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Abstrat. Kapur and Subramaniam [8℄ de�ned syntatial lasses of

equations where indutive validity is deidable. Thus, their validity an

be heked without any user interation and hene, this allows an integra-

tion of (a restrited form of) indution in fully automated reasoning tools

suh as model hekers. However, the results of [8℄ were only restrited

to equations. This paper extends the lasses of onjetures onsidered in

[8℄ to a larger lass of arbitrary quanti�er-free formulas (e.g., onjetures

also ontaining negation, onjuntion, disjuntion, et.).

1 Introdution

Indutive theorem provers usually require massive manual intervention and they

may waste huge amounts of time on proof attempts whih fail due to the in-

ompleteness of the prover. Therefore, indution has not yet been integrated in

fully automated reasoning systems (i.e., model hekers) used for hardware and

protool veri�ation, stati and type analyses, byte-ode veri�ation, and proof-

arrying odes. Most suh push-button systems use a ombination of deision

proedures for theories suh as Presburger arithmeti, propositional satis�ability,

and data strutures inluding bit vetors, arrays, and lists. However, extending

these tools by the apability to perform indution proofs would be very desirable,

sine indution is frequently needed to reason about strutured and parameter-

ized iruits (e.g., n-bit adders or multipliers), the timing behavior of iruits

with feedbak loops, and ode using loops and/or reursion.

For that reason, Kapur and Subramaniam proposed an approah for inte-

grating indution shemes suggested by terminating funtion de�nitions with

deision proedures, and gave a syntatial haraterization of a lass of equa-

tions where indutive validity is deidable using deision proedures and the

over set method for mehanizing indution [8, 11℄. For those equations, indu-

tion proofs an be aomplished without any user interation and they only fail if

the onjeture is not valid. In Setion 2, we give a simple haraterization whih
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extends the lass of deidable equations in [8℄. Subsequently, we further extend

the approah to arbitrary quanti�er-free formulas, i.e., we de�ne lasses of suh

formulas where indutive validity is deidable. The ruial onept for this har-

aterization are so-alled orretness prediates. For a quanti�er-free onjeture

', 

'

is a orretness prediate i� for any tuple of (onstrutor) ground terms

q

�

, the truth of 

'

(q

�

) implies the truth of '[x

�

=q

�

℄ (f. [6, 9℄). We present a

tehnique for automatially generating orretness prediates in Setion 3.

The truth of a orretness prediate is only suÆient, but not neessary for

the truth of the orresponding onjeture. In Setion 4 we examine for whih

equations ' the orretness prediate is exat (i.e., the truth of 

'

(q

�

) is both

suÆient and neessary for the truth of '[x

�

=q

�

℄). We develop a haraterization

to reognize (a sublass of) these equations automatially. In Setion 5 we show

that the use of exat orretness prediates allows us to extend the deidable

lasses of indutive theorems from equations to arbitrary quanti�er-free formulas.

Our results are also useful for onventional indutive theorem provers sine

exat orretness prediates an be used to simplify the proof of onjetures like

double(y) = y ) y = 0 where indutive provers would fail otherwise.

Even though the paper fouses on onstrutor systems and the deidable

theory of quanti�er-free formulas on free onstrutors, we believe the approah

extends to other deidable theories T as well (e.g., Presburger arithmeti).

2 Equations where Indutive Validity is Deidable

We use term rewrite systems R (TRSs) as our programming language [1℄. In a

TRS, all root symbols of left-hand sides are alled de�ned and all other funtion

symbols of R are onstrutors. We only onsider onstrutor systems (CSs),

i.e., TRSs where the left-hand sides ontain no de�ned symbols below the root

position, even though most of the results in this paper generalize to more general

theory-based systems, alled T -based systems in [8℄, with a deidable theory T ,

in whih arguments to de�ned symbols are terms from T . Moreover, we restrit

ourselves to (ground-)onvergent and suÆiently omplete CSs R, i.e., for every

ground term t there exists a unique onstrutor ground term q suh that t!

�

R

q.

(A term ontaining only variables and onstrutors is alled a onstrutor term;

a onstrutor term without variables is a onstrutor ground term.)

For indution proofs, we use the onept of over sets [7, 11℄. A over set is a

�nite set of pairs C = fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ; hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig, where

s

�

i

and t

�

i;j

are n-tuples of terms (for some n � 0). C is omplete if for every

n-tuple q

�

of onstrutor ground terms, there is an s

�

i

and a substitution � suh

that s

�

i

� = q

�

. Every over set C indues a relation <

C

on tuples of onstrutor

ground terms: p

�

<

C

q

�

i� there exists a pair hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi 2 C suh that

s

�

i

� = q

�

and t

�

i;j

� !

�

R

p

�

. C is alled well-founded i� <

C

is well founded.

1

A quanti�er-free formula ' is indutively valid (or \valid" for short), denoted

\R j=

ind

'", i� 8y

�

' holds in the initial model of the equations of R (where y

�

1

<

C

is well founded if there exists no in�nite sequene : : : t

3

<

C

t

2

<

C

t

1

<

C

t

0

.
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are the variables in ').

2

For example, onsider the following CS:

half(0) ! 0; half(s(0)) ! 0; half(s(s(x))) ! s(half(x)):

This funtion de�nition suggests the over set C

half

= fh0;?i; hs(0);?i;

hs(s(x)); fxgig. To prove ' by indution w.r.t. C

half

(using the indution vari-

able y), one obtains the base formulas '[y=0℄ and '[y=s(0)℄ and the step formula

'[y=x℄) '[y=s(s(x))℄. Here, '[y=x℄ is the indution hypothesis and '[y=s(s(x))℄

is the indution onlusion. When proving a onjeture ' ontaining a term

f(y

1

; : : : ; y

n

), a suessful heuristi for the hoie of an indution relation is to

perform indution w.r.t. C

f

using the indution variables y

1

; : : : ; y

n

, f. [2, 11℄.

Kapur and Subramaniam [8℄ haraterized lasses of equations where indu-

tive validity is deidable (the deision proedure onsists of an indution proof

attempt w.r.t. a partiular over set). The observation is that if eah indution

formula built aording to some over set C only ontains terms from an under-

lying deidable theory, then validity of the original onjeture an be deided.

Def. 1 and Thm. 2 apply to general T -based systems, but due to lak of

spae, we fous on the deidable quanti�er-free theory of free onstrutors in

this paper. Here, r[s

�

℄ abbreviates r[y

�

=s

�

℄ where y

�

ontains all variables in r.

De�nition 1 (C-provability). Let R be a onvergent suÆiently omplete CS

and let C be a omplete well-founded over set. An equation r

1

= r

2

is C-provable

w.r.t. R i� r

2

is a onstrutor term, for every hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

gi 2 C, s

�

i

and all

t

�

i;j

are tuples of onstrutor terms, and there exists a onstrutor term ontext

C

i

suh that r

1

[s

�

i

℄!

