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Abstract. The dependency pair technique of Arts and Giesl [1-3] for
termination proofs of term rewrite systems (TRSs) is extended to rewrit-
ing modulo equations. Up to now, such an extension was only known in
the special case of AC-rewriting [16,18]. In contrast to that, the pro-
posed technique works for arbitrary non-collapsing equations (satisfying
a certain linearity condition). With the proposed approach, it is now pos-
sible to perform automated termination proofs for many systems where
this was not possible before. In other words, the power of dependency
pairs can now also be used for rewriting modulo equations.

1 Introduction

Termination of ordinary term rewriting has been extensively studied (e.g., in
classical approaches based on simplification orderings [9,23] and new powerful
techniques like dependency pairs [1-3]). There has also been significant progress
for termination of equational term rewrite systems whose equations only contain
associativity and commutativity axioms (e.g., [8,14,15,21,22]). In particular,
the dependency pair approach has also been extended to the AC-case [16,18].

For equations other than AC-axioms, however, there are not many techniques
available to prove termination. In an early paper [17], sufficient conditions are
given for reducing termination of equational rewriting to termination of its un-
derlying rewrite system. Another early paper [6] describes how to apply polyno-
mial interpretations for AC-termination proofs (and this approach can also be
used for equations other than AC-axioms). In newer papers, dummy elimination
[11] and the semantic labelling method [19] are extended to rewriting modulo
equations. However, dummy elimination is only applicable for certain subclasses
of TRSs and semantic labelling is not amenable to automation.

This paper presents an extension of the dependency pair approach to rewrit-
ing modulo equations. In the special case of AC-axioms, our technique corre-
sponds to the methods of [16,18], but in contrast to these methods, our tech-
nique can also be used if the equations are not AC-axioms. This allows much
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more automated termination proofs for equational rewrite systems than those
possible with directly applying simplification orderings for equational rewriting
(like equational polynomial orderings or AC-versions of path orderings).

We first review the dependency pair approach for ordinary term rewriting in
Sect. 2. In Sect. 3, we show why a straightforward extension of dependency pairs
to rewriting modulo equations is not possible. As observed in [16], the reason
is that there can be minimal non-terminating terms (i.e., terms without proper
non-terminating subterms) whose infinite reductions only involve reduction steps
below the root level. Therefore, we follow an idea similar to the one of [18] for the
special case of AC-axioms: We consider a restricted form of rewriting modulo
equations, which is more suitable for termination proofs with dependency pairs.

In Sect. 4, we show how to ensure that termination of this restricted equa-
tional rewrite relation is equivalent to termination of full rewriting modulo equa-
tions. Under certain conditions on the equations &£, we give a method for com-
puting an extended rewrite system Extg(R) from the given TRS R such that the
restricted rewrite relation of Extg(R) modulo £ is terminating iff R is terminat-
ing modulo €. This is proved for (almost) arbitrary £-rewriting, thus generaliz-
ing a related result for AC-rewriting. This general result may be of independent
interest, and may also be found useful in investigating other properties of &£-
rewriting.

Then in Sect. 5, we extend the dependency pair approach to rewriting modulo
equations. The notion of defined symbols is modified by taking into considera-
tion the function symbols appearing as the outermost symbols in equations in £
as well. It is shown how for every non-terminating term, it is possible to build
a reduction using the restricted form of rewriting induced by Extg(R) where
only terminating or minimal non-terminating subterms are reduced. In order to
ensure that an infinite reduction from a minimal non-terminating term can be
achieved by applying only instantiations of rules where all variables are instanti-
ated with terminating terms, it also becomes necessary to consider finitely many
instantiations of the rules in Extg(R). The main result is then proved, general-
izing the dependency pair method for showing termination of rewrite systems R
[1-3] to rewrite systems R modulo sets £ of non-collapsing equations with iden-
tical unique variables. This result can serve as the basis of an automatic method
for showing termination of rewrite systems modulo equations. Finally, in Sect.
6 we show how the refinement of dependency graphs [1-3] can also be applied
for rewriting modulo equations. Appendix A contains a collection of examples
to demonstrate the power and the usefulness of our technique.

2 Dependency Pairs for Ordinary Rewriting

The dependency pair approach allows the use of standard methods like simpli-
fication orderings [9, 23] for automated termination proofs where they were not
applicable before. In this section we briefly summarize the basic concepts of this
approach. All results in this section are due to Arts and Giesl and we refer to
[1-3] for further details, refinements, and explanations.



In contrast to the standard techniques for termination proofs, which com-
pare left and right-hand sides of rules, in this approach one concentrates on the
subterms in the right-hand sides that have a defined! root symbol, because these
are the only terms responsible for starting new reductions.

More precisely, for every rule f(sy,...,s,) = Clg(t1,--.,tm)] (where f and g
are defined symbols), we compare the argument tuples s1,...,s, and t1,...,ty.
To avoid the handling of tuples, for every defined symbol f, we introduce a
fresh tuple symbol F'. To ease readability, we assume that the original signature
consists of lower case function symbols only, whereas the tuple symbols are
denoted by the corresponding upper case symbols. Now instead of the tuples
S1y-..,8q and t,...,t,, we compare the terms F(s1,...,s,) and G(t1,...,tm).

Definition 1 (Dependency Pair [1-3]). If f(s1,...,80) = Clg(t1,.-.,tm)]
is a rule of a TRS R and g is a defined symbol, then (F(s1,...,8,),G(t1,. .- tm))
s a dependency pair of R.

Ezample 2. As an example, consider the TRS {a+b — a+ (b+¢)}, cf. [18].
Termination of this system cannot be shown by simplification orderings, since the
left-hand side of the rule is embedded in the right-hand side. In this system, the
defined symbol is + and thus, we obtain the dependency pairs (P(a, b), P(a, b+c))
and (P(a,b),P(b,c)) (where P is the tuple symbol for the plus-function “+7).

Arts and Giesl developed the following new termination criterion. As usual,
a quasi-ordering - is a reflexive and transitive relation, and we say that an
ordering > is compatible with 7~ if we have > o 72 C > or 77 0 > C >.

Theorem 3 (Termination with Dependency Pairs [1-3]). A TRS R is
terminating iff there exists a weakly monotonic quasi-ordering 7~ and a well-
founded ordering > compatible with 7, where both 7 and > are closed under
substitution, such that

(1) s >t for all dependency pairs (s,t) of R and
(2) 1z r for all rulesl — r of R.

Consider the TRS from Ex. 2 again. In order to prove its termination ac-
cording to Thm. 3, we have to find a suitable quasi-ordering 7~ and ordering >
such that P(a,b) > P(a,b+c), P(a,b) > P(b,c), and a+b - a+ (b+c).

Most standard orderings amenable to automation are strongly monotonic
(cf. e.g. [9,23]), whereas here we only need weak monotonicity. Hence, before
synthesizing a suitable ordering, some of the arguments of function symbols may
be eliminated, cf. [3]. For example, in our inequalities, one may eliminate the
first argument of +. Then every term s+t in the inequalities is replaced by +’(%)
(where +' is a new unary function symbol). By comparing the terms resulting
from this replacement instead of the original terms, we can take advantage of
the fact that + does not have to be strongly monotonic in its first argument.

! Root symbols of left-hand sides are defined and all other functions are constructors.



Note that there are only finitely many possibilities to eliminate arguments of
function symbols. Therefore all these possibilities can be checked automatically.

In this way, we obtain the inequalities P(a, b) > P(a, +'(c)), P(a,b) > P(b,c),
and +'(b) =~ +/(+'(c)). These inequalities are satisfied by the recursive path
ordering (rpo) [9] with the precedence a I b I ¢ I + (i.e., we choose = to
be Z,po and > to be >,,,). So termination of this TRS can now be proved
automatically.

Apart from eliminating arguments of function symbols, another possibility is
to replace functions by one of their arguments. So instead of deleting the first ar-
gument of + one could also replace all terms s+t by +’s second argument ¢. Then
the resulting inequalities are again satisfied by the rpo. For implementations of
the dependency pair approach see [4,7].

3 Rewriting Modulo Equations

For a set £ of equations between terms, we write s —¢ t if there exist an
equation [ ~ r in &, a substitution o, and a context C such that s = C[lo] and
t = C[ro]. The symmetric closure of —¢ is denoted by Hg and the transitive
reflexive closure of He¢ is denoted by ~¢. In the following, we restrict ourselves
to equations £ where ~¢ is decidable.

Definition 4 (Rewriting Modulo Equations). Let R be a TRS and let £ be
a set of equations. A term s rewrites to a term t modulo £, denoted s — /¢ t,
iff there exist terms s’ and t' such that s ~¢ s' = t' ~¢ t. The TRS R is called
terminating modulo & iff there does not exist an infinite — /¢ reduction.

Ezxample 5. An interesting special case are equations £ which state that certain
function symbols are associative and commutative (AC'). As an example, con-
sider the TRS R = {a+b — a+(b+c)} again and let £ consist of the associativity
and commutativity axioms for +, i.e., £ = {z1 + x2 ~® x2 + 1,21 + (v2 + x3) =
(x1 + ®2) + 23}, cf. [18]. R is not terminating modulo &, since we have

a+b —ga+(b+c) ~¢ (a+b)+c—x (a+(b+c))+c~g ((a+b)+c)+c—x ...

There are, however, many other sets of equations £ apart from associativity
and commutativity, which are also important in practice. Hence, our aim is to
extend dependency pairs to rewriting modulo (almost) arbitrary equations.

The soundness of dependency pairs for ordinary rewriting relies on the fact
that whenever a term starts an infinite reduction, then one can also construct
an infinite reduction where only terminating or minimal non-terminating sub-
terms are reduced (i.e., one only applies rules to redexes without proper non-
terminating subterms). The contexts of minimal non-terminating redexes can
be completely disregarded. If a rule is applied at the root position of a minimal
non-terminating subterm s (i.e., s —% t where e denotes the root position),
then s and each minimal non-terminating subterm ¢’ of ¢ correspond to a depen-
dency pair. Hence, Thm. 3 (1) implies s > ¢'. If a rule is applied at a non-root



position of a minimal non-terminating subterm s (i.e., s —%¢ t), then we have
s Z t by Thm. 3 (2). However, due to the minimality of s, after finitely many
such non-root rewrite steps, a rule must be applied at the root position of the
minimal non-terminating term. Thus, every infinite reduction of minimal non-
terminating subterms corresponds to an infinite >-sequence. This contradicts
the well-foundedness of >.

