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Abstra
t. The dependen
y pair te
hnique of Arts and Giesl [1{3℄ for

termination proofs of term rewrite systems (TRSs) is extended to rewrit-

ing modulo equations. Up to now, su
h an extension was only known in

the spe
ial 
ase of AC-rewriting [16, 18℄. In 
ontrast to that, the pro-

posed te
hnique works for arbitrary non-
ollapsing equations (satisfying

a 
ertain linearity 
ondition). With the proposed approa
h, it is now pos-

sible to perform automated termination proofs for many systems where

this was not possible before. In other words, the power of dependen
y

pairs 
an now also be used for rewriting modulo equations.

1 Introdu
tion

Termination of ordinary term rewriting has been extensively studied (e.g., in


lassi
al approa
hes based on simpli�
ation orderings [9, 23℄ and new powerful

te
hniques like dependen
y pairs [1{3℄). There has also been signi�
ant progress

for termination of equational term rewrite systems whose equations only 
ontain

asso
iativity and 
ommutativity axioms (e.g., [8, 14, 15, 21, 22℄). In parti
ular,

the dependen
y pair approa
h has also been extended to the AC-
ase [16, 18℄.

For equations other than AC-axioms, however, there are not many te
hniques

available to prove termination. In an early paper [17℄, suÆ
ient 
onditions are

given for redu
ing termination of equational rewriting to termination of its un-

derlying rewrite system. Another early paper [6℄ des
ribes how to apply polyno-

mial interpretations for AC-termination proofs (and this approa
h 
an also be

used for equations other than AC-axioms). In newer papers, dummy elimination

[11℄ and the semanti
 labelling method [19℄ are extended to rewriting modulo

equations. However, dummy elimination is only appli
able for 
ertain sub
lasses

of TRSs and semanti
 labelling is not amenable to automation.

This paper presents an extension of the dependen
y pair approa
h to rewrit-

ing modulo equations. In the spe
ial 
ase of AC-axioms, our te
hnique 
orre-

sponds to the methods of [16, 18℄, but in 
ontrast to these methods, our te
h-

nique 
an also be used if the equations are not AC-axioms. This allows mu
h

?
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more automated termination proofs for equational rewrite systems than those

possible with dire
tly applying simpli�
ation orderings for equational rewriting

(like equational polynomial orderings or AC-versions of path orderings).

We �rst review the dependen
y pair approa
h for ordinary term rewriting in

Se
t. 2. In Se
t. 3, we show why a straightforward extension of dependen
y pairs

to rewriting modulo equations is not possible. As observed in [16℄, the reason

is that there 
an be minimal non-terminating terms (i.e., terms without proper

non-terminating subterms) whose in�nite redu
tions only involve redu
tion steps

below the root level. Therefore, we follow an idea similar to the one of [18℄ for the

spe
ial 
ase of AC-axioms: We 
onsider a restri
ted form of rewriting modulo

equations, whi
h is more suitable for termination proofs with dependen
y pairs.

In Se
t. 4, we show how to ensure that termination of this restri
ted equa-

tional rewrite relation is equivalent to termination of full rewriting modulo equa-

tions. Under 
ertain 
onditions on the equations E , we give a method for 
om-

puting an extended rewrite system Ext

E

(R) from the given TRSR su
h that the

restri
ted rewrite relation of Ext

E

(R) modulo E is terminating i� R is terminat-

ing modulo E . This is proved for (almost) arbitrary E-rewriting, thus generaliz-

ing a related result for AC-rewriting. This general result may be of independent

interest, and may also be found useful in investigating other properties of E-

rewriting.

Then in Se
t. 5, we extend the dependen
y pair approa
h to rewriting modulo

equations. The notion of de�ned symbols is modi�ed by taking into 
onsidera-

tion the fun
tion symbols appearing as the outermost symbols in equations in E

as well. It is shown how for every non-terminating term, it is possible to build

a redu
tion using the restri
ted form of rewriting indu
ed by Ext

E

(R) where

only terminating or minimal non-terminating subterms are redu
ed. In order to

ensure that an in�nite redu
tion from a minimal non-terminating term 
an be

a
hieved by applying only instantiations of rules where all variables are instanti-

ated with terminating terms, it also be
omes ne
essary to 
onsider �nitely many

instantiations of the rules in Ext

E

(R). The main result is then proved, general-

izing the dependen
y pair method for showing termination of rewrite systems R

[1{3℄ to rewrite systems R modulo sets E of non-
ollapsing equations with iden-

ti
al unique variables. This result 
an serve as the basis of an automati
 method

for showing termination of rewrite systems modulo equations. Finally, in Se
t.

6 we show how the re�nement of dependen
y graphs [1{3℄ 
an also be applied

for rewriting modulo equations. Appendix A 
ontains a 
olle
tion of examples

to demonstrate the power and the usefulness of our te
hnique.

2 Dependen
y Pairs for Ordinary Rewriting

The dependen
y pair approa
h allows the use of standard methods like simpli-

�
ation orderings [9, 23℄ for automated termination proofs where they were not

appli
able before. In this se
tion we brie
y summarize the basi
 
on
epts of this

approa
h. All results in this se
tion are due to Arts and Giesl and we refer to

[1{3℄ for further details, re�nements, and explanations.
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In 
ontrast to the standard te
hniques for termination proofs, whi
h 
om-

pare left and right-hand sides of rules, in this approa
h one 
on
entrates on the

subterms in the right-hand sides that have a de�ned

1

root symbol, be
ause these

are the only terms responsible for starting new redu
tions.

More pre
isely, for every rule f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ; t

m

)℄ (where f and g

are de�ned symbols), we 
ompare the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

.

To avoid the handling of tuples, for every de�ned symbol f , we introdu
e a

fresh tuple symbol F . To ease readability, we assume that the original signature


onsists of lower 
ase fun
tion symbols only, whereas the tuple symbols are

denoted by the 
orresponding upper 
ase symbols. Now instead of the tuples

s

1

; : : : ; s

n

and t

1

; : : : ; t

m

we 
ompare the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

).

De�nition 1 (Dependen
y Pair [1{3℄). If f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)℄

is a rule of a TRSR and g is a de�ned symbol, then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i

is a dependen
y pair of R.

Example 2. As an example, 
onsider the TRS fa + b ! a + (b + 
)g, 
f. [18℄.

Termination of this system 
annot be shown by simpli�
ation orderings, sin
e the

left-hand side of the rule is embedded in the right-hand side. In this system, the

de�ned symbol is + and thus, we obtain the dependen
y pairs hP(a; b);P(a; b+
)i

and hP(a; b);P(b; 
)i (where P is the tuple symbol for the plus-fun
tion \+").

Arts and Giesl developed the following new termination 
riterion. As usual,

a quasi-ordering % is a re
exive and transitive relation, and we say that an

ordering > is 
ompatible with % if we have > Æ % � > or % Æ >� >.

Theorem 3 (Termination with Dependen
y Pairs [1{3℄). A TRS R is

terminating i� there exists a weakly monotoni
 quasi-ordering % and a well-

founded ordering > 
ompatible with %, where both % and > are 
losed under

substitution, su
h that

(1) s > t for all dependen
y pairs hs; ti of R and

(2) l % r for all rules l! r of R.

Consider the TRS from Ex. 2 again. In order to prove its termination a
-


ording to Thm. 3, we have to �nd a suitable quasi-ordering % and ordering >

su
h that P(a; b) > P(a; b+ 
), P(a; b) > P(b; 
), and a+ b % a+ (b+ 
).

Most standard orderings amenable to automation are strongly monotoni


(
f. e.g. [9, 23℄), whereas here we only need weak monotoni
ity. Hen
e, before

synthesizing a suitable ordering, some of the arguments of fun
tion symbols may

be eliminated, 
f. [3℄. For example, in our inequalities, one may eliminate the

�rst argument of +. Then every term s+t in the inequalities is repla
ed by +

0

(t)

(where +

0

is a new unary fun
tion symbol). By 
omparing the terms resulting

from this repla
ement instead of the original terms, we 
an take advantage of

the fa
t that + does not have to be strongly monotoni
 in its �rst argument.

1

Root symbols of left-hand sides are de�ned and all other fun
tions are 
onstru
tors.
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Note that there are only �nitely many possibilities to eliminate arguments of

fun
tion symbols. Therefore all these possibilities 
an be 
he
ked automati
ally.

In this way, we obtain the inequalities P(a; b) > P(a;+

0

(
)), P(a; b) > P(b; 
),

and +

0

(b) % +

0

(+

0

(
)). These inequalities are satis�ed by the re
ursive path

ordering (rpo) [9℄ with the pre
eden
e a A b A 
 A +

0

(i.e., we 
hoose % to

be %

rpo

and > to be �

rpo

). So termination of this TRS 
an now be proved

automati
ally.

Apart from eliminating arguments of fun
tion symbols, another possibility is

to repla
e fun
tions by one of their arguments. So instead of deleting the �rst ar-

gument of + one 
ould also repla
e all terms s+t by +'s se
ond argument t. Then

the resulting inequalities are again satis�ed by the rpo. For implementations of

the dependen
y pair approa
h see [4, 7℄.

3 Rewriting Modulo Equations

For a set E of equations between terms, we write s !

E

t if there exist an

equation l � r in E , a substitution �, and a 
ontext C su
h that s = C[l�℄ and

t = C[r�℄. The symmetri
 
losure of !

E

is denoted by à

E

and the transitive

re
exive 
losure of à

E

is denoted by �

E

. In the following, we restri
t ourselves

to equations E where �

E

is de
idable.

De�nition 4 (Rewriting Modulo Equations). Let R be a TRS and let E be

a set of equations. A term s rewrites to a term t modulo E, denoted s !

R=E

t,

i� there exist terms s

0

and t

0

su
h that s �

E

s

0

!

R

t

0

�

E

t. The TRS R is 
alled

terminating modulo E i� there does not exist an in�nite !

R=E

redu
tion.

Example 5. An interesting spe
ial 
ase are equations E whi
h state that 
ertain

fun
tion symbols are asso
iative and 
ommutative (AC). As an example, 
on-

sider the TRSR = fa+b! a+(b+
)g again and let E 
onsist of the asso
iativity

and 
ommutativity axioms for +, i.e., E = fx

1

+ x

2

� x

2

+ x

1

; x

1

+ (x

2

+ x

3

) �

(x

1

+ x

2

) + x

3

g, 
f. [18℄. R is not terminating modulo E , sin
e we have

a+b!

R

a+(b+
) �

E

(a+b)+
!

R

(a+(b+
))+
 �

E

((a+b)+
)+
!

R

: : :

There are, however, many other sets of equations E apart from asso
iativity

and 
ommutativity, whi
h are also important in pra
ti
e. Hen
e, our aim is to

extend dependen
y pairs to rewriting modulo (almost) arbitrary equations.

The soundness of dependen
y pairs for ordinary rewriting relies on the fa
t

that whenever a term starts an in�nite redu
tion, then one 
an also 
onstru
t

an in�nite redu
tion where only terminating or minimal non-terminating sub-

terms are redu
ed (i.e., one only applies rules to redexes without proper non-

terminating subterms). The 
ontexts of minimal non-terminating redexes 
an

be 
ompletely disregarded. If a rule is applied at the root position of a minimal

non-terminating subterm s (i.e., s !

�

R

t where � denotes the root position),

then s and ea
h minimal non-terminating subterm t

0

of t 
orrespond to a depen-

den
y pair. Hen
e, Thm. 3 (1) implies s > t

0

. If a rule is applied at a non-root

4



position of a minimal non-terminating subterm s (i.e., s !

>�

R

t), then we have

s % t by Thm. 3 (2). However, due to the minimality of s, after �nitely many

su
h non-root rewrite steps, a rule must be applied at the root position of the

minimal non-terminating term. Thus, every in�nite redu
tion of minimal non-

terminating subterms 
orresponds to an in�nite >-sequen
e. This 
ontradi
ts

the well-foundedness of >.

So for ordinary rewriting, any in�nite redu
tion from a minimal non-termina-

ting subterm involves an R-redu
tion at the root position. But when extending

the dependen
y pair approa
h to rewriting modulo equations, this is no longer

true, 
f. [16℄. For an illustration, 
onsider Ex. 5 again, where a + (b + 
) is a

minimal non-terminating term. However, in its in�nite R=E-redu
tion no R-

step is ever appli
able at the root position. (Instead one applies an E-step at the

root position and further R- and E-steps below the root.)