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

℄℄.

As an example, let us extend the CS for half by the rules double(0)! 0 and

double(s(x)) ! s(s(double(x))). Then the equation double(half(y)) = y is C

half

-

provable. As required, the term y is a onstrutor term. Moreover, we obtain

r

1

[s

1

℄ = double(half(0)) !

�

R

0 and thus,C

1

= 0;

r

1

[s

2

℄ = double(half(s(0))) !

�

R

0 and thus,C

2

= 0;

r

1

[s

3

℄ = double(half(s(s(x))))!

�

R

s(s(double(half(x)))) and thus,C

3

= s(s(�)):

Sine C-provability is deidable, Def. 1 haraterizes a deidable lass of on-

jetures. Instead of heking C-provability diretly, several suÆient onditions

for C-provability were given in [8℄. We obtain the following theorem.

Theorem 2 (Deidability of indutive validity for equations). Let R be

a onvergent suÆiently omplete CS, let C be a omplete well-founded over set,

and let r

1

= r

2

be a C-provable equation. Then indutive validity of r

1

= r

2

is

deidable (by attempting an indution proof w.r.t. C).

Proof. The deision proedure works by onstruting the formulas

C

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

℄℄ = r

2

[s

�

i

℄ (1)

2

R j=

ind

' means that for all onstrutor ground terms q

�

, '[y

�

=q

�

℄ follows from R's

equations and axioms stating that di�erent onstrutor ground terms are not equal.

3



for all hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

gi 2 C. As these equations only ontain onstrutor

terms, their validity is deidable.

It turns out that r

1

= r

2

is valid i� all these equations are valid. For the

\if"-diretion, notie that (1) implies the indution formula

r

1

[t

�

i;1

℄ = r

2

[t

�

i;1

℄ ^ : : : ^ r

1

[t

�

i;n

℄ = r

2

[t

�

i;n

℄ ) r

1

[s

�

i

℄ = r

2

[s

�

i

℄:

Thus, the validity of r

1

= r

2

follows by Noetherian indution. For the \only

if"-diretion, note that the validity of r

1

= r

2

implies the validity of (1). ut

Sine double(half(y)) = y is C

half

-provable, the above deision proedure an

determine its validity. It has to hek the validity of the equations

C

1

[r

2

[t

1

℄℄ = r

2

[s

1

℄; i.e., 0 = 0; (2)

C

2

[r

2

[t

2

℄℄ = r

2

[s

2

℄; i.e., 0 = s(0); (3)

C

3

[r

2

[t

3

℄℄ = r

2

[s

3

℄; i.e., s(s(x)) = s(s(x)): (4)

Sine these equations only ontain onstrutor terms, their validity is deidable.

(Obviously, suh an equation is valid i� both terms in the equation are syntati-

ally idential.) While (2) and (4) are valid, the seond equation (3) is not valid

and thus, the onjeture double(half(y)) = y is not valid either.

Our aim is to extend the result of Thm. 2 to more general formulas (i.e., not

just equations), provided that all equations in these formulas are C-provable.

For example, we would like to onsider formulas like double(half(y)) = y )

even(y) = true or double(y) = y ) y = 0. Equations appearing in these formulas

are neither valid nor unsatis�able; onsequently, there is a need to haraterize

the subset of instantiations for the variables for whih these equations are true.

For this extension, we need the notion of orretness prediates.

3 Corretness Prediates

We present a tehnique whih automatially generates algorithms for so-alled

orretness prediates 

'

for equations '. For any tuple of onstrutor ground

terms q

�

, the truth of 

'

(q

�

) implies that '[y

�

=q

�

℄ is valid. Our de�nition of

orretness prediates is similar to the de�nitions of [6, 9℄, but its form is quite

restrited sine we are interested in ensuring that validity of orretness predi-

ates is deidable and that exat orretness prediates an be generated whih

ompletely haraterize the domain of values on whih the onjeture holds.

We have seen that the proof of the onjeture double(half(y)) = y an be

attempted by indution w.r.t. the over set C

half

. If y = 0, the onjeture an

be redued to the equation (2) whih is always true. In the ase y = s(0) we

obtain the equation (3) whih is always false. Finally, in the step ase where

y = s(s(x)), we have to prove that the indution hypothesis double(half(x)) = x

implies the indution onlusion double(half(s(s(x)))) = s(s(x)). As shown in

Setion 2, double(half(s(s(x)))) evaluates to s(s(double(half(x)))). Due to the

indution hypothesis, we an replae the subterm double(half(x)) by x. Thus,

4



we obtain the equation (4) (whih is always true). Hene, provided that the

indution hypothesis is valid, the indution onlusion would also be valid. This

gives rise to the following rules for the orretness prediate 

double(half(y))=y

:



double(half(y))=y

(0)! true; (5)



double(half(y))=y

(s(0))! false; (6)



double(half(y))=y

(s(s(x)))! 

double(half(y))=y

(x): (7)

Thus, we have synthesized the even algorithm. Note that the rule (7) is stronger

than the following rule one would have gotten from the above analysis:



double(half(y))=y

(s(s(x)))! true if 

double(half(y))=y

(x):

Sine we want to generate unonditional rewrite rules for the de�nition of or-

retness prediates and to synthesize a omplete de�nition, we use the form (7).

As a result, the orretness prediate so generated may not be exat, and hene,

provides only a suÆient ondition for the onjeture to be valid.

In general, to prove a C-provable equation r

1

= r

2

w.r.t. a over set C,

for eah pair hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi 2 C we must hek whether the equation

C

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

℄℄ = r

2

[s

�

i

℄ is valid, f. Equation (1) in the proof of Thm.

2. In order to obtain orretness prediates as simple as the ones above, we have

to demand that these equations are either valid for all instantiations or for none.

This ensures that the right-hand sides of the rules for orretness prediates only

have the form true, false, or reursive alls of orretness prediates.

De�nition 3 (Radial equations). Let R be a onvergent suÆiently om-

plete CS and let C = fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ; hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig be a

omplete well-founded over set. An equation r

1

= r

2

is radial under C i�

r

1

= r

2

is a C-provable equation where r

1

[s

�

i

℄ !

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

i

℄℄ for a

onstrutor term ontext C

i

and for all 1 � i � m we have

R j=

ind

C

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

i

℄℄℄ = r

2

[s

�

i

℄ or

R j=

ind

:C

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

i

℄℄℄ = r

2

[s

�

i

℄:

Note that sine all C

i

, s

�

i

, and t

�

i

are onstrutor terms, it is deidable whether

a C-provable equation is radial. The reason is that one only has to hek whether

an equation between two onstrutor terms is valid or unsatis�able. Obviously,

suh an equation is unsatis�able i� the two terms are not uni�able. For instane,

the equation double(half(y)) = y is radial under C

half

sine the terms in the

equations (2) - (4) are either idential or not uni�able.

To ease the presentation, we will now restrit ourselves to over sets where

there is at most one indution hypothesis for every indution step ase.

