
Lower Runtime Bounds for Integer Programs?

F. Frohn1, M. Naaf1, J. Hensel1, M. Brockschmidt2, and J. Giesl1

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Microsoft Research, Cambridge, UK

Abstract. We present a technique to infer lower bounds on the worst-
case runtime complexity of integer programs. To this end, we construct
symbolic representations of program executions using a framework for ite-
rative, under-approximating program simplification. The core of this sim-
plification is a method for (under-approximating) program acceleration
based on recurrence solving and a variation of ranking functions. After-
wards, we deduce asymptotic lower bounds from the resulting simpli-
fied programs. We implemented our technique in our tool LoAT and show
that it infers non-trivial lower bounds for a large number of examples.

1 Introduction

Recent advances in program analysis yield efficient methods to find upper bounds
on the complexity of sequential integer programs. Here, one usually considers

“worst-case complexity”, i.e., for any variable valuation, one analyzes the length of
the longest execution starting from that valuation. But in many cases, in addition
to upper bounds, it is also important to find lower bounds for this notion of
complexity. Together with an analysis for upper bounds, this can be used to infer
tight complexity bounds. Lower bounds also have important applications in secu-
rity analysis, e.g., to detect possible denial-of-service or side-channel attacks, as
programs whose runtime depends on a secret parameter “leak” information about
that parameter. In general, concrete lower bounds that hold for arbitrary variable
valuations can hardly be expressed concisely. In contrast, asymptotic bounds are
easily understood by humans and witness possible attacks in a convenient way.

We first introduce our program model in Sect. 2. In Sect. 3, we show how
to use a variation of classical ranking functions which we call metering func-
tions to under-estimate the number of iterations of a simple loop (i.e., a single
transition t looping on a location `). Then, we present a framework for repeated
program simplifications in Sect. 4. It simplifies full programs (with branching and
sequences of possibly nested loops) to programs with only simple loops. More-
over, it eliminates simple loops by (under-)approximating their effect using a
combination of metering functions and recurrence solving. In this way, programs
are transformed to simplified programs without loops. In Sect. 5, we then show
how to extract asymptotic lower bounds and variables that influence the runtime
from simplified programs. Finally, we conclude with an experimental evaluation
of our implementation LoAT in Sect. 6. For all proofs, we refer to [16].

?
Supported by the DFG grant GI 274/6-1 and the Air Force Research Laboratory (AFRL).

2 F. Frohn et al.

Related Work While there are many techniques to infer upper bounds on the
worst-case complexity of integer programs (e.g., [1–4, 8, 9, 14, 19, 26]), there is
little work on lower bounds. In [3], it is briefly mentioned that their technique
could also be adapted to infer lower instead of upper bounds for abstract cost
rules, i.e., integer procedures with (possibly multiple) outputs. However, this only
considers best-case lower bounds instead of worst-case lower bounds as in our
technique. Upper and lower bounds for cost relations are inferred in [1]. Cost
relations extend recurrence equations such that, e.g., non-determinism can be
modeled. However, this technique also considers best-case lower bounds only.

A method for best-case lower bounds for logic programs is presented in [11].
Moreover, we recently introduced a technique to infer worst-case lower bounds for
term rewrite systems (TRSs) [15]. However, TRSs differ fundamentally from the
programs considered here, since they do not allow integers and have no notion of
a “program start”. Thus, the technique of [15], based on synthesizing families of
reductions by automatic induction proofs, is very different to the present paper.

To simplify programs, we use a variant of loop acceleration to summarize
the effect of applying a loop repeatedly. Acceleration is mostly used in over-
approximating settings (e.g., [13, 17,21, 24]), where handling non-determinism is
challenging, as loop summaries have to cover all possible non-deterministic choi-
ces. However, our technique is under-approximating, i.e., we can instantiate non-
deterministic values arbitrarily. In contrast to the under-approximating acceler-
ation technique in [22], instead of quantifier elimination we use an adaptation
of ranking functions to under-estimate the number of loop iterations symbolically.

2 Preliminaries

We consider sequential non-recursive imperative integer programs, allowing non-
linear arithmetic and non-determinism, whereas heap usage and concurrency
are not supported. While most existing abstractions that transform heap pro-
grams to integer programs are “over-approximations”, we would need an under-
approximating abstraction to ensure that the inference of worst-case lower bounds
is sound. As in most related work, we treat numbers as mathematical integers Z.
However, the transformation from [12] can be used to handle machine integers
correctly by inserting explicit normalization steps at possible overflows.

A(V) is the set of arithmetic terms3 over the variables V and F(V) is the
set of conjunctions4 of (in)equations over A(V). So for x, y ∈ V, A(V) contains
terms like x · y + 2y and F(V) contains formulas such as x · y ≤ 2y ∧ y > 0.