In the rest of the paper, from a rewrite system R, we generate a new rewrite

system R

0

with the following three properties: (i) the termination of a weaker

form of rewriting by R

0

modulo E is equivalent to the termination of R modulo

E , (ii) every in�nite redu
tion of a minimal non-terminating term in this weaker

form of rewriting by R

0

modulo E involves a redu
tion step at the root level, and

(iii) every su
h minimal non-terminating term has an in�nite redu
tion where

the variables of the R

0

-rules are instantiated with terminating terms only.

4 E-Extended Rewriting

We showed why the dependen
y pair approa
h 
annot be extended to rewriting

modulo equations dire
tly. As a solution for this problem, we propose to 
onsider

a restri
ted form of rewriting modulo equations, i.e., the so-
alled E-extended R-

rewrite relation !

EnR

. (This approa
h was already taken in [18℄ for rewriting

modulo AC.) The relation!

EnR

was originally introdu
ed in [20℄ in order to 
ir-


umvent the problems with in�nite or impra
ti
ally large E-equivalen
e 
lasses.

2

De�nition 6 (E-extended R-rewriting [20℄). Let R be a TRS and let E be

a set of equations. The E-extended R-rewrite relation is de�ned as s!

�

EnR

t i�

sj

�

�

E

l� and t = s[r�℄

�

for some rule l ! r in R, some position � of s, and

some substitution �. We also write !

EnR

instead of !

�

EnR

.

To demonstrate the di�eren
e between !

R=E

and !

EnR

, 
onsider Ex. 5

again. We have already seen that !

R=E

is not terminating, sin
e a + b !

R=E

(a+ b) + 
!

R=E

((a+ b) + 
) + 
!

R=E

: : : But !

EnR

is terminating, be
ause

a+ b!

EnR

a+ (b+ 
), whi
h is a normal form w.r.t. !

EnR

.

The above example also demonstrates that in general, termination of !

EnR

is not suÆ
ient for termination of !

R=E

. In this se
tion we will show how ter-

mination of !

R=E


an nevertheless be ensured by only regarding an E-extended

rewrite relation indu
ed by a larger R

0

� R.

2

In [12℄, the relation !

EnR

is denoted \!

R;E

".
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For the spe
ial 
ase of AC-rewriting, this problem 
an be solved by extending

R as follows: Let G be the set of all AC-symbols and

Ext

AC(G)

= R[ ff(l; y)! f(r; y) j l! r 2 R; root(l) = f 2 Gg;

where y is a new variable not o

urring in the respe
tive rule l ! r. A similar

extension has also been used in previous work on extending dependen
y pairs

to AC-rewriting [18℄. The reason is that for AC-equations E , the termination

of !

R=E

is in fa
t equivalent to the termination of !

EnExt

AC(G)

(R)

. In fa
t,

it is even possible to redu
e the set Ext

AC(G)

a bit, sin
e rules of the form

f(l; y) ! f(r; y) do not have to be in
luded in Ext

AC(G)

if l �

E

f(l

0

; z) and

r �

E

f(r

0

; z) holds for some terms l

0

; r

0

and a variable z whi
h does not o

ur in

l

0

or r

0

, 
f. [20℄.

For Ex. 5, we obtain Ext

AC(G)

(R) = fa + b ! a + (b + 
); (a + b) + y !

(a+(b+
))+yg. Thus, in order to prove termination of!

R=E

, it is now suÆ
ient

to verify termination of !

EnExt

AC(G)

(R)

.

The above extension of [20℄ only works for AC-axioms E . A later paper [12℄

treats arbitrary equations, but it does not 
ontain any de�nition for extensions

Ext

E

(R), and termination of !

R=E

is always a prerequisite in [12℄. The reason

is that [12℄ and also subsequent work on symmetrization and 
oheren
e were

devoted to the development of 
ompletion algorithms (i.e., here the goal was

to generate a 
onvergent rewrite system and not to investigate the termination

behavior of possibly non-terminating TRSs). Thus, these papers did not 
ompare

the termination behavior of full rewriting modulo equations with the termination

of restri
ted versions of rewriting modulo equations. In fa
t, [12℄ fo
uses on the

notion of 
oheren
e, whi
h is not suitable for our purpose sin
e 
oheren
e of EnR

modulo E does not imply that termination of!

R=E

is equivalent to termination

of !

EnR

.

3

To extend dependen
y pairs to rewriting modulo non-AC-equations E , we

have to 
ompute extensions Ext

E

(R) su
h that termination of !

R=E

is equiv-

alent to termination of !

EnExt

E

(R)

. The only restri
tion we will impose on the

equations in E is that they must have identi
al unique variables. As usual, a term

t is 
alled linear if no variable o

urs more than on
e in t.

De�nition 7 (Equations with Identi
al Unique Variables [20℄). An equa-

tion u � v is said to have identi
al unique variables if u and v are both linear

and the variables in u are the same as the variables in v.

While this requirement may seem restri
tive at �rst sight, it turns out that

most pra
ti
al examples where R=E is terminating satisfy this restri
tion: The

restri
tion that the set of variables must be the same in both terms of an equation

3

In [12℄, EnR is 
oherent modulo E i� for all terms s; t; u, we have that s �

E

t!

+

EnR

u

implies s !

+

EnR

v �

E

w  

�

EnR

u for some v; w. Consider R = fa + b ! a + (b +


); x + y ! dg with E being the AC-axioms for +. The above system is 
oherent,

sin
e s �

E

t !

+

EnR

u implies s !

+

R

d  

�

R

u. However, !

EnR

is terminating but

!

R=E

is not terminating.

6



is not severe, be
ause otherwise rewriting modulo su
h an equation would not

terminate (as long as there exists a fun
tion symbol f with arity � 2 and R 6=

?).

4

The reason is that if x o

urs in u but not in v and if l ! r is a rewrite

rule, then we obtain

v �

E

u[x=f(v; l; : : :)℄

!

R

u[x=f(v; r; : : :)℄

�

E

u[x=f(u[x=f(v; l; : : :)℄; r; : : :)℄

!

R

u[x=f(u[x=f(v; r; : : :)℄; r; : : :)℄

�

E

: : :

Thus, rewriting modulo equations su
h as x�0 � 0 or x�x

�1

� 1 never terminates

if R 6= ?.

Moreover, as already pointed out in [10℄, the linearity 
ondition is also not

too restri
tive, sin
e if u is a non-linear term f(: : : x : : : x : : :), then at least if v

is the single variable x, the relation !

R=E

would again be non-terminating if

R 6= ?. (In fa
t, 
ollapsing equations will be forbidden anyway in Se
t. 5 in order

to make the dependen
y pair approa
h sound.) The reason is that if l! r 2 R,

then we would have

l �

E

f(: : : l : : : l : : :)

!

R

f(: : : r : : : l : : :)

�

E

f(: : : r : : : f(: : : l : : : l : : :) : : :)

!

R

f(: : : r : : : f(: : : r : : : l : : :) : : :)

�

E

: : :

This means that rewriting modulo an equation like x � x � x is always non-

terminating if R 6= ?.

Let uni

E

(s; t) denote a 
omplete set of E-uni�ers of two terms s and t. As

usual, Æ is an E-uni�er of s and t i� sÆ �

E

tÆ and a set uni

E

(s; t) of E-uni�ers is


omplete i� for every E-uni�er Æ there exists a � 2 uni

E

(s; t) and a substitution

� su
h that Æ �

E

��, 
f. [5℄. (\��" is the 
omposition of � and � where � is

applied �rst and \Æ �

E

��" means that for all variables x we have xÆ �

E

x��.)

To 
onstru
t Ext

E

(R), we 
onsider all overlaps between equations u � v or

v � u from E and rules l ! r from R. More pre
isely, we 
he
k whether a non-

variable subterm vj

�

of v E-uni�es with l (where we always assume that rules

in R are variable disjoint from equations in E). In this 
ase one adds the rules

(v[l℄

�

)� ! (v[r℄

�

)� for all � 2 uni

E

(vj

�

; l).

5

In Ex. 5, the subterm x

1

+ x

2

of

the right-hand side of x

1

+ (x

2

+ x

3

) � (x

1

+ x

2

) + x

3

uni�es with the left-hand

4

A similar observation was already mentioned in [10℄, but here the requirement of

fun
tion symbols with arity � 2 was negle
ted. Note however that without this


ondition !

R=E

may still be terminating. As an example 
onsider E = ff(x) � ag

and R = fa! bg.

5

Obviously, uni

E

(vj

�

; l) always exists, but it 
an be in�nite in general. So when au-

tomating our approa
h for equational termination proofs, we have to restri
t our-

7



side of the only rule a+ b! a+ (b+ 
). Thus, in the extension of R, we obtain

the rule (a+ b) + y ! (a+ (b+ 
)) + y.

Ext

E

(R) is built via a kind of �xpoint 
onstru
tion, i.e., we also have to


onsider overlaps between equations of E and the newly 
onstru
ted rules of

Ext

E

(R). For example, the subterm x

1

+ x

2

also uni�es with the left-hand side

of the new rule (a+ b) + y ! (a+ (b+ 
)) + y. Thus, one would now 
onstru
t

a new rule ((a+ b) + y) + z ! ((a+ (b+ 
)) + y) + z.

Obviously, in this way one obtains an in�nite number of rules by subsequently

overlapping equations with the newly 
onstru
ted rules. However, in order to

use Ext

E

(R) for automated termination proofs, our aim is to restri
t ourselves

to �nitely many rules. It turns out that we do not have to in
lude new rules

(v[l℄

�

)� ! (v[r℄

�

)� in Ext

E

(R) if u� !

�

0

EnExt

E

(R)

q �

E

(v[r℄

�

)� already holds

for some position �

0

of u and some term q (using just the old rules of Ext

E

(R)).

When 
onstru
ting the rule ((a+ b)+ y)+ z ! ((a+(b+ 
))+ y)+ z above,

the equation u � v used was x

1

+ (x

2

+ x

3

) � (x

1

+ x

2

) + x

3

and the uni�er �

repla
ed x

1

by (a+b) and x

2

by y. Hen
e, here u� is the term (a+b)+(y+x

3

).

But this term redu
es with!

1

EnExt

E

(R)

to (a+(b+
))+(y+x

3

) whi
h is indeed

�

E

-equivalent to (v[r℄

�

)�, i.e., to ((a+ (b+ 
)) + y) + x

3

. Thus, we do not have

to in
lude the rule ((a+ b) + y) + z ! ((a+ (b+ 
)) + y) + z in Ext

E

(R).

The following de�nition shows how suitable extensions 
an be 
omputed for

arbitrary equations with identi
al unique variables. It will turn out that with

these extensions one 
an indeed simulate !

R=E

by !

EnExt

E

(R)

, i.e., s !

R=E

t

implies s !

EnExt

E

(R)

t

0

for some t

0

�

E

t. This 
onstitutes a 
ru
ial 
ontribu-

tion of the paper, sin
e it is the main requirement needed in order to extend

dependen
y pairs to rewriting modulo equations.

De�nition 8 (Extending R for Arbitrary Equations). Let R be a TRS

and let E be a set of equations. Let R

0

be a set 
ontaining only rules of the form

C[l�℄ ! C[r�℄ (where C is a 
ontext, � is a substitution, and l ! r 2 R). R

0

is an extension of R for the equations E i�

(a) R � R

0

and

(b) for all l ! r 2 R

0

, u � v 2 E and v � u 2 E, all positions � of v

and � 2 uni

E

(vj

�

; l), there is a position �

0

in u and a q �

E

(v[r℄

�

)� with

u� !

�

0

EnR

0

q.

In the following, let Ext

E

(R) always denote an arbitrary extension of R for E .

In order to satisfy Condition (b) of Def. 8, it is always suÆ
ient to add the rule

(v[l℄

�

)� ! (v[r℄

�

)� to R

0

. The reason is that then we have u� !

�

EnR

0

(v[r℄

�

)�.

But if u� !

�

0

EnR

0

q �

E

(v[r℄

�

)� already holds with the other rules of R

0

, then

the rule (v[l℄

�

)� ! (v[r℄

�

)� does not have to be added to R

0

.

selves to equations E where uni

E

(vj

�

; l) 
an be 
hosen to be �nite for all subterms

vj

�

of equations and left-hand sides of rules l. This in
ludes all sets E of �nitary uni-

�
ation type, but our restri
tion is weaker, sin
e we only need �niteness for 
ertain

terms vj

�

and l.