3

Thus,

3

The de�nition of orretness prediates an be easily generalized to the ase of mul-

tiple indution hypotheses. In fat, orretness prediates an be de�ned for arbitrary

equations, i.e., they do not have to be C-provable or radial as required in this paper.

However, these requirements are neessary in order to generate exat orretness

prediates 

'

for arbitrary onjetures ', suh that validity of 

'

is deidable.

5



we only onsider over sets with pairs hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi where 0 � n

i

� 1.

Then we obtain the following de�nition of orretness prediates.

De�nition 4 (Corretness Prediate). Let R, C, r

1

= r

2

be as in Def. 3

where 0 � n

i

� 1 for all 1 � i � m and let r

1

= r

2

be radial under C. Then the

orretness prediate 

r

1

=r

2

under C is de�ned by the following rules:



r

1

=r

2

(s

�

i

)!

�

true; if R j=

ind

C

i

= r

2

[s

�

i

℄ and n

i

= 0; (8)

false; if R j=

ind

:C

i

= r

2

[s

�

i

℄ and n

i

= 0; (9)



r

1

=r

2

(s

�

i

)!

�



r

1

=r

2

(t

�

i;1

); if R j=

ind

C

i

[r

2

[t

�

i;1

℄℄ = r

2

[s

�

i

℄ and n

i

= 1; (10)

false; if R j=

ind

:C

i

[r

2

[t

�

i;1

℄℄ = r

2

[s

�

i

℄ and n

i

= 1: (11)

Thm. 5 proves that a orretness prediate indeed represents a suÆient, but

not a neessary ondition for the soundness of the orresponding equation.

Theorem 5 (Corretness prediates are suÆient, but not neessary).

Let R, C, r

1

= r

2

be as in Def. 4. Let 

r

1

=r

2

be a orretness prediate for r

1

= r

2

under C and let R also ontain the rules de�ning 

r

1

=r

2

. Then we have

(a) R j=

ind



r

1

=r

2

(y

�

) = true) r

1

= r

2

.

(b) In general, we have R 6j=

ind

r

1

= r

2

) 

r

1

=r

2

(y

�

) = true.

Proof.

(a) Let q

�

be a tuple of onstrutor ground terms suh that R j=

ind



r

1

=r

2

(q

�

) =

true. We prove R j=

ind

r

1

[q

�

℄ = r

2

[q

�

℄ by indution w.r.t. <

C

. Due to the

ompleteness of the over set, there exists some hs

�

; ft

�

1

; : : : ; t

�

n

gi 2 C and

some substitution � suh that q

�

= s

�

� and sine r

1

= r

2

is C-provable (due

to its radiality), we have R j=

ind

r

1

[s

�

℄ = C[r

1

[t

�

1

℄; : : : ; r

1

[t

�

n

℄℄.

If n = 0, then we also have R j=

ind

C = r

2

[s

�

℄ and thus R j=

ind

r

1

[s

�

℄ =

r

2

[s

�

℄. If n = 1, we have R j=

ind

C[r

2

[t

�

1

℄℄ = r

2

[s

�

℄ and R j=

ind



r

1

=r

2

(t

�

1

�) =

true. The indution hypothesis yields R j=

ind

r

1

[t

�

1

�℄ = r

2

[t

�

1

�℄. From the

validity of r

1

[s

�

℄ = C[r

1

[t

�

1

℄℄ and C[r

2

[t

�

1

℄℄ = r

2

[s

�

℄, R j=

ind

r

1

[s

�

�℄ = r

2

[s

�

�℄.

(b) Consider the equation half(y) = s(0) and indution w.r.t. the over set C

half

.

In the base ases y = 0 and y = s(0) the resulting onjeture 0 = s(0) is

unsatis�able and in the step ase, the indution onlusion half(s(s(x))) =

s(0) an be evaluated to s(half(x)) = s(0). Applying the indution hypothesis

half(x) = s(0) yields s(s(0)) = s(0) whih is unsatis�able. So the equation

half(y) = s(0) is radial under C

half

and we obtain the rules 

half(y)=s(0)

(0)!

false, 

half(y)=s(0)

(s(0))! false, and 

half(y)=s(0)

(s(s(x)))! false. So 

half(y)=s(0)

is always false, but half(y) = s(0) holds for s

2

(0) and s

3

(0). ut

In fat, a orretness prediate 

'

(q

�

) yields true i� the equation ' holds for

both q

�

and for all arguments p

�

whih are smaller than q

�

w.r.t. the indution

relation indued by the over set. For that reason, the orretness prediate



half(y)=s(0)

returns false for the arguments s

2

(0) and s

3

(0) although the onjeture

is true, sine it is false for the smaller arguments 0 and s(0).
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4 Conjetures with Exat Corretness Prediate

In this setion we haraterize equations r

1

= r

2

where the orretness prediate



r

1

=r

2

is exat, i.e., for all q

�

, 

r

1

=r

2

(q

�

) is true i� R j=

ind

r

1

[q

�

℄ = r

2

[q

�

℄.

Exatness is ensured if in Def. 4, whenever Rule (10) is used, the indution

onlusion r

1

[s

�

i

℄ = r

2

[s

�

i

℄ is equivalent to r

1

[t

�

i;1

℄ = r

2

[t

�

i;1

℄. As we have seen in

Set. 3, 

r

1

=r

2

(q

�

) only returns true if r

1

= r

2

is true for q

�

and for all p

�

smaller

than q

�

w.r.t. the indution relation indued by the over set. Thus, 

r

1

=r

2

is only

exat if r

1

[q

�

℄ = r

2

[q

�

℄ implies the validity of r

1

[p

�

℄ = r

2

[p

�

℄ for all arguments

p

�

<

C

q

�

. So 

r

1

=r

2

only desribes the exat set of instantiations where r

1

= r

2

is valid, if eah indution onlusion implies all its indution hypotheses.

Consider again the proof of double(half(y)) = y by indution w.r.t. C

half

. We

obtain the indution onlusion double(half(s(s(x)))) = s(s(x)) and the indution

hypothesis double(half(x)) = x. Indeed, this onjeture has the desired property

R j=

ind

double(half(s(s(x)))) = s(s(x)) ) double(half(x)) = x: (12)

To see this, note that in the �rst base ase where y = 0, the left-hand side

double(half(0)) evaluates to 0, whih is smaller than or equal to the right-hand

side 0 (if terms are ompared by the subterm relation, for example). Similarly,

in the seond base ase where y = s(0), the left-hand side evaluates to 0, whih

is again smaller than or equal to the right-hand side s(0). In the step ase, the

left hand side of the indution onlusion an be evaluated to

s(s(double(half(x)))) = s(s(x)):

This evaluated indution onlusion ontains the indution hypothesis, sine the

underlined terms are the terms on both sides of the indution hypothesis. (This

observation also forms the basis of the rippling tehnique [3℄.) Thus, when going

from the indution hypothesis to the indution onlusion, both sides of the

equation grow by the ontext s(s(�)). In other words, in the indution base ases

the left-hand side is at most as great as the right-hand side and afterwards, the

left-hand side always grows at most as muh as the right-hand side. Thus, if one

ever reahes an instantiation t where double(half(t)) = t is no longer true, then

the reason is that double(half(t)) is smaller then t. But sine double(half(y))

grows at most as fast as y, afterwards there an never be a number s >

C

half

t where double(half(s)) = s is true again. Hene, if the indution hypothesis

double(half(x)) = x is false, then the indution onlusion double(half(s(s(x)))) =

s(s(x)) is false as well (or, formulated as a ontraposition, we have Property (12)).