3 Our implementation only supports addition, subtraction, multiplication, division, and
exponentiation. Since we consider integer programs, we only allow programs where all
variable values are integers (so in contrast to x = 1

2
x, the assignment x = 1

2
x+ 1

2
x2 is

permitted). While our program simplification technique preserves this property, we
do not allow division or exponentiation in the initial program to ensure its validity.

4 Note that negations can be expressed by negating (in)equations directly, and disjunc-
tions in programs can be expressed using multiple transitions.

Lower Runtime Bounds for Integer Programs 3

`0: y = 0
`1: while x > 0 do

y = y + x
x = x− 1

done
z = y

`2: while z > 0 do
u = z − 1

`3: while u > 0 do
u = u− random(0, ω)

done
z = z − 1

done

`0

`1

`2

`3

t0[1]: y′ = 0t1[1]: if(x > 0)
y′ = y + x
x′ = x− 1 t2[1]: if(x ≤ 0)

z′ = y

t3[1]: if(z > 0)
u′ = z − 1

t4[1]: if

(
u > 0 ∧
tv > 0

)
u′ = u− tv

t5[1]: if(u ≤ 0)
z′ = z − 1

Fig. 1: Example integer program

We fix a finite set of program variables PV and represent integer programs as
directed graphs. Nodes are program locations L and edges are program transitions
T where L contains a canonical start location `0. W.l.o.g., no transition leads
back to `0 and all transitions T are reachable from `0. To model non-deterministic
program data, we introduce pairwise disjoint finite sets of temporary variables
T V` with PV ∩ T V` = ∅ and define V` = PV ∪ T V` for all locations ` ∈ L.

Definition 1 (Programs). Configurations (`,v) consist of a location ` ∈ L and
a valuation v : V` → Z. Val ` = V` → Z is the set of all valuations for ` ∈ L
and valuations are lifted to terms A(V`) and formulas F(V`) as usual. A transi-
tion t = (`, γ, η, c, `′) can evaluate a configuration (`,v) if the guard γ ∈ F(V`) is
satisfied (i.e., v(γ) holds) to a new configuration (`′,v′). The update η : PV →
A(V`) maps any x ∈ PV to a term η(x) where v(η(x)) ∈ Z for all v ∈ Val `. It
determines v′ by setting v′(x) = v(η(x)) for x ∈ PV, while v′(x) for x ∈ T V`′ is
arbitrary. Such an evaluation step has cost k = v(c) for c ∈ A(V`) and is writ-
ten (`,v)→t,k (`′,v′). We use src(t) = `, guard(t) = γ, cost(t) = c, and dest(t) =
`′. We sometimes drop the indices t, k and write (`,v) →∗k (`′,v′) if (`,v) →k1

· · · →km (`′,v′) and
∑

1≤i≤m ki = k. A program is a set of transitions T .

Fig. 1 shows an example, where the pseudo-code on the left corresponds to the
program on the right. Here, random(x, y) returns a random integer m with x <
m < y and we fix−ω < m < ω for all numbers m. The loop at location `1 sets y to
a value that is quadratic in x. Thus, the loop at `2 is executed quadratically often
where in each iteration, the inner loop at `3 may also be repeated quadratically
often. Thus, the length of the program’s worst-case execution is a polynomial of
degree 4 in x. Our technique can infer such lower bounds automatically.

In the graph of Fig. 1, we write the costs of a transition in [] next to its
name and represent the updates by imperative commands. We use x to refer to
the value of the variable x before the update and x′ to refer to x’s value after
the update. Here, PV = {x, y, z, u}, T V`3 = {tv}, and T V` = ∅ for all locations
` 6= `3. We have (`3,v)→t4 (`3,v

′) for all valuations v where v(u) > 0, v(tv) > 0,
v′(u) = v(u)− v(tv), and v′(v) = v(v) for all v ∈ {x, y, z}.

4 F. Frohn et al.

Our goal is to find a lower bound on the worst-case runtime of a program T . To
this end, we define its derivation height [18] by a function dhT that operates
on valuations v of the program variables (i.e., v is not defined for temporary
variables). The function dhT maps v to the maximum of the costs of all evaluation
sequences starting in configurations (`0,v`0) where v`0 is an extension of v to
V`0 . So in our example we have dhT (v) = 2 for all valuations v where v(x) = 0,
since then we can only apply the transitions t0 and t2 once. For all valuations v
with v(x) > 1, our method will detect that the worst-case runtime of our program
is at least 1

8v(x)4 + 1
4v(x)3 + 7

8v(x)2 + 7
4v(x). From this concrete lower bound,

our approach will infer that the asymptotic runtime of the program is in Ω(x4).
In particular, the runtime of the program depends on x. Hence, if x is “secret”,
then the program is vulnerable to side-channel attacks.

