
Proving Non-Looping Non-Termination
Automatically?

Fabian Emmes, Tim Enger, and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. We introduce a technique to prove non-termination of term
rewrite systems automatically. Our technique improves over previous ap-
proaches substantially, as it can also detect non-looping non-termination.

1 Introduction

Approaches to prove termination of term rewrite systems (TRSs) have been
studied for decades and there exist several techniques to prove termination of
programs via a translation to TRSs. In contrast, techniques to disprove termina-
tion of TRSs have received much less attention, although this is highly relevant
to detect bugs during program development. To prove non-termination of a TRS,
one has to provide a finite description of an infinite rewrite sequence.

The most common way for this is to find a loop, i.e., a finite rewrite sequence
s →+

R C[sµ] for some term s, context C, and substitution µ. Indeed, any loop
gives rise to an infinite rewrite sequence s →n

R C[sµ] →n
R C[Cµ[sµ2]] →n

R . . .
for some n > 0. While this is a very intuitive way to prove non-termination, it
cannot capture non-periodic infinite rewrite sequences.

while (gt(x,y)){
x = dbl(x);

y = y + 1; }

For instance, consider the imperative program frag-
ment on the side which does not terminate if x > y and
x > 0. However, if gt (greater than) and dbl (double) are
user-defined, then the number of evaluation steps needed for gt and dbl increases
in each loop iteration. Hence, this is a non-periodic form of non-termination.

The following TRSR corresponds to the imperative program fragment above.

f(tt, x, y)→ f(gt(x, y), dbl(x), s(y)) dbl(x)→ times(s(s(0)), x)
gt(s(x), 0)→ tt times(x, 0)→ 0

gt(0, y)→ ff times(x, s(y))→ plus(times(x, y), x)
gt(s(x), s(y))→ gt(x, y) plus(x, 0)→ x

plus(x, s(y))→ plus(s(x), y)

This TRS is non-terminating, but not looping. For n > m, we have

f(tt, sn(0), sm(0)) →R f(gt(sn(0), sm(0)), dbl(sn(0)), sm+1(0)) →m+1
R

f(tt, dbl(sn(0)), sm+1(0)) →R f(tt, times(s(s(0)), sn(0)), sm+1(0)) →4·n
R

f(tt, s2·n(times(s(s(0)), 0)), sm+1(0)) →R f(tt, s2·n(0), sm+1(0)) →R ...

Since the number of steps required to evaluate gt and dbl increases in every

? Supported by the DFG grant GI 274/5-3

iteration, this is a non-periodic sequence that cannot be represented as a loop.
While interesting classes of non-looping TRSs were identified in earlier papers

(e.g., [3, 14]), up to now virtually all methods to prove non-termination of TRSs
automatically were restricted to loops (e.g., [4, 5, 11, 13, 15, 16]).1 A notable ex-
ception is a technique and tool for non-termination of non-looping string rewrite
systems (SRSs) in [10]. To represent rewrite sequences, this approach uses rules
between string patterns of the form u vn w. Here, u, v, w are strings and n can be
instantiated by any natural number. We will extend this idea in order to prove
non-termination of (possibly non-looping) term rewrite systems automatically.

To detect loops, one can start with a rule and repeatedly narrow it using
other rules, until it has the form of a loop. To handle non-looping TRSs as
well, we generate pattern rules which represent a whole set of rewrite sequences
and also allow narrowing with pattern rules. In this way, one can create more
and more pattern rules until one obtains a pattern rule that is obviously non-
terminating. In Sect. 2, we define pattern rules formally and introduce a set of
inference rules to derive pattern rules from a TRS automatically. Sect. 2 also
contains a criterion to detect pattern rules that are obviously non-terminating.
In Sect. 3 we present a strategy for the application of our inference rules. We
implemented our contributions in the automated termination tool AProVE [6]
and in Sect. 4, we present an experimental evaluation of our technique.

2 Pattern Rules

To represent rewrite sequences, we extend the idea of [10] from SRSs to TRSs
and define pattern terms and pattern rules which are parameterized over N.

A pattern term describes a set of terms.2 Formally, a pattern term is a map-
ping from natural numbers to terms which are constructed from a base term,
a pumping substitution that is applied multiple times to the base term, and a
closing substitution that is applied once to “close” the term. For example, to
represent gt(s2(x), s(0)), gt(s3(x), s2(0)), gt(s4(x), s3(0)), . . . , we use the pattern
term n 7→ gt(s(x), s(y)) [x/s(x), y/s(y)]n [x/s(x), y/0], where gt(s(x), s(y)) is the
base term, [x/s(x), y/s(y)] is the pumping substitution, and [x/s(x), y/0] is the

closing substitution. For n = 0 this pattern term evaluates to gt(s2(x), s(0)), for

n = 1 to gt(s3(x), s2(0)), etc. In the following, T (Σ,V) denotes the set of terms
over the underlying signature Σ and the infinite set of variables V.

Definition 1 (Pattern Terms and Rules). A function N → T (Σ,V) is a
pattern term if it is a mapping n 7→ tσnµ where t ∈ T (Σ,V) and σ, µ are

1 Similarly, most existing automated approaches for non-termination of programs also
just detect loops. For Java Bytecode, we recently presented an approach that can
also prove non-periodic non-termination, provided that there are no sub-loops and
that non-termination is due to operations on integers [2]. However, this approach is
not suitable for TRSs where one treats terms instead of integers and where sub-loops
(i.e., recursively defined auxiliary functions like gt and times) are common.

2 In contrast to tree automata, pattern terms can also describe non-regular sets.

substitutions. For readability, we omit “n 7→” if it is clear that we refer to a
pattern term. For a pattern term p = tσnµ, its base term is base(p) = t, its
pumping substitution is σ, and its closing substitution is µ. We also say that σ, µ
are its pattern substitutions. Its domain variables are dv(p) = dom(σ)∪dom(µ).

If p, q are pattern terms, then p ↪→ q is a pattern rule. A pattern rule p ↪→ q
is correct w.r.t. a TRS R if p(n)→+

R q(n) holds for all n ∈ N.

As an example, consider the pattern rule

gt(s(x), s(y)) [x/s(x), y/s(y)]n [x/s(x), y/0] ↪→ tt ∅n ∅, (1)

where ∅ denotes the empty (identical) substitution. This pattern rule is correct

w.r.t. the TRS R in Sect. 1, since gt(sn+2
(x), sn+1

(0))→+
R tt holds for all n ∈ N.