8



Condition (b) of Def. 8 also makes sure that as long as the equations have

identi
al unique variables, we do not have to 
onsider overlaps at variable po-

sitions.

6

The reason is that if vj

�

is a variable x 2 V , then we have u� =

u[x�℄

�

0

�

E

u[l�℄

�

0

!

R

u[r�℄

�

0

�

E

v[r�℄

�

= (v[r℄

�

)�, where �

0

is the position of

x in u. Hen
e, su
h rules (v[l℄

�

)� ! (v[r℄

�

)� do not have to be in
luded in R

0

.

Overlaps at root positions do not have to be 
onsidered either. To see this,

assume that � is the top position � of v, i.e., that v� �

E

l�. In this 
ase we have

u� �

E

v� �

E

l� !

R

r� and thus, u� !

�

EnR

r� = (v[r℄

�

)�. So again, su
h rules

(v[l℄

�

)! (v[r℄

�

)� do not have to be in
luded in R

0

.

The following pro
edure is used to 
ompute extensions. Here, we assume both

R and E to be �nite, where the equations E must have identi
al unique variables.

1. R

0

:= R

2. For all l! r 2 R

0

,

all u � v or v � u from E ,

and all positions � of v where � 6= � and vj

�

62 V do:

2.1. Let � := uni

E

(vj

�

; l).

2.2. For all � 2 � do:

2.2.1. Let T := fq j u� !

�

0

EnR

0

q for a position �

0

of ug:

2.2.2. If there exists a q 2 T with (v[r℄

�

)� �

E

q, then � := � n f�g.

2.3. R

0

:= R

0

[ f(v[l℄

�

)� ! (v[r℄

�

)� j � 2 �g.

This algorithm has the following properties:

(a) If in Step 2.1, uni

E

(vj

�

; l) is �nite and 
omputable, then every step in the

algorithm is 
omputable.

(b) If the algorithm terminates, then the �nal value of R

0

is an extension of R

for the equations E .

Note that the 
ondition for stopping further 
omputations of new rules in Steps

2.2.1. and 2.2.2. 
an indeed be 
he
ked automati
ally, sin
e a term u� 
an only

!

EnR

0

-redu
e to �nitely many terms q.

With the TRS of Ex. 5, Ext

E

(R) = fa+b! a+(b+
); (a+b)+y! (a+(b+


)) + yg. In general, if E only 
onsists of AC-axioms for some fun
tion symbols

G, then Def. 8 \
oin
ides" with the well-known extension for AC-axioms.

7

Lemma 9 (Coin
iden
e of Ext

AC(G)

and Def. 8 for AC-axioms). Let R

be a TRS and let E 
onsist of the asso
iativity and 
ommutativity axioms for all

fun
tion symbols from a subset G of the signature. Then R[ff(l; y)! f(r; y) j

l! r 2 R; root(l) = f 2 Gg is an extension of R for the equations E (as de�ned

in Def. 8).

6

Note that 
onsidering overlaps at variable positions as well would still not allow us

to treat equations with non-linear terms. As an example regard E = ff(x) � g(x; x)g

and R = fg(a; b) ! f(a); a ! bg. Here, !

EnExt

E

(R)

is well founded although R is

not terminating modulo E .

7

This statement also holds for the redu
ed version of Ext

AC(G)

, where rules of the

form f(l; y) ! f(r; y) are deleted if l �

E

f(l

0

; z), r �

E

f(r

0

; z) and the variable z

does not o

ur in l

0

or r

0

.

9



Proof. Let R

0

= R[ ff(l; y)! f(r; y) j l ! r 2 R; root(l) = f 2 Gg. We have

to show that this set satis�es the 
onditions (a) and (b) of Def. 8. Condition (a)

is obvious sin
e R � R

0

. Hen
e, it remains to show that Condition (b) does not

enfor
e the addition of other rules.

As illustrated in the dis
ussion after Def. 8, if � is the top position � or if

vj

�

2 V , then Condition (b) is always ful�lled. We now regard the 
ase where

v = f(f(x

1

; x

2

); x

3

) and vj

�

= f(x

1

; x

2

). The 
ase where v = f(x

1

; f(x

2

; x

3

))

and vj

�

= f(x

2

; x

3

) works analogously.

If l ! r 2 R, then we obtain u� �

E

v� �

E

f(l; x

3

)� !

�

R

0

f(r; x

3

)� =

(v[r℄

�

)� with the rule f(l; y) ! f(r; y) from R

0

. Otherwise, if l = f(l

0

; y) and

r = f(r

0

; y) for some rule l

0

! r

0

2 R, we have u� �

E

v� �

E

f(f(l

0

; y); x

3

)� �

E

f(l

0

; f(y; x

3

))� !

�

R

0

f(r

0

; f(y; x

3

))� �

E

f(f(r

0

; y); x

3

)� = (v[r℄

�

)� with the rule

f(l

0

; y)! f(r

0

; y) from R

0

. ut

So in 
ase of AC-equations, our approa
h indeed 
orresponds to the ap-

proa
hes of [16, 18℄. However, Def. 8 
an also be used for other forms of equa-

tions.

Example 10. As a simple example where the equations are no asso
iativity and


ommutativity axioms, 
onsider E = ff(f(x)) � f(x)g (i.e., E states that f is

idempotent) and R = ff(s(y)) ! f(y)g. There is only one non-variable proper

subterm of a term in E whi
h uni�es with the left-hand side f(s(y)) of the rule

(viz. f(x)). The (minimal) 
omplete set of E-uni�ers 
onsists of fx=s(y)g and

fx=f(s(y))g (all other uni�ers fx=f

n

(s(y))g for n � 2 are subsumed by the se
ond

E-uni�er). This would yield the new rules f(f(s(y)))! f(f(y)) and f(f(f(s(y))))!

f(f(f(y))). However, the �rst rule does not have to be in
luded in Ext

E

(R),

be
ause the 
orresponding other term of the equation, f(s(y)), redu
es at the

top position to f(y) whi
h is E-equivalent to f(f(y)) and the se
ond rule is not

in
luded either for a similar reason. Thus, we may 
hoose Ext

E

(R) = R.

Example 11. As another example, 
onsider the following system from [19℄.

R = f x� 0! x; E = f(u� v)� w � (u� w)� vg

s(x)� s(y)! x� y;

0� s(y)! 0;

s(x)� s(y)! s((x� y)� s(y))g

By overlapping the subterm u � w in the right-hand side of the equation with

the left-hand sides of the last two rules we obtain

Ext

E

(R) = R [ f (0� s(y))� z ! 0� z;

(s(x)� s(y))� z ! s((x� y)� s(y))� z g:

Note that these are indeed all the rules of Ext

E

(R). Overlapping the sub-

term u � v of the equation's left-hand side with the third rule would result in

(0 � s(y)) � z

0

! 0 � z

0

. But this new rule does not have to be in
luded in

Ext

E

(R), sin
e the 
orresponding other term of the equation, (0 � z

0

) � s(y),

would !

�

EnExt

E

(R)

-redu
e with the rule (0 � s(y))� z ! 0 � z to 0 � z

0

. Over-

lapping u� v with the left-hand side of the fourth rule is also super
uous.

10



Similarly, overlaps with the new rules (0 � s(y)) � z ! 0 � z or (s(x) �

s(y)) � z ! s((x � y) � s(y)) � z also do not give rise to additional rules in

Ext

E

(R). To see this, overlap the subterm u � w in the right-hand side of the

equation with the left-hand side of (0 � s(y)) � z ! 0 � z. This gives the rule

((0 � s(y)) � z) � z

0

! (0 � z) � z

0

. However, the 
orresponding other term of

the equation is ((0� s(y))� z

0

)� z. This redu
es at position 1 (or position 11)

to (0� z

0

)� z, whi
h is E-equivalent to (0� z)� z

0

. Overlaps with the other new

rule (s(x)� s(y))� z ! s((x� y)� s(y))� z are not needed either.

Nevertheless, the above algorithm for 
omputing extensions does not always

terminate. For example, for R = fa(x)! 
(x)g, E = fa(b(a(x))) � b(a(b(x)))g,

it 
an be shown that all extensions Ext

E

(R) are in�nite.

We prove below that Ext

E

(R) (a

ording to Def. 8) has the desired property

needed to redu
e rewriting modulo equations to E-extended rewriting. The fol-

lowing important lemma states that whenever s rewrites to t with!

R=E

modulo

E , then s also rewrites with !

EnExt

E

(R)

to a term whi
h is E-equivalent to t.

8

Lemma 12 (Conne
tion between !

R=E

and !

EnExt

E

(R)

). Let R be a TRS

and let E be a set of equations with identi
al unique variables. If s!

R=E

t, then

there exists a term t

0

�

E

t su
h that s!

EnExt

E

(R)

t

0

.

Proof. Let s !

R=E

t, i.e., there exist terms s

0

; : : : ; s

n

; p with n � 0 su
h that

s = s

n

à

E

s

n�1

à

E

: : : à

E

s

0

!

R

p �

E

t. For the lemma, it suÆ
es to show

that there is a t

0

�

E

p su
h that s!

EnExt

E

(R)

t

0

, sin
e t

0

�

E

p implies t

0

�

E

t.

We perform indu
tion on n. If n = 0, we have s = s

n

= s

0

!

R

p. This

implies s!

EnExt

E

(R)

p sin
e R � Ext

E

(R). So with t

0

= p the 
laim is proved.

If n > 0, the indu
tion hypothesis implies s = s

n

à

E

s

n�1

!

EnExt

E

(R)

t

0

su
h that t

0

�

E

p. So there exists an equation u � v or v � u from E and a

rule l ! r from Ext

E

(R) su
h that sj

�

= uÆ, s

n�1

= s[vÆ℄

�

, s

n�1

j

�

�

E

lÆ, and

t

0

= s

n�1

[rÆ℄

�

for positions � and � and a substitution Æ. We 
an use the same

substitution Æ for instantiating the equation u � v (or v � u) and the rule l! r,

sin
e equations and rules are assumed variable disjoint. We now perform a 
ase

analysis depending on the relationship of the positions � and �.

Case 1: � = �� for some �. In this 
ase, we have sj

�

= sj

�

[uÆ℄

�

à

E

sj

�

[vÆ℄

�

=

s

n�1

j

�

�

E

lÆ. This implies s!

EnExt

E

(R)

s[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

, as desired.

Case 2: �?�. Now we have sj

�

= s

n�1

j

�

�

E

lÆ and thus, s!

EnExt

E

(R)

s[rÆ℄

�

=

s[rÆ℄

�

[uÆ℄

�

à

E

s[rÆ℄

�

[vÆ℄

�

= s[vÆ℄

�

[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

.

Case 3: � = �� for some �. Thus, (vÆ)j

�

�

E

lÆ. We distinguish two sub-
ases.

Case 3.1: uÆ !

EnExt

E

(R)

q �

E

(v[r℄

�

)Æ for some term q. This implies s = s[uÆ℄

�

!

EnExt

E

(R)

s[q℄

�

�

E

s[v[r℄

�

Æ℄

�

= (s[vÆ℄

�

)[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

.

8

Our extension Ext

E

has some similarities to the 
onstru
tion of 
ontexts in [24℄.

However, in 
ontrast to [24℄ we also 
onsider the rules of R

0

in Condition (b) of Def.

8 in order to redu
e the number of rules in Ext

E

. Moreover, in [24℄ equations may

also be non-linear (and thus, Lemma 12 does not hold there).
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Case 3.2: Otherwise. First assume that � = �

1

�

2

where vj

�

1

is a variable x.

Hen
e, (vÆ)j

�

= Æ(x)j

�

2

. Let Æ

0

(y) = Æ(y) for y 6= x and let Æ

0

(x) = Æ(x)[rÆ℄

�

2

.

Sin
e u � v (or v � u) is an equation with identi
al unique variables, x also

o

urs in u at some position �

0

. This implies uÆj

�

0

�

2

= Æ(x)j

�

2

�

E

lÆ !

Ext

E

(R)

rÆ. Hen
e, we obtain uÆ !

�

0

�

2

EnExt

E

(R)

uÆ[rÆ℄

�

0

�

2

= uÆ

0

�

E

vÆ

0

= (v[r℄

�

)Æ in


ontradi
tion to the 
ondition of Case 3.2.