Definition 2 (Derivation Height). Let Val = PV → Z. The derivation height
dhT : Val → R≥0 ∪ {ω} of a program T is defined as dhT (v) = sup{k ∈ R |
∃v`0 ∈ Val `0 , ` ∈ L,v` ∈ Val ` . v`0 |PV = v ∧ (`0,v`0)→∗k (`,v`)}.
Since →∗k also permits evaluations with 0 steps, we always have dhT (v) ≥ 0.
Obviously, dhT is not computable in general, and thus our goal is to compute
a lower bound that is as precise as possible (i.e., a lower bound which is, e.g.,
unbounded,5 exponential, or a polynomial of a degree as high as possible).

3 Estimating the Number of Iterations of Simple Loops

We now show how to under-estimate the number of possible iterations of a simple
loop t = (`, γ, η, c, `). More precisely, we infer a term b ∈ A(V`) such that for all v

∈ Val ` with v |= γ, there is a v′ ∈ Val ` with (`,v) →dv(b)et (`,v′). Here, dke =
min{m ∈ N | m ≥ k} for all k ∈ R. Moreover, (`,v) →m

t (`,v′) means that
(`,v) = (`,v0) →t,k1 (`,v1) →t,k2 · · · →t,km (`,vm) = (`,v′) for some costs k1,
. . . , km. We say that (`,v)→m

t (`,v′) preserves T V` iff v(tv) = vi(tv) = v′(tv)
for all tv ∈ T V` and all 0 ≤ i ≤ m. Accordingly, we lift the update η to arbi-
trary arithmetic terms by leaving temporary variables unchanged (i.e., if PV =
{x1, . . . , xn} and b ∈ A(V`), then η(b) = b[x1/η(x1), . . . , xn/η(xn)], where [x/a]
denotes the substitution that replaces all occurrences of the variable x by a).

To find such estimations, we use an adaptation of ranking functions [2, 6, 25]
which we call metering functions. We say that a term b ∈ A(V`) is a ranking
function6 for t = (`, γ, η, c, `) iff the following conditions hold.

γ =⇒ b > 0 (1) γ =⇒ η(b) ≤ b− 1 (2)

So e.g., x is a ranking function for t1 in Fig. 1. If T V` = ∅, then for any valuation
v ∈ Val , v(b) over-estimates the number of repetitions of the loop t: (2) ensures
that v(b) decreases at least by 1 in each loop iteration, and (1) requires that v(b)
is positive whenever the loop can be executed. In contrast, metering functions
are under-estimations for the maximal number of repetitions of a simple loop.

5 Programs with dhT (v) = ω result from non-termination or non-determinism. As an
example, consider the program x = random(0, ω); while x > 0 do x = x− 1 done.

6 In the following, we often use arithmetic terms A(V`) to denote functions V` → R.

Lower Runtime Bounds for Integer Programs 5

Definition 3 (Metering Function). Let t = (`, γ, η, c, `) be a transition. We
call b ∈ A(V`) a metering function for t iff the following conditions hold:

¬γ =⇒ b ≤ 0 (3) γ =⇒ η(b) ≥ b− 1 (4)

Here, (4) ensures that v(b) decreases at most by 1 in each loop iteration, and
(3) requires that v(b) is non-positive if the loop cannot be executed. Thus, the
loop can be executed at least v(b) times (i.e., v(b) is an under-estimation).

For the transition t1 in the example of Fig. 1, x is also a valid metering
function. Condition (3) requires ¬x > 0 =⇒ x ≤ 0 and (4) requires x > 0 =⇒
x − 1 ≥ x − 1. While x is a metering and a ranking function, x

2 is a metering,
but not a ranking function for t1. Similarly, x2 is a ranking, but not a metering
function for t1. Thm. 4 states that a simple loop t with a metering function b
can be executed at least dv(b)e times when starting with the valuation v.

Theorem 4 (Metering Functions are Under-Estimations). Let b be a me-
tering function for t = (`, γ, η, c, `). Then b under-estimates t, i.e., for all v ∈ Val `
with v |= γ there is an evaluation (`,v)→dv(b)et (`,v′) that preserves T V`.

Our implementation builds upon a well-known transformation based on
Farkas’ Lemma [6, 25] to find linear metering functions. The basic idea is to
search for coefficients of a linear template polynomial b such that (3) and (4)
hold for all possible instantiations of the variables V`. In addition to (3) and (4),
we also require (1) to avoid trivial solutions like b = 0. Here, the coefficients of b
are existentially quantified, while the variables from V` are universally quantified.
As in [6,25], eliminating the universal quantifiers using Farkas’ Lemma allows us
to use standard SMT solvers to search for b’s coefficients efficiently.

