de-

reasing (w.r.t. >), whereas the others only have to be weakly dereasing (w.r.t.

%). For the division-example this implies that we may use di�erent orderings for

the M- and the Q-lusters.

While in general the dependeny graph annot be omputed automatially

(sine it is undeidable whether w

℄

� !

�

R=E

Æ �

E

℄ l

℄

� holds for some �), one an

nevertheless approximate this graph automatially. The estimation is based on

omparing the onstrutors of the terms in the dependeny pairs. For any term

w, let ap(w) result from replaing all proper

9

subterms of w that have a de�ned

root symbol by di�erent fresh variables and let ren(w) result from replaing all

ourrenes of variables in w by di�erent fresh variables. Then, to determine

whether w

℄

� !

�

R=E

Æ �

E

℄ l

℄

� holds for some �, we hek whether ren(ap(w))

E-uni�es with l. In this ase, we draw an arrow from hv

℄

; w

℄

i to hl

℄

; t

℄

i in the

estimated dependeny graph. Here, the funtion ren is needed to rename multi-

ple ourrenes of the same variable x, beause for ertain substitutions �, two

ourrenes of x� ould redue to di�erent terms.

For example, ap((x� y)� s(y)) = z � s(y), sine the proper subterm x� y

has a de�ned root symbol. Moreover, ren(z � s(y)) = z

0

� s(y

0

). Sine z

0

� s(y

0

)

9

We de�ned ap slightly di�erent from [1{3℄, beause we only replae proper subterms

with de�ned root symbols. The advantage is that in this way, ap an be applied

to terms without tuple symbols and hene, the estimated dependeny graph an be

omputed by using E-uni�ation instead of E

℄

-uni�ation.

19



E-uni�es with s(x)� s(y), we have to draw an arrow from (3) to (2) and to (3)

itself. It turns out that in the division-example, the estimated dependeny graph

is idential to the real dependeny graph, i.e., by the approximation above we

an ompute the dependeny graph automatially.

In general, we obtain the following re�ned termination riterion, whih an

be heked mehanially.

Theorem 23 (Termination of Equational Rewriting with Dependeny

Graph). Let R be a TRS and let E be a set of non-ollapsing equations with

idential unique variables. R is terminating modulo E if for every luster in the

estimated dependeny graph of Ins

E

(Ext

E

(R)), there exists a weakly monotoni

quasi-ordering % and a well-founded ordering > ompatible with % where both

% and > are losed under substitution, suh that

(1) s > t for at least one dependeny pair hs; ti of the luster,

(1

0

) s % t for all other dependeny pairs hs; ti of the luster,

(2) l % r for all rules l! r of R,

(3) u � v for all equations u � v of E, and

(4) u

℄

� v

℄

for all equations u � v of E where root(u) and root(v) are de�ned.

Proof. We �rst show that the estimation of the dependeny graph is orret,

i.e., w

℄

� !

�

R=E

Æ �

E

℄ l

℄

� implies that ren(ap(w)) and l are E-uni�able. By

Lemma 12, w

℄

� !

�

R=E

Æ �

E

℄ l

℄

� implies w

℄

� !

�

EnExt

E

(R)

Æ �

E

℄ l

℄

�.

Note that for any two terms t

1

; t

2

with de�ned roots, t

1

℄

!

�

EnExt

E

(R)

t

2

℄

implies that ren(ap(t

1

)) mathes ren(ap(t

2

)). This an be proved by indu-

tion on the length of the redution t

1

℄

!

�

EnExt

E

(R)

t

2

℄

. If t

1

℄

= t

2

℄

, we have

t

1

= t

2

and thus, the laim is obvious. Otherwise, we have t

1

℄

!

EnExt

E

(R)

t

0

1

℄

!

�

EnExt

E

(R)

t

2

℄

. Thus, there exists a position � with t

1

℄

j

�

= l� and t

0

1

℄

=

t

1

℄

[r�℄

�

. This implies � 6= �, t

1

j

�

= l�, and t

0

1

= t

1

[r�℄

�

for some rule l !

r 2 Ext

E

(R). Sine � is the position of a de�ned symbol below the root

(whih may of ourse be below another de�ned symbol), ren(ap(t

1

)) mathes

ren(ap(t

0

1

)). Sine ren(ap(t

0

1

)) mathes ren(ap(t

2

)) by the indution hy-

pothesis, ren(ap(t

1

)) also mathes ren(ap(t

2

)).

So w

℄

� !

�

EnExt

E

(R)

q

℄

implies that ren(ap(w�)) mathes ren(ap(q)).

Sine ren(ap(w)) mathes ren(ap(w�)) and sine ren(ap(q)) mathes q,

therefore ren(ap(w)) mathes q, i.e., we have ren(ap(w))� = q for some

substituton �. Hene, if w

℄

� !

�

EnExt

E

(R)

q

℄

�

E

℄ l

℄

�, we also have q �

E

l� and

thus, ren(ap(w))� �

E

l�. Sine the variables of ren(ap(w) and l are disjoint,

this means that ren(ap(w)) and l are E-uni�able.