The observation above leads to a general riterion. For many C-provable

equations r

1

= r

2

, one does not only have r

1

[s

�

i

℄!

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

i

℄℄ for

all hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi 2 C, but also r

2

[s

�

i

℄ = D

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

i

℄℄ for some

onstrutor ground ontexts C

i

and D

i

.

In our example, r

1

is double(half(y)) and r

2

is the term y. For the �rst pair of

the over set C

half

, we have C

1

= 0 and D

1

= 0 and for the seond pair we have

C

2

= 0 and D

2

= s(0). For the third pair, we have r

1

[s

�

3

℄ = double(half(s(s(x)))),

7



whih an be evaluated to s(s(double(half(x)))) and as t

�

3;1

= x, we obtain C

3

=

s(s(�)). Sine r

2

[s

�

3

℄ = s(s(x)), we also have D

3

= s(s(�)).

So r

1

grows by the ontext C

i

and r

2

grows by the ontextD

i

when going from

the indution hypothesis r

1

[t

�

i;1

℄ = r

2

[t

�

i;1

℄ to the indution onlusion r

1

[s

�

i

℄ =

r

2

[s

�

i

℄. Our aim is to ensure that whenever r

1

and r

2

are no longer R-equal for

some instantiation, then they will never beome equal again for arguments whih

are greater w.r.t. the indution relation indued by the over set. A suÆient

requirement for this is that the ontexts C

i

added around r

1

are always at

most as big as the ontexts D

i

added around r

2

. To ompare these ontexts

one an use an arbitrary ordering � on onstrutor terms, i.e., any relation

whih is transitive and irreexive. Moreover, we require � to be monotoni (i.e.,

s � t implies f(: : : s : : :) � f(: : : t : : :) for all onstrutors f) and stable under

substitutions (i.e., s � t implies s� � t�). Then we only have to demand

C

i

[x

�

℄ � D

i

[x

�

℄ for all 1 � i � m.

As usual, \�" denotes the union of \�" and \=" where \=" is syntati equality.

Note that one may use any well-established tehnique for the generation of

well-founded orderings suh as the subterm ordering or the reursive path order-

ing <

rpo

(f. e.g. [5, 10℄) to synthesize a suitable ordering � satisfying the above

onstraints. Moreover, sine � only has to be irreexive, but not neessarily well

founded, one an also use any ordering > whih results from the reversal of suh

a well-founded ordering < (e.g., the superterm ordering or >

rpo

).

In our example we need a well-founded monotoni stable ordering � where

C

1

= 0 � 0 = D

1

;

C

2

= 0 � s(0) = D

2

;

C

3

[x℄ = s(s(x)) � s(s(x)) = D

3

[x℄:

Suh an ordering an easily found by standard tehniques for automated termi-

nation proofs. For example, the onstraints are satis�ed by the subterm ordering.

Thus, one an automatially determine that double(half(y)) = y is a onjeture

whose orretness prediate is exat. As 

double(half(y))=y

is only true for even

numbers, we have shown that indeed this onjeture is false for all odd ones.

In general, if r

1

= r

2

is an equation and C is a over set suh that the

above onditions are satis�ed by some ordering �, then we say that r

1

= r

2

maintains � under the over set C w.r.t. the underlying CS R. The reason is

that the relation � between r

1

and r

2

is indeed maintained when going from

an indution hypothesis to an indution onlusion. By using established (and

deidable lasses of) well-founded orderings � from the area of term rewrite sys-

tems one immediately obtains a syntatial suÆient ondition for maintenane

of orderings, whih an easily be heked automatially.

De�nition 6 (Maintenane of orderings). Let R be a onvergent suÆiently

omplete CS and let C = fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ; hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig be

a omplete well-founded over set (where 0 � n

i

� 1 for all 1 � i � m). Let

8



r

1

= r

2

be C-provable and let C

i

and D

i

be onstrutor ground ontexts where

r

1

[s

�

i

℄!

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

i

℄℄ and

r

2

[s

�

i

℄ = D

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

i

℄℄:

Let � be a monotoni ordering on onstrutor terms whih is stable under sub-

stitutions. We say r

1

= r

2

maintains � under the over set C w.r.t. R i�

C

i

[x

�

℄ � D

i

[x

�

℄ for all 1 � i � m.

The following lemma proves that for equations whih maintain an ordering,

eah indution onlusion indeed implies its indution hypothesis.

Lemma 7 (Equations where the reverse indution formulas hold). Let

R, C, � be as in Def. 6 and let r

1

= r

2

maintain � under C w.r.t. R. Then for

all 1 � i � m with n

i

= 1, R j=

ind

r

1

[s

�

i

℄ = r

2

[s

�

i

℄ ) r

1

[t

�

i;1

℄ = r

2

[t

�

i;1

℄.

Proof. We �rst show that for all onstrutor ground terms q

�

, we have

r

1

[q

�

℄#

R

� r

2

[q

�

℄: (13)

The proof of (13) is done by indution w.r.t. <

C

. Due to the ompleteness of

C, there must be a pair hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi 2 C suh that s

�

i

� = q

�

. If n

i

= 0,

then we have r

1

[q

�

℄#

R

= r

1

[s

�

i

�℄#

R

= C

i

� D

i

= r

2

[s

�

i

�℄ = r

2

[q

�

℄.

Otherwise, if n

i

= 1, we have r

1

[q

�

℄ #

R

= r

1

[s

�

i

�℄ #

R

= C

i

[r

1

[t

�

i;1

�℄ #

R

℄ �

C

i

[r

2

[t

�

i;1

�℄℄ by the indution hypothesis and monotoniity and stability of �.

Furthermore, C

i

[r

2

[t

�

i;1

�℄℄ � D

i

[r

2

[t

�

i;1

�℄℄ = r

2

[s

�

i

�℄ = r

2

[q

�

℄: So (13) is proved.