When searching for a metering function for t = (`, γ, η, c, `), one can omit con-
straints from γ that are irrelevant for t’s termination. So if γ is ϕ ∧ ψ, ψ ∈
F(PV), and γ =⇒ η(ψ), then it suffices to find a metering function b for t′ = (`, ϕ,
η, c, `). The reason is that if v |= γ and (`,v) →t′ (`,v′), then v′ |= ψ (since

v |= γ entails v |= η(ψ)). Hence, if v |= γ then (`,v)→dv(b)et′ (`,v′) implies (`,v)

→dv(b)et (`,v′), i.e., b under-estimates t. So if t = (`, x < y ∧ 0 < y, x′ = x+1, c, `),
we can consider t′=(`, x < y, x′=x+1, c, `) instead. While t only has complex
metering functions like min(y − x, y), t′ has the metering function y − x.

Example 5 (Unbounded Loops). Loops t = (`, γ, η, c, `) where the whole guard can
be omitted (since γ =⇒ η(γ)) do not terminate. Here, we also allow ω as under-
estimation. So for T = {(`0, true, id, 1, `), t} with t = (`, 0 < x, x′ = x+1, y, `)},
we can omit 0 < x since 0 < x =⇒ 0 < x + 1. Hence, ω under-estimates the
resulting loop (`, true, x′ = x+ 1, y, `) and thus, ω also under-estimates t.

4 Simplifying Programs to Compute Lower Bounds

We now define processors mapping programs to simpler programs. Processors are
applied repeatedly to transform the program until extraction of a (concrete) lower
bound is straightforward. For this, processors should be sound, i.e., any lower
bound for the derivation height of proc(T) should also be a lower bound for T .

6 F. Frohn et al.

Definition 6 (Sound Processor). A mapping proc from programs to programs
is sound iff dhT (v) ≥ dhproc(T)(v) holds for all programs T and all v ∈ Val.

In Sect. 4.1, we show how to accelerate a simple loop t to a transition which is
equivalent to applying t multiple times (according to a metering function for t).
The resulting program can be simplified by chaining subsequent transitions which
may result in new simple loops, cf. Sect. 4.2. We describe a simplification strategy
which alternates these steps repeatedly. In this way, we eventually obtain a simpli-
fied program without loops which directly gives rise to a concrete lower bound.

4.1 Accelerating Simple Loops

Consider a simple loop t = (`, γ, η, c, `). For m ∈ N, let ηm denote m applications
of η. To accelerate t, we compute its iterated update and costs, i.e., a closed
form ηit of ηtv and an under-approximation cit ∈ A(V`) of

∑
0≤i<tv η

i(c) for a
fresh temporary variable tv . If b under-estimates t, then we add the transition
(`, γ ∧ 0 < tv < b+ 1, ηit, cit, `) to the program. It summarizes tv iterations of
t, where tv is bounded by dbe. Here, ηit and cit may also contain exponentiation
(i.e., we can also infer exponential bounds).

For PV = {x1, . . . , xn}, the iterated update is computed by solving the re-

currence equations x(1) = η(x) and x(tv+1) = η(x)[x1/x
(tv)
1 , . . . , xn/x

(tv)
n] for all

x ∈ PV and tv ≥ 1. So for the transition t1 from Fig. 1 we get the recurrence equa-
tions x(1) = x−1, x(tv1+1) = x(tv1)−1, y(1) = y+x, and y(tv1+1) = y(tv1)+x(tv1).
Usually, they can easily be solved using state-of-the-art recurrence solvers [4].
In our example, we obtain the closed forms ηit(x) = x(tv1) = x − tv1 and
ηit(y) = y(tv1) = y+tv1·x− 1

2 tv2
1+ 1

2 tv1. While ηit(y) contains rational coefficients,
our approach ensures that ηit always maps integers to integers. Thus, we again
obtain an integer program. We proceed similarly for the iterated cost of a transi-
tion, where we may under-approximate the solution of the recurrence equations

c(1) = c and c(tv+1) = c(tv) + c[x1/x
(tv)
1 , . . . , xn/x

(tv)
n]. For t1 in Fig. 1, we get

c(1) = 1 and c(tv1+1) = c(tv1) + 1 which leads to the closed form cit = c(tv1) = tv1.

Theorem 7 (Loop Acceleration). Let t = (`, γ, η, c, `) ∈ T and let tv be
a fresh temporary variable. Moreover, let ηit(x) = ηtv (x) for all x ∈ PV and
let cit≤

∑
0≤i<tv η

i(c). If b under-estimates t, then the processor mapping T to
T ∪ {(`, γ ∧ 0 < tv < b+ 1, ηit, cit, `)} is sound.

We say that the resulting new simple loop is accelerated and we refer to all
simple loops which were not introduced by Thm. 7 as non-accelerated.

Example 8 (Non-Integer Metering Functions). Thm. 7 also allows metering func-
tions that do not map to the integers. Let T = {(`0, true, id, 1, `), t} with t =
(`, 0 < x, x′ = x − 2, 1, `). Accelerating t with the metering function x

2 yields
(`, 0 < tv < x

2 + 1, x′ = x− 2 tv , tv , `). Note that 0 < tv < x
2 + 1 implies 0 < x

as tv and x range over Z. Hence, 0 < x can be omitted in the resulting guard.