So the estimated dependeny graph is a supergraph of the real dependeny

graph, i.e., every luster in the dependeny graph is also a luster in the estimated

dependeny graph. As in the proof of Thm. 19, for every non-terminating term

t

0

we onstrut the in�nite sequene

t

0

!

+

EnExt

E

(R)

t

1

!

+

EnExt

E

(R)

t

2

!

+

EnExt

E

(R)

: : :

20



suh that all t

i

ontain the minimal non-terminating subterm t

0

i

.

From the proof of Thm. 19 we see that for all i � 0 there is a rule l

i

! r

i

2

Ins

E

(Ext

E

(R)) and a substitution �

i

suh that

{ t

i

!

>� �

EnExt

E

(R)

Æ �

E

l

i

�

i

and thus, t

i

℄

!

�

EnExt

E

(R)

Æ �

E

℄ l

i

℄

�

i

,

{ t

i+1

= s

i

�

i

and thus t

i+1

℄

= s

i

℄

�

i

for some non-variable subterm s

i

of r

i

,

{ hl

i

℄

; s

i

℄

i is a dependeny pair of Ins

E

(Ext

E

(R)).

This means that for all i � 1 we have

s

i�1

℄

�

i�1

!

�

EnExt

E

(R)

Æ �

E

℄ l

i

℄

�

i

:

Thus, there are ars from hl

i�1

℄

; s

i�1

℄

i to hl

i

℄

; s

i

℄

i in the dependeny graph.

Sine there are only �nitely many dependeny pairs, the pairs of at least one

luster our in�nitely many times in the sequene

hl

0

℄

; s

0

℄

i; hl

1

℄

; s

1

℄

i; hl

2

℄

; s

2

℄

i; : : :

For at least one dependeny pair in this luster we demanded that the left-hand

side is stritly greater than its right-hand side. Thus, t

0

0

℄

; t

0

1

℄

; : : : is a dereasing

sequene of terms with t

0

i

℄

% t

0

i+1

℄

or t

0

i

℄

% Æ > t

0

i+1

℄

where the strit inequality

t

0

i

℄

% Æ > t

0

i+1

℄

holds in�nitely many times. This is a ontradition to the well-

foundedness of >. ut

Example 24. For the division-example (Ex. 11) we now obtain di�erent groups of

onstraints orresponding to the di�erent lusters. The dependeny pairs (2), (4),

and (5) are not in any luster and hene, they an be ompletely disregarded for

the termination proof. For example, it would be suÆient to searh for orderings

>

1

;%

1

; >

2

;%

2

where >

1

is ompatible with %

1

and >

2

is ompatible with %

2

suh that M(s(x); s(y)) >

1

M(x; y), Q(: : :) >

2

Q(: : :) for the dependeny pairs

(3), (6), (7), and for both i 2 f1; 2g we need l %

i

r for all rules l ! r, (u �

v)� w �

i

(u� w)� v, and Q(u� v; w) �

i

Q(u� w; v). Obviously, here we an

hoose >

1

=>

2

=> and %

1

=%

2

=% for the orderings > and % from Ex. 22.

But in general, the modular deomposition of termination proofs by dependeny

graphs allows many (automated) termination proofs whih would not be possible

otherwise, f. [1{3℄ and the examples A.5, A.7, A.9, and A.10 in the appendix.

7 Conlusion

We have extended the dependeny pair approah to equational rewriting. The

equations allowed are muh more general than just AC-axioms: Any non-ollap-

sing equation is allowed if it satis�es the idential unique variables property (i.e.,

every variable appears uniquely in eah side of the equation, and the same set of

variables appear on the two sides of the equation). From a given rewrite system

R and an equation set E , an extended rewrite system Ext

E

(R) is omputed

using a omplete uni�ation algorithm for E , so that the termination of its as-

soiated weak rewrite relation is suÆient for termination of R modulo E . The

21



assoiated weak rewrite relation of Ext

E

(R) is more suited for the dependeny

pair approah sine one never has to onsider any appliations of E-equations

above the redex being redued next. To solve the problem that minimal non-

terminating subterms might only our in variable positions of R-rules, it also

beomes neessary to inlude �nitely many instanes of Ext

E

(R) in the �nal

rewrite system Ins

E

(Ext

E

(R)) from whih the dependeny pairs are omputed.

Finally, the re�nement of dependeny graphs arries over to the equational ase

in a straightforward way (by using E-uni�ation to ompute an estimation of

these graphs).

In the speial ase of AC-axioms, our method is similar to the ones previ-

ously presented in [16, 18℄. In fat, as long as the equations only onsist of AC-

axioms, one an show that using the instanes Ins

E

in Thm. 19 is not neessary.