Thus, a pattern rule describes a set of rewrite sequences of arbitrary length.
In the following, we present 9 inference rules to derive correct pattern rules

from a TRS automatically. As soon as one finds a correct pattern rule that is
obviously non-terminating, one has proved non-termination of the original TRS.

The inference rules have the form p1↪→q1 ... pk↪→qk
p↪→q . In Thm. 7 we will prove

their soundness, i.e., if all the pattern rules p1 ↪→ q1, . . . , pk ↪→ qk are correct
w.r.t. a TRS R, then the pattern rule p ↪→ q is also correct w.r.t. R.

The inference rules in Sect. 2.1 create initial pattern rules from a TRS. Sect.
2.2 shows how to modify the pattern terms in a pattern rule without changing
the represented set of terms. Sect. 2.3 introduces inference rules in order to
instantiate pattern rules and to combine them by narrowing. Finally, Sect. 2.4
shows how to detect whether a pattern rule directly leads to non-termination.

2.1 Creating Pattern Rules

(I) Pattern Rule from TRS

`∅n∅ ↪→ r∅n∅
if `→ r ∈ R

The first inference rule converts rules from
the TRS to equivalent pattern rules by simply
using the identity ∅ as pattern substitution.
Since a pattern term `∅n∅ just represents
the (ordinary) term `, this inference rule is clearly sound. So by applying (I) to
the recursive gt-rule from Sect. 1, we obtain the pattern rule

gt(s(x), s(y)) ∅n ∅ ↪→ gt(x, y) ∅n ∅. (2)

(II) Pattern Creation 1

s∅n∅ ↪→ t∅n∅
s σn∅ ↪→ t θn∅

if sθ = tσ, and
θ commutes with σ

The next inference rule generates
pattern rules that represent the re-
peated application of a rewrite se-
quence at the same position. Here,
we say that two substitutions θ and σ commute iff xθσ = xσθ holds for all
variables x ∈ V. When applying (II) to Rule (2), we have s = gt(s(x), s(y)) and
t = gt(x, y). By choosing θ = ∅ and σ = [x/s(x), y/s(y)], we obtain sθ = tσ.
Moreover since θ is the identical substitution, θ and σ obviously commute. Hence,
by (II) we obtain the following new pattern rule which describes how (2) can
be applied repeatedly on terms of the form gt(sn(x), sn(y)).

gt(s(x), s(y)) [x/s(x), y/s(y)]n ∅ ↪→ gt(x, y) ∅n ∅ (3)

To see why commutation of θ and σ is needed for the soundness of Rule
(II), consider s = f(x, a) and t = f(b, x) for a TRS R′ = {s → t}. Then for
θ = [x/b] and σ = [x/a] we have sθ = tσ. But θ and σ do not commute and
sσ = f(a, a) 6→+

R′ f(b, b) = tθ. Thus, s σn∅ ↪→ t θn∅ is not correct w.r.t. R′.
To automate the application of inference rule (II), one has to find substitu-

tions θ and σ that satisfy the conditions for its applicability. In our implemen-
tation, we use a sufficient criterion which proved useful in our experiments: We
first apply unification to find the most general substitutions θ and σ such that
sθ = tσ. Then we check whether θ and σ commute. More precisely, to find θ
and σ with sθ = tσ, we use a variable renaming ρ which renames all variables in
V(s) to fresh ones. If there exists τ = mgu(sρ, t), then we set θ = (ρ τ ρ−1)|V(s)
and σ = (τρ−1)|V(t). Now we have sθ = sρ τ ρ−1 = t τ ρ−1 = tσ and thus,
it remains to check whether θ commutes with σ. So in our example, we use
a renaming ρ with xρ = x′ and yρ = y′. The mgu of sρ = gt(s(x′), s(y′)) and
t = gt(x, y) is τ = [x/s(x′), y/s(y′)]. Hence, we obtain xθ = xρ τ ρ−1 = x, yθ = y,
xσ = x τ ρ−1 = s(x), and yσ = y τ ρ−1 = s(y). Here, θ and σ obviously commute.

(III) Pattern Creation 2

s∅n∅ ↪→ t∅n∅
s σn∅ ↪→ t[z]π (σ ∪ [z/t[z]π])n [z/t|π]

if π ∈ Pos(t),
s = t|π σ,
and z ∈ V is fresh

The next infer-
ence rule generates
pattern rules to re-
present rewrite se-
quences where the
context around the redex increases in each iteration. For instance, the times-rule
of Sect. 1 can be applied repeatedly to rewrite terms of the form times(x, sn(y)) to
plus(plus(. . . plus(times(x, y), x), . . . , x), x). But since these rewrite steps (except
for the first) occur below the root, instead of (II) we need Rule (III). As usual,
t[z]π results from replacing the subterm at position π by z. Moreover, σ∪[z/t[z]π]
is the extension of the substitution σ which maps the fresh variable z to t[z]π.

Rule (III) can easily be automated, since one only has to check whether some
subterm3 of t matches s. For example, regard the pattern rule times(x, s(y))∅n∅
↪→ plus(times(x, y), x)∅n∅ resulting from the times-rule. Here, s = times(x, s(y))
and t = plus(times(x, y), x). For the subterm t|π = times(x, y) at position π = 1
we have s = t|π σ with σ = [y/s(y)]. Hence, by (III) we obtain the pattern rule

times(x, s(y)) [y/s(y)]n∅ ↪→ plus(z, x) [y/s(y), z/plus(z, x)]n [z/times(x, y)]. (4)

Note that if π is the root position, then inference rule (III) is the special
case of inference rule (II) where θ is the identity. In this case, both inference
rules create a pattern rule equivalent to s σn∅ ↪→ t∅n∅.

2.2 Using Equivalence of Pattern Terms

As mentioned in the introduction, a common technique to prove that a TRS is
looping is to construct loops via repeated narrowing operations. Narrowing is
similar to rewriting, but uses unification instead of matching.

3 In the automation, we restrict Rule (III) to non-variable subterms t|π in order to
obtain pattern rules with “small” terms in the ranges of the pumping substitutions.