Hen
e, � is a position of v and vj

�

is not a variable. Thus, (vÆ)j

�

= vj

�

Æ �

E

lÆ.

Sin
e rules and equations are assumed variable disjoint, the subterm vj

�

E-uni�es

with l. Thus, there exists a � 2 uni

E

(vj

�

; l) su
h that Æ �

E

��.

Due to the Condition (b) of Def. 8, there is a term q

0

su
h that u� !

�

0

EnExt

E

(R)

q

0

�

E

(v[r℄

�

)�. Sin
e �

0

is a position in u, we have uj

�

0

� �

E

Æ !

Ext

E

(R)

q

00

, where

q

0

= u�[q

00

℄

�

0

. This also implies uj

�

0

Æ �

E

uj

�

0

�� �

E

Æ !

Ext

E

(R)

q

00

�, and thus

uÆ !

�

0

EnExt

E

(R)

uÆ[q

00

�℄

�

0

�

E

u�[q

00

℄

�

0

� = q

0

� �

E

(v[r℄

�

)�� �

E

(v[r℄

�

)Æ. This is a


ontradi
tion to the 
ondition of Case 3.2. ut

The following theorem shows that Ext

E

indeed has the desired property.

Theorem 13 (Termination of R=E by E-Extended Rewriting). Let R be

a TRS, let E be a set of equations with identi
al unique variables, and let t be

a term. Then t does not start an in�nite !

R=E

-redu
tion i� t does not start

an in�nite !

EnExt

E

(R)

-redu
tion. So in parti
ular, R is terminating modulo E

(i.e., !

R=E

is well founded) i� !

EnExt

E

(R)

is well founded.

Proof. The \only if" dire
tion is straightforward be
ause !

Ext

E

(R)

=!

R

and

therefore, !

EnExt

E

(R)

�!

Ext

E

(R)=E

=!

R=E

.

For the \if" dire
tion, assume that t starts an in�nite !

R=E

-redu
tion

t = t

0

!

R=E

t

1

!

R=E

t

2

!

R=E

: : :

For every i 2 IN, let f

i+1

be a fun
tion from terms to terms su
h that for every

t

0

i

�

E

t

i

, f

i+1

(t

0

i

) is a term E-equivalent to t

i+1

su
h that t

0

i

!

EnExt

E

(R)

f

i+1

(t

0

i

).

These fun
tions f

i+1

must exist due to Lemma 12, sin
e t

0

i

�

E

t

i

and t

i

!

R=E

t

i+1

implies t

0

i

!

R=E

t

i+1

. Hen
e, t starts an in�nite !

EnExt

E

(R)

-redu
tion:

t!

EnExt

E

(R)

f

1

(t)!

EnExt

E

(R)

f

2

(f

1

(t))!

EnExt

E

(R)

f

3

(f

2

(f

1

(t)))!

EnExt

E

(R)

: : : ut

5 Dependen
y Pairs for Rewriting Modulo Equations

In this se
tion we �nally extend the dependen
y pair approa
h to rewriting

modulo equations: To show that R modulo E terminates, one �rst 
onstru
ts

the extension Ext

E

(R) of R. Subsequently, dependen
y pairs 
an be used to

prove well-foundedness of !

EnExt

E

(R)

(whi
h is equivalent to termination of R

modulo E). The idea for the extension of the dependen
y pair approa
h is simply

to modify Thm. 3 as follows.

1. The equations should be satis�ed by the equivalen
e � 
orresponding to the

quasi-ordering %, i.e., we demand u � v for all equations u � v in E .

12



2. A similar requirement is needed for equations u � v when the root symbols

of u and v are repla
ed by the 
orresponding tuple symbols. We denote

tuples of terms s

1

; : : : ; s

n

by s and for any term t = f(s) with a de�ned root

symbol f , let t

℄

be the term F (s). Hen
e, we also have to demand u

℄

� v

℄

.

3. The notion of \de�ned symbols" must be 
hanged a

ordingly. As before, all

root symbols of left-hand sides of rules are regarded as being de�ned, but

if there is an equation f(u) = g(v) in E and f is de�ned, then g must be


onsidered de�ned as well, as otherwise we would not be able to tra
e the

redex in a redu
tion by only regarding subterms with de�ned root symbols.

De�nition 14 (De�ned Symbols for Rewriting Modulo Equations). Let

R be a TRS and let E be a set of equations. Then the set of de�ned symbols D

of R=E is the smallest set su
h that D = froot(l) j l! r 2 Rg [ froot(v) ju �

v 2 E or v � u 2 E ; root(u) 2 Dg.

The 
onstraints of the dependen
y pair approa
h as sket
hed above are not

yet suÆ
ient for termination of !

EnR

as the following example illustrates.

Example 15. Consider R = ff(x) ! s(x)g and E = ff(a) � ag. There is no

dependen
y pair in this example and thus, the only 
onstraints would be f(x) %

s(x), f(a) � a, and F(a) � A. Obviously, these 
onstraints are satis�able (by

using an equivalen
e relation � where all terms are equal). However, !

EnR

is

not terminating sin
e we have a à

E

f(a)!

R

s(a) à

E

s(f(a))!

R

s(s(a)) à

E

: : :

The soundness of the dependen
y pair approa
h for ordinary rewriting (Thm.

3) relies on the fa
t that an in�nite redu
tion from a minimal non-terminating

term 
an be a
hieved by applying only normalized instantiations of R-rules. But

for E-extended rewriting (or full rewriting modulo equations), this is not true

any more. For instan
e, the minimal non-terminating subterm a in Ex. 15 is �rst

modi�ed by applying an E-equation (resulting in f(a)) and then an R-rule is

applied whose variable is instantiated with the non-terminating term a. Hen
e,

the problem is that the new minimal non-terminating subterm a whi
h results

from appli
ation of the R-rule does not 
orrespond to the right-hand side of a

dependen
y pair, be
ause this minimal non-terminating subterm is 
ompletely

inside the instantiation of a variable of the R-rule. With ordinary rewriting, this

situation 
an never o

ur.

In Ex. 15, the problem 
an be avoided by adding a suitable instan
e of the

rule f(x) ! s(x) (viz. f(a) ! s(a)) to R, sin
e this instan
e is used in the

in�nite redu
tion. Now there would be a dependen
y pair hF(a);Ai and with the

additional 
onstraint F(a) > A the resulting inequalities are no longer satis�able.

Note that sin
e in pra
ti
e, we are interested in proving termination of!

R=E

,

we would of 
ourse �rst build the extension Ext

E

(R) and then we would try

to prove well-foundedness of !

EnExt

E

(R)

instead of well-foundedness of !

EnR

.

Note that for the system of Ex. 15 we obtain Ext

E

(R) = ff(x)! s(x); f(f(a))!

f(s(a))g, be
ause the subterm a of f(a) E-uni�es with f(x) (using the E-uni�er

� = fx=ag). The (minimal) 
omplete set of E-uni�ers only 
onsists of �, sin
e

all other E-uni�ers Æ = fx=f

n

(a)g satisfy Æ(x) �

E

�(x). Thus, a system like the

13



one of Ex. 15 would never be tested for !

EnR

-termination in pra
ti
e, sin
e one

would always extend R �rst and for Ext

E

(R), the dependen
y pair approa
h

would no longer falsely 
on
lude termination.

Thus, one might be tempted to assume that the problem of Ex. 15 never o
-


urs in pra
ti
e, be
ause after extendingR to Ext

E

(R) the systems would always

have a form where the \right instantiation" of the rules is already in
luded. In

other words, one might hope that although the dependen
y pair approa
h 
an-

not be used to prove termination of !

EnR

in general, it would still be sound for

TRSs R whi
h result from the extension pro
ess of Se
t. 4. Unfortunately, this

is not true, as the following example shows.

Example 16. Let us modify the rule from Ex. 15 to f(x) ! x, i.e., regard R =

ff(x) ! xg and E = ff(a) � ag. Now we may 
hoose Ext

E

(R) = R: The

subterm a of v = f(a) uni�es with f(x) using the E-uni�er � = fx=ag (where

again uni

E

(a; f(x)) = f�g is a minimal 
omplete set of E-uni�ers). But the rule

f(f(a)) ! f(a) does not have to be added, sin
e we have u� = a �

E

f(a) !

�

R

a �

E

f(a) = (v[r℄

�

)�. Obviously, !

EnR

is still non-terminating and there is still

no dependen
y pair in this example.

The following de�nition shows how to add the right instantiations of the

rules in R in order to allow a sound appli
ation of dependen
y pairs. As usual,

a substitution � is 
alled a variable renaming i� the range of � only 
ontains

variables and if �(x) 6= �(y) for x 6= y.

De�nition 17 (Adding Instantiations). Given a TRS R, a set E of equa-

tions, let R

0

be a set 
ontaining only rules of the form l� ! r� (where � is a

substitution and l! r 2 R). R

0

is an instantiation of R for the equations E i�

(a) R � R

0

,

(b) for all l! r 2 R, all u � v 2 E and v � u 2 E, and all � 2 uni

E

(v; l), there

exists a rule l

0

! r

0

2 R

0

and a variable renaming � su
h that l� �

E

l

0

� and

r� �

E

r

0

�.

In the following, let Ins

E

(R) always denote an instantiation of R for E .

Unlike extensions Ext

E

(R), instantiations Ins

E

(R) are never in�nite if R

and E are �nite and if uni

E

(v; l) is always �nite (i.e., they are not de�ned via a

�xpoint 
onstru
tion). In fa
t, one might even demand that for all l! r 2 R, all

equations, and all � from the 
orresponding 
omplete set of E-uni�ers, Ins

E

(R)

should 
ontain l� ! r�. The 
ondition that it is enough if some E-equivalent

variable-renamed rule is already 
ontained in Ins

E

(R) is only added for eÆ
ien
y


onsiderations in order to redu
e the number of rules in Ins

E

(R). Even without

this 
ondition, Ins

E

(R) would still be �nite and all the following theorems would

hold as well.

However, the above instantiation te
hnique only serves its purpose if there

are no 
ollapsing equations (i.e., no equations u � v or v � u with v 2 V).

Example 18. Consider R = ff(x)! xg and E = ff(x) � xg. Note that Ins

E

(R)

= R. Although !

EnR

is 
learly not terminating, the dependen
y pair approa
h

would falsely prove termination of !

EnR

, sin
e there is no dependen
y pair.

14



For non-
ollapsing equations, the 
onstru
tion used to build Ins

E

(R) leads

to the desired property: Whenever we have a terminating or a minimal non-

terminating term whi
h is E-equivalent to an instantiated left-hand side lÆ of a

rule l ! r 2 R, there exists a 
orresponding rule l

0

! r

0

in Ins

E

(R), su
h that

l

0

� �

E

lÆ and � only instantiates the variables of l

0

with terminating terms.

Now we 
an present the main result of the paper.

Theorem 19 (Termination of Equational Rewriting using Dependen
y

Pairs). Let R be a TRS and let E be a set of non-
ollapsing equations with iden-

ti
al unique variables. R is terminating modulo E (i.e., !

R=E

is well founded) if

there exists a weakly monotoni
 quasi-ordering % and a well-founded ordering >


ompatible with % where both % and > are 
losed under substitution, su
h that

(1) s > t for all dependen
y pairs hs; ti of Ins

E

(Ext

E

(R)),

(2) l % r for all rules l! r of R,

(3) u � v for all equations u � v of E, and

(4) u

℄

� v

℄

for all equations u � v of E where root(u) and root(v) are de�ned.

Proof. Suppose that there is a term t

0

with an in�nite !

R=E

-redu
tion. Thm.

13 implies that t

0

also has an in�nite !

EnExt

E

(R)

-redu
tion. By a minimality

argument, t

0

= C[t

0

0

℄, where t

0

0

is an minimal non-terminating term (i.e., t

0

0

is

non-terminating, but all its subterms only have �nite !

EnExt

E

(R)

-redu
tions).

We will show that there exists a term t

1

with t

0

!

+

EnExt

E

(R)

t

1

, t

1


ontains a

minimal non-terminating subterm t

0

1

, and t

0

0

℄

% Æ > t

0

1

℄

. By repeated appli
ation

of this 
onstru
tion we obtain an in�nite sequen
e t

0

!

+

EnExt

E

(R)

t

1

!

+

EnExt

E

(R)

t

2

!