10

(Hene, suh a onept annot be found in [18℄). However, even then the only ad-

ditional inequalities resulting from Ins

E

are instantiations of other inequalities

already present and inequalities whih are speial ases of an AC-deletion prop-

erty (whih is satis�ed by all known AC-orderings and similar to the one required

in [16℄). This indiates that in pratial examples with AC-axioms, our tehnique

is at least as powerful as the ones of [16, 18℄ (atually, we onjeture that for AC-

examples, these three tehniques are virtually equally powerful). But ompared

to the approahes of [16, 18℄, our tehnique has a more elegant treatment of tuple

symbols. (For example, if the TRS ontains a rule f(t

1

; t

2

)! g(f(s

1

; s

2

); s

3

) were

f and g are de�ned AC-symbols, then we do not have to extend the TRS by rules

with tuple symbols like f(t

1

; t

2

) ! G(f(s

1

; s

2

); s

2

) in [18℄. Moreover, we do not

need dependeny pairs where tuple symbols our outside the root position suh

as hF(F(t

1

; t

2

); y); : : :i in [18℄ and [16℄ and hF(t

1

; t

2

);G(F(s

1

; s

2

); s

3

)i in [16℄. Fi-

nally, we also do not need the \AC-marked ondition" F(f(x; y); z) � F(F(x; y); z)

of [16℄.) But most signi�antly, unlike [16, 18℄ our tehnique works for arbitrary

non-ollapsing equations E with idential unique variables where E-uni�ation

is �nitary (for subterms of equations and left-hand sides of rules). Obviously,

an implementation of our tehnique also requires E-uni�ation algorithms [5℄ for

the onrete sets of equations E under onsideration.

Aknowledgements. We thank Aart Middeldorp, Thomas Arts, and the referees for

many helpful omments.

A Examples

In this appendix we present a olletion of examples to demonstrate the power

and the appliability of our approah. In all these examples, the set of equations is

di�erent from just AC-axioms. Thus, the previous extensions of the dependeny

approah [16, 18℄ are not appliable here. Up to now, the only automati standard

tehnique for suh examples was the diret use of polynomial orderings (as in

10

Then in the proof of Thm. 19, instead of a minimal non-terminating term t

0

one re-

gards a term t

0

whih is non-terminating and minimal up to some extra f -ourrenes

on the top (where f is an AC-symbol).

22



[6℄). However, in the examples A.1 - A.5, termination annot be proved in this

way (beause R alone is already non-simply terminating). Similarly, Examples

A.9 and A.10 an easily be transformed into systems that are learly non-simply

terminating, too.

The examples A.6 - A.8 an be proved by polynomial orderings diretly, but

here our approah has the advantage that it allows the appliation of the stan-

dard rpo or lpo, whih is muh easier to automate than the searh for polynomial

orderings.

Examples A.8 - A.10 are TRSs whih implement algorithms on non-free data

strutures like integers or multisets. Equational rewriting is partiularly well

suited to model non-free data strutures (and of ourse, this requires equations

di�erent from AC-axioms). Hene, here the tehnique of the present paper is

very useful. Moreover, even for data strutures like the naturals, using + as an

additional onstrutor an be helpful, sine it allows an easy de�nition of many

algorithms. The use of our approah for suh algorithms is illustrated in Ex. A.4.

The examples A.1, A.2 and A.5 - A.10 demonstrate that with our approah,

termination of equational rewriting an often be proved using ordinary base

orderings like standard rpo or lpo (i.e., base orderings whih themselves are not

usable for termination of equational TRSs).

A.1 Division 1

This is the running example from the text (Ex. 11).

R : x� 0! x E : (u� v)� w � (u� w)� v

s(x)� s(y)! x� y

0� s(y)! 0

s(x)� s(y)! s((x� y)� s(y))

Here we obtain

Ext

E

(R) = R[ f (0� s(y))� z ! 0� z;

(s(x)� s(y))� z ! s((x� y)� s(y))� z g

and Ins

E

(Ext

E

(R)) = Ext

E

(R). If we use the same ordering for all lusters of

the dependeny graph we obtain the following onstraints:

M(s(x); s(y)) > M(x; y) (u� v)� w � (u� w)� v

Q(s(x); s(y)) > Q(x� y; s(y)) Q(u� v; w) � Q(u� w; v)

Q(s(x)� s(y); z) > Q(x� y; s(y))

Q(s(x)� s(y); z) > Q(s((x� y)� s(y)); z)

x� 0 % x

s(x)� s(y) % x� y

0� s(y) % 0

s(x)� s(y) % s((x� y)� s(y))

As mentioned in Ex. 22, we eliminate the seond arguments of �, �, M, and

Q. Then the resulting inequalities are satis�ed by the rpo with the preedene

� A s A �.