So for ordinary rewriting, any infinite reduction from a minimal non-termina-
ting subterm involves an R-reduction at the root position. But when extending
the dependency pair approach to rewriting modulo equations, this is no longer
true, cf. [16]. For an illustration, consider Ex. 5 again, where a + (b +c) is a
minimal non-terminating term. However, in its infinite R/E-reduction no R-
step is ever applicable at the root position. (Instead one applies an E-step at the
root position and further R- and E-steps below the root.)

In the rest of the paper, from a rewrite system R, we generate a new rewrite
system R’ with the following three properties: (i) the termination of a weaker
form of rewriting by R’ modulo £ is equivalent to the termination of R modulo
&, (ii) every infinite reduction of a minimal non-terminating term in this weaker
form of rewriting by R’ modulo £ involves a reduction step at the root level, and
(iii) every such minimal non-terminating term has an infinite reduction where
the variables of the R'-rules are instantiated with terminating terms only.

4 E-Extended Rewriting

We showed why the dependency pair approach cannot be extended to rewriting
modulo equations directly. As a solution for this problem, we propose to consider
a restricted form of rewriting modulo equations, i.e., the so-called £-extended R -
rewrite relation —¢\z. (This approach was already taken in [18] for rewriting
modulo AC'.) The relation — ¢\ z was originally introduced in [20] in order to cir-
cumvent the problems with infinite or impractically large £-equivalence classes.?

Definition 6 (£-extended R-rewriting [20]). Let R be a TRS and let £ be
a set of equations. The €-extended R-rewrite relation is defined as s —>§\R t iff
S|z ~¢g lo and t = s[ro), for some rule | — r in R, some position 7 of s, and
some substitution o. We also write —¢\r instead of —>§\R.

To demonstrate the difference between —x /s and —¢\ g, consider Ex. 5
again. We have already seen that — /¢ is not terminating, since a +b —/¢
(@a+b)+c—rse ((@+b)+c)+c—g/e... But —¢\x is terminating, because
a+b —gx a+(b+c), which is a normal form w.r.t. —g\%.

The above example also demonstrates that in general, termination of —¢\r
is not sufficient for termination of —x ¢. In this section we will show how ter-
mination of —% /¢ can nevertheless be ensured by only regarding an £-extended
rewrite relation induced by a larger R’ O R.

2In [12], the relation —¢\x is denoted “—r ¢”.



For the special case of AC-rewriting, this problem can be solved by extending
R as follows: Let G be the set of all AC-symbols and

Extacig) = RU{f(Ly) = f(r,y) | L= € R, root(l) = f € G},

where y is a new variable not occurring in the respective rule [ — r. A similar
extension has also been used in previous work on extending dependency pairs
to AC-rewriting [18]. The reason is that for AC-equations &, the termination
of —r/¢ is in fact equivalent to the termination of —E\Ext 40(g) (R)- In fact,
it is even possible to reduce the set Ext,c(g) a bit, since rules of the form
f(l,y) — f(r,y) do not have to be included in Extc (g if | ~¢ f(I',2) and
r ~¢ f(r', z) holds for some terms I’, 7’ and a variable z which does not occur in
" or ', cf. [20].

For Ex. 5, we obtain Extscg)(R) ={a+b —=a+(b+c),(a+b)+y—
(a+(b+c))+y}. Thus, in order to prove termination of —r ¢, it is now sufficient
to verify termination of =g\ Bzt 406 (R)-

The above extension of [20] only works for AC-axioms £. A later paper [12]
treats arbitrary equations, but it does not contain any definition for extensions
Extg(R), and termination of — 5 /¢ is always a prerequisite in [12]. The reason
is that [12] and also subsequent work on symmetrization and coherence were
devoted to the development of completion algorithms (i.e., here the goal was
to generate a convergent rewrite system and not to investigate the termination
behavior of possibly non-terminating TRSs). Thus, these papers did not compare
the termination behavior of full rewriting modulo equations with the termination
of restricted versions of rewriting modulo equations. In fact, [12] focuses on the
notion of coherence, which is not suitable for our purpose since coherence of E\R
modulo & does not imply that termination of —% /¢ is equivalent to termination
of —)g\R.?’

To extend dependency pairs to rewriting modulo non-AC-equations &, we
have to compute extensions Extg(R) such that termination of —z /¢ is equiv-
alent to termination of —¢\ pes. (r)- The only restriction we will impose on the
equations in £ is that they must have identical unique variables. As usual, a term
t is called linear if no variable occurs more than once in t.

Definition 7 (Equations with Identical Unique Variables [20]). An equa-
tion u ~ v is said to have identical unique variables if u and v are both linear
and the variables in u are the same as the variables in v.

While this requirement may seem restrictive at first sight, it turns out that
most practical examples where R/E is terminating satisfy this restriction: The
restriction that the set of variables must be the same in both terms of an equation

3 In [12], £\R is coherent modulo £ iff for all terms s, t,u, we have that s ~¢ t —>'S"\R u
implies s —>2'\R v ~g w4z g u for some v,w. Consider R = {a+b — a+(b+
c), z+y — d} with £ being the AC-axioms for +. The above system is coherent,
since s ~g t —>2'\R u implies s —>'),é d <% u. However, —¢\z is terminating but
—®r/¢ is not terminating.



is not severe, because otherwise rewriting modulo such an equation would not
terminate (as long as there exists a function symbol f with arity > 2 and R #
@).% The reason is that if 2 occurs in u but not in v and if [ — r is a rewrite
rule, then we obtain

Thus, rewriting modulo equations such as z-0 ~ 0 or z-z ! ~ 1 never terminates
if R # 2.

Moreover, as already pointed out in [10], the linearity condition is also not
too restrictive, since if w is a non-linear term f(...z...x...), then at least if v
is the single variable z, the relation — /¢ would again be non-terminating if
R # &. (In fact, collapsing equations will be forbidden anyway in Sect. 5 in order
to make the dependency pair approach sound.) The reason is that if | = r € R,
then we would have

This means that rewriting modulo an equation like z - x ~ z is always non-
terminating if R # @.

Let unig(s,t) denote a complete set of E-unifiers of two terms s and ¢. As
usual, ¢ is an £-unifier of s and ¢ iff s§ ~¢ t§ and a set unig(s,t) of E-unifiers is
complete iff for every E-unifier § there exists a o € unig(s,t) and a substitution
p such that & ~¢ op, cf. [5]. (“op” is the composition of o and p where o is
applied first and “§ ~g op” means that for all variables x we have 6 ~¢ zop.)

To construct Extg(R), we consider all overlaps between equations u & v or
v~ u from £ and rules | — r from R. More precisely, we check whether a non-
variable subterm v|, of v E-unifies with | (where we always assume that rules
in R are variable disjoint from equations in £). In this case one adds the rules
(vl]x)o — (v[r]z)o for all o € unig(v|x,1).> In Ex. 5, the subterm z; + x5 of
the right-hand side of z1 + (2 + x3) & (21 + ©2) + 3 unifies with the left-hand

* A similar observation was already mentioned in [10], but here the requirement of
function symbols with arity > 2 was neglected. Note however that without this
condition —x /¢ may still be terminating. As an example consider £ = {f(z) ~ a}
and R = {a — b}.

® Obviously, unig (v|«,1) always exists, but it can be infinite in general. So when au-
tomating our approach for equational termination proofs, we have to restrict our-



side of the only rule a4+ b — a+ (b+c). Thus, in the extension of R, we obtain
the rule (a+b)+y— (a+(b+¢c))+y.

Extg(R) is built via a kind of fixpoint construction, i.e., we also have to
consider overlaps between equations of £ and the newly constructed rules of
Ezxtg(R). For example, the subterm x; 4+ x2 also unifies with the left-hand side
of the new rule (a+b) +y — (a+ (b+c)) + y. Thus, one would now construct
anewrule ((a+b)+y)+z—((a+(b+c))+y)+ =

Obviously, in this way one obtains an infinite number of rules by subsequently
overlapping equations with the newly constructed rules. However, in order to
use Eztg(R) for automated termination proofs, our aim is to restrict ourselves
to finitely many rules. It turns out that we do not have to include new rules
(v[l]x)o = (v[r]x)o in Extg(R) if uo _>7€rl\Eztg(R) g ~¢ (v[r]s)o already holds
for some position 7’ of u and some term g (using just the old rules of Exts(R)).

When constructing the rule ((a+b) +y)+2z — ((a+ (b+c)) +y) + z above,
the equation u ~ v used was x1 + (22 + x3) & (21 + 22) + z3 and the unifier ¢
replaced z; by (a+b) and z2 by y. Hence, here uo is the term (a+b) + (y + z3).
But this term reduces with —>(15\Ewt£(R) to (a+(b+c))+ (y+x3) which is indeed
~g-equivalent to (v[r],)o, i.e., to ((a+ (b+c¢)) +y) + 3. Thus, we do not have
to include the rule ((a+b)+y) + 2 — ((a+ (b+¢)) + y) + z in Extg(R).

The following definition shows how suitable extensions can be computed for
arbitrary equations with identical unique variables. It will turn out that with
these extensions one can indeed simulate —x/e by — ¢\ Bate(r), 1-€., § ZR/e T
implies s —¢\ gate(r) t' for some t' ~¢ t. This constitutes a crucial contribu-
tion of the paper, since it is the main requirement needed in order to extend
dependency pairs to rewriting modulo equations.

Definition 8 (Extending R for Arbitrary Equations). Let R be a TRS
and let € be a set of equations. Let R' be a set containing only rules of the form
Cllo] — C[ro] (where C is a context, o is a substitution, andl - r € R). R/
is an extension of R for the equations & iff

(a) RCR' and

(b) for alll - r € R, u mv € £ and v = u € &, all positions m of v
and o € unig(v|g,1), there is a position ' in u and a q ~g¢ (v[r]x)o with
uo —>75‘\R, q.

In the following, let Exts(R) always denote an arbitrary extension of R for £.
In order to satisfy Condition (b) of Def. 8, it is always sufficient to add the rule
(v[l]x)o = (v[r]z)o to R'. The reason is that then we have uc —e\r (V[r]x)o.

But if uo —>§'\R, q ~¢ (v[r]x)o already holds with the other rules of R', then
the rule (v[l]x)o — (v[r]z)o does not have to be added to R'.

selves to equations €& where unig(v|x,l) can be chosen to be finite for all subterms
v|x of equations and left-hand sides of rules I. This includes all sets € of finitary uni-
fication type, but our restriction is weaker, since we only need finiteness for certain
terms v, and [.