Now we an prove Lemma 7. Let � substitute all variables of s

�

i

by onstrutor

ground terms suh that R j=

ind

r

1

[s

�

i

�℄ = r

2

[s

�

i

�℄. We assume that R 6j=

ind

r

1

[t

�

i;1

�℄ = r

2

[t

�

i;1

�℄. By (13) we must have r

1

[t

�

i;1

�℄#

R

� r

2

[t

�

i;1

�℄ and sine the

R-normal forms of r

1

[t

�

i;1

�℄ and r

2

[t

�

i;1

�℄ are di�erent by assumption this in fat

implies r

1

[t

�

i;1

�℄#

R

� r

2

[t

�

i;1

�℄. Sine � is monotoni and stable we have

r

1

[s

�

i

�℄#

R

= C

i

[r

1

[t

�

i;1

�℄#

R

℄ � C

i

[r

2

[t

�

i;1

�℄℄ � D

i

[r

2

[t

�

i;1

�℄℄ = r

2

[s

�

i

�℄:

But this ontradits R j=

ind

r

1

[s

�

i

�℄ = r

2

[s

�

i

�℄ by the irreexivity of �. ut

Now we prove that if r

1

= r

2

maintains an ordering, then 

r

1

=r

2

is indeed exat.

Theorem 8 (Equations where the orretness prediate is exat). Let

R, C, � be as in Def. 6 and let r

1

= r

2

be an equation whih is radial and main-

tains some ordering � under C w.r.t. R. Moreover, let 

r

1

=r

2

be a orretness

prediate for r

1

= r

2

under C and let R also ontain the rules de�ning 

r

1

=r

2

.

Then R j=

ind

r

1

= r

2

, 

r

1

=r

2

(y

�

) = true.

4

4

A more general version of this theorem an be proved in whih a onjeture does

not have to be radial, and further, it is not neessary for the indution sheme of a

over set to have at most one indution hypothesis in every subgoal.
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Proof. Due to Thm. 5 (a) we only have to prove R j=

ind

r

1

[q

�

℄ = r

2

[q

�

℄ )



r

1

=r

2

(q

�

) = true for all onstrutor ground term tuples q

�

. Again, we use in-

dution on <

C

. Let R j=

ind

r

1

[q

�

℄ = r

2

[q

�

℄.

By the ompleteness of C, there exists some hs

�

; ft

�

1

; : : : ; t

�

n

gi 2 C and some

substitution � suh that q

�

= s

�

�. If n = 0, then we have the rule 

r

1

=r

2

(s

�

)!

true sine the rule 

r

1

=r

2

(s

�

)! false would only be generated ifR j=

ind

:r

1

[s

�

℄ =

r

2

[s

�

℄. This implies R j=

ind



r

1

=r

2

(q

�

) = true.

Otherwise, if n = 1, by Lemma 7 the truth of r

1

[s

�

i

�℄ = r

2

[s

�

i

�℄ implies

R j=

ind

r

1

[t

�

i;1

�℄ = r

2

[t

�

i;1

�℄. So R j=

ind



r

1

=r

2

(t

�

i;1

�) by the indution hypothesis.

By the rule 

r

1

=r

2

(s

�

)! 

r

1

=r

2

(t

�

1

), we obtain R j=

ind



r

1

=r

2

(s

�

i

�) = true. ut

Let us onsider the ounterexample of Thm. 5 (b) again. When trying to

prove half(y) = s(0), we obtain C

1

= 0, D

1

= s(0) and C

2

= 0, D

2

= s(0).

In the step ase, the left-hand side half(s(s(x))) evaluates to s(half(x)), i.e., we

have C

3

= s(�), whereas D

3

= �. There does not exist an ordering � suh that

C

i

[x

�

℄ � D

i

[x

�

℄ for all i, sine C

1

� D

1

would imply 0 � s(0) and C

3

[0℄ � D

3

[0℄

would imply s(0) � 0 whih ontradits the transitivity and irreexivity of �.

Thus, half(y) = s(0) does not maintain any ordering under C

half

and indeed, its

orretness prediate is not exat as shown in Thm. 5 (b).

The above analysis of exatness of orretness prediates an be useful for

�xing faulty onjetures, an objetive for whih orretness prediates were intro-

dued by Protzen [9℄. Sine an exat orretness prediate preisely haraterizes

all instantiations on whih the faulty onjeture is true, it an be used to �x the

faulty onjeture into the \strongest theorem" possible.

5 Conjetures where Indutive Validity is Deidable

Now we extend Thm. 2 from equations to arbitrary quanti�er-free formulas '. We

require that all equations r

1

= r

2

ourring in ' are radial and maintain some

ordering under the same over set C.

5

Then by Thm. 8 their orretness predi-

ates 

r

1

=r

2

are sound and exat. For example, half(y) = 0 is radial and main-

tains the superterm ordering under C

half

. We obtain the orretness prediate



half(y)=0

(0) ! true; 

half(y)=0

(s(0)) ! true; 

half(y)=0

(s(s(x))) ! false:

The last rule is due to the fat that the instantiated left-hand side half(s(s(x)))

evaluates to s(half(x)) and the replaement of the subterm half(x) aording to

the indution hypothesis yields the equation s(0) = 0 whih is unsatis�able.

5

Di�erent equations in a onjeture may have to be proved using di�erent over

sets; these over sets an often be ombined into a single over set to generate a

single indution sheme using merging and instantiation (f. [2, 7℄). Further, it is

not neessary for di�erent equations to maintain the same monotoni ordering. For

instane, in the running example of this setion two di�erent orderings are used in

a onjeture.
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Given a orretness prediate 

'

, we an generate 

:'

by replaing the result

true by false and the result false by true whereas right-hand sides of the form



'

(t

�

) are replaed by 

:'

(t

�

). In the above example this yields



:half(y)=0

(0) ! false; 

:half(y)=0

(s(0)) ! false; 

:half(y)=0

(s(s(x))) ! true:

This orretness prediate is sound and exat for the onjeture :half(y) = 0.

As stated before, exat orretness prediates an also be generated for non-

radial equations, as well as for equations whose validity is deided using indu-

tion shemes with multiple indution hypotheses. Thus, indutive validity of a

muh larger lass of literals (equations and negated equations) an be deided

using arbitrary well-founded omplete over sets without the requirement of rad-

iality. The restritions to radial equations and to indution shemes involving

at most one indution step in every subgoal are needed only for the deidability

of onjuntions and disjuntions of onjetures as disussed below.

Given 

'

1

and 

'

2

, a straightforward idea to obtain rules for 

'

1

^'

2

is as

follows: If we have the rule 

'

i

(s

�

) ! false for some i 2 f1; 2g, then we also

obtain the rule 

'

1

^'

2

(s

�

) ! false. If we have the rules 

'

i

(s

�

) ! true for

both i 2 f1; 2g, then we obtain 

'

1

^'

2

(s

�

) ! true. Finally, if we have the rule



'

i

(s

�

) ! 

'

i

(t

�

) and either 

'

j

(s

�

) ! 

'

j

(t

�

) or 

'

j

(s

�

) ! true (for i; j 2

f1; 2g, i 6= j), then we also obtain the rule 

'

1

^'

2

(s

�

)! 

'

1

^'

2

(t

�

). But as the

following example illustrates, suh a simplisti onstrution does not work.