23



A.2 Division 2

Apart from the equation (u� v)� w � (u� w)� v one an also add additional

equations to the equational theory, e.g., a similar equation for �. This yields

R : x� 0! x E : (u� v)� w � (u� w)� v

s(x)� s(y)! x� y (u� v)� w � (u� w)� v

0� s(y)! 0

s(x)� s(y)! s((x� y)� s(y))

In addition to the rules mentioned in the previous example, now Ext

E

(R)

also ontains the rule

(s(x)� s(y))� z ! (x� y)� z:

Again we have Ins

E

(Ext

E

(R)) = Ext

E

(R) and thus, the resulting onstraints

are the same as in the previous example plus the additional onstraints

M(s(x)� s(y); z) > M(x; y) (u� v)� w � (u� w)� v

M(s(x)� s(y); z) > M(x� y; z) M(u� v; w) � M(u� w; v):

With the same argument elimination as in Ex. A.1, the same rpo satis�es these

onstraints.

A.3 Division 3

The next example shows that instead of the equation (u�v)�w � (u�w)�v one

an also use other equations relating nested �-appliations suh as u�(v�w) �

w � (v � u).

R : x� 0! x E : u� (v � w) � w � (v � u)

s(x)� s(y)! x� y

0� s(y)! 0

s(x)� s(y)! s((x� y)� s(y))

Now we obtain

Ext

E

(R) = R[ f z � (0� s(y))! z � 0;

z � (s(x)� s(y))! z � s((x� y)� s(y)) g:

Overlaps with these new rules do not have to be inluded in Ext

E

(R): If the

subterm v � w is overlapped with z � (0� s(y)), we would obtain the new rule

z

0

�(z�(0�s(y)))! z

0

�(z�0), but the other side of the instantiated equation,

(0 � s(y))� (z � z

0

) already R-redues to 0 � (z � z

0

) whih is E-equivalent to

z

0

� (z � 0). A similar statement holds for overlaps with the seond new rule.

Again we have Ins

E

(Ext

E

(R)) = Ext

E

(R). Thus, we obtain the following

onstraints, if we use the same ordering for all lusters of the dependeny graph:

24



M(s(x); s(y)) > M(x; y) u� (v � w)� w � w � (v � u)

Q(s(x); s(y)) > Q(x� y; s(y)) Q(u; v � w) � Q(w; v � u)

Q(z; s(x)� s(y)) > Q(x� y; s(y))

Q(z; s(x)� s(y)) > Q(z; s((x� y)� s(y)))

x� 0 % x

s(x)� s(y) % x� y

0� s(y) % 0

s(x)� s(y) % s((x� y)� s(y))

The onstraints are satis�ed by the following polynomial interpretation:

0) 1

s(x)) x+ 1

x� y ) x

x� y ) x � y

M(x; y)) x

Q(x; y)) x � y

A.4 Equational Theory with Addition

It is also possible to use + as an (assoiative and ommutative) onstrutor. Then

the set of onstrutors is 0, s and +, i.e., we have a set of non-free onstrutors.

Now subtration an be de�ned very easily by just the rule (x+ y)� y ! x. In

this way, the division system looks as follows:

R : (x+ y)� y ! x E : 0+ v � v

0� s(y)! 0 s(u) + v � s(u+ v)

s(x)� s(y)! s((x� y)� s(y)) u+ v � v + u

u+ (v + w) � (u+ v) + w

Obviously, we have Ins

E

(Ext

E

(R)) = R (this is always the ase if the equa-

tions ontain no de�ned symbols). When using the same ordering for all lusters

we obtain

Q(s(x); s(y)) > Q(x� y; s(y)) 0+ v � v

(x+ y)� y % x s(u) + v � s(u+ v)

0� s(y) % 0 u+ v � v + u

s(x)� s(y) % s((x� y)� s(y)) u+ (v + w) � (u+ v) + w:

The onstraints are satis�ed by the following polynomial ordering:

0) 0

s(x)) x+ 1

x+ y ) x+ y

x� y ) x

x� y ) x

Q(x; y)) x

25



Alternatively, it would also be possible to use the equational theory

1+ 0 � 1

0+ 1 � 1

0+ 0 � 0

u+ (v + w) � (u+ v) + w

and to reformulate the seond division rule as follows.

(x+ 1)� (y + 1) ! ((x� y)� (y + 1)) + 1

When interpreting 1 as the number 1, the same polynomial interpretation as

above an be used to prove termination of this modi�ed system, too.

A.5 Conversion into Bitstrings

The next example is a TRS used to onvert numbers into a representation w.r.t.

an arbitrary base. (Thus, if one uses base 2, the following TRS an be used to

onvert numbers into bitstrings.) Here, we use the equation ons(n; ons(0; nil)) �

ons(n; nil), sine 0's in the most signi�ant digits do not matter.