Condition (b) of Def. 8 also makes sure that as long as the equations have
identical unique variables, we do not have to consider overlaps at variable po-
sitions. The reason is that if v|, is a variable = € V, then we have uoc =
u[zo|pr ~g ullo)zr =R u[rol. ~g virely = (v[r]x)o, where ©’ is the position of
z in u. Hence, such rules (v[l]z)o — (v[r]x)o do not have to be included in R'.

Overlaps at root positions do not have to be considered either. To see this,
assume that 7 is the top position € of v, i.e., that vo ~¢ lo. In this case we have
uo ~g vo ~g lo =g ro and thus, uo =gz 70 = (v[r]x)o. So again, such rules
(v[l]x) = (v[r]z)o do not have to be included in R'.

The following procedure is used to compute extensions. Here, we assume both
R and £ to be finite, where the equations £ must have identical unique variables.

1. R =R
2. Foralll - r € R,
all u = v or v ~ u from &,
and all positions 7 of v where m # € and v|, € V do:
2.1. Let X := unig(vlx,1).
2.2. For all o € X do:
221. Let T :={q | uo —>’gr’\R, q for a position 7’ of u}.
2.2.2. If there exists a ¢ € T with (v[r]z)o ~¢ g, then X' := X'\ {c}.
2.3. R =R U{(v[l]x)o = (v[r]z)o | o € X}.

This algorithm has the following properties:

(a) If in Step 2.1, unig(v|s,!) is finite and computable, then every step in the
algorithm is computable.

(b) If the algorithm terminates, then the final value of R’ is an extension of R
for the equations &.

Note that the condition for stopping further computations of new rules in Steps
2.2.1. and 2.2.2. can indeed be checked automatically, since a term uo can only
—¢\r/-Teduce to finitely many terms q.

With the TRS of Ex. 5, Exts(R) = {a+b — a+(b+c), (a+b)+y — (a+(b+
¢)) + y}. In general, if £ only consists of AC-axioms for some function symbols
G, then Def. 8 “coincides” with the well-known extension for AC-axioms.”

Lemma 9 (Coincidence of Extsc(g) and Def. 8 for AC-axioms). Let R
be a TRS and let £ consist of the associativity and commutativity axioms for all
function symbols from a subset G of the signature. Then RU{f(l,y) — f(r,y) |
l—=reR,root(l) = f € G} is an extension of R for the equations € (as defined
in Def. 8).

5 Note that considering overlaps at variable positions as well would still not allow us
to treat equations with non-linear terms. As an example regard £ = {f(z) ~ g(z,z)}
and R = {g(a,b) — f(a),a = b}. Here, —¢\pot,(r) is well founded although R is
not terminating modulo €.

" This statement also holds for the reduced version of Ext,c(g), where rules of the
form f(l,y) — f(r,y) are deleted if | ~¢ f(I',z), r ~¢ f(r',2) and the variable z
does not occur in I’ or r'.



Proof. Let R = RU{f(l,y) = f(r,y) | L = 7 € R, root(l) = f € G}. We have
to show that this set satisfies the conditions (a) and (b) of Def. 8. Condition (a)
is obvious since R C R'. Hence, it remains to show that Condition (b) does not
enforce the addition of other rules.

As illustrated in the discussion after Def. 8, if 7 is the top position € or if
v|r € V, then Condition (b) is always fulfilled. We now regard the case where
v = f(f(z1,22),23) and v|, = f(z1,22). The case where v = f(x1, f(z2,23))
and v|, = f(x2,x3) works analogously.

If ] - r € R, then we obtain uo ~¢ vo ~¢ f(l,z3)0 =% f(r,z3)o =
(v[r]z)o with the rule f(l,y) — f(r,y) from R’. Otherwise, if I = f(I',y) and
r = f(r',y) for some rule I’ = v’ € R, we have uo ~¢ vo ~¢ f(f(l',y),z3)0 ~¢
f, fly,z3))o =% f(r', f(y,z3))o ~¢ f(f(r',y),x3)0 = (v[r]z)o with the rule
f,y) — f(r',y) from R'. O

So in case of AC-equations, our approach indeed corresponds to the ap-
proaches of [16,18]. However, Def. 8 can also be used for other forms of equa-
tions.

Ezample 10. As a simple example where the equations are no associativity and
commutativity axioms, consider & = {f(f(z)) ~ f(z)} (i.e., £ states that f is
idempotent) and R = {f(s(y)) — f(y)}. There is only one non-variable proper
subterm of a term in £ which unifies with the left-hand side f(s(y)) of the rule
(viz. f(z)). The (minimal) complete set of E-unifiers consists of {z/s(y)} and
{z/f(s(y))} (all other unifiers {z/f"(s(y))} for n > 2 are subsumed by the second
E-unifier). This would yield the new rules f(f(s(y))) — f(f(y)) and f(f(f(s(y)))) —
f(f(f(y))). However, the first rule does not have to be included in Extg(R),
because the corresponding other term of the equation, f(s(y)), reduces at the
top position to f(y) which is £-equivalent to f(f(y)) and the second rule is not
included either for a similar reason. Thus, we may choose Extg(R) = R.

Ezample 11. As another example, consider the following system from [19].

R=A{ z—0—z, E={(uzv)+w ~ (u+w) v}
S(m) —S(y) - T -y,
0-+s(y) — 0,

s(z) +s(y) = s((z — y) +s(y))}

By overlapping the subterm w + w in the right-hand side of the equation with
the left-hand sides of the last two rules we obtain

Exte(R)=RU { (0+s(y)+z—0+z2
(s(z) +s(y)) 2z = s((z—y) +s(y) + 2 }-

Note that these are indeed all the rules of Extg(R). Overlapping the sub-
term u + v of the equation’s left-hand side with the third rule would result in
(0 +s(y)) + 22 — 0= 2. But this new rule does not have to be included in
Extg(R), since the corresponding other term of the equation, (0 + 2') + s(y),
would —¢, g, (g)Teduce with the rule (0 +s(y)) + z — 0+ 2 to 0+ 2'. Over-
lapping u + v with the left-hand side of the fourth rule is also superfluous.
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Similarly, overlaps with the new rules (0 +s(y)) + z — 0+ z or (s(z) +
s(y)) + z — s((z — y) + s(y)) +~ z also do not give rise to additional rules in
Extg(R). To see this, overlap the subterm uw + w in the right-hand side of the
equation with the left-hand side of (0 + s(y)) + z — 0 + z. This gives the rule
((0+s(y)) + z) + 2 — (0+ 2) + 2'. However, the corresponding other term of
the equation is ((0 + s(y)) + 2') + z. This reduces at position 1 (or position 11)
to (0+ 2') + z, which is £-equivalent to (0+ z) + z’. Overlaps with the other new
rule (s(z) +s(y)) + z = s((z — y) +s(y)) + z are not needed either.

Nevertheless, the above algorithm for computing extensions does not always
terminate. For example, for R = {a(z) — c(z)}, £ = {a(b(a(z))) ~ b(a(b(x)))},
it can be shown that all extensions Extg(R) are infinite.

We prove below that Extg(R) (according to Def. 8) has the desired property
needed to reduce rewriting modulo equations to £-extended rewriting. The fol-
lowing important lemma states that whenever s rewrites to ¢ with —% /¢ modulo
&, then s also rewrites with —¢\ ger. (%) to a term which is £-equivalent to .8

Lemma 12 (Connection between —% /¢ and —¢\ g1, (r))- Let R be a TRS
and let & be a set of equations with identical unique variables. If s —r /¢ t, then
there exists a term t' ~¢ t such that s —g\ g () t'-

Proof. Let s —g/¢ t, i.e., there exist terms so,...,s,,p with n > 0 such that
$ = 8, Heg 8,1 He ... He so =»r p ~¢ t. For the lemma, it suffices to show
that there is a t' ~¢ p such that s =g\ ga.(r) t', since t' ~¢ p implies t' ~¢ t.

We perform induction on n. If n = 0, we have s = s, = sy =% p. This
implies s — ¢\ gt (r) P since R C Extg(R). So with ¢’ = p the claim is proved.

If n > 0, the induction hypothesis implies s = s, He 5,1 —g\Eate(r) T
such that ¢ ~¢ p. So there exists an equation u ~ v or v ~ u from £ and a
rule I — r from Extg(R) such that s|; = ud, s,—1 = s[vd]r, sn—1l¢ ~¢ 16, and
t' = s,—1[rd]¢ for positions 7 and £ and a substitution 6. We can use the same
substitution ¢ for instantiating the equation u &~ v (or v &~ ) and the rule I — r,
since equations and rules are assumed variable disjoint. We now perform a case
analysis depending on the relationship of the positions 7 and &.

Case 1: 7 = {n for some 7. In this case, we have s|¢ = s|¢[ud]r He s|¢[vd], =
Sn—1l¢ ~g 10. This implies s — ¢\ gote (r) 8[rd]e = sp_1[rd]e = t', as desired.

Case 2: 7L£.  Now we have s|¢ = s, _1]¢ ~¢ 16 and thus, s —¢\ gar, (r) 8[T0]e =
s[réle[ud]. He s[rdle[vd], = s[vd] [rdle = sp_1[réle =t

Case 3: £ = 7 for some w.  Thus, (vd)|r ~¢ 16. We distinguish two sub-cases.

Case 3.1: ud =g\ Eate(R) 4 ~¢ (V[]7)d for some term g. This implies s = s[ud].
—e\Eate(R) Sla)r ~¢ s[[r]x0] = (s[vd];)[rdle = sn_1[rd]e =t'.

8 Our extension Exte has some similarities to the construction of contexts in [24].
However, in contrast to [24] we also consider the rules of R’ in Condition (b) of Def.
8 in order to reduce the number of rules in Exts. Moreover, in [24] equations may
also be non-linear (and thus, Lemma 12 does not hold there).
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Case 3.2: Otherwise.  First assume that m = mymy where v|,, is a variable z.
Hence, (v0)|z = 6(x)|x,- Let ¢'(y) = §(y) for y # @ and let §'(z) = §(z)[rd]x,.
Since u ~ v (or v & u) is an equation with identical unique variables, z also
occurs in u at some position 7’. This implies ud|r/r, = 0(2)|r, ~e 10 = Eat(R)

rd. Hence, we obtain ud —>§’\7Ewt5(m ud[r0]pin, = ud' ~g v8' = (v[r]z)d in
contradiction to the condition of Case 3.2.

Hence, 7 is a position of v and v|, is not a variable. Thus, (v8)|, = v|;d ~¢ 16.
Since rules and equations are assumed variable disjoint, the subterm v|, £-unifies
with [. Thus, there exists a 0 € unig(v|,,!) such that § ~¢ op.