+

EnExt

E

(R)

: : : su
h that t

0

0

℄

% Æ > t

0

1

℄

% Æ > t

0

2

℄

% Æ > : : :. This, however, is

a 
ontradi
tion to the well-foundedness of >.

Let t

0

0

have the form f(u). In the in�nite!

EnExt

E

(R)

-redu
tion of f(u), �rst

some!

EnExt

E

(R)

-steps may be applied to u whi
h yields new terms v. Note that

due to the de�nition of E-extended rewriting, in these redu
tions, no E-steps 
an

be applied outside of u. Due to the termination of u, after a �nite number of

those steps, an !

EnExt

E

(R)

-step must be applied on the root position of f(v).

Thus, there exists a rule l ! r 2 Ext

E

(R) su
h that f(v) �

E

l� and hen
e,

the redu
tion yields r�. Now the in�nite !

EnExt

E

(R)

-redu
tion 
ontinues with

r�, i.e., the term r� starts an in�nite !

EnExt

E

(R)

-redu
tion, too. So up to now

the redu
tion has the following form (where !

Ext

E

(R)

equals !

R

):

t

0

= C[f(u)℄!

�

EnExt

E

(R)

C[f(v)℄ �

E

C[l�℄!

Ext

E

(R)

C[r�℄:

We perform a 
ase analysis depending on the positions of E-steps in f(v) �

E

l�.

First 
onsider the 
ase where all E-steps in f(v) �

E

l� take pla
e below the

root. Then we have l = f(w) and v �

E

w�. Let t

1

:= C[r�℄. Note that v do not

start in�nite !

EnExt

E

(R)

-redu
tions and by Thm. 13, they do not start in�nite

!

R=E

-redu
tions either. But thenw� also 
annot start in�nite!

R=E

-redu
tions

and therefore they also do not start in�nite!

EnExt

E

(R)

-redu
tions. This implies

that for all variables x o

urring in f(w) the terms �(x) are terminating. Thus,
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sin
e r� starts an in�nite redu
tion, there o

urs a non-variable subterm s in

r, su
h that t

0

1

:= s� is a minimal non-terminating term. Sin
e hl

℄

; s

℄

i is a

dependen
y pair, we obtain t

0

0

℄

= F (u) % F (v) � l

℄

� > s

℄

� = t

0

1

℄

. Here,

F (u) % F (v) holds sin
e u!

�

EnExt

E

(R)

v and sin
e l % r for every rule l! r 2

Ext

E

(R).

Now we 
onsider the 
ase where there are E-steps in f(v) �

E

l� at the root

position. Thus we have f(v) �

E

f(q) à

E

p �

E

l�, where f(q) à

E

p is the �rst

E-step at the root position. In other words, there is an equation u � v or v � u

in E su
h that f(q) is an instantiation of v.

Note that sin
e v �

E

q, the terms q only have �nite !

EnExt

E

(R)

-redu
tions

(the argumentation is similar as in the �rst 
ase). Let Æ be the substitution whi
h

operates like � on the variables of l and whi
h yields vÆ = f(q). Thus, Æ is an

E-uni�er of l and v. Sin
e l is E-uni�able with v, there also exists a 
orresponding


omplete E-uni�er � from uni

E

(l; v). Thus, there is also a substitution � su
h

that Æ �

E

��. As l is a left-hand side of a rule from Ext

E

(R), there is a rule

l

0

! r

0

in Ins

E

(Ext

E

(R)) and a variable renaming � su
h that l� �

E

l

0

� and

r� �

E

r

0

�.

Hen
e, v�� �

E

vÆ = f(q), l

0

�� �

E

l�� �

E

lÆ = l�, and r

0

�� �

E

r�� �

E

rÆ =

r�. So instead we now 
onsider the following redu
tion (where !

Ins

E

(Ext

E

(R))

equals !

R

):

t

0

= C[f(u)℄!

�

EnExt

E

(R)

C[f(v)℄ �

E

C[l

0

��℄!

Ins

E

(Ext

E

(R))

C[r

0

��℄ = t

1

:

Sin
e all proper subterms of vÆ only have �nite !

R=E

-redu
tions, for all

variables x of l

0

�, the term x� only has �nite !

R=E

-redu
tions and hen
e, also

only �nite!

EnExt

E

(R)

-redu
tions. To see this, note that sin
e all equations have

identi
al unique variables, v� �

E

l� �

E

l

0

� implies that all variables of l

0

� also

o

ur in v�. Thus, if x is a variable from l

0

�, then there exists a variable y in

v su
h that x o

urs in y�. Sin
e E does not 
ontain 
ollapsing equations, y is

a proper subterm of v and thus, yÆ is a proper subterm of vÆ. As all proper

subterms of vÆ only have �nite !

R=E

-redu
tions, this implies that yÆ only has

�nite !

R=E

-redu
tions, too. But then, sin
e yÆ �

E

y��, the term y�� only has

�nite !

R=E

-redu
tions, too. Then this also holds for all subterms of y��, i.e.,

all !

R=E

-redu
tions of x� are also �nite.

So for all variables x of l

0

, x�� only has �nite !

EnExt

E

(R)

-redu
tions. (Note

that this only holds be
ause � is just a variable renaming.) Sin
e r� starts an

in�nite!

EnExt

E

(R)

-redu
tion, r

0

�� �

E

r�must start an in�nite!

R=E

-redu
tion

(and hen
e, an in�nite !

EnExt

E

(R)

-redu
tion) as well. As for all variables x of

r

0

, x�� is !

EnExt

E

(R)

-terminating, there must be a non-variable subterm s of

r

0

, su
h that t

0

1

:= s�� is a minimal non-terminating term. As hl

0

℄

; s

℄

i is a

dependen
y pair, we obtain t

0

0

℄

= F (u) % F (v) � l

0

℄

�� > s

℄

�� = t

0

1

℄

. Here,

F (v) �

E

l

0

℄

�� is a 
onsequen
e of Condition (4). ut

To summarize, our pro
edure to prove termination ofRmodulo E is des
ribed

by the following 
orollary.
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Corollary 20 (Proving Termination of Rewriting Modulo Equations).

Let R be a TRS and let E be a set of non-
ollapsing equations with identi
al

unique variables. Then the following algorithm is sound:

1.Let C be the set of the following 
onstraints:

� s > t for all dependen
y pairs hs; ti of Ins

E

(Ext

E

(R)),

� l % r for all rules l! r of R,

� u � v for all equations u � v of E, and

� u

℄

� v

℄

for all equations u � v of E where root(u) and root(v) are de�ned

Here, Ext

E

is 
omputed by the algorithm on p. 8.

2.Eliminate arguments of fun
tion symbols

(i.e., normalize the terms in C by rules of the form

f(x

1

; : : : ; x

n

)! f

0

(x

i

1

; : : : ; x

i

m

) where 1 � i

1

< : : : < i

m

� n or

f(x

1

; : : : ; x

n

)! x

i

where 1 � i � n )

3.Use standard te
hniques to �nd suitable relations satisfying C.

In 
ase of su

ess, R is terminating modulo E.

Example 21. Regard the system from Ex. 10 again. Here, we had Ext

E

(R) = R

and we also have Ins

E

(R) = R. By Thm. 19 or Cor. 20, we obtain the following


onstraints for the dependen
y pair approa
h:

F(s(y)) > F(y)

f(s(y)) % f(y)

f(f(x)) � f(x)

F(f(x)) � F(x)

As explained in Se
t. 2, one may �rst eliminate arguments of fun
tion symbols or

repla
e fun
tion symbols by one of their arguments before sear
hing for suitable

orderings. By repla
ing f by its argument (i.e., by normalizing the terms w.r.t.

the rule f(x)! x), these 
onstraints are transformed into

F(s(y)) > F(y)

s(y) % y

x � x

F(x) � F(x):

These inequalities are satis�ed by the re
ursive path ordering. ut

Example 22. Similarly, termination of the division-system (Ex. 11) 
an also be

proved by dependen
y pairs. In [19℄, Ohsaki, Middeldorp, and Giesl developed

a new extension of the semanti
 labelling te
hnique [25℄ to rewriting modulo

equations. This example was used to demonstrate the power of their method,

be
ause with their new de�nition of equational semanti
 labelling one 
an prove

termination of this system, whereas the original de�nition of Zantema [25℄ fails
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here. However, semanti
 labelling is a te
hnique designed for manual termination

proofs (and it is also useful as a proof te
hnique for 
orre
tness proofs of other

methods). In 
ontrast, with the method of the present paper, one 
an now verify

termination of this example automati
ally for the �rst time.

Here we have Ins

E

(Ext

E

(R)) = Ext

E

(R) and thus, the resulting 
onstraints

are

M(s(x); s(y)) > M(x; y);

Q(s(x); s(y)) > M(x; y);

Q(s(x); s(y)) > Q(x� y; s(y))

Q(0� s(y); z) > Q(0; z)

Q(s(x)� s(y); z) > M(x; y)

Q(s(x)� s(y); z) > Q(x� y; s(y))

Q(s(x)� s(y); z) > Q(s((x� y)� s(y)); z)

as well as l % r for all rules l! r, (u� v)�w � (u�w)� v, and Q(u� v; w) �

Q(u�w; v). (Here,M and Q are the tuple symbols for the minus-symbol \�" and

the quot-symbol \�".) In this example we will eliminate the se
ond arguments of

�,�,M, and Q (i.e., every term s�t is repla
ed by�

0

(s), et
.). Then the resulting

inequalities are satis�ed by the rpo with the pre
eden
e �

0

A s A �

0

, Q

0

A M

0

.

Ex. 21 and Ex. 22 also demonstrate that by using dependen
y pairs, termination

of equational rewriting 
an sometimes even be shown by ordinary base orderings

(e.g., the ordinary rpo whi
h on its own 
annot be used for rewriting modulo

equations).

6 Dependen
y Graphs for Rewriting Modulo Equations

In [1{3℄, Arts and Giesl presented a re�nement of the dependen
y pair approa
h

based on the observation that instead of 
onsidering all dependen
y pairs at the

same time, it is advantageous to treat groups of dependen
y pairs separately.

These groups 
orrespond to 
lusters in the dependen
y graph of R. One should

remark that this re�nement is only possible for �nite TRSs R. In this se
tion we

show how this re�nement 
an also be used for rewriting modulo equations. This

extension of dependen
y graphs to the equational setting is quite straightforward

and similar to the extensions of the dependen
y graph re�nement to the AC-
ase

in [16, 18℄.

The nodes of the dependen
y graph are the dependen
y pairs and there is

an arrow from node hv

℄

; w

℄

i to hl

℄

; t

℄

i if there exist substitutions �

1

and �

2

su
h

that w

℄

�

1

!

�

R=E

Æ �

E

℄ l

℄

�

2

. By renaming variables in di�erent o

urren
es

of dependen
y pairs we may assume that �

1

= �

2

. Here, E

℄

also 
ontains the

equations u

℄

� v

℄

where u � v is an equation from E whose roots are de�ned,

i.e.

E

℄

= E [ fu

℄

� v

℄

j u � v 2 E ; root(u) and root(v) are de�ned g:
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For the division-system (Ex. 11) we had seven dependen
y pairs.

hM(s(x); s(y));M(x; y)i (1)

hQ(s(x); s(y));M(x; y)i (2)

hQ(s(x); s(y));Q(x� y; s(y))i (3)

hQ(0� s(y); z);Q(0; z)i (4)

hQ(s(x)� s(y); z);M(x; y)i (5)

hQ(s(x)� s(y); z);Q(x� y; s(y))i (6)

hQ(s(x)� s(y); z);Q(s((x� y)� s(y)); z)i (7)

The dependen
y graph 
ontains an arrow from (1) to itself and arrows from (2)

and (5) to (1). Moreover, from ea
h of the pairs (3), (6), and (7) there are arrows

to all pairs (2) - (7). The reason is that a term Q(: : :) 
an only redu
e w.r.t.

!

�

R=E

Æ �

E

℄ to terms with the root symbol Q and a term with the root symbol

M 
an also just redu
e to other terms built with M. Moreover, an instantiation

of the right-hand side Q(0; z) of (4) 
an never redu
e to any left-hand side of a

dependen
y pair.

We 
all a non-empty subset C of dependen
y pairs a 
luster if for every two

(not ne
essarily distin
t) pairs hv

℄

; w

℄

i and hl

℄

; t

℄

i in C there exists a non-empty

path in C from hv

℄

; w

℄

i to hl

℄

; t

℄

i. So the 
lusters in the division-example are

f(1)g and all non-empty subsets of f(3); (6); (7)g.