R : onvert(0; s(s(b)))! ons(0; nil)

onvert(s(0); s(s(b)))! ons(s(0); nil)

onvert(s(s(n)); s(s(b)))! ons(mod(n� b; s(s(b)));

onvert(s((n� b)� s(s(b))); s(s(b))))

E : ons(n; ons(0; nil)) � ons(n; nil)

Already for this system, the set of rules R is not simply terminating. Of

ourse, we may also add the rules for the auxiliary funtions:

x� 0! x

s(x)� s(y)! x� y

lt(x; 0)! false

lt(0; s(y))! true

lt(s(x); s(y))! lt(x; y)

0� s(y)! 0

s(x)� s(y)! if

�

(lt(x; y); s(x); s(y))

if

�

(true; s(x); s(y))! 0

if

�

(false; s(x); s(y))! s((x� y)� s(y))

mod(0; s(y))! 0

mod(s(x); s(y))! if

mod

(lt(x; y); s(x); s(y))

if

mod

(true; s(x); s(y))! s(x)

if

mod

(false; s(x); s(y))! mod(x� y; s(y))

26



We have Ins

E

(Ext

E

(R)) = R and thus, we obtain the following onstraints:

CONVERT(s(s(n)); s(s(b))) > CONVERT(s((n� b)� s(s(b))); s(s(b)))

M(s(x); s(y)) > M(x; y)

LT(s(x); s(y)) > LT(x; y)

Q(s(x); s(y)) % IF

�

(lt(x; y); s(x); s(y))

IF

�

(false; s(x); s(y)) > Q(x� y; s(y))

MOD(s(x); s(y)) > IF

mod

(lt(x; y); s(x); s(y))

IF

mod

(false; s(x); s(y)) > MOD(x� y; s(y))

onvert(0; s(s(b))) % ons(0; nil)

onvert(s(0); s(s(b))) % ons(s(0); nil)

onvert(s(s(n)); s(s(b))) % ons(mod(n� b; s(s(b)));

onvert(s((n� b)� s(s(b))); s(s(b))))

x� 0 % x

s(x)� s(y) % x� y

lt(x; 0) % false

lt(0; s(y)) % true

lt(s(x); s(y)) % lt(x; y)

0� s(y) % 0

s(x)� s(y) % if

�

(lt(x; y); s(x); s(y))

if

�

(true; s(x); s(y)) % 0

if

�

(false; s(x); s(y)) % s((x� y)� s(y))

mod(0; s(y)) % 0

mod(s(x); s(y)) % if

mod

(lt(x; y); s(x); s(y))

if

mod

(true; s(x); s(y)) % s(x)

if

mod

(false; s(x); s(y)) % mod(x� y; s(y))

ons(n; ons(0; nil)) � ons(n; nil)

When replaing ons, �, �, Q, mod, and MOD by their �rst arguments and

if

�

, IF

�

, if

mod

, and IF

mod

by their seond arguments, we obtain

CONVERT(s(s(n)); s(s(b))) > CONVERT(s(n); s(s(b)))

M(s(x); s(y)) > M(x; y)

LT(s(x); s(y)) > LT(x; y)

s(x) % s(x)

s(x) > x

s(x) % s(x)

s(x) > x

onvert(0; s(s(b))) % 0

27



onvert(s(0); s(s(b))) % s(0)

onvert(s(s(n)); s(s(b))) % n

x % x

s(x) % x

lt(x; 0) % false

lt(0; s(y)) % true

lt(s(x); s(y)) % lt(x; y)

0 % 0

s(x) % s(x)

s(x) % 0

s(x) % s(x)

0 % 0

s(x) % s(x)

s(x) % s(x)

s(x) % x

n � n

These onstraints are satis�ed by the rpo.

A.6 Idempotene

The following example (Ex. 10) is a TRS where the equation states that a fun-

tion symbol f is idempotent.

R : f(s(y))! f(y) E : f(f(x)) � f(x)

As explained in Ex. 10, we have Ext

E

(R) = R and we also have Ins

E

(R) = R.

Thus, the resulting onstraints are

F(s(y)) > F(y) f(f(x)) � f(x)

f(s(y)) % f(y) F(f(x)) � F(x)

After replaing f by its argument, these inequalities are satis�ed by the rpo.

A.7 Idempotene of atten

The following example is similar to the previous one, but it illustrates that

equations for idempotene an be useful for funtions ourring in pratie. The

following example ontains an algorithm to atten binary trees and the equation

states that atten is idempotent.

R : atten(nil)! nil

atten(ons(nil; x))! ons(nil; atten(x))

atten(ons(ons(x; y); z))! atten(ons(x; ons(y; z)))

E : atten(atten(u)) � atten(u)

28



By overlapping the subterm atten(u) of the equation with the left-hand sides

of the �rst two rules we obtain

Ext

E

(R) = R[ f atten(atten(nil))! atten(nil);

atten(atten(ons(nil; x)))! atten(ons(nil; x)) g:

Overlapping atten(u) with the left-hand side of the last rule is not needed. This

would yield the rule atten(atten(ons(ons(x; y); z))) ! atten(atten(ons(x;

ons(y; z)))). But the other term of the instantiated equation, atten(ons(ons(x;

y); z)) already rewrites to atten(ons(x; ons(y; z))) whih is E-equivalent to

atten(atten(ons(x; ons(y; z)))). Similarly, it an also be shown that overlap-

ping atten(u) with the left-hand sides of the new rules is unneessary.