Due to the Condition (b) of Def. 8, there is a term ¢’ such that uo e\ Bate (R)
q' ~¢ (v[r]x)o. Since 7' is a position in u, we have u|, 0 ~¢ © = ga, (r) ¢, where
q" = uolq"]x. This also implies u|rd ~¢ u|rop ~¢ © =g, (r) ¢"p, and thus
UG T pare () UO[0"plar ~e uolq"lwp = ¢'p ~e (vlrlx)op ~e (v]r]x)d. This is a
contradiction to the condition of Case 3.2. O

The following theorem shows that Exts indeed has the desired property.

Theorem 13 (Termination of R/€ by £-Extended Rewriting). Let R be
a TRS, let € be a set of equations with identical unique variables, and let t be
a term. Then t does not start an infinite —r/¢-reduction iff t does not start
an infinite — ¢\ et (r)-reduction. So in particular, R is terminating modulo &
(i.e., = /e is well founded) iff — g\ Eote(r) 15 well founded.

Proof. The “only if” direction is straightforward because — g, (r)=—r and

therefore, — ¢\ pate (R) C = Eate (R)/€ = I R/E-
For the “if” direction, assume that ¢ starts an infinite — /¢-reduction

t=1to =r/e t1 7r/e t2 7R/ ---

For every ¢ € IN, let f;11 be a function from terms to terms such that for every
ti ~e ti, fir1(t;) is a term E-equivalent to ;41 such that t; — g\ gaee (r) fir1(t])-
These functions f;+1 must exist due to Lemma 12, since ¢} ~¢ ¢; and ¢; —R/E
tiy1 implies t; =g /¢ tiy1. Hence, t starts an infinite — ¢\ g, (r)-reduction:

t = e\Batg(R) J1(t) = e\Batg(R) f2(f1(t)) = e\Bats (r) f3(f2(f1(2))) = e\Batg(r) --- O

5 Dependency Pairs for Rewriting Modulo Equations

In this section we finally extend the dependency pair approach to rewriting
modulo equations: To show that R modulo £ terminates, one first constructs
the extension Fztg(R) of R. Subsequently, dependency pairs can be used to
prove well-foundedness of —¢\ g1, () (Which is equivalent to termination of R
modulo &). The idea for the extension of the dependency pair approach is simply
to modify Thm. 3 as follows.

1. The equations should be satisfied by the equivalence ~ corresponding to the
quasi-ordering 7, i.e., we demand u ~ v for all equations u ~ v in &.
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2. A similar requirement is needed for equations u ~ v when the root symbols
of u and v are replaced by the corresponding tuple symbols. We denote
tuples of terms sy, ..., s, by s and for any term ¢t = f(s) with a defined root
symbol f, let t* be the term F(s). Hence, we also have to demand u! ~ v,

3. The notion of “defined symbols” must be changed accordingly. As before, all
root symbols of left-hand sides of rules are regarded as being defined, but
if there is an equation f(u) = g(v) in € and f is defined, then g must be
considered defined as well, as otherwise we would not be able to trace the
redex in a reduction by only regarding subterms with defined root symbols.

Definition 14 (Defined Symbols for Rewriting Modulo Equations). Let
R be a TRS and let € be a set of equations. Then the set of defined symbols D
of R/E is the smallest set such that D = {root(l) | I = r € R} U {root(v) |u =~
veforvmucel, root(u) € D}.

The constraints of the dependency pair approach as sketched above are not
yet sufficient for termination of — ¢\ as the following example illustrates.

Ezample 15. Consider R = {f(z) — s(z)} and £ = {f(a) =~ a}. There is no
dependency pair in this example and thus, the only constraints would be f(z) =
s(z), f(a) ~ a, and F(a) ~ A. Obviously, these constraints are satisfiable (by
using an equivalence relation ~ where all terms are equal). However, —¢\% is
not terminating since we have a Hg f(a) —x s(a) Heg s(f(a)) == s(s(a)) He - ..

The soundness of the dependency pair approach for ordinary rewriting (Thm.
3) relies on the fact that an infinite reduction from a minimal non-terminating
term can be achieved by applying only normalized instantiations of R-rules. But
for £-extended rewriting (or full rewriting modulo equations), this is not true
any more. For instance, the minimal non-terminating subterm a in Ex. 15 is first
modified by applying an E-equation (resulting in f(a)) and then an R-rule is
applied whose variable is instantiated with the non-terminating term a. Hence,
the problem is that the new minimal non-terminating subterm a which results
from application of the R-rule does not correspond to the right-hand side of a
dependency pair, because this minimal non-terminating subterm is completely
inside the instantiation of a variable of the R-rule. With ordinary rewriting, this
situation can never occur.

In Ex. 15, the problem can be avoided by adding a suitable instance of the
rule f(z) — s(z) (viz. f(a) — s(a)) to R, since this instance is used in the
infinite reduction. Now there would be a dependency pair (F(a), A) and with the
additional constraint F(a) > A the resulting inequalities are no longer satisfiable.

Note that since in practice, we are interested in proving termination of —x ¢,
we would of course first build the extension Fxzts(R) and then we would try
to prove well-foundedness of —¢\ pur. (=) instead of well-foundedness of —¢\%.
Note that for the system of Ex. 15 we obtain Extg(R) = {f(z) — s(z), f(f(a)) —
f(s(a))}, because the subterm a of f(a) £-unifies with f(x) (using the £-unifier
o = {z/a}). The (minimal) complete set of £-unifiers only consists of &, since
all other &-unifiers § = {z/f"(a)} satisfy §(x) ~¢ o(x). Thus, a system like the
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one of Ex. 15 would never be tested for — ¢\ z-termination in practice, since one
would always extend R first and for Extg(R), the dependency pair approach
would no longer falsely conclude termination.

Thus, one might be tempted to assume that the problem of Ex. 15 never oc-
curs in practice, because after extending R to Extg(R) the systems would always
have a form where the “right instantiation” of the rules is already included. In
other words, one might hope that although the dependency pair approach can-
not be used to prove termination of —¢\% in general, it would still be sound for
TRSs R which result from the extension process of Sect. 4. Unfortunately, this
is not true, as the following example shows.

Ezample 16. Let us modify the rule from Ex. 15 to f(z) — z, i.e., regard R =
{f(z) — z} and &€ = {f(a) ~ a}. Now we may choose Ezts(R) = R: The
subterm a of v = f(a) unifies with f(z) using the £-unifier o = {x/a} (where
again unig(a,f(z)) = {0} is a minimal complete set of £-unifiers). But the rule
f(f(a)) — f(a) does not have to be added, since we have uc = a ~¢ f(a) =%
a ~¢ f(a) = (v[r]x)o. Obviously, —¢\% is still non-terminating and there is still
no dependency pair in this example.

The following definition shows how to add the right instantiations of the
rules in R in order to allow a sound application of dependency pairs. As usual,
a substitution v is called a variable renaming iff the range of v only contains
variables and if v(z) # v(y) for = # y.

Definition 17 (Adding Instantiations). Given a TRS R, a set £ of equa-
tions, let R’ be a set containing only rules of the form lo — ro (where o is a
substitution and | — r € R). R’ is an instantiation of R for the equations & iff

(a) RC R,

(b) foralll = r e R,allu~v € £ andv~u €&, and all o € unig(v,l), there
exists a rule ' — ' € R’ and a variable renaming v such that lo ~¢ l'v and
ro ~g r'v.

In the following, let Insg(R) always denote an instantiation of R for €.

Unlike extensions Ezts(R), instantiations Insg(R) are never infinite if R
and £ are finite and if unig (v,1) is always finite (i.e., they are not defined via a
fixpoint construction). In fact, one might even demand that for alll — r € R, all
equations, and all o from the corresponding complete set of E-unifiers, Insg(R)
should contain [0 — ro. The condition that it is enough if some €-equivalent
variable-renamed rule is already contained in Insg(R) is only added for efficiency
considerations in order to reduce the number of rules in Insg(R). Even without
this condition, Insg(R) would still be finite and all the following theorems would
hold as well.

However, the above instantiation technique only serves its purpose if there
are no collapsing equations (i.e., no equations u ~ v or v &~ u with v € V).

Ezample 18. Consider R = {f(z) — z} and £ = {f(z) ~ z}. Note that Inss(R)
= R. Although — ¢\ is clearly not terminating, the dependency pair approach
would falsely prove termination of — ¢\, since there is no dependency pair.
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For non-collapsing equations, the construction used to build Insg(R) leads
to the desired property: Whenever we have a terminating or a minimal non-
terminating term which is £-equivalent to an instantiated left-hand side 1§ of a
rule [ — r € R, there exists a corresponding rule I — 7’ in Insg(R), such that
U'p ~¢ 16 and p only instantiates the variables of I’ with terminating terms.
Now we can present the main result of the paper.

Theorem 19 (Termination of Equational Rewriting using Dependency
Pairs). Let R be a TRS and let € be a set of non-collapsing equations with iden-
tical unique variables. R is terminating modulo £ (i.e., —x /¢ is well founded) if
there exists a weakly monotonic quasi-ordering =~ and a well-founded ordering >
compatible with 7, where both 7~ and > are closed under substitution, such that

(1) s >t for all dependency pairs (s,t) of Insg(Exts(R)),

(2) 12 r for all rulesl — r of R,

(3) w~ v for all equations u ~v of £, and

(4) ut ~ vt for all equations u ~ v of & where root(u) and root(v) are defined.

Proof. Suppose that there is a term ¢y with an infinite — /¢-reduction. Thm.
13 implies that to also has an infinite — ¢\ gat, (r)-reduction. By a minimality
argument, to = C[ty], where t{, is an minimal non-terminating term (i.e., tf, is
non-terminating, but all its subterms only have finite — ¢\ ga, (r)-reductions).
We will show that there exists a term t; with %, _>2F\Eztg(72) t1, t1 contains a

minimal non-terminating subterm ¢, and tgﬁ Z o> tflu. By repeated application
of this construction we obtain an infinite sequence tg —>2'\ Bate(R) tq —>2'\ Bate(R)

to _>2'F\Emtg(72) ... such that t()ﬁ =o>t"> o>t = o>... This, however, is

a contradiction to the well-foundedness of >.

Let ¢y have the form f(u). In the infinite — g\ g, (r)-reduction of f(u), first
some — g\ gat (R)-Steps may be applied to u which yields new terms v. Note that
due to the definition of £-extended rewriting, in these reductions, no £-steps can
be applied outside of w. Due to the termination of w, after a finite number of
those steps, an — ¢\ pat, (r)-Step must be applied on the root position of f(v).