For instance, to narrow the right-hand side of the recursive rule gt(s(x), s(y))
→ gt(x, y) with the rule gt(s(x), 0) → tt, one could first instantiate the re-
cursive rule using the substitution [x/s(x), y/0], which yields gt(s(s(x)), s(0))→
gt(s(x), 0). Now its right-hand side can be rewritten by the non-recursive gt-rule,
which results in the new rule gt(s(s(x)), s(0))→ tt.

Our goal is to extend this concept to pattern rules. However, the problem
is that the pattern terms in the rules may have different pattern substitutions.
Thus, to narrow the right-hand side of a pattern rule p ↪→ q with another pattern
rule p′ ↪→ q′, we first transform the rules such that the pattern substitutions in
all four terms p, q, p′, q′ are the same. Then p ↪→ q and p′ ↪→ q′ have the form
s σn µ ↪→ t σn µ and uσn µ ↪→ v σn µ, respectively (i.e., the same pattern
substitutions σ and µ are used on both sides of both pattern rules). To achieve
that, it is often useful to modify the pattern terms in the rules appropriately
without changing the set of terms represented by the pattern terms.

Definition 2 (Equivalent Pattern Terms). We say that two pattern terms
p and p′ are equivalent iff p(n) = p′(n) holds for all n ∈ N.

(IV) Equivalence

p ↪→ q

p′ ↪→ q′
if p is equivalent to p′

and q is equivalent to q′

Based on Def. 2, we immediately obtain in-
ference rule (IV) that allows us to replace pat-
tern terms by equivalent other pattern terms.
To apply rule (IV) automatically, in Lemmas
4, 6, and 9 we will present three criteria for equivalence of pattern terms.

The first criterion allows us to rename the domain variables in the pattern
substitutions. For example, in the pattern term gt(s(x), s(y)) [x/s(x), y/s(y)]n ∅
one can rename its domain variables x and y to x′ and y′. This results in the
pattern term gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y] which is equivalent,
since for every n, both pattern terms represent gt(sn(x), sn(y)).

Definition 3 (Domain Renamings). For any substitution σ, let range(σ) =
{xσ | x ∈ dom(σ)} and V(σ) = dom(σ) ∪ V(range(σ)). Let ρ be a variable
renaming on dom(ρ), i.e., range(ρ) ⊆ V and ρ is injective on dom(ρ). This
allows us to define ρ−1 as ρ−1(y) = x if there is some x ∈ dom(ρ) with xρ = y
and as ρ−1(y) = y, otherwise. Note that xρρ−1 = x holds for all x ∈ dom(ρ) and
also for all x /∈ range(ρ). For any pattern term p = tσnµ, we define its variables
as V(p) = V(t) ∪ V(σ) ∪ V(µ). We say that a variable renaming ρ is a domain
renaming for a pattern term p if dom(ρ) ⊆ dv(p) and range(ρ) ∩ V(p) = ∅. For
a pattern term p = tσnµ, we define the result of renaming p by ρ as pρ = t′ σ′n µ′

where t′ = tρ, σ′ = [xρ/sρ | x/s ∈ σ], and µ′ = [xρ/s | x/s ∈ µ] ρ−1.

To illustrate Def. 3, consider ρ = [x/x′, y/y′]. This is indeed a variable re-
naming on dom(ρ) = {x, y} and we have ρ−1 = [x′/x, y′/y]. Moreover, we regard
the pattern term p = gt(s(x), s(y)) [x/s(x), y/s(y)]n ∅. Thus, its base term is t =
gt(s(x), s(y)), and it has the pattern substitutions σ = [x/s(x), y/s(y)] and µ =
∅. Hence, ρ is a domain renaming for p since dom(ρ) ⊆ dv(p) = {x, y} and since
range(ρ) = {x′, y′} is disjoint from V(p) = V(t)∪V(σ)∪V(µ) = {x, y}. Thus, the
result of renaming p by ρ is pρ = gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y].

Lemma 4 gives the first criterion for obtaining equivalent pattern terms (in order
to apply inference rule (IV) automatically).

Lemma 4 (Equivalence by Domain Renaming). Let p be a pattern term
and let ρ be a domain renaming for p. Then p is equivalent to pρ.

Proof. Let p = t σn µ, σ′ = [xρ/sρ | x/s ∈ σ], and µ′ = [xρ/s | x/s ∈ µ] ρ−1.
We first show the following conjecture:

xσρ = x ρσ′ for all x ∈ V(p) (5)

For (5), let x ∈ V(p). If x ∈ dom(σ), then x ρσ′ = xσ ρ by the definition of σ′.
If x /∈ dom(σ), then xρ /∈ dom(σ′). Thus, x ρσ′ = xρ = xσ ρ, which proves (5).

Moreover, we show the following conjecture:

xµ = x ρµ′ for all x ∈ V(p) (6)

For (6), let x ∈ V(p). If x ∈ dom(µ), then x ρµ′ = xµ ρ−1 by the definition of µ′.
Since V(xµ) ⊆ V(p), we have range(ρ)∩V(xµ) = ∅. Thus, x ρµ′ = xµ ρ−1 = xµ.

Otherwise, if x /∈ dom(µ), then xµ = x and x ρµ′ = x ρ ρ−1 = x. This
concludes the proof of Conjecture (6).

Now we show the lemma. We have p(n) = t σn µ. By (6), this is equal to
t σn ρµ′. Using Conjecture (5) n times, we get t σn ρµ′ = t ρ σ′

n
µ′ = pρ(n). ut

Thus, we can apply inference rule (IV) (using Lemma 4 with the domain
renaming ρ = [x/x′, y/y′]) to obtain the following pattern rule from Rule (3).

gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y] ↪→ gt(x, y) ∅n ∅ (7)

Recall that to perform narrowing of pattern rules, we would like to have the
same pattern substitutions on both sides of the rule. So the above domain rena-
ming has the advantage that the variables x′, y′ used for “pumping” are now dif-
ferent from the variables x, y occurring in the final term. This allows us to add
the pattern substitutions also on the right-hand side of the rule, since they only
concern variables x′, y′ that are not relevant in the right-hand side up to now.

Definition 5 (Relevant Variables). For a pattern term p = tσnµ, we define
its relevant variables as rv(p) = V({t, tσ, tσ2, . . .}), i.e., rv(p) is the smallest set
such that V(t) ⊆ rv(p) and such that V(xσ) ⊆ rv(p) holds for all x ∈ rv(p).