We have Ins

E

(Ext

E

(R)) = Ext

E

(R). The resulting dependeny pairs are

hFLATTEN(ons(nil; x));FLATTEN(x)i (8)

hFLATTEN(ons(ons(x; y); z));FLATTEN(ons(x; ons(y; z)))i (9)

hFLATTEN(atten(nil));FLATTEN(nil)i (10)

hFLATTEN(atten(ons(nil; x)));FLATTEN(ons(nil; x))i (11)

Obviously, (10) is not on any luster and hene, it an be disregarded. The only

luster ontaining (11) is f(8); (11)g. Thus, it is suÆient if (11) is only weakly

dereasing. We result in the following onstraints:

FLATTEN(ons(nil; x)) > FLATTEN(x)

FLATTEN(ons(ons(x; y); z)) > FLATTEN(ons(x; ons(y; z)))

FLATTEN(atten(ons(nil; x))) % FLATTEN(ons(nil; x))

atten(nil) % nil

atten(ons(nil; x)) % ons(nil; atten(x))

atten(ons(ons(x; y); z)) % atten(ons(x; ons(y; z)))

atten(atten(u)) � atten(u)

FLATTEN(atten(u)) � FLATTEN(u)

After replaing atten by its argument, the onstraints are satis�ed by the lexi-

ographi path ordering [9, 13℄.

A.8 Addition on Integers

Consider the following equational rewrite system on integers. Here, integer num-

bers are built from the funtion symbols 0, s, and p. The equation s(p(z)) �

p(s(z)) states that the funtion symbols s and p may be interhanged. Thus,

equational rewriting is used to model this non-free data struture.

R : 0+ y ! y E : s(p(z)) � p(s(z))

p(x) + y ! p(x+ y)

s(x) + y ! s(x+ y)

p(s(x))! x

29



We obtain Ext

E

(R) = R. The non-variable proper subterm p(z) of the equa-

tion uni�es with the left-hand side p(s(x)) of the last rule, but the orresponding

new rule s(p(s(x))) ! s(x) does not have to be inluded in Ext

E

(R), sine the

instantiated other side of the equation, p(s(s(x))), already R-redues to s(x). A

similar statement holds for the uni�ation of the subterm s(z) with p(s(x)).

Moreover, we also have Ins

E

(R) = R. Sine dependeny pairs with the tuple

symbol of + in the left omponent and the tuple symbols of p or s in the right

omponent do not our in any luster of the dependeny graph, it is suÆient

to satisfy the following onstraints (where PLUS denotes the tuple symbol for

+):

PLUS(p(x); y) > PLUS(x; y) s(p(z)) � p(s(z))

PLUS(s(x); y) > PLUS(x; y) S(p(z)) � P(s(z))

0+ y % y

p(x) + y % p(x+ y)

s(x) + y % s(x+ y)

p(s(x)) % x

These onstraints are satis�ed by the rpo, where + is greater than p and s in

the preedene and both s and p and both S and P are equal in the preedene,

respetively.

A.9 Transforming Multisets into Sets

The next example uses equations to model the non-free data struture of multi-

sets. Here, we need an equation ons(u; ons(v; w)) � ons(v; ons(u;w)) sine it

does not matter in whih order two elements u and v are inserted into a multiset

w. The funtion set is used to transform a multiset into a set, i.e., to eliminate

dupliates from a multiset. It uses the auxiliary funtion rm (for \remove"),

where rm(n; x) deletes all ourrenes of the element n from the multiset x.

R : eq(0; 0)! true

eq(0; s(y))! false

eq(s(x); 0)! false

eq(s(x); s(y))! eq(x; y)

rm(n; nil)! nil

rm(n; ons(m;x))! if(eq(n;m); n; ons(m;x))

if(true; n; ons(m;x))! rm(n; x)

if(false; n; ons(m;x))! ons(m; rm(n; x))

set(nil)! nil

set(ons(n; x))! ons(n; set(rm(n; x)))

E : ons(u; ons(v; w)) � ons(v; ons(u;w))

Sine the equation only ontains onstrutors and variables, we obtain

Ins

E

(Ext

E

(R)) = R. Thus, when using the same ordering for all lusters, it

30



suÆes to satisfy the following onstraints:

EQ(s(x); s(y)) > EQ(x; y)

RM(n; ons(m;x)) % IF(eq(n;m); n; ons(m;x))

IF(true; n; ons(m;x)) > RM(n; x)

IF(false; n; ons(m;x)) > RM(n; x)

SET(ons(n; x)) > SET(rm(n; x))

eq(0; 0) % true

eq(0; s(y)) % false

eq(s(x); 0) % false

eq(s(x); s(y)) % eq(x; y)

rm(n; nil) % nil

rm(n; ons(m;x)) % if(eq(n;m); n; ons(m;x))

if(true; n; ons(m;x)) % rm(n; x)

if(false; n; ons(m;x)) % ons(m; rm(n; x))

set(nil) % nil

set(ons(n; x)) % ons(n; set(rm(n; x)))

ons(u; ons(v; w)) � ons(v; ons(u;w))