Example 9 (Unbounded Loops Cont.). In Ex. 5, ω under-estimates t = (`, 0 < x,
x′ = x+1, y, `). The accelerated transition is t = (`, 0 < x ∧ γ′, x′ = x+tv , tv ·y,
`), where γ′ corresponds to 0 < tv < ω + 1 = ω, i.e., tv has no upper bound.

Lower Runtime Bounds for Integer Programs 7

`0

`1

`2

`3

t0[1]:y′=0
t1[tv1]:
if(0 < tv1 < x+ 1)
y′=y+tv1 ·x− 1

2
tv2

1+ 1
2
tv1

x′=x− tv1

t2[1]:if(x≤0)
z′=y

t3[1]:if(z>0)
u′=z−1

t4[tv4]: if(0 < tv4 < u+ 1)
u′=u− tv4

t5[1]: if(u ≤ 0)
z′=z − 1

Fig. 2: Accelerating t1 and t4

`0

`1

`2

`3

t0.1[tv1 + 1]:
if(0 < tv1 < x+ 1)
y′= tv1 ·x− 1

2
tv2

1+ 1
2
tv1

x′=x− tv1

t2[1]: if(x ≤ 0)
z′=y

t3.4[tv4 + 1]:
if(0< tv4<z)
u′=z−1−tv4

t5[1]: if(u ≤ 0)
z′=z−1

Fig. 3: Eliminating t1 and t4

If we cannot find a metering function or fail to obtain the closed form ηit or
cit for a simple loop t, then we can simplify t by eliminating temporary variables.
To do so, we fix their values by adding suitable constraints to guard(t). As we
are interested in witnesses for maximal computations, we use a heuristic that
adds constraints tv = a for temporary variables tv , where a ∈ A(V`) is a suitable
upper or lower bound on tv ’s values, i.e., guard(t) implies tv ≤ a or tv ≥ a. This is
repeated until we find constraints which allow us to apply loop acceleration. Note
that adding additional constraints to guard(t) is always sound in our setting.

Theorem 10 (Strengthening). Let t = (`, γ, η, c, `′) ∈ T and ϕ ∈ F(V`).
Then the processor mapping T to T \ {t} ∪ {(`, γ ∧ ϕ, η, c, `′)} is sound.

In t4 from Fig. 1, γ contains tv > 0. So γ implies the bound tv ≥ 1 since
tv must be instantiated by integers. Hence, we add the constraint tv = 1. Now
the update u′ = u− tv of the transition t4 becomes u′ = u− 1, and thus, u is a
metering function. So after fixing tv = 1, t4 can be accelerated similarly to t1.

To simplify the program, we delete a simple loop t after trying to accelerate
it. So we just keep the accelerated loop (or none, if acceleration of t still fails
after eliminating all temporary variables by strengthening t’s guard). For our
example, we obtain the program in Fig. 2 with the accelerated transitions t1, t4.

Theorem 11 (Deletion). For t∈T, the processor mappingT to T \{t} is sound.

4.2 Chaining Transitions

After trying to accelerate all simple loops of a program, we can chain subsequent
transitions t1, t2 by adding a new transition t1.2 that simulates their combination.
Afterwards, the transitions t1 and t2 can (but need not) be deleted with Thm. 11.

Theorem 12 (Chaining). Let t1 = (`1, γ1, η1, c1, `2) and t2 = (`2, γ2, η2, c2, `3)
with t1, t2 ∈ T . Let ren be an injective function renaming the variables in T V`2
to fresh ones and let7t1.2 = (`1, γ1 ∧ ren(η1(γ2)), ren ◦ η1 ◦ η2, c1 + ren(η1(c2)),
7 For all x ∈ PV, ren ◦ η1 ◦ η2(x) = ren(η1(η2(x))) = η2(x)[x1/η1(x1), . . . , xn/η1(xn),
tv1/ren(tv1), . . . , tvm/ren(tvm)] if PV = {x1, . . . , xn} and T V`2 = {tv1, . . . , tvm}.

8 F. Frohn et al.

`0

`2

t0.1.2[x+2]:
if(x > 0)
y′ = 1

2
x2 + 1

2
x

x′ = 0
z′ = 1

2
x2 + 1

2
x

t3.4.5[z+1]:
if(z > 1)
u′ = 0
z′ = z − 1

Fig. 4: Eliminating `1 and `3

`0

`2

t0.1.2[x+2]:
if(x > 0)
y′ = 1

2
x2 + 1

2
x

x′ = 0
z′ = 1

2
x2 + 1

2
x

t
3.4.5

[tv ·z− 1
2
tv2+ 3

2
tv]:

if(0 < tv < z)
u′ = 0
z′ = z − tv

Fig. 5: Accelerating t3.4.5

`0

`2

t[x
2·tv+x·tv−tv2+3tv+2x+4

2
]:

if(0< tv< 1
2
x2+ 1

2
x)

y′ = 1
2
x2 + 1

2
x

x′ = 0

u′ = 0

z′ = 1
2
x2 + 1

2
x− tv

Fig. 6: Eliminating t
3.4.5

`3). Then the processor mapping T to T ∪ {t1.2} is sound. In the new program
T ∪ {t1.2}, the temporary variables of `1 are defined to be T V`1 ∪ ren(T V`2).