So the relevant variables of the pattern term gt(x, y) ∅n ∅ are x and y. In
contrast, a pattern term gt(x, y) [x/s(x′), y′/s(y′)]n ∅ would have the relevant
variables x, x′, and y. Lemma 6 states that one can modify pattern substitutions
as long as this only concerns variables that are not relevant in the pattern term.

Lemma 6 (Equivalence by Irrelevant Pattern Substitutions). Let p =
t σn µ be a pattern term and let σ′ and µ′ be substitutions such that xσ = xσ′

and xµ = xµ′ holds for all x ∈ rv(p). Then p is equivalent to t σ′n µ′.

Proof. We prove tσn = tσ′n by induction on n. For n = 0 this is trivial. For n >
0, the induction hypothesis implies tσn−1 = tσ′n−1, and since V(tσn−1) ⊆ rv(p),
we also obtain tσn = tσ′n. Finally, V(tσn) ⊆ rv(p) implies tσnµ = tσ′nµ′. ut

Hence, since x′, y′ are not relevant in the pattern term gt(x, y) ∅n ∅, we
can add the pattern substitutions from the left-hand side of Rule (7) also on its
right-hand side. Thus, by applying (IV) (using Lemma 6) to (7), we obtain

gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y] (8)

↪→ gt(x, y) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y].

Recall that our goal was to narrow the recursive gt-rule (resp. (8)) with the
non-recursive gt-rule gt(s(x), 0) → tt. As a first step towards this goal, we now
made the pattern substitutions on both sides of (8) equal.

2.3 Modifying Pattern Rules by Instantiation and Narrowing

(V) Instantiation

s σns µs ↪→ t σnt µt

(sρ) (σs)
n
ρ (µs)ρ ↪→ (tρ) (σt)

n
ρ (µt)ρ

if V(ρ) ∩ (dom(σs) ∪ dom(µs)
∪dom(σt) ∪ dom(µt)) = ∅

For the de-
sired narrow-
ing, we have
to instantiate
the recursive pattern rule (8) such that the base term of its right-hand side con-
tains the left-hand side of the rule gt(s(x), 0)→ tt. To this end, we use inference
rule (V). For any two substitutions σ and ρ, let σρ result from the composition
of σ and ρ, but restricted to the domain of σ. Thus, σρ = [x/sρ | x/s ∈ σ].

Hence, we now apply inference rule (V) on the pattern rule (8) using ρ =
[x/s(x), y/0]. The domain variables of (8) are x′ and y′. Thus, due to the domain
renaming in Sect. 2.2 they are disjoint from V(ρ) = {x, y}. In the resulting pat-
tern rule, the base terms are instantiated with ρ and the new pattern substitu-
tions result from composing the previous pattern substitutions with ρ (restricted
to the domains of the previous substitutions). So for σ = [x′/s(x′), y′/s(y′)] we
have σρ = σ and for µ = [x′/x, y′/y], we obtain µρ = [x′/s(x), y′/0]. This yields

gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (9)

↪→ gt(s(x), 0) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0]

For the narrowing, the original rule gt(s(x), 0) → tt of the TRS can be
transformed to a pattern rule gt(s(x), 0) ∅n ∅ ↪→ tt ∅n ∅ by (I). Afterwards,
one can add the pattern substitutions of (9) by Rule (IV) using Lemma 6, since
x′, y′ are not relevant in the pattern rule:

gt(s(x), 0) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (10)

↪→ tt [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0]

Now all pattern terms in (9) and (10) have the same pattern substitutions.

(VI) Narrowing

s σn µ ↪→ t σn µ uσn µ ↪→ v σn µ

s σn µ ↪→ t[v]π σ
n µ

if t|π = u

Hence, we can apply the
narrowing rule (VI) which
rewrites the right-hand side
of one pattern rule with an-
other pattern rule, if the pattern substitutions of all pattern terms coincide.

In our example, s σn µ ↪→ t σn µ is the pattern rule (9) and uσn µ ↪→ v σn µ
is the pattern rule (10). Thus, we have t = gt(s(x), 0) = u and we obtain the
following new pattern rule (which corresponds to Rule (1) in the introduction).

gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (11)

↪→ tt [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0]

In general, to make the narrowing rule (VI) applicable for two rules s σns µs ↪→
t σnt µt and uσnu µu ↪→ v σnv µv, one should first instantiate the base terms t, u
such that t contains u. Then one should try to make the substitutions σs, σt, σu, σv
equal and finally, one should try to make µs, µt, µu, µv identical.

To illustrate that, let us try to narrow the pattern rule f(tt, x, y)∅n∅ ↪→
f(gt(x, y), dbl(x), s(y))∅n∅ resulting from the f-rule with the above pattern rule
(11) for gt. To let the base term gt(s(x′), s(y′)) of (11)’s left-hand side occur in the
right-hand side of f’s pattern rule, we instantiate the latter with the substitution
[x/s(x′), y/s(y′)]. Thus, inference rule (V) yields

f(tt, s(x′), s(y′))∅n∅ ↪→ f(gt(s(x′), s(y′)), dbl(s(x′)), s
2
(y′))∅n∅. (12)

(VII) Instantiating σ

s σns µs ↪→ t σnt µt

s (σsρ)n µs ↪→ t (σtρ)n µt

if ρ commutes with
σs, µs, σt, and µt

Now we try to replace
the current pumping sub-
stitution σ of Rule (12) by
the one of (11). To this end,
we use inference rule (VII) which allows us to instantiate pumping substitutions.

So in our example, we apply inference rule (VII) to the pattern rule (12)
using the substitution ρ = [x′/s(x′), y′/s(y′)]. Since the pattern substitutions of
(12) are just ∅, ρ trivially commutes with them. Hence, we obtain

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n ∅ (13)

↪→ f(gt(s(x′), s(y′)), dbl(s(x′)), s
2
(y′)) [x′/s(x′), y′/s(y′)]n ∅.

Note that (VII) differs from the previous instantiation rule (V) which does
not add new variables to the domains of the pattern substitutions (i.e., with (V)
we would not have been able to modify the pattern substitutions of (12)).

(VIII) Instantiating µ

s σns µs ↪→ t σnt µt

s σns (µsρ) ↪→ t σnt (µtρ)

To make also the closing substitutions of the f-
rule (13) and the gt-rule (11) identical, we use in-
ference rule (VIII) which allows arbitrary instanti-
ations of pattern rules (i.e., in contrast to (V) and
(VII), here we impose no conditions on ρ).