From the proof of Thm. 19 it is straightforward that for termination of R

modulo E one 
an 
onsider the 
lusters of dependen
y pairs separately and that

for ea
h 
luster it is suÆ
ient to �nd one dependen
y pair whi
h is stri
tly de-


reasing (w.r.t. >), whereas the others only have to be weakly de
reasing (w.r.t.

%). For the division-example this implies that we may use di�erent orderings for

the M- and the Q-
lusters.

While in general the dependen
y graph 
annot be 
omputed automati
ally

(sin
e it is unde
idable whether w

℄

� !

�

R=E

Æ �

E

℄ l

℄

� holds for some �), one 
an

nevertheless approximate this graph automati
ally. The estimation is based on


omparing the 
onstru
tors of the terms in the dependen
y pairs. For any term

w, let 
ap(w) result from repla
ing all proper

9

subterms of w that have a de�ned

root symbol by di�erent fresh variables and let ren(w) result from repla
ing all

o

urren
es of variables in w by di�erent fresh variables. Then, to determine

whether w

℄

� !

�

R=E

Æ �

E

℄ l

℄

� holds for some �, we 
he
k whether ren(
ap(w))

E-uni�es with l. In this 
ase, we draw an arrow from hv

℄

; w

℄

i to hl

℄

; t

℄

i in the

estimated dependen
y graph. Here, the fun
tion ren is needed to rename multi-

ple o

urren
es of the same variable x, be
ause for 
ertain substitutions �, two

o

urren
es of x� 
ould redu
e to di�erent terms.

For example, 
ap((x� y)� s(y)) = z � s(y), sin
e the proper subterm x� y

has a de�ned root symbol. Moreover, ren(z � s(y)) = z

0

� s(y

0

). Sin
e z

0

� s(y

0

)

9

We de�ned 
ap slightly di�erent from [1{3℄, be
ause we only repla
e proper subterms

with de�ned root symbols. The advantage is that in this way, 
ap 
an be applied

to terms without tuple symbols and hen
e, the estimated dependen
y graph 
an be


omputed by using E-uni�
ation instead of E

℄

-uni�
ation.
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E-uni�es with s(x)� s(y), we have to draw an arrow from (3) to (2) and to (3)

itself. It turns out that in the division-example, the estimated dependen
y graph

is identi
al to the real dependen
y graph, i.e., by the approximation above we


an 
ompute the dependen
y graph automati
ally.

In general, we obtain the following re�ned termination 
riterion, whi
h 
an

be 
he
ked me
hani
ally.

Theorem 23 (Termination of Equational Rewriting with Dependen
y

Graph). Let R be a TRS and let E be a set of non-
ollapsing equations with

identi
al unique variables. R is terminating modulo E if for every 
luster in the

estimated dependen
y graph of Ins

E

(Ext

E

(R)), there exists a weakly monotoni


quasi-ordering % and a well-founded ordering > 
ompatible with % where both

% and > are 
losed under substitution, su
h that

(1) s > t for at least one dependen
y pair hs; ti of the 
luster,

(1

0

) s % t for all other dependen
y pairs hs; ti of the 
luster,

(2) l % r for all rules l! r of R,

(3) u � v for all equations u � v of E, and

(4) u

℄

� v

℄

for all equations u � v of E where root(u) and root(v) are de�ned.

Proof. We �rst show that the estimation of the dependen
y graph is 
orre
t,

i.e., w

℄

� !

�

R=E

Æ �

E

℄ l

℄

� implies that ren(
ap(w)) and l are E-uni�able. By

Lemma 12, w

℄

� !

�

R=E

Æ �

E

℄ l

℄

� implies w

℄

� !

�

EnExt

E

(R)

Æ �

E

℄ l

℄

�.

Note that for any two terms t

1

; t

2

with de�ned roots, t

1

℄

!

�

EnExt

E

(R)

t

2

℄

implies that ren(
ap(t

1

)) mat
hes ren(
ap(t

2

)). This 
an be proved by indu
-

tion on the length of the redu
tion t

1

℄

!

�

EnExt

E

(R)

t

2

℄

. If t

1

℄

= t

2

℄

, we have

t

1

= t

2

and thus, the 
laim is obvious. Otherwise, we have t

1

℄

!

EnExt

E

(R)

t

0

1

℄

!

�

EnExt

E

(R)

t

2

℄

. Thus, there exists a position � with t

1

℄

j

�

= l� and t

0

1

℄

=

t

1

℄

[r�℄

�

. This implies � 6= �, t

1

j

�

= l�, and t

0

1

= t

1

[r�℄

�

for some rule l !

r 2 Ext

E

(R). Sin
e � is the position of a de�ned symbol below the root

(whi
h may of 
ourse be below another de�ned symbol), ren(
ap(t

1

)) mat
hes

ren(
ap(t

0

1

)). Sin
e ren(
ap(t

0

1

)) mat
hes ren(
ap(t

2

)) by the indu
tion hy-

pothesis, ren(
ap(t

1

)) also mat
hes ren(
ap(t

2

)).

So w

℄

� !

�

EnExt

E

(R)

q

℄

implies that ren(
ap(w�)) mat
hes ren(
ap(q)).

Sin
e ren(
ap(w)) mat
hes ren(
ap(w�)) and sin
e ren(
ap(q)) mat
hes q,

therefore ren(
ap(w)) mat
hes q, i.e., we have ren(
ap(w))� = q for some

substituton �. Hen
e, if w

℄

� !

�

EnExt

E

(R)

q

℄

�

E

℄ l

℄

�, we also have q �

E

l� and

thus, ren(
ap(w))� �

E

l�. Sin
e the variables of ren(
ap(w) and l are disjoint,

this means that ren(
ap(w)) and l are E-uni�able.

So the estimated dependen
y graph is a supergraph of the real dependen
y

graph, i.e., every 
luster in the dependen
y graph is also a 
luster in the estimated

dependen
y graph. As in the proof of Thm. 19, for every non-terminating term

t

0

we 
onstru
t the in�nite sequen
e

t

0

!

+

EnExt

E

(R)

t

1

!

+

EnExt

E

(R)

t

2

!

+

EnExt

E

(R)

: : :
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su
h that all t

i


ontain the minimal non-terminating subterm t

0

i

.

From the proof of Thm. 19 we see that for all i � 0 there is a rule l

i

! r

i

2

Ins

E

(Ext

E

(R)) and a substitution �

i

su
h that

{ t

i

!

>� �

EnExt

E

(R)

Æ �

E

l

i

�

i

and thus, t

i

℄

!

�

EnExt

E

(R)

Æ �

E

℄ l

i

℄

�

i

,

{ t

i+1

= s

i

�

i

and thus t

i+1

℄

= s

i

℄

�

i

for some non-variable subterm s

i

of r

i

,

{ hl

i

℄

; s

i

℄

i is a dependen
y pair of Ins

E

(Ext

E

(R)).

This means that for all i � 1 we have

s

i�1

℄

�

i�1

!

�

EnExt

E

(R)

Æ �

E

℄ l

i

℄

�

i

:

Thus, there are ar
s from hl

i�1

℄

; s

i�1

℄

i to hl

i

℄

; s

i

℄

i in the dependen
y graph.

Sin
e there are only �nitely many dependen
y pairs, the pairs of at least one


luster o

ur in�nitely many times in the sequen
e

hl

0

℄

; s

0

℄

i; hl

1

℄

; s

1

℄

i; hl

2

℄

; s

2

℄

i; : : :

For at least one dependen
y pair in this 
luster we demanded that the left-hand

side is stri
tly greater than its right-hand side. Thus, t

0

0

℄

; t

0

1

℄

; : : : is a de
reasing

sequen
e of terms with t

0

i

℄

% t

0

i+1

℄

or t

0

i

℄

% Æ > t

0

i+1

℄

where the stri
t inequality

t

0

i

℄

% Æ > t

0

i+1

℄

holds in�nitely many times. This is a 
ontradi
tion to the well-

foundedness of >. ut

Example 24. For the division-example (Ex. 11) we now obtain di�erent groups of


onstraints 
orresponding to the di�erent 
lusters. The dependen
y pairs (2), (4),

and (5) are not in any 
luster and hen
e, they 
an be 
ompletely disregarded for

the termination proof. For example, it would be suÆ
ient to sear
h for orderings

>

1

;%

1

; >

2

;%

2

where >

1

is 
ompatible with %

1

and >

2

is 
ompatible with %

2

su
h that M(s(x); s(y)) >

1

M(x; y), Q(: : :) >

2

Q(: : :) for the dependen
y pairs

(3), (6), (7), and for both i 2 f1; 2g we need l %

i

r for all rules l ! r, (u �

v)� w �

i

(u� w)� v, and Q(u� v; w) �

i

Q(u� w; v). Obviously, here we 
an


hoose >

1

=>

2

=> and %

1

=%

2

=% for the orderings > and % from Ex. 22.

But in general, the modular de
omposition of termination proofs by dependen
y

graphs allows many (automated) termination proofs whi
h would not be possible

otherwise, 
f. [1{3℄ and the examples A.5, A.7, A.9, and A.10 in the appendix.

7 Con
lusion

We have extended the dependen
y pair approa
h to equational rewriting. The

equations allowed are mu
h more general than just AC-axioms: Any non-
ollap-

sing equation is allowed if it satis�es the identi
al unique variables property (i.e.,

every variable appears uniquely in ea
h side of the equation, and the same set of

variables appear on the two sides of the equation). From a given rewrite system

R and an equation set E , an extended rewrite system Ext

E

(R) is 
omputed

using a 
omplete uni�
ation algorithm for E , so that the termination of its as-

so
iated weak rewrite relation is suÆ
ient for termination of R modulo E . The
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asso
iated weak rewrite relation of Ext

E

(R) is more suited for the dependen
y

pair approa
h sin
e one never has to 
onsider any appli
ations of E-equations

above the redex being redu
ed next. To solve the problem that minimal non-

terminating subterms might only o

ur in variable positions of R-rules, it also

be
omes ne
essary to in
lude �nitely many instan
es of Ext

E

(R) in the �nal

rewrite system Ins

E

(Ext

E

(R)) from whi
h the dependen
y pairs are 
omputed.

Finally, the re�nement of dependen
y graphs 
arries over to the equational 
ase

in a straightforward way (by using E-uni�
ation to 
ompute an estimation of

these graphs).

In the spe
ial 
ase of AC-axioms, our method is similar to the ones previ-

ously presented in [16, 18℄. In fa
t, as long as the equations only 
onsist of AC-

axioms, one 
an show that using the instan
es Ins

E

in Thm. 19 is not ne
essary.

10

(Hen
e, su
h a 
on
ept 
annot be found in [18℄). However, even then the only ad-

ditional inequalities resulting from Ins

E

are instantiations of other inequalities

already present and inequalities whi
h are spe
ial 
ases of an AC-deletion prop-

erty (whi
h is satis�ed by all known AC-orderings and similar to the one required

in [16℄). This indi
ates that in pra
ti
al examples with AC-axioms, our te
hnique

is at least as powerful as the ones of [16, 18℄ (a
tually, we 
onje
ture that for AC-

examples, these three te
hniques are virtually equally powerful). But 
ompared

to the approa
hes of [16, 18℄, our te
hnique has a more elegant treatment of tuple

symbols. (For example, if the TRS 
ontains a rule f(t

1

; t

2

)! g(f(s

1

; s

2

); s

3

) were

f and g are de�ned AC-symbols, then we do not have to extend the TRS by rules

with tuple symbols like f(t

1

; t

2

) ! G(f(s

1

; s

2

); s

2

) in [18℄. Moreover, we do not

need dependen
y pairs where tuple symbols o

ur outside the root position su
h

as hF(F(t

1

; t

2

); y); : : :i in [18℄ and [16℄ and hF(t

1

; t

2

);G(F(s

1

; s

2

); s

3

)i in [16℄. Fi-

nally, we also do not need the \AC-marked 
ondition" F(f(x; y); z) � F(F(x; y); z)

of [16℄.) But most signi�
antly, unlike [16, 18℄ our te
hnique works for arbitrary

non-
ollapsing equations E with identi
al unique variables where E-uni�
ation

is �nitary (for subterms of equations and left-hand sides of rules). Obviously,

an implementation of our te
hnique also requires E-uni�
ation algorithms [5℄ for

the 
on
rete sets of equations E under 
onsideration.