One goal of chaining is loop elimination of all accelerated simple loops. To
this end, we chain all subsequent transitions t′, t where t is a simple loop and t′ is
no simple loop. Afterwards, we delete t. Moreover, once t′ has been chained with
all subsequent simple loops, then we also remove t′, since its effect is now covered
by the newly introduced (chained) transitions. So in our example from Fig. 2,
we chain t0 with t1 and t3 with t4. The resulting program is depicted in Fig. 3,
where we always simplify arithmetic terms and formulas to ease readability.

Chaining also allows location elimination by chaining all pairs of incoming
and outgoing transitions for a location ` and removing them afterwards. It is
advantageous to eliminate locations with just a single incoming transition first.
This heuristic takes into account which locations were the entry points of loops. So
for the example in Fig. 3, it would avoid chaining t5 and t3.4 in order to eliminate
`2. In this way, we avoid constructing chained transitions that correspond to a
run from the “middle” of a loop to the “middle” of the next loop iteration.

So instead of eliminating `2, we chain t0.1 and t2 as well as t3.4 and t5 to elimi-
nate the locations `1 and `3, leading to the program in Fig. 4. Here, the temporary
variables tv1 and tv4 vanish since, before applying arithmetic simplifications, the
guards of t0.1.2 resp. t3.4.5 imply tv1 =x resp. tv4 =z − 1.

Our overall approach for program simplification is shown in Alg. 1. Of course,
this algorithm is a heuristic and other strategies for the application of the pro-
cessors would also be possible. The set S in Steps 3 – 5 is needed to handle
locations ` with multiple simple loops. The reason is that each transition t′ with
dest(t′) = ` should be chained with each of `’s simple loops before removing t′.

Alg. 1 terminates: In the loop 2.1 – 2.2, each iteration decreases the number
of temporary variables in t. The loop 2 terminates since each iteration reduces
the number of non-accelerated simple loops. In loop 4, the number of simple
loops is decreasing and for loop 6, the number of reachable locations decreases.
The overall loop terminates as it reduces the number of reachable locations.
The reason is that the program does not have simple loops anymore when the
algorithm reaches Step 6. Thus, at this point there is either a location ` which
can be eliminated or the program does not have a path of length 2.

According to Alg. 1, in our example we go back to Step 1 and 2 and apply Loop

Lower Runtime Bounds for Integer Programs 9

Algorithm 1 Program Simplification

While there is a path of length 2:

1. Apply Deletion to transitions whose guard is proved unsatisfiable.
2. While there is a non-accelerated simple loop t:

2.1. Try to apply Loop Acceleration to t.
2.2. If 2.1. failed and t uses temporary variables:

Apply Strengthening to t to eliminate a temporary variable and go to 2.1.
2.3. Apply Deletion to t.

3. Let S = ∅.
4. While there is a simple loop t:

4.1. Apply Chaining to each pair t′, t where src(t′) 6= dest(t′) = src(t).
4.2. Add all these transitions t′ to S and apply Deletion to t.

5. Apply Deletion to each transition in S.
6. While there is a location ` without simple loops but with incoming and outgoing

transitions (starting with locations ` with just one incoming transition):
6.1. Apply Chaining to each pair t′, t where dest(t′) = src(t) = `.
6.2. Apply Deletion to each t where src(t) = ` or dest(t) = `.

Acceleration to transition t3.4.5. This transition has the metering function z − 1
and its iterated update sets u to 0 and z to z− tv for a fresh temporary variable
tv . To compute t3.4.5’s iterated costs, we have to find an under-approximation for
the solution of the recurrence equations c(1) = z+1 and c(tv+1) = c(tv) +z(tv) +1.
After computing the closed form z − tv of z(tv), the second equation simplifies
to c(tv+1) = c(tv) + z − tv + 1, which results in the closed form cit = c(tv) =
tv · z− 1

2 tv2 + 3
2 tv . In this way, we obtain the program in Fig. 5. A final chaining

step and deletion of the only simple loop yields the program in Fig. 6.