Thus, there exists a rule [ — r € Extg(R) such that f(v) ~¢ la and hence,
the reduction yields ra. Now the infinite — ¢\ put, (r)-reduction continues with
ra, i.e., the term ra starts an infinite — ¢\ ga, (r)-reduction, too. So up to now
the reduction has the following form (where — g,, (%) equals —x):

to = Clf(w)] =&\ pate (r) ClF (V)] ~e Clla] = pare(r) Clral.

We perform a case analysis depending on the positions of £-steps in f(v) ~¢ la.

First consider the case where all E-steps in f(v) ~¢ la take place below the
root. Then we have | = f(w) and v ~¢ wa. Let ¢, := C[ra]. Note that v do not
start infinite —¢\ pet. (r)-reductions and by Thm. 13, they do not start infinite
—g/e-reductions either. But then wa also cannot start infinite — /¢-reductions
and therefore they also do not start infinite — ¢\ ga¢, (r)-reductions. This implies
that for all variables z occurring in f(w) the terms a(z) are terminating. Thus,
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since r«a starts an infinite reduction, there occurs a non-variable subterm s in
r, such that ¢{ := sa is a minimal non-terminating term. Since (I%,s) is a
dependency pair, we obtain t{)ﬁ = F(u) = F(v) ~ l‘a > sla = |*. Here,
F(u) z, F(v) holds since w =%, g, (z) v and since | 7 r for every rule [ — r €
Exte (R)

Now we consider the case where there are E-steps in f(v) ~¢ la at the root
position. Thus we have f(v) ~¢ f(q) He p ~¢ la, where f(q) He p is the first
E-step at the root position. In other words, there is an equation u ~ v or v & u
in £ such that f(q) is an instantiation of v.

Note that since v ~¢ g, the terms g only have finite —¢\ po¢. (r)-reductions
(the argumentation is similar as in the first case). Let § be the substitution which
operates like @ on the variables of [ and which yields vd = f(q). Thus, § is an
E-unifier of [ and v. Since ! is £-unifiable with v, there also exists a corresponding
complete E-unifier o from unig(l,v). Thus, there is also a substitution p such
that § ~¢ op. As I is a left-hand side of a rule from Extg(R), there is a rule
I" = 7" in Insg(Extg(R)) and a variable renaming v such that lo ~¢ I'v and
ro ~g r'v.

Hence, vop ~g véd = f(q), l'vp ~g lop ~g 16 = la, and r'vp ~g rop ~g 16 =
ra. So instead we now consider the following reduction (where — Inse(Eate(R))
equals —g):

to = Clf(w)] =&\ pate(r) CLF (V)] ~e Cll'VP] = s (Bate (r)) Clr'vp] = th.

Since all proper subterms of v only have finite —% ¢-reductions, for all
variables z of I'v, the term 2p only has finite —% /¢-reductions and hence, also
only finite — ¢\ gzt (r)-reductions. To see this, note that since all equations have
identical unique variables, vo ~¢ lo ~¢ I'v implies that all variables of I'v also
occur in vo. Thus, if z is a variable from ['v, then there exists a variable y in
v such that = occurs in yo. Since £ does not contain collapsing equations, y is
a proper subterm of v and thus, yd is a proper subterm of vd. As all proper
subterms of vé only have finite —% /¢-reductions, this implies that yd only has
finite — % /g-reductions, too. But then, since yd ~¢ yop, the term yop only has
finite — /¢-reductions, too. Then this also holds for all subterms of yop, i.e.,
all = /¢-reductions of xp are also finite.

So for all variables z of I', zvp only has finite — ¢\ e, (r)-reductions. (Note
that this only holds because v is just a variable renaming.) Since ra starts an
infinite — ¢\ pat (r)-reduction, r'vp ~¢ o must start an infinite — /e-reduction
(and hence, an infinite — g\ gt (r)-reduction) as well. As for all variables z of
', xvp is —¢\ Bat (r)-terminating, there must be a non-variable subterm s of

r', such that ¢, := svp is a minimal non-terminating term. As (I'*, ) is a
dependency pair, we obtain tgu = F(u) 7, F(v) ~ vp > stup = t’lu. Here,
F(v) ~¢ I""vp is a consequence of Condition (4). O

To summarize, our procedure to prove termination of R modulo £ is described
by the following corollary.
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Corollary 20 (Proving Termination of Rewriting Modulo Equations).
Let R be a TRS and let £ be a set of non-collapsing equations with identical
unique variables. Then the following algorithm is sound:

1.Let C be the set of the following constraints:
e s >t for all dependency pairs (s,t) of Insg(Exts(R)),
o[~ r for all rulesl — r of R,
e u ~ v for all equations u~ v of £, and
o ut ~ vt for all equations u ~ v of & where root(u) and root(v) are defined
Here, Exte is computed by the algorithm on p. 8.

2.Eliminate arguments of function symbols
(i.e., normalize the terms in C' by rules of the form
flz1, .. zn) = (2, .. 2;,) where 1 <i3 <...<i, <n or
f(z1,. .., ) = z; wherel <i<n )

3. Use standard techniques to find suitable relations satisfying C.
In case of success, R is terminating modulo €.

Ezample 21. Regard the system from Ex. 10 again. Here, we had Exztg(R) =R
and we also have Insg(R) = R. By Thm. 19 or Cor. 20, we obtain the following
constraints for the dependency pair approach:

F(s(y)) > F(y)
f(s(y)) Z f(y)
f(f(z)) ~ f(z)
F(f(z)) ~ F(z)

As explained in Sect. 2, one may first eliminate arguments of function symbols or
replace function symbols by one of their arguments before searching for suitable
orderings. By replacing f by its argument (i.e., by normalizing the terms w.r.t.
the rule f(z) — ), these constraints are transformed into

F(s(y)) > F(y)
s(y) Ty

F(z) ~ F(z).
These inequalities are satisfied by the recursive path ordering. a

Ezample 22. Similarly, termination of the division-system (Ex. 11) can also be
proved by dependency pairs. In [19], Ohsaki, Middeldorp, and Giesl developed
a new extension of the semantic labelling technique [25] to rewriting modulo
equations. This example was used to demonstrate the power of their method,
because with their new definition of equational semantic labelling one can prove
termination of this system, whereas the original definition of Zantema [25] fails
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here. However, semantic labelling is a technique designed for manual termination
proofs (and it is also useful as a proof technique for correctness proofs of other
methods). In contrast, with the method of the present paper, one can now verify
termination of this example automatically for the first time.

Here we have Insg(Exte(R)) = Exte(R) and thus, the resulting constraints
are

M(s(z),s(y)) > M(z,y),

Q(s(z),s(y)) > M(z,y),

Q(s(z),s(y)) > Qz — y,s(y))

Q(0 +s(y),2) > Q(0,2)
Q(s(z) +s(y), 2) > M(z,y)
Q(s(z) +s(y),2) > Qz — y,s(y))
Q(s(z) +s(y), 2) > Q(s((z — y) = s(v)), 2)
(

aswell as{ 22 r for all rules | — 7, (u+v) +w ~ (u+w)+v, and Q(u+ v, w) ~
Q(u+w,v). (Here, M and Q are the tuple symbols for the minus-symbol “—” and
the quot-symbol “+”.) In this example we will eliminate the second arguments of
—, +, M, and Q (i.e., every term s—t is replaced by —'(s), etc.). Then the resulting
inequalities are satisfied by the rpo with the precedence +' s 1 —/, Q' O M.
Ex. 21 and Ex. 22 also demonstrate that by using dependency pairs, termination
of equational rewriting can sometimes even be shown by ordinary base orderings
(e.g., the ordinary rpo which on its own cannot be used for rewriting modulo
equations).

6 Dependency Graphs for Rewriting Modulo Equations

In [1-3], Arts and Giesl presented a refinement of the dependency pair approach
based on the observation that instead of considering all dependency pairs at the
same time, it is advantageous to treat groups of dependency pairs separately.
These groups correspond to clusters in the dependency graph of R. One should
remark that this refinement is only possible for finite TRSs R. In this section we
show how this refinement can also be used for rewriting modulo equations. This
extension of dependency graphs to the equational setting is quite straightforward
and similar to the extensions of the dependency graph refinement to the AC-case
in [16,18].

The nodes of the dependency graph are the dependency pairs and there is
an arrow from node (vf, w#) to (%, #*) if there exist substitutions ¢; and o5 such
that who, —% /e © et I*5. By renaming variables in different occurrences

of dependency pairs we may assume that o1 = oy. Here, £ also contains the
equations uf ~ v where u ~ v is an equation from £ whose roots are defined,
ie.

E'=cu{u =o' |urv €&, root(u) and root(v) are defined }.
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For the division-system (Ex. 11) we had seven dependency pairs.

(M(s(2),s(y)), M(,y)) (
(Q(s(2),s(y)), M(z,9)) (
(Q(s(2),s(9)), Qz — y,5(y))) (
(Q(0+s(y), 2),Q(0,2)) (4
(Q( (
(Q(s(= (

(

(@)

Q(s(z) + 4w z), M(z,y))
+5(y),2), Q(z — y,s(y)))
@(() s(y),2), Q(s((z — y) +s(y)), 2))

The dependency graph contains an arrow from (1) to itself and arrows from (2
and (5) to (1). Moreover, from each of the pairs (3), (6), and (7) there are arrows
to all pairs (2) - (7). The reason is that a term Q(...) can only reduce w.r.t.
—>;€/g o ~gi to terms with the root symbol Q and a term with the root symbol
M can also just reduce to other terms built with M. Moreover, an instantiation
of the right-hand side Q(0, z) of (4) can never reduce to any left-hand side of a
dependency pair.

We call a non-empty subset C of dependency pairs a cluster if for every two
(not necessarily distinct) pairs (vf, w#) and (I¥,¢*) in C there exists a non-empty
path in C from (vf,w!) to (I¥,#%). So the clusters in the division-example are
{(1)} and all non-empty subsets of {(3), (6),(7)}.

From the proof of Thm. 19 it is straightforward that for termination of R
modulo £ one can consider the clusters of dependency pairs separately and that
for each cluster it is sufficient to find one dependency pair which is strictly de-
creasing (w.r.t. >), whereas the others only have to be weakly decreasing (w.r.t.
7). For the division-example this implies that we may use different orderings for
the M- and the Q-clusters.