Before searhing for a base ordering satisfying these onstraints, we replae

rm, RM, if, and IF by their last arguments and we eliminate the �rst argument

of ons. This results in the following onstraints:

EQ(s(x); s(y)) > EQ(x; y)

ons

0

(x) % ons

0

(x)

ons

0

(x) > x

ons

0

(x) > x

SET(ons

0

(x)) > SET(x)

eq(0; 0) % true

eq(0; s(y)) % false

eq(s(x); 0) % false

eq(s(x); s(y)) % eq(x; y)

nil % nil

ons

0

(x) % ons

0

(x)

ons

0

(x) % x

ons

0

(x) % ons

0

(x)

set(nil) % nil

set(ons

0

(x)) % ons

0

(set(x))

ons

0

(ons

0

(w)) � ons

0

(ons

0

(w))

These resulting onstraints are satis�ed by the rpo.

A.10 Quiksort on Multisets

The following TRS is used to sort a multiset by the well-known quiksort algo-

rithm. It uses the funtions low(n; x) (resp. high(n; x)) whih return the subset

of x ontaining only the elements smaller than or equal to (resp. greater than) n.

31



The equation in E is again used to model multisets, i.e., to state that the order

of the elements does not matter.

R : le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

app(nil; y)! y

app(ons(n; x); y)! ons(n; app(x; y))

low(n; nil)! nil

low(n; ons(m;x))! if

low

(le(m;n); n; ons(m;x))

if

low

(true; n; ons(m;x))! ons(m; low(n; x))

if

low

(false; n; ons(m;x))! low(n; x)

high(n; nil)! nil

high(n; ons(m;x))! if

high

(le(m;n); n; ons(m;x))

if

high

(true; n; ons(m;x))! high(n; x)

if

high

(false; n; ons(m;x))! ons(m; high(n; x))

quiksort(nil)! nil

quiksort(ons(n; x))! app(quiksort(low(n; x));

ons(n; quiksort(high(n; x))))

E : ons(u; ons(v; w)) � ons(v; ons(u;w))

Again we have Ins

E

(Ext

E

(R)) = R. So the onstraints are

LE(s(x); s(y)) > LE(x; y)

APP(ons(n; x); y) > APP(x; y)

LOW(n; ons(m;x)) % IF

low

(le(m;n); n; ons(m;x))

IF

low

(true; n; ons(m;x)) > LOW(n; x)

IF

low

(false; n; ons(m;x)) > LOW(n; x)

HIGH(n; ons(m;x)) % IF

high

(le(m;n); n; ons(m;x))

IF

high

(true; n; ons(m;x)) > HIGH(n; x)

IF

high

(false; n; ons(m;x)) > HIGH(n; x)

QUICKSORT(ons(n; x)) > QUICKSORT(low(n; x))

QUICKSORT(ons(n; x)) > QUICKSORT(high(n; x))

le(0; y) % true

le(s(x); 0) % false

le(s(x); s(y)) % le(x; y)

app(nil; y) % y

app(ons(n; x); y) % ons(n; app(x; y))

low(n; nil) % nil

low(n; ons(m;x)) % if

low

(le(m;n); n; ons(m;x))

if

low

(true; n; ons(m;x)) % ons(m; low(n; x))

if

low

(false; n; ons(m;x)) % low(n; x)

32



high(n; nil) % nil

high(n; ons(m;x)) % if

high

(le(m;n); n; ons(m;x))

if

high

(true; n; ons(m;x)) % high(n; x)

if

high

(false; n; ons(m;x)) % ons(m; high(n; x))

quiksort(nil) % nil

quiksort(ons(n; x)) % app(quiksort(low(n; x));

ons(n; quiksort(high(n; x))))

ons(u; ons(v; w)) � ons(v; ons(u;w))

We replae low, LOW, high, HIGH, if

low

, IF

low

, if

high

, and IF

high

by their last ar-

guments and we eliminate the �rst argument of ons. This results in the following

onstraints:

LE(s(x); s(y)) > LE(x; y)

APP(ons

0

(x); y) > APP(x; y)

ons

0

(x) % ons

0

(x)

ons

0

(x) > x

ons

0

(x) > x

ons

0

(x) % ons

0

(x)

ons

0

(x) > x

ons

0

(x) > x

QUICKSORT(ons

0

(x)) > QUICKSORT(x)

QUICKSORT(ons

0

(x)) > QUICKSORT(x)

le(0; y) % true

le(s(x); 0) % false

le(s(x); s(y)) % le(x; y)

app(nil; y) % y

app(ons

0

(x); y) % ons

0

(app(x; y))

nil % nil

ons

0

(x) % ons

0

(x)

ons

0

(x) % ons

0

(x)

ons

0

(x) % x

nil % nil

ons

0

(x) % ons

0

(x)

ons

0

(x) % x

ons

0

(x) % ons

0

(x)

quiksort(nil) % nil

quiksort(ons

0

(x)) % app(quiksort(x); ons

0

(quiksort(x)))

ons

0

(ons

0

(w)) � ons

0

(ons

0

(w))

33



These onstraints are satis�ed by the rpo using a preedene with quiksort A

app A ons

0

.