Applying inference rule (VIII) to Rule (13) with ρ = [x′/s(x), y′/0] yields

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (14)

↪→ f(gt(s(x′), s(y′)), dbl(s(x′)), s
2
(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0].

By (VI), now one can narrow (14) with the gt-rule (11) which yields

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (15)

↪→ f(tt, dbl(s(x′)), s
2
(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0].

So to narrow a pattern rule with another one, we require identical pattern
substitutions. Moreover, we only allow narrowing of the base term (i.e., the

(IX) Rewriting

p ↪→ t σn µ

p ↪→ t′ σ′n µ′
if t →∗R t′, ∀x ∈ V : xσ →∗R xσ′,
and ∀x ∈ V : xµ→∗R xµ′

narrowing rule (VI) does not
modify terms in the ranges of
the pattern substitutions). In
contrast, rewriting with ordi-
nary rules is also allowed in the pattern substitutions and moreover, here the two
pattern terms in the pattern rule may also have different pattern substitutions.

While no rewriting is possible for the terms in the ranges of the pattern
substitutions of (15), one can rewrite the base term using the dbl-rule:

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (16)

↪→ f(tt, times(s2(0), s(x′)), s
2
(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0]

To continue our example further, we now want to narrow the above f-rule (16)
with the pattern rule (4) for times. To make the narrowing rule (VI) applicable,
the base term of (4)’s left-hand side must occur in (16) and all four pattern terms
in the rules must have the same pattern substitutions. Thus, one first has to
transform the pattern rules by the equivalence rule (IV) (using Lemmas 4 and
6) and instantiations (using (V), (VII), and (VIII)). After the narrowing, one
can simplify the resulting pattern rule by rewriting (Rule (IX)) and by removing
irrelevant parts of substitutions (Rule (IV) using Lemma 6), which yields

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (17)

↪→ f(tt, s2(z), s2(y′)) [y′/s(y′), z/s2(z)]n [y′/0, z/times(s2(0), s(x))].

The following theorem shows that all our inference rules are sound.

Theorem 7 (Soundness of Inference Rules). For all inference rules (I) -
(IX) of the form p1↪→q1 ... pk↪→qk

p↪→q , if all pattern rules p1 ↪→ q1, . . . , pk ↪→ qk
are correct w.r.t. a TRS R, then the pattern rule p ↪→ q is also correct w.r.t. R.

Proof. Soundness of Rule (I) is trivial. Soundness of Rule (II) is proved by
induction on n. For n = 0, we have s σ0 = s→+

R t = t θ0, since s∅n∅ ↪→ t∅n∅
is correct w.r.t. R. For n > 0, we obtain s σn →+

R t θn−1 σ by the induction
hypothesis. Since θ and σ commute, we have t θn−1 σ = tσ θn−1 = s θn →+

R t θn.
Soundness of Rule (III) is also proved by induction on n. For n = 0, we have

s σ0 = s→+
R t = t[z]π [z/t|π] = t[z]π (σ ∪ [z/t[z]π])0 [z/t|π]. For n > 0, we obtain

s σn = s σn−1 σ
→+
R t[z]π (σ ∪ [z/t[z]π])n−1 [z/t|π]σ by induction hypothesis

= t[z]π (σ ∪ [z/t[z]π])n−1 (σ ∪ [z/t|πσ]) since z /∈ dom(σ)
= t[z]π (σ ∪ [z/t[z]π])n−1 (σ ∪ [z/s])
→+
R t[z]π (σ ∪ [z/t[z]π])n−1 (σ ∪ [z/t])

= t[z]π (σ ∪ [z/t[z]π])n−1 (σ ∪ [z/t[z]π]) [z/t|π] since z /∈ range(σ)
= t[z]π (σ ∪ [z/t[z]π])n [z/t|π]

Rule (IV) is trivially sound. For Rule (V), note that correctness of s σns µs
↪→ t σnt µt also implies correctness of s σns (µsρ) ↪→ t σnt (µtρ). But we have

s σns (µs ρ) = s σns ρ µsρ since V(ρ) ∩ dom(µs) = ∅
= (sρ) (σs)

n
ρ (µs)ρ since V(ρ) ∩ dom(σs) = ∅.

Similarly, t σnt (µt ρ) = (tρ) (σt)
n
ρ (µt)ρ, which implies soundness of Rule (V).

Soundness of Rule (VI) is trivial. For soundness of Rule (VII), correctness
of s σns µs ↪→ t σnt µt also implies correctness of s σns (µs ρ

n) ↪→ t σnt (µt ρ
n). As

ρ commutes with σs, µs, σt, µt, this is equivalent to s (σs ρ)n µs ↪→ t (σt ρ)n µt.
Soundness of Rules (VIII) and (IX) is again straightforward. ut

2.4 Detecting Non-Termination

Thm. 8 introduces a criterion to detect pattern rules that directly lead to non-
termination. Hence, whenever we have inferred a new pattern rule that satisfies
this criterion, we can conclude non-termination of our TRS.

For a pattern rule s σn µ ↪→ t σnt µt, we check whether the pattern substitu-
tions of the right-hand side are specializations of the pattern substitutions of the
left-hand side. More precisely, there must be an m ∈ N such that σt = σm σ′ and
µt = µµ′ for some σ′ and µ′, where σ′ commutes with σ and µ. Then one only has
to check whether there is a b ∈ N such that s σb is equal to some subterm of t.

Theorem 8 (Detecting Non-Termination). Let s σn µ ↪→ t σnt µt be cor-
rect w.r.t. a TRS R and let there be an m ∈ N such that σt = σm σ′ and µt = µµ′

for some substitutions σ′ and µ′, where σ′ commutes with both σ and µ. If there
is a π ∈ Pos(t) and some b ∈ N such that s σb = t|π, then R is non-terminating.