While in general the dependency graph cannot be computed automatically
(since it is undecidable whether wfo —% /g © et I*o holds for some o), one can
nevertheless approximate this graph automatically. The estimation is based on
comparing the constructors of the terms in the dependency pairs. For any term
w, let CAP(w) result from replacing all proper® subterms of w that have a defined
root symbol by different fresh variables and let REN(w) result from replacing all
occurrences of variables in w by different fresh variables. Then, to determine
whether wio —R/e O et I¥o holds for some o, we check whether REN(CAP(w))

)
)
)
)
)
)
)
)

&-unifies with I. In this case, we draw an arrow from (vf, w#) to (I%,#*) in the
estimated dependency graph. Here, the function REN is needed to rename multi-
ple occurrences of the same variable z, because for certain substitutions o, two
occurrences of zo could reduce to different terms.

For example, CAP((z — y) +s(y)) = z + s(y), since the proper subterm z —y
has a defined root symbol. Moreover, REN(z +s(y)) = 2’ + s(y’). Since 2’ +s(y’)
? We defined cAP slightly different from [1-3], because we only replace proper subterms

with defined root symbols. The advantage is that in this way, CAP can be applied

to terms without tuple symbols and hence, the estimated dependency graph can be
computed by using E-unification instead of £f-unification.
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E-unifies with s(z) + s(y), we have to draw an arrow from (3) to (2) and to (3)
itself. It turns out that in the division-example, the estimated dependency graph
is identical to the real dependency graph, i.e., by the approximation above we
can compute the dependency graph automatically.

In general, we obtain the following refined termination criterion, which can
be checked mechanically.

Theorem 23 (Termination of Equational Rewriting with Dependency
Graph). Let R be a TRS and let £ be a set of non-collapsing equations with
identical unique variables. R is terminating modulo £ if for every cluster in the
estimated dependency graph of Insg(Extg(R)), there exists a weakly monotonic
quasi-ordering ¥, and a well-founded ordering > compatible with 7~ where both
7 and > are closed under substitution, such that

(1) s>t for at least one dependency pair (s,t) of the cluster,

(1') s = t for all other dependency pairs (s,t) of the cluster,

(2) 17 r for all rules | — r of R,

(8) u~ v for all equations v ~ v of €, and

(4) ut ~ vt for all equations u ~ v of £ where root(u) and root(v) are defined.

Proof. We first show that the estimation of the dependency graph is correct,
ie., wo —R/e © e I*o implies that REN(CAP(w)) and [ are E-unifiable. By
Lemma 12, who —>?,}/5 o ~gs Ifo implies who —>T£\Ezt£(R) o ~vgi lho.

Note that for any two terms t1,ty with defined roots, ¢ —>2\En5(R) tof
implies that REN(CAP(¢1)) matches REN(CAP(¢2)). This can be proved by induc-
tion on the length of the reduction t;* —>Z\Ezt5(R) tof. If t1% = ¢!, we have
t; = to and thus, the claim is obvious. Otherwise, we have ;" — &\ Eate(R)
t'lﬁ —E\Bate (R) tof. Thus, there exists a position 7 with ¢#|, = lo and t{lﬁ =
t1%[ro],. This implies © # €, t1|x = lo, and t} = t;[ro], for some rule [ —
r € Euxtg(R). Since 7 is the position of a defined symbol below the root
(which may of course be below another defined symbol), REN(CAP(¢;)) matches
REN(CAP(t})). Since REN(CAP(¢})) matches REN(CAP(t2)) by the induction hy-
pothesis, REN(CAP(t1)) also matches REN(CAP(t2)).

So who =\ Bate(R) ¢" implies that REN(CAP(wc)) matches REN(CAP(g)).
Since REN(CAP(w)) matches REN(CAP(wo)) and since REN(CAP(q)) matches g,
therefore REN(CAP(w)) matches g, i.e., we have REN(CAP(w))u = ¢ for some
substituton p. Hence, if wfo _>2\Eztg(73) q* ~g: ', we also have ¢ ~¢ lo and
thus, REN(CAP(w))p ~¢ lo. Since the variables of REN(CAP(w) and [ are disjoint,
this means that REN(CAP(w)) and [ are £-unifiable.

So the estimated dependency graph is a supergraph of the real dependency
graph, i.e., every cluster in the dependency graph is also a cluster in the estimated
dependency graph. As in the proof of Thm. 19, for every non-terminating term
to we construct the infinite sequence

+
E\Ezte (R)

+
E\Eztes (R)

+

to = E\Eztg(R) " *

t, — to —
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such that all ¢; contain the minimal non-terminating subterm ¢.
From the proof of Thm. 19 we see that for all ¢ > 0 there is a rule I; — r; €
Insg(Extg(R)) and a substitution o; such that

- ti%‘?fgwtg(mo ~¢ l;o; and thus, t;* S\ Bate(R) © ~E Lo,
— t;+1 = $;0; and thus tiHﬁ = g,;o; for some non-variable subterm s; of 74
— (1%, si*) is a dependency pair of Insg(Exte(R)).

This means that for all 7 > 1 we have
si_1foi_1 =% o ~et lifo;
i—1 0i—1 E\Extgs (R) gt by Oq-

Thus, there are arcs from (li_ln, si_1%) to (liﬂ, s;%) in the dependency graph.
Since there are only finitely many dependency pairs, the pairs of at least one
cluster occur infinitely many times in the sequence

<lou, 50”)7 <llu, 51n>a <lzﬁ, 52ﬁ>,

For at least one dependency pair in this cluster we demanded that the left-hand

side is strictly greater than its right-hand side. Thus, t{)ﬁ, t'lﬁ, ... is a decreasing

sequence of terms with t;u = t;-+1ﬁ or t;ﬁ Z o> t;“u

where the strict inequality
t;u o>t Hﬂ holds infinitely many times. This is a contradiction to the well-

foundedness of >. O

Ezample 2/. For the division-example (Ex. 11) we now obtain different groups of
constraints corresponding to the different clusters. The dependency pairs (2), (4),
and (5) are not in any cluster and hence, they can be completely disregarded for
the termination proof. For example, it would be sufficient to search for orderings
>1,71, >2, 72 where >; is compatible with 7-; and >2 is compatible with 7o
such that M(s(z),s(y)) >1 M(z,y), Q(...) >2 Q(...) for the dependency pairs
(3), (6), (7), and for both 7 € {1,2} we need I —; r for all rules [ — r, (u +
v) +w~; (u+w)+v, and Q(u + v, w) ~; Q(u + w,v). Obviously, here we can
choose >1 =>3=> and 71 =72 = for the orderings > and = from Ex. 22.
But in general, the modular decomposition of termination proofs by dependency
graphs allows many (automated) termination proofs which would not be possible
otherwise, cf. [1-3] and the examples A.5, A.7, A.9, and A.10 in the appendix.

7 Conclusion

We have extended the dependency pair approach to equational rewriting. The
equations allowed are much more general than just AC-axioms: Any non-collap-
sing equation is allowed if it satisfies the identical unique variables property (i.e.,
every variable appears uniquely in each side of the equation, and the same set of
variables appear on the two sides of the equation). From a given rewrite system
R and an equation set £, an extended rewrite system Extg(R) is computed
using a complete unification algorithm for £, so that the termination of its as-
sociated weak rewrite relation is sufficient for termination of R modulo £. The
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associated weak rewrite relation of Extg(R) is more suited for the dependency
pair approach since one never has to consider any applications of £-equations
above the redex being reduced next. To solve the problem that minimal non-
terminating subterms might only occur in variable positions of R-rules, it also
becomes necessary to include finitely many instances of Eztg(R) in the final
rewrite system Insg(FExts(R)) from which the dependency pairs are computed.
Finally, the refinement of dependency graphs carries over to the equational case
in a straightforward way (by using £-unification to compute an estimation of
these graphs).

In the special case of AC-axioms, our method is similar to the ones previ-
ously presented in [16, 18]. In fact, as long as the equations only consist of AC-
axioms, one can show that using the instances Insg in Thm. 19 is not necessary.*°
(Hence, such a concept cannot be found in [18]). However, even then the only ad-
ditional inequalities resulting from Inse are instantiations of other inequalities
already present and inequalities which are special cases of an AC-deletion prop-
erty (which is satisfied by all known AC-orderings and similar to the one required
in [16]). This indicates that in practical examples with AC-axioms, our technique
is at least as powerful as the ones of [16, 18] (actually, we conjecture that for AC-
examples, these three techniques are virtually equally powerful). But compared
to the approaches of [16, 18], our technique has a more elegant treatment of tuple
symbols. (For example, if the TRS contains a rule f(¢1,t2) — g(f(s1, s2), s3) were
f and g are defined AC-symbols, then we do not have to extend the TRS by rules
with tuple symbols like f(¢1,t2) — G(f(s1, s2), s2) in [18]. Moreover, we do not
need dependency pairs where tuple symbols occur outside the root position such
as (F(F(t1,%2),v),...) in [18] and [16] and (F(¢1,t2), G(F(s1, s2),83)) in [16]. Fi-
nally, we also do not need the “AC-marked condition” F(f(z,y), z) ~ F(F(z,y), 2)
of [16].) But most significantly, unlike [16, 18] our technique works for arbitrary
non-collapsing equations £ with identical unique variables where £-unification
is finitary (for subterms of equations and left-hand sides of rules). Obviously,
an implementation of our technique also requires £-unification algorithms [5] for
the concrete sets of equations £ under consideration.

Acknowledgements. We thank Aart Middeldorp, Thomas Arts, and the referees for
many helpful comments.

A Examples

In this appendix we present a collection of examples to demonstrate the power
and the applicability of our approach. In all these examples, the set of equations is
different from just AC-axioms. Thus, the previous extensions of the dependency
approach [16, 18] are not applicable here. Up to now, the only automatic standard
technique for such examples was the direct use of polynomial orderings (as in

10 Then in the proof of Thm. 19, instead of a minimal non-terminating term t' one re-
gards a term ¢’ which is non-terminating and minimal up to some extra f-occurrences
on the top (where f is an AC-symbol).
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[6]). However, in the examples A.1 - A.5, termination cannot be proved in this
way (because R alone is already non-simply terminating). Similarly, Examples
A.9 and A.10 can easily be transformed into systems that are clearly non-simply
terminating, too.

The examples A.6 - A.8 can be proved by polynomial orderings directly, but
here our approach has the advantage that it allows the application of the stan-
dard rpo or lpo, which is much easier to automate than the search for polynomial
orderings.