Reall the rules (5) - (7) for 

double(half(y))=y

. We would obtain the following

orretness prediate for the formula ' : double(half(y)) = y ^ :half(y) = 0.



'

(0) ! false; 

'

(s(0)) ! false; 

'

(s(s(x))) ! 

'

(x):

However, this orretness prediate is not exat, sine it is always false,

whereas ' is true for all even numbers greater than 0. Even worse, the resulting

orretness prediate for the negated onjeture :' would not even be sound

(sine it would always be true whereas :' is false for 0 and all odd numbers).

The problem with the above onstrution of 

'

1

^'

2

is the ase where one

rule 

'

1

(s

�

) ! 

'

1

(t

�

) leads to a reursive all, but the other has the form



'

2

(s

�

)! true. If we use the rule 

'

1

^'

2

(s

�

)! 

'

1

^'

2

(t

�

), then we may lose the

exatness of the orretness prediate, sine it ould be that 

'

2

(t

�

)!

�

false.

To avoid this problem, we will now onstrut so-alled basi orretness pred-

iates (denoted b

r

1

=r

2

) where for reursive pairs hs

�

; ft

�

gi 2 C we always have

reursive rules b

r

1

=r

2

(s

�

)! b

r

1

=r

2

(t

�

), but never a rule with the result false.

Fortunately, if r

1

= r

2

is radial and maintains an ordering under C, one an

easily obtain a basi orretness prediate by simply extending the over set C in

an appropriate way. For that purpose we have to restrit ourselves to over sets

where for any two reursive pairs hs

�

i

; ft

�

i

gi; hs

�

j

; ft

�

j

gi 2 C with i 6= j, the terms

t

�

i

and s

�

j

do not unify (after renaming their variables). In other words, the argu-

ments t

�

i

in an indution hypothesis must not unify with the arguments s

�

j

in any

other indution onlusion. The over set C

half

= fh0;?i; hs(0);?i; hs(s(x)); fxgig

trivially satis�es this ondition, sine there is only one reursive pair. The moti-

vation for this restrition is that for all hains q

�

0

<

C

q

�

1

<

C

: : : <

C

q

�

n

, it ensures
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'

(q

�

n

) = : : : = 

'

(q

�

1

). So a hange in the value of 

'

an only our in the last

value q

�

0

, whih orresponds to a base ase (i.e., we might have 

'

(q

�

1

) 6= 

'

(q

�

0

)).

Our aim is to extend C to a over set C

0

where q

�

1

is already a base ase. Then

for all hains q

�

1

<

C

0

: : : <

C

0

q

�

n

we have 

'

(q

�

n

) = : : : = 

'

(q

�

1

) and thus, we an

indeed use the rule 

'

(s

�

0

)! 

'

(t

�

0

) for all reursive pairs hs

�

0

; ft

�

0

gi of C

0

.

The idea for the extension of over sets is simply to unify the terms t

�

i

of

the indution hypotheses with the (variable-renamed) terms s

�

j

in the left om-

ponents of all pairs from C. Let �

i;j

be the respetive mgu's. Then every pair

hs

�

i

; ft

�

i

gi is replaed by the new non-reursive pairs hs

�

i

�

i;j

;?i for j 6= i and the

instantiated reursive pair hs

�

i

�

i;i

; ft

�

i

�

i;i

gi. For C

half

we obtain

C

0

half

= fh0;?i; hs(0);?i; hs(s(0));?i; hs(s(s(0)));?i; hs(s(s(s(x)))); fs(s(x))gig:

De�nition 9 (Extending over sets). Let C = fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ;

hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig be a over set with 0 � n

i

� 1, suh that if n

i

= n

j

= 1

and i 6= j then there do not exist substitutions �

i;j

with t

�

i;1

�

i;j

= s

�

j

��

i;j

for a

variable renaming �. Then the extended over set C

0

is de�ned as follows:

C

0

=fhs

�

i

;?i jn

i

= 0g

[fhs

�

i

�

i;j

;?i jn

i

= 1; n

j

= 0; �

i;j

= mgu(t

�

i;1

; s

�

j

�) for a variable renaming �g

[fhs

�

i

�

i;i

; ft

�

i;1

�

i;i

gi jn

i

= 1; �

i;i

= mgu(t

�

i;1

; s

�

i

�) for a variable renaming �g:

Obviously, if C is omplete and well founded, then the extension C

0

is omplete

and well founded, too. Moreover, if an equation r

1

= r

2

is radial and maintains

an ordering under C, then it is also radial and maintains the same ordering under

the extension C

0

. In this ase we an onstrut the basi orretness prediate

by taking the extension C

0

and by using the results true and false in its non-

reursive ases and by using the rule b

r

1

=r

2

(s

�

) ! b

r

1

=r

2

(t

�

) for all reursive

pairs hs

�

; ft

�

gi. Note that only one suh extension step for over sets C is already

enough: If a orretness prediate b has a non-reursive rule b(s

�

) ! true or

b(s

�

)! false for a reursive pair hs

�

; ft

�

gi 2 C, then a single extension step of C

suÆes to get reursive rules b(s

�

0

)! b(t

�

0

) for all reursive pairs hs

�

0

; ft

�

0

gi of

the extended over set C

0

. In our example we obtain

b

half(y)=0

(0)! true; b

double(half(y))=y

(0)! true;

b

half(y)=0

(s(0))! true; b

double(half(y))=y

(s(0))! false;

b

half(y)=0

(s

2

(0))! false; b

double(half(y))=y

(s

2

(0))! true;

b

half(y)=0

(s

3

(0))! false; b

double(half(y))=y

(s

3

(0))! false;

b

half(y)=0

(s

4

(x))! b

half(y)=0

(s

2

(x)): b

double(half(y))=y

(s

4

(x))! b

double(half(y))=y

(s

2

(x)):

Now indeed basi orretness prediates for onjuntions are onstruted by

using the result false if one of the onjunts yields false and true if both onjunts

yield true. If one (and therefore, both) onjunts have a reursive all, then the

basi orretness prediate for the onjuntion has a reursive all, too. So if '

is again the formula double(half(y)) = y ^ :half(y) = 0, then we have

12



b

:half(y)=0

(0)! false; b

'

(0)! false;

b

:half(y)=0

(s(0))! false; b

'

(s(0))! false;

b

:half(y)=0

(s

2

(0))! true; b

'

(s

2

(0))! true;

b

:half(y)=0

(s

3

(0))! true; b

'

(s

3

(0))! false;

b

:half(y)=0

(s

4

(x))! b

:half(y)=0

(s

2

(x)): b

'

(s

4

(x))! b

'

(s

2

(x)):

De�nition 10 (Basi Corretness Prediates). Let R be a onvergent suf-

�iently omplete CS and let C be a omplete well-founded over set suh that

for all hs

�

; ft

�

1

; : : : ; t

�

n

gi 2 C, we have 0 � n � 1, and for two di�erent pairs

hs

�

; ft

�

gi; hs

�

0

; ft

�

0

gi 2 C, there does not exist a substitution � with t

�

� = s

�

0

��

for a variable renaming �. Let ' be a quanti�er-free formula suh that all equa-

tions in ' are radial and maintain some ordering under C w.r.t. R.