Proof. We show that for all n ∈ N, the term s σn µ rewrites to a term containing
an instance of s σm·n+bµ. By repeating these rewrite steps on this subterm, we
obtain an infinite rewrite sequence. Here, D denotes the superterm relation.

s σn µ→+
R t σnt µt since s σn µ ↪→ t σnt µt is correct

D t|π σnt µt
= s σb σnt µt
= s σb (σm σ′)n (µµ′)
= s σm·n+b µσ′n µ′ since σ′ commutes with both σ and µ ut

To apply Thm. 8 to the pattern rule (17) obtained in our example, we have
to transform the rule such that the pattern substitutions on the right-hand side
become specializations of the pattern substitutions on the left-hand side. Thus,
we use a domain renaming for the right-hand side to rename the variable z to
x′ (using Rule (IV) with Lemma 4). Moreover, we would like to get rid of the clo-
sing substitution [x′/s(x)] on the left-hand side. To this end, we first apply [x/x′]
to the whole pattern rule (using inference rule (VIII)) and remove irrelevant
parts of the pattern substitutions (Rule (IV) with Lemma 6), which yields

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x′), y′/0] (18)

↪→ f(tt, s2(x′), s
2
(y′)) [x′/s2(x′), y′/s(y′)]n [x′/times(s2(0), s(x′)), y′/0].

Now the closing substitution [x′/s(x′)] on the left-hand side of the rule can
be moved from the closing substitution to the base term. This is stated by the
following lemma, which can be used in addition to Lemmas 4 and 6 in order to
transform pattern terms to equivalent other pattern terms in inference rule (IV).

Lemma 9 (Equivalence by Simplifying µ). Let p = t σn µ be a pattern term
and let µ = µ1 µ2 where µ1 commutes with σ. Then p is equivalent to (t µ1)σn µ2.

Proof. For any n, t σn µ = t σn µ1µ2 = tµ1 σ
n µ2, as µ1 commutes with σ. ut

The closing substitution µ of (18)’s left-hand side has the form µ = µ1 µ2 for
µ1 = [x′/s(x′)] and µ2 = [y′/0]. Since µ1 commutes with σ = [x′/s(x′), y′/s(y′)],
by inference rule (IV) and Lemma 9, we can replace the left-hand side of (18)

by the equivalent pattern term f(tt, s2(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [y′/0].

Moreover, by rewriting times(s2(0), s(x′)) on the right-hand side using Rule

(IX), the right-hand side is transformed to f(tt, s2(x′), s
2
(y′)) [x′/s2(x′), y′/s(y′)]n

[x′/s2(times(s2(0), x′)), y′/0]. So now its closing substitution µ′ has the form

µ′ = µ′1 µ
′
2 for µ′1 = [x′/s(x′)] and µ′2 = [x′/s(times(s2(0), x′)), y′/0]. Since µ′1

commutes with the pumping substitution σ′ = [x′/s2(x′), y′/s(y′)], by applying
inference rule (IV) and Lemma 9 also on the right-hand side, we get

f(tt, s2(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [y′/0] (19)

↪→ f(tt, s3(x′), s
2
(y′)) [x′/s2(x′), y′/s(y′)]n [x′/s(times(s2(0), x′)), y′/0].

The resulting rule (19) satisfies the conditions of Thm. 8, i.e., one can di-
rectly detect its non-termination. It has the form s σn µ ↪→ t σnt µt with σ =
[x′/s(x′), y′/s(y′)] and µ = [y′/0], where σt = σ σ′ for σ′ = [x′/s(x′)] and µt =

µµ′ for µ′ = [x′/s(times(s2(0), x′))]. Clearly σ′ commutes with σ and µ and
moreover, sσ = t. Thus, non-termination of the TRS in Sect. 1 is proved.

Note that with our inference rules and the criterion of Thm. 8, one can also
prove non-termination of any looping TRS R. The reason is that then there is
also a loop s →+

R C[sµ] where the first rewrite step is on the root position. By
translating the rules of the TRS to pattern rules (Rule (I)) and by perform-
ing instantiation (Rule (V)) followed by narrowing or rewriting (Rule (VI) or
(IX)) repeatedly, we can also obtain a corresponding pattern rule s∅n∅ ↪→
C[sµ]∅n∅. To detect its non-termination by Thm. 8, we replace the closing
substitution ∅ by µ (using Rule (VIII)) which yields s∅n µ ↪→ C[sµ]∅n µ. Sim-
plifying the closing substitution on the left-hand side (Rule (IV) with Lemma
9) yields (sµ)∅n∅ ↪→ C[sµ]∅n µ. Since the closing substitution µ on the right-
hand side is a specialization of the closing substitution ∅ on the left-hand side
and since sµ is equal to a subterm of C[sµ], Thm. 8 now detects non-termination.

3 A Strategy to Prove Non-Termination Automatically

The inference rules in Sect. 2 constitute a powerful calculus to prove non-termi-
nation. We now present a strategy for their automated application which turned
out to be successful in our implementation in the tool AProVE, cf. Sect. 4.

The strategy first transforms all rules of the TRS4 into pattern rules using
Rule (I) and if possible, one uses Rules (II) and (III) afterwards to obtain

4 It is preferable to check non-termination within the dependency pair framework [5, 7,
8]. In this way, one can automatically decompose the TRS into parts where termina-
tion can easily be proved and into parts which can potentially cause non-termination.

pattern rules with non-empty pattern substitutions. Then for every pattern rule
p ↪→ q, one repeatedly tries to rewrite its right-hand side (Rule (IX)) or to
narrow it with every pattern rule p′ ↪→ q′ (see below). Whenever a new pattern
rule is obtained, one checks whether it satisfies the non-termination criterion of
Thm. 8.5 In this case, the procedure stops and non-termination has been proved.

Before trying to narrow p ↪→ q with p′ ↪→ q′ at some π ∈ Pos(base(q)),
to avoid conflicting instantiations of variables, one uses domain renamings to
ensure that dv(p), dv(q), dv(p′), and dv(q′) are pairwise disjoint (Rule (IV) with
Lemma 4). Moreover, pattern rules are made variable-disjoint (using Rule (V)).
Then the strategy proceeds by the following steps to make the narrowing rule
(VI) applicable. After presenting the strategy, we illustrate it by an example.

1. Make base(q)|π equal to base(p′): If base(q)|π and base(p′) do not unify, then

abort with failure. If base(q)|π = base(p′), then go to Step 2. Otherwise, let
θ = mgu(base(q)|π,base(p′)), let x ∈ dom(θ), and let s = θ(x). W.l.o.g. we
assume x ∈ V(p′) (the case where x ∈ V(q) works analogously).