Examples A.8 - A.10 are TRSs which implement algorithms on non-free data
structures like integers or multisets. Equational rewriting is particularly well
suited to model non-free data structures (and of course, this requires equations
different from AC-axioms). Hence, here the technique of the present paper is
very useful. Moreover, even for data structures like the naturals, using + as an
additional constructor can be helpful, since it allows an easy definition of many
algorithms. The use of our approach for such algorithms is illustrated in Ex. A.4.

The examples A.1, A.2 and A.5 - A.10 demonstrate that with our approach,
termination of equational rewriting can often be proved using ordinary base
orderings like standard rpo or Ipo (i.e., base orderings which themselves are not
usable for termination of equational TRSs).

A.1 Division 1
This is the running example from the text (Ex. 11).

R: z—0—>z E: (urv)rwr(u+w)+v
s(z) —s(y) »z—y
0+s(y)—0

s(z) +s(y) = s((z — y) +s(y))
Here we obtain
Exzteg(R)=RU{ (0=s(y)+2z—0=z
(s(z) +s(y)) +2—=s((@—y)+s(y) +2}

and Insg(Extg(R)) = Extg(R). If we use the same ordering for all clusters of
the dependency graph we obtain the following constraints:

M(s(z),s(y)) > M(z,y) (urv)rw=(ut+w)+v
Q(s(), 5(4)) > Qlz — y,5(y)) Qu + v, w) = Qu + w,v)
Q(s(x) +s(y),2) > Qz —y,s(y))
Q(s(z) +5(y),2) > Q(s((z — y) +s(y)), 2)
r—0Zx
s(z) —s(y) Tz —y
0+s(y) 20
s(z) +s(y) Z s((z —y) +s(y))
As mentioned in Ex. 22, we eliminate the second arguments of —, +, M, and

Q. Then the resulting inequalities are satisfied by the rpo with the precedence
— s —.
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A.2 Division 2

Apart from the equation (u + v) + w & (u + w) + v one can also add additional
equations to the equational theory, e.g., a similar equation for —. This yields

R: z—0—>z E: (urv)rwr(u+w)+v
s(z) —s(y) =z —y (u—v)—w=(u—w)—v
0+s(y)—0

s(z) +s(y) = s((z —y) +s(y))

In addition to the rules mentioned in the previous example, now Exte(R)
also contains the rule

(s(z) =s(¥) —z = (z—y) — =z

Again we have Insg(Extgs(R)) = Extg(R) and thus, the resulting constraints
are the same as in the previous example plus the additional constraints

M(s(z) — s(y),z) > M(z,y) (u—v)—w~(u—w)—v
M(s(z) —s(y), z) > M(z — y, 2) M(u — v, w) ~ M(u — w, v).

With the same argument elimination as in Ex. A.1, the same rpo satisfies these
constraints.
A.3 Division 3

The next example shows that instead of the equation (u+v)+w = (u+w)+v one
can also use other equations relating nested +-applications such as u+ (v+w) =~
w =+ (v+u).

R: 00—z E: ur(vrw)rw+ (vEu)
s(x) — S()—W*y
0+s(y) =0

s(z) +s(y) = s((z —y) +s(y))
Now we obtain

Exte(R)=RU{ z+(0=+s(y))—2z+0,
2+ (s(x) +s(y)) = z +s((z —y) +s(y)) }-

Overlaps with these new rules do not have to be included in Extg(R): If the
subterm v <+ w is overlapped with z < (0 = s(y)), we would obtain the new rule
2’ +(2+(0+s(y))) — 2’ +(2+0), but the other side of the instantiated equation,
(0+s(y)) + (z + 2') already R-reduces to 0 + (z + 2’) which is £-equivalent to
z' + (2 +0). A similar statement holds for overlaps with the second new rule.
Again we have Insg(Extg(R)) = Extg(R). Thus, we obtain the following
constraints, if we use the same ordering for all clusters of the dependency graph:
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M(s(z),s(y)) > M(z,y) ur(vrw)rwrws (viu)
Q(s(z),s(y)) > Qz — y,s(y)) Qu,v+w) = Q(w,v + u)
Q(z,s(z) +s(y)) > Qz — y,s(y))
Q(z,s(z) +s(y)) > Qlz,s((z —y) +s(y)))
z—0Zx
s(z) —s(y) Zz—y
0+s(y) 20
s(z) +s(y) Z s((z —y) +s(y))
The constraints are satisfied by the following polynomial interpretation:
0=1
s(z)=x+1
T—y=uc
Try=>c-y
M(z,y) = =
Q@,y) =2y

A.4 Equational Theory with Addition

It is also possible to use + as an (associative and commutative) constructor. Then
the set of constructors is 0, s and +, i.e., we have a set of non-free constructors.
Now subtraction can be defined very easily by just the rule (z +y) —y — z. In
this way, the division system looks as follows:

R: (z4+y)-y—z E: 0O+vmw
0+s(y) =0 s(u) + v ~s(u+v)
() + sy) — s((z — ) +5(y) wt v+

ut+(v+w)x~(utv)+w

Obviously, we have Insg(Ezts(R)) = R (this is always the case if the equa-
tions contain no defined symbols). When using the same ordering for all clusters
we obtain

Q(s(z),s(y)) > Qz — y,s(y)) O+tvmu
(c+y)-yze s(u) + v~ s(u+)
0+s(y) 0 utvNRUv+tu

s(z) +s(y) Z s((z — y) +s(y)) ut (v+w)~ (u+v) +w.
The constraints are satisfied by the following polynomial ordering;:

0=0

s(z) =>z+1

r+y=>x+vy
T—y=u
TryY=>uc
Qz,y) = =
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Alternatively, it would also be possible to use the equational theory

1+40~1
0+1~1
0+0~0

vt (v+w) =~ (u+v)+w

and to reformulate the second division rule as follows.
z+1)+(y+1) = (z—y)+(y+1)+1

When interpreting 1 as the number 1, the same polynomial interpretation as
above can be used to prove termination of this modified system, too.

A.5 Conversion into Bitstrings

The next example is a TRS used to convert numbers into a representation w.r.t.
an arbitrary base. (Thus, if one uses base 2, the following TRS can be used to
convert numbers into bitstrings.) Here, we use the equation cons(n, cons(0, nil)) ~
cons(n, nil), since 0’s in the most significant digits do not matter.

R: convert(0,s(s(b))) — cons(0, nil)
convert(s(0),s(s(b))) — cons(s(0), nil)
convert(s(s(n)), s(s(b))) — cons(mod(n — b,s(s(b))),
convert(s((n — b) =+ s(s(b))), s(s(b))))

& cons(n, cons(0, nil)) =~ cons(n, nil)

Already for this system, the set of rules R is not simply terminating. Of
course, we may also add the rules for the auxiliary functions:

r—0—=x
s(z) —s(y) >z —y
It(z,0) — false
1t(0,s(y))
It(s(z),s(y)) = It(z,y)
)
s(z) +s(y) = if (It(z, y),s(2),s(y))
)—0
)
)
)
)
)

l:_;
—
5]
(%)
D
(%)

—
8

~—
(%)

<

(2) — ifmod (It(z, y),s(z), 5(y))
ifmod (true, s(z),s(y
ifmod (false, s(z)



We have Insg(Ezts(R)) = R and thus, we obtain the following constraints:

CONVERT(s(s(n)),s(s(b))) > CONVERT (s((n — b) = s(s(b))),s(s(d)))
M(s(z),s(y)) > M(z,y)
LT (s(x),s(y)) > LT( »Y)
Q(s(z),s(y)) = IF+(It(z,y),s(x),s(y))
(false,s(x),s(y)) > Q(I - y,s(y))
MOD(s(z),s(y)) > IFmod(It(z,y),s(2),s(y))
IFmod (false, s(z),s(y)) > MOD(z — y,s(y))
convert(0,s(s(b))) z cons(0, nil)
convert(s(0),s(s(b))) = cons(s(0), nil)
convert(s(s(n)),s(s(b))) - cons(mod(n — b,s(s(d))),

convert(s((n — b) =+ s(s(b))), s(s(b))))

z—0rx
s(z) —s(y) 2z —y
It(z,0) = false
1t(0,s(y)) = true
It(s(x ) S( ) Z Itz y)
+s(y) 20
s(z ) s(y) Z if= (It(z, y), s(x), s(y))
if> (true,s(z),s(y)) Z 0
if- (false, s(z),s(y)) Z s((z — y) +s(y))
mod(0,s(y)) Z 0
mOd( (x),s(y)) i mod(lt( ,y),S(I),S(y))
|fmod(trl‘je s(w),s(y)) i ( )
ifmod(false, s(z),s(y)) 7z mod(z — y,s(y))
cons(n, cons(0, nil)) = cons(n, nil)
When replacing cons, —, +, Q, mod, and MOD by their first arguments and
if -, IF-, ifhod, and IF04 by their second arguments, we obtain
CONVERT((s(s(n)),s(s(b))) > CONVERT(s(n),s(s(d)))
M(s(z),s(y)) > M(z,y)
LT(s(z),s(y)) > LT(z,y)
s(z) = s(x)
s(z) >z
s(z) Z s(z)
s(z) >z
convert(0,s(s(b))) zZ 0
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convert(s(0),s(s(b)

~— —
— —
(2]
—
o
~—

[ )
PLU L1y
8 8 8
NN AN

z
convert(s(s(n)),s(s(b))) Z n
T T
s(z) Z @
It(z,0) - false
It(0,s(y)) = true
lt(s(z),s(y)) Z It(z,y)
0-0
s(z) Z s(z)
s(z) = 0
s(z) Z s(z)
00
z
z
N

3
S 8

These constraints are satisfied by the rpo.

A.6 Idempotence

The following example (Ex. 10) is a TRS where the equation states that a func-
tion symbol f is idempotent.

R: f(s(y)) = f(y) E: f(f(z)) ~ f(x)
As explained in Ex. 10, we have Exts(R) = R and we also have Insg(R) = R.
Thus, the resulting constraints are
F(s(y)) > F(y) f(f(z)) ~ f(x)
f(s(y)) Z f(y) F(f(z)) ~ F(z)

After replacing f by its argument, these inequalities are satisfied by the rpo.

A.7 Idempotence of flatten

The following example is similar to the previous one, but it illustrates that
equations for idempotence can be useful for functions occurring in practice. The
following example contains an algorithm to flatten binary trees and the equation
states that flatten is idempotent.