5 Asymptotic Lower Bounds for Simplified Programs

After Alg. 1, all program paths have length 1. We call such programs simplified
and let T be a simplified program throughout this section. Now for any v∈Val `0 ,

max{v(cost(t)) | t ∈ T ,v |= guard(t)}, (5)

is a lower bound on T ’s derivation height dhT (v|PV), i.e., (5) is the maximal cost
of those transitions whose guard is satisfied by v. So for the program in Fig. 6, we

obtain the bound x2·tv+x·tv−tv2+3tv+2x+4
2 for all valuations with v |= 0 < tv <

1
2x

2+ 1
2x. However, such bounds do not provide an intuitive understanding of the

program’s complexity and are also not suitable to detect possible attacks. Hence,
we now show how to derive asymptotic lower bounds for simplified programs.
These asymptotic bounds can easily be understood (i.e., a high lower bound can
help programmers to improve their program to make it more efficient) and they
identify potential attacks. After introducing our notion of asymptotic bounds in
Sect. 5.1, we present a technique to derive them automatically in Sect. 5.2.

5.1 Asymptotic Bounds and Limit Problems

While dhT is defined on valuations, asymptotic bounds are usually defined for

10 F. Frohn et al.

functions on N. To bridge this gap, we use the common definition of complexity
as a function of the size of the input. So the runtime complexity rcT (n) is the
maximal cost of any evaluation that starts with a configuration where the sum
of the absolute values of all program variables is at most n.

Definition 13 (Runtime Complexity). Let |v| =
∑
x∈PV |v(x)| for all valu-

ations v. The runtime complexity rcT : N→ R≥0 ∪ {ω} is defined as rcT (n) =
sup{dhT (v) | v ∈ Val , |v| ≤ n}.

Our goal is to derive an asymptotic lower bound for rcT from a simplified
program T . So for the program T in Fig. 6, we would like to derive rcT (n) ∈ Ω(n4).
As usual, f(n) ∈ Ω(g(n)) means that there is an m > 0 and an n0 ∈ N such
that f(n) ≥ m · g(n) holds for all n ≥ n0. However, in general, the costs of a
transition do not directly give rise to the desired asymptotic lower bound. For
instance, in Fig. 6, the costs of the only transition are cubic, but the complexity
of the program is a polynomial of degree 4 (since tv may be quadratic in x).

To infer an asymptotic lower bound from a transition t ∈ T , we try to find
an infinite family of valuations vn ∈ Val `0 (parameterized by n ∈ N) where
there is an n0 ∈ N such that vn |= guard(t) holds for all n ≥ n0. This implies
rcT (|vn|) ∈ Ω(vn(cost(t))), since for all n ≥ n0 we have:

rcT (|vn|) ≥ dhT (vn|PV) as |vn|PV | = |vn|
≥ vn(cost(t)) by (5)

We first normalize all constraints in guard(t) such that they have the form
a > 0. Now our goal is to find infinitely many models vn for a formula of the form∧

1≤i≤k(ai > 0). Obviously, such a formula is satisfied if all terms ai are positive
constants or increase infinitely towards ω. Thus, we introduce a technique which
tries to find out whether fixing the valuations of some variables and increasing or
decreasing the valuations of others results in positive resp. increasing valuations
of a1, . . . , ak. Our technique operates on so-called limit problems {a•11 , . . . , a

•k
k }

where ai ∈ A(V`0) and •i ∈ {+,−,+!,−!}. Here, a+ (resp. a−) means that a
grows towards ω (resp. −ω) and a+! (resp. a−!) means that a has to be a positive
(resp. negative) constant. So we represent guard(t) by an initial limit problem
{a•11 , . . . , a

•k
k } where •i ∈ {+,+!} for all 1 ≤ i ≤ k. We say that a family of

valuations vn is a solution to a limit problem S iff vn “satisfies” S for large n.
To define this notion formally, for any function f : N → R we say that

limn 7→ω f(n) = ω (resp. limn 7→ω f(n) = −ω) iff for every m ∈ Z there is an
n0 ∈ N such that f(n) ≥ m (resp. f(n) ≤ m) holds for all n ≥ n0. Similarly,
limn 7→ω f(n) = m iff there is an n0 such that f(n) = m holds for all n ≥ n0.

Definition 14 (Solutions of Limit Problems). For any function f : N→ R
and any • ∈ {+,−,+!,−!}, we say that f satisfies • iff

limn 7→ω f(n) = ω, if • = + ∃m ∈ Z. limn 7→ω f(n) = m > 0, if • = +!

limn 7→ω f(n) = −ω, if • = − ∃m ∈ Z. limn 7→ω f(n) = m < 0, if • = −!

A family vn of valuations is a solution of a limit problem S iff for every a• ∈ S,
the function λn. vn(a) satisfies •. Here, “λn. vn(a)” is the function from N→ R
that maps any n ∈ N to vn(a).

Lower Runtime Bounds for Integer Programs 11

Example 15 (Bound for Fig. 6). In Fig. 6 where guard(t) is 0 < tv < 1
2x

2 + 1
2x,

the family vn with vn(tv) = 1
2n

2 + 1
2n − 1,vn(x) = n, and vn(y) = vn(z) =

vn(u) = 0 is a solution of the initial limit problem {tv+, (1
2x

2 + 1
2x − tv)+!)}.