Let C

0

= fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ; hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig be the extension

of C and let r

1

[s

�

i

℄ !

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

i

℄℄ for a onstrutor ground ontext

C

i

. Then the basi orretness prediate b

'

under C is de�ned by the following

rules (analogous rules are used for formulas ontaining _, ), ,):

b

r

1

=r

2

(s

�

i

)!

8

<

:

true; if R j=

ind

C

i

= r

2

[s

�

i

℄ and n

i

= 0;

false; if R j=

ind

:C

i

= r

2

[s

�

i

℄ and n

i

= 0;

b

r

1

=r

2

(t

�

i;1

); if n

i

= 1;

b

:'

0

(s

�

i

)!

8

<

:

true; if we have the rule b

'

0

(s

�

i

)! false;

false; if we have the rule b

'

0

(s

�

i

)! true;

b

:'

0

(t

�

i;1

); if we have the rule b

'

0

(s

�

i

)! b

'

0

(t

�

i;1

);

b

'

1

^'

2

(s

�

i

)!

8

<

:

true; if b

'

1

(s

�

i

)! true and b

'

2

(s

�

i

)! true;

false; if b

'

1

(s

�

i

)! false or b

'

2

(s

�

i

)! false;

b

'

1

^'

2

(t

�

i;1

); if b

'

1

(s

�

i

)! b

'

1

(t

�

i;1

) and b

'

2

(s

�

i

)! b

'

2

(t

�

i;1

):

Now we an present the main theorem whih shows that the indutive validity

of arbitrary quanti�er-free onjetures is deidable, if all their equations are

radial and maintain an ordering under C. The deision proedure works by

onstruting the basi orretness prediate and by heking whether it always

yields true. The reason for the soundness of this approah is that basi orretness

prediates are indeed sound and exat.

Theorem 11 (Deidability of indutive validity for arbitrary onje-

tures). Let R, C, ' be as in Def. 10. Then indutive validity of ' is deidable

(by heking whether all non-reursive rules of b

'

have the right-hand side true,

where b

'

is the basi orretness prediate for ' under C).

Proof. We have to show that b

'

is sound and exat, i.e., R j=

ind

', b

'

(y

�

) =

true if R also ontains the rules de�ning b

'

. We use an indution w.r.t. the

struture of '. First let ' be an equation r

1

= r

2

.

Let q

�

be a tuple of onstrutor ground terms. We prove R j=

ind

r

1

[q

�

℄ =

r

2

[q

�

℄ , b

r

1

=r

2

(q

�

) = true by indution w.r.t. <

C

0

. Sine C is omplete and

well founded, obviously its extension C

0

is omplete and well founded, too. Due
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to the ompleteness of C

0

, there exists some hs

�

; ft

�

1

; : : : ; t

�

n

gi 2 C

0

and some

substitution � suh that q

�

= s

�

�. If n = 0, then the laim follows from radiality

of r

1

= r

2

under C and thus, under C

0

as well.

If n = 1 and R j=

ind

r

1

[s

�

�℄ = r

2

[s

�

�℄ then by Lemma 7 we also have

R j=

ind

r

1

[t

�

1

�℄ = r

2

[t

�

1

�℄ sine r

1

= r

2

maintains an ordering under C and thus,

under C

0

as well. The indution hypothesis yields R j=

ind

b

r

1

=r

2

(t

�

1

�) = true and

thus, R j=

ind

b

r

1

=r

2

(s

�

�) = true as well.

Finally, let n = 1 and R j=

ind

:r

1

[s

�

�℄ = r

2

[s

�

�℄. We have to show that this

implies R j=

ind

:r

1

[t

�

1

�℄ = r

2

[t

�

1

�℄. Then the indution hypothesis would yield

R j=

ind

b

r

1

=r

2

(t

�

1

�) = false and thus, R j=

ind

b

r

1

=r

2

(s

�

�) = false as well.

Note that s

�

= s

�

0

� and t

�

1

= t

�

1

0

� for some hs

�

0

; ft

�

1

0

gi 2 C by the de�nition

of extensions. Moreover, by the requirement that arguments t

�

1

0

of indution

hypotheses may not unify with arguments of other indution onlusions we

also have that t

�

1

= t

�

1

0

� = s

�

0

�� by the de�nition of extensions. Sine r

1

= r

2

maintains an ordering under C we have r

1

[s

�

0

℄ !

�

R

C

0

i

[r

1

[t

�

1

0

℄℄ for a onstrutor

ground ontext C

0

i

. As r

1

[s

�

℄ !

�

R

C

i

[r

1

[t

�

1

℄℄, this means that C

0

i

= C

i

or, in

other words, r

1

[s

�

0

℄ !

�

R

C

i

[r

1

[t

�

1

0

℄℄. Radiality of r

1

= r

2

under C implies that

R j=

ind

C

i

[r

2

[t

�

1

0

℄℄ = r

2

[s

�

0

℄ or R j=

ind

:C

i

[r

2

[t

�

1

0

℄℄ = r

2

[s

�

0

℄.

First assume R j=

ind

C

i

[r

2

[t

�

1

0

℄℄ = r

2

[s

�

0

℄. This implies R j=

ind

(C

i

[r

2

[t

�

1

0

℄℄ =

r

2

[s

�

0

℄)�, i.e., R j=

ind

C

i

[r

2

[t

�

1

℄℄ = r

2

[s

�

℄. If we had R 6j=

ind

:r

1

[t

�

1

�℄ = r

2

[t

�

1

�℄

(i.e., R j=

ind

(r

1

[t

�

1

℄ = r

2

[t

�

1

℄)�� for some �), then we would also have R j=

ind

(C

i

[r

1

[t

�

1

℄℄ = r

2

[s

�

℄)�� . Sine r

1

[s

�

℄!

�

R

C

i

[r

1

[t

�

1

℄℄, this implies R j=

ind

(r

1

[s

�

℄ =

r

2

[s

�

℄)�� in ontradition to the prerequisite R j=

ind

:r

1

[s

�

�℄ = r

2

[s

�

�℄.

Thus, R j=

ind

:C

i

[r

2

[t

�

1

0

℄℄ = r

2

[s

�

0

℄. Again assume R j=

ind

(r

1

[t

�

1

℄ = r

2

[t

�

1

℄)��

for some � . Sine t

�

1

�� = s

�

0

���� , we have R j=

ind

(r

1

[s

�

0

℄ = r

2

[s

�

0

℄)���� and

sine r

1

= r

2

maintains an ordering under C, this implies R j=

ind

(r

1

[t

�

1

0

℄ =

r

2

[t

�

1

0

℄)���� by Lemma 7. By the prerequisite, this yields R j=

ind

(:C

i

[r

1

[t

�

1

0

℄℄ =

r

2

[s

�

0

℄)���� . However sine r

1

[s

�

0

℄ !