A
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A Examples

In this appendix we present a 
olle
tion of examples to demonstrate the power

and the appli
ability of our approa
h. In all these examples, the set of equations is

di�erent from just AC-axioms. Thus, the previous extensions of the dependen
y

approa
h [16, 18℄ are not appli
able here. Up to now, the only automati
 standard

te
hnique for su
h examples was the dire
t use of polynomial orderings (as in

10

Then in the proof of Thm. 19, instead of a minimal non-terminating term t

0

one re-

gards a term t

0

whi
h is non-terminating and minimal up to some extra f -o

urren
es

on the top (where f is an AC-symbol).
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[6℄). However, in the examples A.1 - A.5, termination 
annot be proved in this

way (be
ause R alone is already non-simply terminating). Similarly, Examples

A.9 and A.10 
an easily be transformed into systems that are 
learly non-simply

terminating, too.

The examples A.6 - A.8 
an be proved by polynomial orderings dire
tly, but

here our approa
h has the advantage that it allows the appli
ation of the stan-

dard rpo or lpo, whi
h is mu
h easier to automate than the sear
h for polynomial

orderings.

Examples A.8 - A.10 are TRSs whi
h implement algorithms on non-free data

stru
tures like integers or multisets. Equational rewriting is parti
ularly well

suited to model non-free data stru
tures (and of 
ourse, this requires equations

di�erent from AC-axioms). Hen
e, here the te
hnique of the present paper is

very useful. Moreover, even for data stru
tures like the naturals, using + as an

additional 
onstru
tor 
an be helpful, sin
e it allows an easy de�nition of many

algorithms. The use of our approa
h for su
h algorithms is illustrated in Ex. A.4.

The examples A.1, A.2 and A.5 - A.10 demonstrate that with our approa
h,

termination of equational rewriting 
an often be proved using ordinary base

orderings like standard rpo or lpo (i.e., base orderings whi
h themselves are not

usable for termination of equational TRSs).

A.1 Division 1

This is the running example from the text (Ex. 11).

R : x� 0! x E : (u� v)� w � (u� w)� v

s(x)� s(y)! x� y

0� s(y)! 0

s(x)� s(y)! s((x� y)� s(y))

Here we obtain

Ext

E

(R) = R[ f (0� s(y))� z ! 0� z;

(s(x)� s(y))� z ! s((x� y)� s(y))� z g

and Ins

E

(Ext

E

(R)) = Ext

E

(R). If we use the same ordering for all 
lusters of

the dependen
y graph we obtain the following 
onstraints:

M(s(x); s(y)) > M(x; y) (u� v)� w � (u� w)� v

Q(s(x); s(y)) > Q(x� y; s(y)) Q(u� v; w) � Q(u� w; v)

Q(s(x)� s(y); z) > Q(x� y; s(y))

Q(s(x)� s(y); z) > Q(s((x� y)� s(y)); z)

x� 0 % x

s(x)� s(y) % x� y

0� s(y) % 0

s(x)� s(y) % s((x� y)� s(y))

As mentioned in Ex. 22, we eliminate the se
ond arguments of �, �, M, and

Q. Then the resulting inequalities are satis�ed by the rpo with the pre
eden
e

� A s A �.
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A.2 Division 2

Apart from the equation (u� v)� w � (u� w)� v one 
an also add additional

equations to the equational theory, e.g., a similar equation for �. This yields

R : x� 0! x E : (u� v)� w � (u� w)� v

s(x)� s(y)! x� y (u� v)� w � (u� w)� v

0� s(y)! 0

s(x)� s(y)! s((x� y)� s(y))

In addition to the rules mentioned in the previous example, now Ext

E

(R)

also 
ontains the rule

(s(x)� s(y))� z ! (x� y)� z:

Again we have Ins

E

(Ext

E

(R)) = Ext

E

(R) and thus, the resulting 
onstraints

are the same as in the previous example plus the additional 
onstraints

M(s(x)� s(y); z) > M(x; y) (u� v)� w � (u� w)� v

M(s(x)� s(y); z) > M(x� y; z) M(u� v; w) � M(u� w; v):

With the same argument elimination as in Ex. A.1, the same rpo satis�es these


onstraints.

A.3 Division 3

The next example shows that instead of the equation (u�v)�w � (u�w)�v one


an also use other equations relating nested �-appli
ations su
h as u�(v�w) �

w � (v � u).

R : x� 0! x E : u� (v � w) � w � (v � u)

s(x)� s(y)! x� y

0� s(y)! 0

s(x)� s(y)! s((x� y)� s(y))

Now we obtain

Ext

E

(R) = R[ f z � (0� s(y))! z � 0;

z � (s(x)� s(y))! z � s((x� y)� s(y)) g:

Overlaps with these new rules do not have to be in
luded in Ext

E

(R): If the

subterm v � w is overlapped with z � (0� s(y)), we would obtain the new rule

z

0

�(z�(0�s(y)))! z

0

�(z�0), but the other side of the instantiated equation,

(0 � s(y))� (z � z

0

) already R-redu
es to 0 � (z � z

0

) whi
h is E-equivalent to

z

0

� (z � 0). A similar statement holds for overlaps with the se
ond new rule.

Again we have Ins

E

(Ext

E

(R)) = Ext

E

(R). Thus, we obtain the following


onstraints, if we use the same ordering for all 
lusters of the dependen
y graph:
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M(s(x); s(y)) > M(x; y) u� (v � w)� w � w � (v � u)

Q(s(x); s(y)) > Q(x� y; s(y)) Q(u; v � w) � Q(w; v � u)

Q(z; s(x)� s(y)) > Q(x� y; s(y))

Q(z; s(x)� s(y)) > Q(z; s((x� y)� s(y)))

x� 0 % x

s(x)� s(y) % x� y

0� s(y) % 0

s(x)� s(y) % s((x� y)� s(y))

The 
onstraints are satis�ed by the following polynomial interpretation:

0) 1

s(x)) x+ 1

x� y ) x

x� y ) x � y

M(x; y)) x

Q(x; y)) x � y

A.4 Equational Theory with Addition

It is also possible to use + as an (asso
iative and 
ommutative) 
onstru
tor. Then

the set of 
onstru
tors is 0, s and +, i.e., we have a set of non-free 
onstru
tors.

Now subtra
tion 
an be de�ned very easily by just the rule (x+ y)� y ! x. In

this way, the division system looks as follows:

R : (x+ y)� y ! x E : 0+ v � v

0� s(y)! 0 s(u) + v � s(u+ v)

s(x)� s(y)! s((x� y)� s(y)) u+ v � v + u

u+ (v + w) � (u+ v) + w

Obviously, we have Ins

E

(Ext

E

(R)) = R (this is always the 
ase if the equa-

tions 
ontain no de�ned symbols). When using the same ordering for all 
lusters

we obtain

Q(s(x); s(y)) > Q(x� y; s(y)) 0+ v � v

(x+ y)� y % x s(u) + v � s(u+ v)

0� s(y) % 0 u+ v � v + u

s(x)� s(y) % s((x� y)� s(y)) u+ (v + w) � (u+ v) + w:

The 
onstraints are satis�ed by the following polynomial ordering:

0) 0

s(x)) x+ 1

x+ y ) x+ y

x� y ) x

x� y ) x

Q(x; y)) x
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Alternatively, it would also be possible to use the equational theory

1+ 0 � 1

0+ 1 � 1

0+ 0 � 0

u+ (v + w) � (u+ v) + w

and to reformulate the se
ond division rule as follows.

(x+ 1)� (y + 1) ! ((x� y)� (y + 1)) + 1

When interpreting 1 as the number 1, the same polynomial interpretation as

above 
an be used to prove termination of this modi�ed system, too.

A.5 Conversion into Bitstrings

The next example is a TRS used to 
onvert numbers into a representation w.r.t.

an arbitrary base. (Thus, if one uses base 2, the following TRS 
an be used to


onvert numbers into bitstrings.) Here, we use the equation 
ons(n; 
ons(0; nil)) �


ons(n; nil), sin
e 0's in the most signi�
ant digits do not matter.

R : 
onvert(0; s(s(b)))! 
ons(0; nil)


onvert(s(0); s(s(b)))! 
ons(s(0); nil)


onvert(s(s(n)); s(s(b)))! 
ons(mod(n� b; s(s(b)));


onvert(s((n� b)� s(s(b))); s(s(b))))

E : 
ons(n; 
ons(0; nil)) � 
ons(n; nil)

Already for this system, the set of rules R is not simply terminating. Of


ourse, we may also add the rules for the auxiliary fun
tions:

x� 0! x

s(x)� s(y)! x� y

lt(x; 0)! false

lt(0; s(y))! true

lt(s(x); s(y))! lt(x; y)

0� s(y)! 0

s(x)� s(y)! if

�

(lt(x; y); s(x); s(y))

if

�

(true; s(x); s(y))! 0

if

�

(false; s(x); s(y))! s((x� y)� s(y))

mod(0; s(y))! 0

mod(s(x); s(y))! if

mod

(lt(x; y); s(x); s(y))

if

mod

(true; s(x); s(y))! s(x)

if

mod

(false; s(x); s(y))! mod(x� y; s(y))
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We have Ins

E

(Ext

E

(R)) = R and thus, we obtain the following 
onstraints:

CONVERT(s(s(n)); s(s(b))) > CONVERT(s((n� b)� s(s(b))); s(s(b)))

M(s(x); s(y)) > M(x; y)

LT(s(x); s(y)) > LT(x; y)

Q(s(x); s(y)) % IF

�

(lt(x; y); s(x); s(y))

IF

�

(false; s(x); s(y)) > Q(x� y; s(y))

MOD(s(x); s(y)) > IF

mod

(lt(x; y); s(x); s(y))

IF

mod

(false; s(x); s(y)) > MOD(x� y; s(y))


onvert(0; s(s(b))) % 
ons(0; nil)


onvert(s(0); s(s(b))) % 
ons(s(0); nil)


onvert(s(s(n)); s(s(b))) % 
ons(mod(n� b; s(s(b)));


onvert(s((n� b)� s(s(b))); s(s(b))))

x� 0 % x

s(x)� s(y) % x� y

lt(x; 0) % false

lt(0; s(y)) % true

lt(s(x); s(y)) % lt(x; y)

0� s(y) % 0

s(x)� s(y) % if

�

(lt(x; y); s(x); s(y))

if

�

(true; s(x); s(y)) % 0

if

�

(false; s(x); s(y)) % s((x� y)� s(y))

mod(0; s(y)) % 0

mod(s(x); s(y)) % if

mod

(lt(x; y); s(x); s(y))

if

mod

(true; s(x); s(y)) % s(x)

if

mod

(false; s(x); s(y)) % mod(x� y; s(y))


ons(n; 
ons(0; nil)) � 
ons(n; nil)

When repla
ing 
ons, �, �, Q, mod, and MOD by their �rst arguments and

if

�

, IF

�

, if

mod

, and IF

mod

by their se
ond arguments, we obtain

CONVERT(s(s(n)); s(s(b))) > CONVERT(s(n); s(s(b)))

M(s(x); s(y)) > M(x; y)

LT(s(x); s(y)) > LT(x; y)

s(x) % s(x)

s(x) > x

s(x) % s(x)

s(x) > x


onvert(0; s(s(b))) % 0
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onvert(s(0); s(s(b))) % s(0)


onvert(s(s(n)); s(s(b))) % n

x % x

s(x) % x

lt(x; 0) % false

lt(0; s(y)) % true

lt(s(x); s(y)) % lt(x; y)

0 % 0

s(x) % s(x)

s(x) % 0

s(x) % s(x)

0 % 0

s(x) % s(x)

s(x) % s(x)

s(x) % x

n � n

These 
onstraints are satis�ed by the rpo.

A.6 Idempoten
e

The following example (Ex. 10) is a TRS where the equation states that a fun
-

tion symbol f is idempotent.

R : f(s(y))! f(y) E : f(f(x)) � f(x)

As explained in Ex. 10, we have Ext

E

(R) = R and we also have Ins

E

(R) = R.

Thus, the resulting 
onstraints are

F(s(y)) > F(y) f(f(x)) � f(x)

f(s(y)) % f(y) F(f(x)) � F(x)

After repla
ing f by its argument, these inequalities are satis�ed by the rpo.