R: flatten(nil) — nil
flatten(cons(nil, z)) — cons(nil, flatten(z))
flatten(cons(cons(z, y), z)) — flatten(cons(z, cons(y, z)))

& flatten(flatten(u)) ~ flatten(u)
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By overlapping the subterm flatten(u) of the equation with the left-hand sides
of the first two rules we obtain

Ezxte(R) =RU{ flatten(flatten(nil)) — flatten(nil),
flatten(flatten(cons(nil,z))) — flatten(cons(nil, z)) }.

Overlapping flatten(u) with the left-hand side of the last rule is not needed. This
would yield the rule flatten(flatten(cons(cons(z,y), z))) — flatten(flatten(cons(z,
cons(y, z)))). But the other term of the instantiated equation, flatten(cons(cons(z,
y),z)) already rewrites to flatten(cons(z,cons(y, z))) which is £-equivalent to
flatten(flatten(cons(x, cons(y, z)))). Similarly, it can also be shown that overlap-
ping flatten(w) with the left-hand sides of the new rules is unnecessary.

We have Insg(Eztg(R)) = Extg(R). The resulting dependency pairs are

(FLATTEN(cons(nil,z)), FLATTEN(z)) (8)
(FLATTEN(cons(cons(z, y), z)), FLAT TEN(cons(z, cons(y, 2)))) (9)
(FLATTEN(flatten(nil)), FLATTEN(nil)) (10)
(FLATTEN(flatten(cons(nil, z))), FLATTEN(cons(nil, z))) (11)

Obviously, (10) is not on any cluster and hence, it can be disregarded. The only
cluster containing (11) is {(8), (11)}. Thus, it is sufficient if (11) is only weakly
decreasing. We result in the following constraints:

FLATTEN(cons(nil,z)) > FLATTEN(x)
FLATTEN(cons(cons(z,y), z)) > FLATTEN(cons(z, cons(y, z)))
FLATTEN(flatten(cons(nil, z))) 7 FLATTEN(cons(nil, x))
flatten(nil) = nil
flatten(cons(nil, z)) = cons(nil, flatten(z))
flatten(cons(cons(z, y), z)) 7 flatten(cons(z, cons(y, 2)))
fIatten(fIatten(u)) ~ flatten(u)
FLATTEN(flatten(u)) ~ FLATTEN(u)

After replacing flatten by its argument, the constraints are satisfied by the lexi-
cographic path ordering [9, 13].

A.8 Addition on Integers

Consider the following equational rewrite system on integers. Here, integer num-
bers are built from the function symbols 0, s, and p. The equation s(p(z)) ~
p(s(z)) states that the function symbols s and p may be interchanged. Thus,
equational rewriting is used to model this non-free data structure.

R: O+y—uy E: s(p(z)) =~ p(s(z))
p(z) +y — p(z +y)
()+y%5(+y)
p(s(z)) —
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We obtain Eztg(R) = R. The non-variable proper subterm p(z) of the equa-
tion unifies with the left-hand side p(s(z)) of the last rule, but the corresponding
new rule s(p(s(z))) — s(z) does not have to be included in Extg(R), since the
instantiated other side of the equation, p(s(s(z))), already R-reduces to s(z). A
similar statement holds for the unification of the subterm s(z) with p(s(z)).

Moreover, we also have Insg(R) = R. Since dependency pairs with the tuple
symbol of 4 in the left component and the tuple symbols of p or s in the right
component do not occur in any cluster of the dependency graph, it is sufficient
to satisfy the following constraints (where PLUS denotes the tuple symbol for

PLUS(p(z),y) > PLUS(z,y) s(p(2)) ~ p(s(2))
PLUS(s(z),y) > PLUS(z,y) S(p(2)) ~ P(s(2))
0+yzZy
p(z) +y Z p(z +y)
s(z) +y Zs(z+y)
p(s(z)) Z =

These constraints are satisfied by the rpo, where + is greater than p and s in
the precedence and both s and p and both S and P are equal in the precedence,
respectively.

A.9 Transforming Multisets into Sets

The next example uses equations to model the non-free data structure of multi-
sets. Here, we need an equation cons(u, cons(v, w)) ~ cons(v, cons(u, w)) since it
does not matter in which order two elements u and v are inserted into a multiset
w. The function set is used to transform a multiset into a set, i.e., to eliminate
duplicates from a multiset. It uses the auxiliary function rm (for “remove”),
where rm(n, z) deletes all occurrences of the element n from the multiset z.

R: eq(0,0) — true
eq(0,s(y)) — false
eq(s(z),0) — false
( (z),s(y)) — ea(z,y)
rm(n, nil) — nil
rm(n, cons(m, z)) — if(eq(n, m), n, cons(m, x))
if (true, n, cons(m, z)) — rm(n, z)
if (false, n, cons(m, z)) — cons(m, rm(n, z))
set(nil) — nil
set(cons(n, z)) — cons(n, set(rm(n, z)))
E: cons(u, cons(v,w)) & cons(v, cons(u,w))

Since the equation only contains constructors and variables, we obtain
Insg(Extg(R)) = R. Thus, when using the same ordering for all clusters, it
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suffices to satisfy the following constraints:

m(n, z)
ons(m rm(n, x))

(m, i
if (true, n, cons( rm

( c
nil
c
c

m,x
if (false, n, cons(m, x

set(nil
set(cons(n, z)

cons(u, cons(v, w)

ons(n, set(rm(n,x)))
ons(v, cons(u, w))

EQ(s(z),s(y)) > EQ(,y)

RM(n, cons(m, z)) = IF(eq(n, m),n, cons(m, z))
IF(true, n, cons(m, x)) > RM(n, x)
IF(false, n, cons(m, z)) > RM(n, z)

SET (cons(n, z)) > SET(rm(n, z))
eq(0,0) = true
eq(0,s(y)) = false
eq(s(x),0) = false
ea(s(x),5(1)) = ea(, )
rm(n, nil) = nil
rm(n, cons(m, z)) = if(eq(n, m), n, cons(m, x))
)%
) Z
) Z
)%
)~

Before searching for a base ordering satisfying these constraints, we replace
rm, RM, if, and IF by their last arguments and we eliminate the first argument
of cons. This results in the following constraints:

> EQ(z,y)
7 cons'(z)

> true

c
cons’(set(z))
cons’(cons’(w))

These resulting constraints are satisfied by the rpo.

A.10 Quicksort on Multisets

The following TRS is used to sort a multiset by the well-known quicksort algo-
rithm. It uses the functions low(n,z) (resp. high(n,z)) which return the subset
of z containing only the elements smaller than or equal to (resp. greater than) n
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The equation in £ is again used to model multisets, i.e., to state that the order
of the elements does not matter.

R: le(0,

le(s(x

e(s(z), 5

app(nil,

app(cons(n, z
low(n, n

low(n, cons(m, z)) — ifiew (le(m, n), n, cons(m, z))

) — true
)
)
) =
)
il)
)

iflow (true, n, cons(m, ; — cons(m, low(n, z))
)
)
)
)
)
)

Yy

),0) — false
(y)) — |e( y)
Ly

,Y) — cons(n app(z,y))
— nil

)
)
ifow (false, n, cons(m, z)) — low(n, x)
high(n,nll — nil
high(n, cons(m — ifhigh (le(m, n), n, cons(m, z))
ifhigh (true, n, cons(m, x)) — high(n, z)
ifhign (false, n, cons(m, x)) — cons(m, high(n, z))
quicksort(nil) — nil
quicksort(cons(n, z)) — app(quicksort(low(n, z)),
cons(n, quicksort(high(n, x))))
& cons(u, cons(v,w)) & cons(v, cons(u,w))

)

z)
z)
z)

Again we have Insg(Extg(R)) = R. So the constraints are

LE(s(x), s(y)
APP(cons(n, z),y

LOW(n, cons(m, x)

> LE(z,y)
> APP(z,y)
IFiow (le(m, n), n, cons(m, z))
,z)) > LOW(n, z)
IFiow (false, n, cons(m, z)) > LOW(n, z)
(

IFiow (true, n, cons(m
(m

HIGH(n, cons(m, x)
(m
(m

)

)

)%

)

)

) 2 [Fhign(le(m, n), n, cons(m, x))

[Fhigh(true, n, cons(m, z)) > HIGH(n, )

IFhigh (false, n, cons(m, z)) > HIGH(n, z)

QUICKSORT (cons(n, z)) > QUICKSORT (low(n, x))

QUICKSORT (cons(n, z)) > QUICKSORT (high(n, z))
) Z
)
)
)
)
)
)
)
)

)
le(0, true

[0)

)
le(s(x),0
le(s(x),s(y)
app(nil,y
app(cons(n, ),y

false

e(z,y)

low(n, nil) = nil

-

Zle

ZY

7 cons(n, app(z, y))
Z ni

low(n, cons(m, z)) 7= ifiow (le(m, n), n, cons(m, z))
iflow (true, m, cons(m, z)) - cons(m, low(n, z))

ifow (false, n, cons(m, z)) 7 low(n, z)
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high(n, nil) ZZ nil
high(n, cons(m, x)) 7 ifnign(le(m, n), n, cons(m, z))
ifhigh (true, n, cons(m, z)) - high(n, x)
ifhign (false, n, cons(m, x)) - cons(m, high(n, z))
quicksort(nil) 5 nil
quicksort(cons(n, x)) - app(quicksort(low(n, z)),
cons(n, quicksort(high(n, ))))
cons(u, cons(v,w)) ~ cons(v, cons(u, w))
We replace low, LOW, high, HIGH, ifiow, IFjow, ifhigh, and |Fpign by their last ar-
guments and we eliminate the first argument of cons. This results in the following
constraints:

LE(s(),s(y)
APP(cons'(z), y

> LE(z,y)
> APP(z,y)

cons'(z cons( )

!/

cons (x

(

(
cons’(x
(
(
(

cons (T

cons’

cons’(z

QUICKSORT (cons'(z
QUICKSORT (cons'(z
le(0,

le(s(z),
le(s(z),s(y
app(nil,
app(cons’ (m),

T

V\/ZYVVZ
8 8 9

35

wn_

~

> QUICKSORT (z)
> QUICKSORT ()
> true

o v =
—
=
0
[¢]

~—

|e(fv Y)

~— Y — — " ' ' ' ' ' ' ~— ~— —

<
YZYZYZYZYZY

ConS'(app(x, Y))

3.
3

quicksort

quicksort(cons’(z) pp(quicksort(z), cons’ (quicksort(z)))

—
3
—_— — — — — —

a
cons’(cons’(w)) ~ cons’(cons’ (w))
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These constraints are satisfied by the rpo using a precedence with quicksort 1
app O cons’.
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