(a) If x /∈ dv(p′) and s /∈ dv(p′), then let s′ result from s by renaming all
variables from dv(p′) occurring in s by pairwise different fresh variables.
Instantiate p′ ↪→ q′ with ρ = [x/s′] (Rule (V)) and go back to Step 1.

(b) If x /∈ dv(p′) and s ∈ dv(p′), then use Rule (VII) to add x to the domain
of p′’s pumping substitution, such that it operates on x as it operates
on s. To make Rule (VII) applicable, some pre-processing with Rules
(VIII) and (IV) may be required. Then go back to Step 1 (resp. to case
(c)). The case where x ∈ dv(p′) and s ∈ V(p′) \ dv(p′) is analogous.

(c) If both x, s ∈ dv(p′) and [x/s] commutes with p′’s pumping substitution,
then apply (VIII) on p′ ↪→ q′ such that p′’s closing substitution gets the
form [x/s]µ for some µ. Then, move [x/s] from p′’s closing substitution
to p′’s base term with Rule (IV) (using Lemma 9) and go to Step 1.

(d) If x ∈ dv(p′) and s ∈ V \ V(p′), then apply Rule (IV) (using Lemma 4)
with the domain renaming [x/s] on p′ ↪→ q′ and go back to Step 1.

(e) Otherwise, abort with failure.

2. Make the pumping substitutions of p, q, p′, and q′ equal (without changing
base(q),base(p′)): resolve all conflicts using Rules (VII) and (IV).

3. Make the closing substitutions of p, q, p′, q′ equal (without changing pump-
ing substitutions or base(q),base(p′)): resolve conflicts by (VIII) and (IV).

4. Apply narrowing according to Rule (VI).

To illustrate the strategy, consider the TRS with the plus-rules of Sect. 1 and

f(tt, x) → f(isNat(x), plus(x, x)), isNat(0) → tt, isNat(s(y)) → isNat(y).

5 To this end, one tries to transform the pattern rule using Rules (IV) and (VIII)
such that the pattern substitutions on the right-hand sides become specializations
of the corresponding pattern substitutions on the left-hand sides.

After creating pattern rules for f, isNat, and plus, we narrow the recursive isNat-
and plus-rules with the non-recursive ones. For plus, this results in

plus(x, s(y′)) [y′/s(y′)]n [y′/0] ↪→ s(x′) [x′/s(x′)]n [x′/x]. (20)

Moreover, we use the resulting isNat-rule to narrow the f-rule, which yields

f(tt, s(y)) [y/s(y)]n [y/0] ↪→ f(tt, plus(s(y), s(y))) [y/s(y)]n [y/0]. (21)

Now our goal is to narrow the f-rule (21) with the plus-rule (20). We begin with
Step 1 in the strategy. The mgu of plus(s(y), s(y)) (in (21)’s right-hand side q)
and plus(x, s(y′)) (in (20)’s left-hand side p′) is θ = [y′/y, x/s(y)]. Let us first
regard the variable y′. Since y′ ∈ dv(p′) and y ∈ V \ V(p′), we are in Case (d).
Thus, we apply the domain renaming [y′/y] to (20) (with Rule (IV)) and obtain

plus(x, s(y)) [y/s(y)]n [y/0] ↪→ s(x′) [x′/s(x′)]n [x′/x]. (22)

Now θ = mgu(plus(s(y), s(y)), plus(x, s(y))) = [x/s(y)]. Since x is no domain vari-
able of (22)’s left-hand side and s(y) /∈ V, we are in Case (a). Thus, we apply
(V) with ρ = [x/s(z)] for a fresh z ∈ V. After simplification with (IV), we get

plus(s(z), s(y)) [y/s(y)]n [y/0] ↪→ s(x′) [x′/s(x′)]n [x′/s(z)]. (23)

Now θ = mgu(plus(s(y), s(y)), plus(s(z), s(y))) = [z/y]. Since z is no domain vari-
able of (23)’s left-hand side, but y is, we are in Case (b). Hence, our goal is to
extend the pumping substitution [y/s(y)] to operate on z as on y (i.e., we want
to add [z/s(z)]). To make Rule (VII) applicable, we have to remove the closing
substitution [x′/s(z)] on (23)’s right-hand side which does not commute with
[z/s(z)]. To this end, we instantiate (23)’s closing substitutions with [z/x′] (Rule
(VIII)) and simplify both sides of (23) using Rule (IV) with Lemmas 9 and 6.

plus(s(x′), s(y)) [y/s(y)]n [y/0] ↪→ s2(x′) [x′/s(x′)]n∅ (24)

Now θ = mgu(plus(s(y), s(y)), plus(s(x′), s(y))) = [x′/y] for the non-domain vari-
able x′ and the domain variable y. Thus, we can proceed according to Case (b)
and add [x′/s(x′)] to the pumping substitutions of (24) using Rule (VII).

plus(s(x′), s(y)) [x′/s(x′), y/s(y)]n [y/0] ↪→ s2(x′) [x′/s2(x′)]n∅ (25)

We still have θ = mgu(plus(s(y), s(y)), plus(s(x′), s(y))) = [x′/y]. But now both
x′, y are domain variables of (25)’s left-hand side, i.e., we are in Case (c). Indeed,
now [x′/y] commutes with the pumping substitution [x′/s(x′), y/s(y)]. So we
instantiate the closing substitutions of (25) with ρ = [x′/0] (Rule (VIII)). Then
the closing substitution [y/0, x′/0] of (25)’s left-hand side has the form [x′/y][y/0]
and hence, Rule (IV) with Lemma 9 yields

plus(s(y), s(y)) [x′/s(x′), y/s(y)]n [y/0] ↪→ s2(x′) [x′/s2(x′)]n [x′/0]. (26)

Thus, now the term plus(s(y), s(y)) from the right-hand side of (21) also occurs on
the left-hand side of (26), i.e., Step 1 is finished. In Step 2 of the strategy, we have
to make the pumping substitutions of (21) and (26) equal. By Rule (IV) with
Lemma 6 we first remove the irrelevant substitution [x′/s(x′)] from the left-hand
side of (26) and then extend the pumping substitutions by new irrelevant parts
such that they all become [x′/s2(x′), y/s(y)]. Similarly, in Step 3 of the strategy,

all closing substitutions are extended to [x′/0, y/0] by Rule (IV) with Lemma 6.
Now narrowing the f- with the plus-rule (by Rule (VI)) and subsequent removal
of irrelevant substitutions (by Rule (IV) with Lemma 6) yields

f(tt, s(y)) [y/s(y)]n [y/0] ↪→ f(tt, s2(x′)) [x′/s2(x′)]n [x′/0]. (27)