A.7 Idempoten
e of 
atten

The following example is similar to the previous one, but it illustrates that

equations for idempoten
e 
an be useful for fun
tions o

urring in pra
ti
e. The

following example 
ontains an algorithm to 
atten binary trees and the equation

states that 
atten is idempotent.

R : 
atten(nil)! nil


atten(
ons(nil; x))! 
ons(nil; 
atten(x))


atten(
ons(
ons(x; y); z))! 
atten(
ons(x; 
ons(y; z)))

E : 
atten(
atten(u)) � 
atten(u)
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By overlapping the subterm 
atten(u) of the equation with the left-hand sides

of the �rst two rules we obtain

Ext

E

(R) = R[ f 
atten(
atten(nil))! 
atten(nil);


atten(
atten(
ons(nil; x)))! 
atten(
ons(nil; x)) g:

Overlapping 
atten(u) with the left-hand side of the last rule is not needed. This

would yield the rule 
atten(
atten(
ons(
ons(x; y); z))) ! 
atten(
atten(
ons(x;


ons(y; z)))). But the other term of the instantiated equation, 
atten(
ons(
ons(x;

y); z)) already rewrites to 
atten(
ons(x; 
ons(y; z))) whi
h is E-equivalent to


atten(
atten(
ons(x; 
ons(y; z)))). Similarly, it 
an also be shown that overlap-

ping 
atten(u) with the left-hand sides of the new rules is unne
essary.

We have Ins

E

(Ext

E

(R)) = Ext

E

(R). The resulting dependen
y pairs are

hFLATTEN(
ons(nil; x));FLATTEN(x)i (8)

hFLATTEN(
ons(
ons(x; y); z));FLATTEN(
ons(x; 
ons(y; z)))i (9)

hFLATTEN(
atten(nil));FLATTEN(nil)i (10)

hFLATTEN(
atten(
ons(nil; x)));FLATTEN(
ons(nil; x))i (11)

Obviously, (10) is not on any 
luster and hen
e, it 
an be disregarded. The only


luster 
ontaining (11) is f(8); (11)g. Thus, it is suÆ
ient if (11) is only weakly

de
reasing. We result in the following 
onstraints:

FLATTEN(
ons(nil; x)) > FLATTEN(x)

FLATTEN(
ons(
ons(x; y); z)) > FLATTEN(
ons(x; 
ons(y; z)))

FLATTEN(
atten(
ons(nil; x))) % FLATTEN(
ons(nil; x))


atten(nil) % nil


atten(
ons(nil; x)) % 
ons(nil; 
atten(x))


atten(
ons(
ons(x; y); z)) % 
atten(
ons(x; 
ons(y; z)))


atten(
atten(u)) � 
atten(u)

FLATTEN(
atten(u)) � FLATTEN(u)

After repla
ing 
atten by its argument, the 
onstraints are satis�ed by the lexi-


ographi
 path ordering [9, 13℄.

A.8 Addition on Integers

Consider the following equational rewrite system on integers. Here, integer num-

bers are built from the fun
tion symbols 0, s, and p. The equation s(p(z)) �

p(s(z)) states that the fun
tion symbols s and p may be inter
hanged. Thus,

equational rewriting is used to model this non-free data stru
ture.

R : 0+ y ! y E : s(p(z)) � p(s(z))

p(x) + y ! p(x+ y)

s(x) + y ! s(x+ y)

p(s(x))! x
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We obtain Ext

E

(R) = R. The non-variable proper subterm p(z) of the equa-

tion uni�es with the left-hand side p(s(x)) of the last rule, but the 
orresponding

new rule s(p(s(x))) ! s(x) does not have to be in
luded in Ext

E

(R), sin
e the

instantiated other side of the equation, p(s(s(x))), already R-redu
es to s(x). A

similar statement holds for the uni�
ation of the subterm s(z) with p(s(x)).

Moreover, we also have Ins

E

(R) = R. Sin
e dependen
y pairs with the tuple

symbol of + in the left 
omponent and the tuple symbols of p or s in the right


omponent do not o

ur in any 
luster of the dependen
y graph, it is suÆ
ient

to satisfy the following 
onstraints (where PLUS denotes the tuple symbol for

+):

PLUS(p(x); y) > PLUS(x; y) s(p(z)) � p(s(z))

PLUS(s(x); y) > PLUS(x; y) S(p(z)) � P(s(z))

0+ y % y

p(x) + y % p(x+ y)

s(x) + y % s(x+ y)

p(s(x)) % x

These 
onstraints are satis�ed by the rpo, where + is greater than p and s in

the pre
eden
e and both s and p and both S and P are equal in the pre
eden
e,

respe
tively.

A.9 Transforming Multisets into Sets

The next example uses equations to model the non-free data stru
ture of multi-

sets. Here, we need an equation 
ons(u; 
ons(v; w)) � 
ons(v; 
ons(u;w)) sin
e it

does not matter in whi
h order two elements u and v are inserted into a multiset

w. The fun
tion set is used to transform a multiset into a set, i.e., to eliminate

dupli
ates from a multiset. It uses the auxiliary fun
tion rm (for \remove"),

where rm(n; x) deletes all o

urren
es of the element n from the multiset x.

R : eq(0; 0)! true

eq(0; s(y))! false

eq(s(x); 0)! false

eq(s(x); s(y))! eq(x; y)

rm(n; nil)! nil

rm(n; 
ons(m;x))! if(eq(n;m); n; 
ons(m;x))

if(true; n; 
ons(m;x))! rm(n; x)

if(false; n; 
ons(m;x))! 
ons(m; rm(n; x))

set(nil)! nil

set(
ons(n; x))! 
ons(n; set(rm(n; x)))

E : 
ons(u; 
ons(v; w)) � 
ons(v; 
ons(u;w))

Sin
e the equation only 
ontains 
onstru
tors and variables, we obtain

Ins

E

(Ext

E

(R)) = R. Thus, when using the same ordering for all 
lusters, it
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suÆ
es to satisfy the following 
onstraints:

EQ(s(x); s(y)) > EQ(x; y)

RM(n; 
ons(m;x)) % IF(eq(n;m); n; 
ons(m;x))

IF(true; n; 
ons(m;x)) > RM(n; x)

IF(false; n; 
ons(m;x)) > RM(n; x)

SET(
ons(n; x)) > SET(rm(n; x))

eq(0; 0) % true

eq(0; s(y)) % false

eq(s(x); 0) % false

eq(s(x); s(y)) % eq(x; y)

rm(n; nil) % nil

rm(n; 
ons(m;x)) % if(eq(n;m); n; 
ons(m;x))

if(true; n; 
ons(m;x)) % rm(n; x)

if(false; n; 
ons(m;x)) % 
ons(m; rm(n; x))

set(nil) % nil

set(
ons(n; x)) % 
ons(n; set(rm(n; x)))


ons(u; 
ons(v; w)) � 
ons(v; 
ons(u;w))

Before sear
hing for a base ordering satisfying these 
onstraints, we repla
e

rm, RM, if, and IF by their last arguments and we eliminate the �rst argument

of 
ons. This results in the following 
onstraints:

EQ(s(x); s(y)) > EQ(x; y)


ons

0

(x) % 
ons

0

(x)


ons

0

(x) > x


ons

0

(x) > x

SET(
ons

0

(x)) > SET(x)

eq(0; 0) % true

eq(0; s(y)) % false

eq(s(x); 0) % false

eq(s(x); s(y)) % eq(x; y)

nil % nil


ons

0

(x) % 
ons

0

(x)


ons

0

(x) % x


ons

0

(x) % 
ons

0

(x)

set(nil) % nil

set(
ons

0

(x)) % 
ons

0

(set(x))


ons

0

(
ons

0

(w)) � 
ons

0

(
ons

0

(w))

These resulting 
onstraints are satis�ed by the rpo.

A.10 Qui
ksort on Multisets

The following TRS is used to sort a multiset by the well-known qui
ksort algo-

rithm. It uses the fun
tions low(n; x) (resp. high(n; x)) whi
h return the subset

of x 
ontaining only the elements smaller than or equal to (resp. greater than) n.

31



The equation in E is again used to model multisets, i.e., to state that the order

of the elements does not matter.

R : le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

app(nil; y)! y

app(
ons(n; x); y)! 
ons(n; app(x; y))

low(n; nil)! nil

low(n; 
ons(m;x))! if

low

(le(m;n); n; 
ons(m;x))

if

low

(true; n; 
ons(m;x))! 
ons(m; low(n; x))

if

low

(false; n; 
ons(m;x))! low(n; x)

high(n; nil)! nil

high(n; 
ons(m;x))! if

high

(le(m;n); n; 
ons(m;x))

if

high

(true; n; 
ons(m;x))! high(n; x)

if

high

(false; n; 
ons(m;x))! 
ons(m; high(n; x))

qui
ksort(nil)! nil

qui
ksort(
ons(n; x))! app(qui
ksort(low(n; x));


ons(n; qui
ksort(high(n; x))))

E : 
ons(u; 
ons(v; w)) � 
ons(v; 
ons(u;w))

Again we have Ins

E

(Ext

E

(R)) = R. So the 
onstraints are

LE(s(x); s(y)) > LE(x; y)

APP(
ons(n; x); y) > APP(x; y)

LOW(n; 
ons(m;x)) % IF

low

(le(m;n); n; 
ons(m;x))

IF

low

(true; n; 
ons(m;x)) > LOW(n; x)

IF

low

(false; n; 
ons(m;x)) > LOW(n; x)

HIGH(n; 
ons(m;x)) % IF

high

(le(m;n); n; 
ons(m;x))

IF

high

(true; n; 
ons(m;x)) > HIGH(n; x)

IF

high

(false; n; 
ons(m;x)) > HIGH(n; x)

QUICKSORT(
ons(n; x)) > QUICKSORT(low(n; x))

QUICKSORT(
ons(n; x)) > QUICKSORT(high(n; x))

le(0; y) % true

le(s(x); 0) % false

le(s(x); s(y)) % le(x; y)

app(nil; y) % y

app(
ons(n; x); y) % 
ons(n; app(x; y))

low(n; nil) % nil

low(n; 
ons(m;x)) % if

low

(le(m;n); n; 
ons(m;x))

if

low

(true; n; 
ons(m;x)) % 
ons(m; low(n; x))

if

low

(false; n; 
ons(m;x)) % low(n; x)
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high(n; nil) % nil

high(n; 
ons(m;x)) % if

high

(le(m;n); n; 
ons(m;x))

if

high

(true; n; 
ons(m;x)) % high(n; x)

if

high

(false; n; 
ons(m;x)) % 
ons(m; high(n; x))

qui
ksort(nil) % nil

qui
ksort(
ons(n; x)) % app(qui
ksort(low(n; x));


ons(n; qui
ksort(high(n; x))))


ons(u; 
ons(v; w)) � 
ons(v; 
ons(u;w))

We repla
e low, LOW, high, HIGH, if

low

, IF

low

, if

high

, and IF

high

by their last ar-

guments and we eliminate the �rst argument of 
ons. This results in the following


onstraints:

LE(s(x); s(y)) > LE(x; y)

APP(
ons

0

(x); y) > APP(x; y)


ons

0

(x) % 
ons

0

(x)


ons

0

(x) > x


ons

0

(x) > x


ons

0

(x) % 
ons

0

(x)


ons

0

(x) > x


ons

0

(x) > x

QUICKSORT(
ons

0

(x)) > QUICKSORT(x)

QUICKSORT(
ons

0

(x)) > QUICKSORT(x)

le(0; y) % true

le(s(x); 0) % false

le(s(x); s(y)) % le(x; y)

app(nil; y) % y

app(
ons

0

(x); y) % 
ons

0

(app(x; y))

nil % nil


ons

0

(x) % 
ons

0

(x)


ons

0

(x) % 
ons

0

(x)


ons

0

(x) % x

nil % nil


ons

0

(x) % 
ons

0

(x)


ons

0

(x) % x


ons

0

(x) % 
ons

0

(x)

qui
ksort(nil) % nil

qui
ksort(
ons

0

(x)) % app(qui
ksort(x); 
ons

0

(qui
ksort(x)))


ons

0

(
ons

0

(w)) � 
ons

0

(
ons

0

(w))

33



These 
onstraints are satis�ed by the rpo using a pre
eden
e with qui
ksort A

app A 
ons

0

.
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