Referenes

1. T. Arts and J. Giesl, Automatially Proving Termination where Simpli�ation

Orderings Fail, in Pro. TAPSOFT '97, LNCS 1214, 261-272, 1997.

2. T. Arts and J. Giesl, Modularity of Termination Using Dependeny Pairs, in Pro.

RTA '98, LNCS 1379, 226-240, 1998.

3. T. Arts and J. Giesl, Termination of Term Rewriting Using Dependeny Pairs,

Theoretial Computer Siene, 236:133-178, 2000.

4. T. Arts, System Desription: The Dependeny Pair Method, in Pro. RTA '00,

LNCS 1833, 261-264, 2000.

5. F. Baader and W. Snyder, Uni�ation Theory, in Handbook of Automated Reason-

ing, J. A. Robinson and A. Voronkov (eds.), Elsevier. To appear.

6. A. Ben Cherifa and P. Lesanne, Termination of Rewriting Systems by Polynomial

Interpretations and its Implementation, S. Comp. Prog., 9(2):137-159, 1987.

7. CiME 2. Pre-release available at http://www.lri.fr/~demons/ime-2.0.html.

8. C. Delor and L. Puel, Extension of the Assoiative Path Ordering to a Chain of

Assoiative Commutative Symbols, in Pro. RTA '93, LNCS 690, 389-404, 1993.

9. N. Dershowitz, Termination of Rewriting, J. Symboli Computation, 3:69-116, 1987.

10. N. Dershowitz and J.-P. Jouannaud, Rewrite Systems, Handbook of Theoretial

Computer Siene, Vol. B, pp. 243-320, North-Holland 1990.

11. M. C. F. Ferreira, Dummy Elimination in Equational Rewriting, in Pro. RTA '96,

LNCS 1103, 78-92, 1996.

12. J.-P. Jouannaud and H. Kirhner, Completion of a Set of Rules Modulo a Set of

Equations, SIAM Journal on Computing, 15(4):1155-1194, 1986.

13. S. Kamin and J.-J. L�evy, Two Generalizations of the Reursive Path Ordering,

Unpublished Note, Dept. of Computer Siene, University of Illinois, Urbana, IL,

1980.

14. D. Kapur and G. Sivakumar, A Total Ground Path Ordering for Proving Termi-

nation of AC-Rewrite Systems, in Pro. RTA '97, LNCS 1231, 142-156, 1997.

15. D. Kapur and G. Sivakumar, Proving Assoiative-Commutative Termination Using

RPO-Compatible Orderings, in Pro. Automated Dedution in Classial and Non-

Classial Logis, LNAI 1761, 40-62, 2000.

16. K. Kusakari and Y. Toyama, On Proving AC-Termination by AC-Dependeny

Pairs, Researh Report IS-RR-98-0026F, Shool of Information Siene, JAIST,

Japan, 1998. Revised version in K. Kusakari, Termination, AC-Termination and

Dependeny Pairs of Term Rewriting Systems, PhD Thesis, JAIST, Japan, 2000.

17. J.-P. Jouannaud and M. Mu~noz, Termination of a Set of Rules Modulo a Set of

Equations, in Pro. 7th CADE, LNCS 170, 175-193, 1984.

18. C. Marh�e and X. Urbain, Termination of Assoiative-Commutative Rewriting by

Dependeny Pairs, in Pro. RTA '98, LNCS 1379, 241-255, 1998.

19. H. Ohsaki, A. Middeldorp, and J. Giesl, Equational Termination by Semanti La-

belling, in Pro. CSL '00, LNCS 1862, 457-471, 2000.

20. G. E. Peterson and M. E. Stikel, Complete Sets of Redutions for Some Equational

Theories, Journal of the ACM, 28(2):233-264, 1981.

21. A. Rubio and R. Nieuwenhuis, A Total AC-Compatible Ordering based on RPO,

Theoretial Computer Siene, 142:209-227, 1995.

34



22. A. Rubio, A Fully Syntati AC-RPO, Pro. RTA-99, LNCS 1631, 133-147, 1999.

23. J. Steinbah, Simpli�ation Orderings: History of Results, Fundamenta Informat-

iae, 24:47-87, 1995.

24. L. Vigneron, Positive Dedution modulo Regular Theories, in Pro. CSL '95, LNCS

1092, 468-485, 1995.

25. H. Zantema, Termination of Term Rewriting by Semanti Labelling, Fundamenta

Informatiae, 24:89{105, 1995.

35