Hence, we now have to check whether (27) leads to non-termination due to Thm.
8. As in Footnote 5, to this end we apply a domain renaming [x′/y] to (27)’s
right-hand side in order to turn the pattern substitutions on the right-hand side
into a specialization of the pattern substitutions on the left-hand side.

f(tt, s(y)) [y/s(y)]n [y/0] ↪→ f(tt, s2(y)) [y/s2(y)]n [y/0]. (28)

Rule (28) satisfies the criterion of Thm. 8. If σ is the pumping substitution
[y/s(y)] of (28)’s left-hand side, then (28)’s right-hand side has the pumping
substitution σ σ. Moreover, if s resp. t are the base terms of the two sides, then
sσ = t. Thus, non-termination of the original (non-looping) TRS is proved.

4 Evaluation and Conclusion

We introduced a new technique to prove non-termination of possibly non-looping
TRSs automatically. To this end, we adapted an idea of [10] from string to term
rewriting and introduced pattern rules which represent a whole class of rewrite
sequences. Afterwards, we presented 9 inference rules to deduce new pattern
rules, a strategy for the application of these rules, and a criterion to detect non-
terminating pattern rules. In this way, one can now repeatedly generate pattern
rules until one obtains a rule which is detected to be non-terminating.

We implemented our contributions in the tool AProVE [6] and compared the
new version AProVE-NL (for non-loop) with the previous version AProVE ’11 and
3 other powerful tools for non-termination of TRSs (NTI [11], TTT2 [9], VMTL

TPDB nl
N R N R

AProVE-NL 232 6.6 44 5.2
AProVE ’11 228 6.6 0 60.0
NTI 214 7.3 0 60.0
TTT2 194 2.5 0 10.4
VMTL 95 16.5 0 42.8

[12]). We ran the tools on the 1438 TRSs of the
Termination Problem Data Base (TPDB) used
in the annual International Termination Compe-
tition.6 In the table, we consider those 241 TRSs
of the TPDB where at least one tool proved non-
termination. Moreover, we also tested the tools
on 58 typical non-looping non-terminating TRSs
obtained from actual programs and other sources
(“nl”). We used a time-out of 1 minute for each example. “N” indicates how of-
ten Non-termination was proved and “R” gives the average Runtime in seconds
for each example. Thus, AProVE-NL could solve 75.9 % of the non-looping ex-
amples without compromising its power on looping examples, whereas the other
tools cannot handle non-looping non-termination. To access our implementation
via a web interface and for further details on our experiments, we refer to [1].

Future work will be concerned with (i) improving our strategy for applying in-
ference rules and with (ii) extending the notion of pattern rules. To motivate (i),

6 See http://termination-portal.org/wiki/Termination_Competition

N R

KFL 147 6.2
AProVE-NL 120 19.0
Matchbox 111 22.0
AProVE ’11 97 31.1
nonloop 95 26.3
NTI 67 37.1
TTT2 24 51.4
VMTL 0 56.8

we compared AProVE-NL with the tools Knocked for Loops
(KFL) [15], Matchbox [13], and nonloop [10] for non-termi-
nation of string rewriting on the 1316 SRSs of the TPDB.
The table regards those 156 SRSs where at least one tool
proved non-termination. Only AProVE-NL and nonloop
handle non-looping non-terminating SRSs, and AProVE-
NL succeeds whenever nonloop succeeds. However, some
looping SRSs are found by other tools, but not by our
current strategy which mainly focuses on term rewriting.

For (ii), while our approach is “complete” for looping TRSs, there are TRSs
whose non-termination cannot be proved with our inference rules. An example is
the TRS with rules for isNat, double, and f(tt, tt, x, s(y)) → f(isNat(x), isNat(y),
s(x), double(s(y))). Here, one needs the rule f(tt, tt, x, s(y)) [x/s(x)]

n
[y/s(y)]

m

[x/0, y/0] ↪→ f(tt, tt, s(x), s(s(y))) [x/s(x)]
n

[y/s(s(y))]
m

[x/0, y/0] with two pa-
rameters n and m, which goes beyond our current notion of pattern rules.

References

1. http://aprove.informatik.rwth-aachen.de/eval/NonLooping/.
2. M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated detection

of non-termination and NullPointerExceptions for Java Bytecode. In Proc.
FoVeOOS ’11, LNCS. To appear. Available from [1].

3. A. Geser and H. Zantema. Non-looping string rewriting. Informatique Théorique
et Applications, 33(3):279–302, 1999.

4. A. Geser, D. Hofbauer, and J. Waldmann. Termination proofs for string rewriting
systems via inverse match-bounds. J. Automated Reasoning, 34(4):365–385, 2005.

5. J. Giesl, R. Thiemann, P. Schneider-Kamp. Proving and disproving termination
of higher-order functions. In Proc. FroCoS ’05, LNAI 3717, pages 216–231, 2005.

6. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. IJCAR ’06, LNAI 4130,
pages 281–286, 2006.

7. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

8. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1-2):172–199, 2005.

9. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2.
In Proc. RTA ’09, LNCS 5595, pages 295–304, 2009.

10. M. Oppelt. Automatische Erkennung von Ableitungsmustern in nichtterminieren-
den Wortersetzungssystemen, 2008. Diploma Thesis, HTWK Leipzig, Germany.

11. É. Payet. Loop detection in term rewriting using the eliminating unfoldings. The-
oretical Computer Science, 403:307–327, 2008.

12. F. Schernhammer and B. Gramlich. VMTL - A modular termination laboratory.
In Proc. RTA ’09, LNCS 5595, pages 285–294, 2009.

13. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In RTA ’04,
LNCS 3091, pages 85–94, 2004.

14. Y. Wang and M. Sakai. On non-looping term rewriting. WST ’06, p. 17-21, 2006.
15. H. Zankl, C. Sternagel, D. Hofbauer, and A. Middeldorp. Finding and certifying

loops. In Proc. SOFSEM ’10, LNCS 5901, pages 755–766, 2010.
16. H. Zantema. Termination of string rewriting proved automatically. Journal of

Automated Reasoning, 34:105–139, 2005.