�

R

C

i

[r

1

[t

�

1

0

℄℄, this is equivalent to R j=

ind

(:r

1

[s

�

0

℄ = r

2

[s

�

0

℄)���� , whih ontradits the assumption (as t

�

1

�� = s

�

0

����).

For formulas whih are no equations, the laim immediately follows from the

(outer) indution hypothesis. ut

Note that the onditions in Thm. 11 (i.e., radiality and maintenane of or-

derings) an be heked automatially (by using orderings from the area of term

rewrite systems whih are amenable to automation). The set of all onjetures '

satisfying these onditions forms a lass where indutive validity is deidable. To

deide indutive validity of ' one simply onstruts the rules for the basi or-

retness prediate b

'

(whih an be done automatially) and one heks whether

there is no rule of the form b

'

(: : :)! false.

So for a formula like double(y) = y ) y = 0, one �rst heks whether

this formula belongs to the lass where indutive validity is deidable. For that

purpose, one examines whether the onjeture ontains a subterm f(y

�

) for

pairwise disjoint variables y

�

and an algorithm f and then one heks whether

all equations in the onjeture are radial and maintain an ordering under C

f

(using the indution variables y

�

).
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In our example, the equations double(y) = y and y = 0 indeed are both

radial and they maintain the superterm ordering under C

double

. So indutive

validity of this onjeture is deidable. The deision proedure onstruts the

basi orretness prediate

b

double(y)=y)y=0

(0)! true;

b

double(y)=y)y=0

(s(0))! true;

b

double(y)=y)y=0

(s(s(x)))! b

double(y)=y)y=0

(s(x));

and heks whether all non-reursive rules of b

double(y)=y)y=0

have true on their

right-hand side, whih is obviously the ase. Thus, the formula is valid.

Note that in this way we an deide the indutive validity of onjetures

whih were up to now hard problems for indutive theorem provers. In fat,

virtually all existing indutive provers fail in verifying double(y) = y ) y = 0.

6

The reason is that the indution onlusion double(s(x)) = s(x)) s(x) = 0 an

be evaluated to :s(double(x)) = x, but there is no way to apply the indution

hypothesis double(x) = x) x = 0 and thus, the proof of the indution step ase

does not sueed. On the other hand, by our deision proedure, validity of suh

onjetures an be shown without using any indutive theorem prover at all.

6 Conlusion

We presented a lass of onjetures where indutive validity is deidable (by a

very simple deision proedure). This allows an integration of indutive reasoning

within fully automated tools like model hekers or ompilers. First, we extended

the results of [8℄ to a larger lass of equations and subsequently, we extended

the approah further to arbitrary quanti�er-free onjetures. The main idea is

to build orretness prediates for all equations ourring in a onjeture and we

gave a riterion for heking whether these orretness prediates really desribe

the exat set of objets where the equation is valid. We showed how to onstrut

(basi) orretness prediates for non-atomi formulas and by heking their

de�ning rules, the indutive validity of suh formulas an easily be deided.

We have used orretness prediates 

r

1

=r

2

to desribe the instanes where

an equation r

1

= r

2

is valid. However, in order to ombine the orretness pred-

iates 

r

1

=r

2

and 

r

0

1

=r

0

2

of two di�erent equations (e.g., when building their

onjuntion), we have to restrit ourselves to basi orretness prediates and

moreover, 

r

1

=r

2

and 

r

0

1

=r

0

2

must have been built w.r.t. \ompatible" over sets.

In order to avoid these diÆulties, an interesting alternative approah is to rep-

resent the set of instanes where equations are valid by tree automata [4℄ instead

of orretness prediates. As long as these sets of instanes are regular, this

indeed results in a very elegant method for deiding indutive validity (sine

regular languages are e�etively losed under omplement and intersetion and

sine their emptiness is deidable). However, in general there are many equations

where the set of instanes whih makes them valid is not regular. For example,

6

This problem was pointed out to us by U. K�uhler.
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the equation plus(minus(x; y);minus(y; x)) = 0 is valid i� x and y are equal. A

orretness prediate desribing this set an easily be onstruted automatially,

whereas this set is not regular and therefore annot be desribed by (ordinary)

tree automata. This indiates that the use of tree automata may be too restri-

tive ompared to the use of (basi) orretness prediates. However, we intend to

study the possibilities of using automata for deiding indutive validity further

in future work.

In this paper, we foused on integrating indution shemes with a deision

proedure for the quanti�er-free theory of free onstrutors to obtain an exten-

sion of the deision proedure to quanti�er-free formulas whose proofs (or dis-

proofs) may require the use of indution. Kapur and Subramaniam [8℄ disussed

an approah for integrating indution shemes into deidable quanti�er-free the-

ories inluding Presburger arithmeti, and they gave a deision proedure for

indutive validity of a large lass of equations involving T -based funtion sym-

bols, where T is a deidable quanti�er-free theory. In future work, we intend to

generalize the tehniques developed in this paper from onstrutor systems to

T -based systems (inluding Presburger arithmeti) as well.

Referenes

1. F. Baader & T. Nipkow, Term Rewriting and All That, Cambridge Univ. Pr., 1998.

2. R. S. Boyer and J Moore, A Computational Logi, Aademi Press, 1979.

3. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, & A. Smaill, Rippling: A

Heuristi for Guiding Indutive Proofs, Arti�ial Intelligene, 62:185-253, 1993.

4. H. Comon, M. Dauhet, R. Gilleron, F. Jaquemard, D. Lugiez, S. Ti-

son, & M. Tommasi. Tree Automata and Appliations. Draft, available from

http://www.grappa.univ-lille3.fr/tata/, 1999.

5. N. Dershowitz, Termination of Rewriting, J. Symb. Comp., 3:69{116, 1987.

6. M. Franova & Y. Kodrato�, Prediate Synthesis from Formal Spei�ations, in

Pro. ECAI 92, 1992.

7. D. Kapur & M. Subramaniam, New Uses of Linear Arithmeti in Automated The-

orem Proving by Indution, Journal of Automated Reasoning, 16:39{78, 1996.

8. D. Kapur & M. Subramaniam, Extending Deision Proedures with Indution

Shemes, in Pro. CADE-17, LNAI 1831, pages 324-345, 2000.

9. M. Protzen, Pathing Faulty Conjetures, Pro. CADE-13, LNAI 1104, 1996.

10. J. Steinbah, Simpli�ation orderings: History of results, Fundamenta Informati-

ae, 24:47{87, 1995.

11. H. Zhang, D. Kapur, & M. S. Krishnamoorthy, A Mehanizable Indution Priniple

for Equational Spei�ations, in Pro. CADE-9, LNCS 310, 1988.

16