The reason is that the function λn. vn(tv) that maps any n ∈ N to vn(tv) =
1
2n

2 + 1
2n− 1 satisfies +, i.e., limn 7→ω(12n

2 + 1
2n− 1) = ω. Similarly, the function

λn. vn(1
2x

2 + 1
2x − tv) = λn. 1 satisfies +!. Sect. 5.2 will show how to infer

such solutions of limit problems automatically. Thus, there is an n0 such that
vn |= guard(t) holds for all n ≥ n0. Hence, we get the asymptotic lower bound
rcT (|vn|) ∈ Ω(vn(cost(t))) = Ω(1

8n
4 + 1

4n
3 + 7

8n
2 + 7

4n) = Ω(n4).

Theorem 16 (Asymptotic Bounds for Simplified Programs). Given a
transition t of a simplified program T with guard(t) = a1 > 0 ∧ · · · ∧ ak > 0,
let the family vn be a solution of an initial limit problem {a•11 , . . . , a

•k
k } with

•i ∈ {+,+!} for all 1 ≤ i ≤ k. Then rcT (|vn|) ∈ Ω(vn(cost(t))).

Of course, if T has several transitions, then we try to take the one which
results in the highest lower bound. Moreover, one should extend the initial limit
problem {a•11 , . . . , a

•k
k } by cost(t)+. In this way, one searches for valuations vn

where vn(cost(t)) depends on n, i.e., where the costs are not constant.
The costs are unbounded (i.e., they only depend on temporary variables) iff

the initial limit problem {a•11 , . . . , a
•k
k , cost(t)

+} has a solution vn where vn(x) is
constant for all x ∈ PV. Then we can even infer rcT (n) ∈ Ω(ω). For instance, after
chaining the transition t of Ex. 9 with the transition from the start location (see
Ex. 5), the resulting initial limit problem {x+! , tv+, (tv ·y+1)+} has the solution
vn with vn(x) = vn(y) = 1 and vn(tv) = n, which implies rcT (n) ∈ Ω(ω).

If the costs are not unbounded, we say that they depend on x ∈ PV iff
the initial limit problem {a•11 , . . . , a

•k
k , cost(t)

+} has a solution vn where vn(y) is
constant for all y ∈ PV\{x}. If x corresponds to a “secret”, then the program can
be subject to side-channel attacks. For example, in Ex. 15 we have vn(cost(t)) =
1
8n

4+ 1
4n

3+ 7
8n

2+ 7
4n. Since vn maps all program variables except x to constants,

the costs of our program depend on the program variable x. So if x is “secret”,
then the program is not safe from side-channel attacks.

Thm. 16 results in bounds of the form “rcT (|vn|) ∈ Ω(vn(c))”, which depend
on the sizes |vn|. Let f(n) = rcT (n), g(n) = |vn|, and let Ω(vn(c)) have the form
Ω(nk) or Ω(kn) for a k ∈ N. Moreover for all x ∈ PV, let vn(x) be a polynomial
of at most degree m, i.e., let g(n) ∈ O(nm). Then the following observation
from [15] allows us to infer a bound for rcT (n) instead of rcT (|vn|).

Lemma 17 (Bounds for Function Composition). Let f : N → R≥0 and
g : N → N where g(n) ∈ O(nm) for some m ∈ N \ {0}. Moreover, let f(n) be
weakly and let g(n) be strictly monotonically increasing for large enough n.

• If f(g(n)) ∈ Ω(nk) with k ∈ N, then f(n) ∈ Ω(n
k
m).

• If f(g(n)) ∈ Ω(kn) with k ∈ N, then f(n) ∈ Ω(k
m
√
n).

Example 18 (Bound for Fig. 6 Continued). In Ex. 15, we inferred rcT (|vn|) ∈
Ω(n4) where vn(x) = n and vn(y) = vn(z) = vn(u) = 0. Hence, we have

|vn| = n ∈ O(n1). By Lemma 17, we obtain rcT (n) ∈ Ω(n
4
1) = Ω(n4).

12 F. Frohn et al.

Example 19 (Non-Polynomial Bounds). Let T={(`0, x = y2, id, y, `)}. By Def. 14,
the family vn with vn(x) = n2 and vn(y) = n is a solution of the initial limit
problem {(x−y2+1)+! , (y2−x+1)+! , y+}. Due to Thm. 16, this proves rcT (|vn|) ∈
Ω(n). As |vn| = n2 + n ∈ O(n2), Lemma 17 results in rcT (n) ∈ Ω(n

1
2).

5.2 Transformation of Limit Problems

A limit problem S is trivial iff all terms in S are variables and there is no variable
x with x•1 , x•2 ∈ S and •1 6= •2. For trivial limit problems S we can immediately
obtain a particular solution vSn which instantiates variables “according to S”.

Lemma 20 (Solving Trivial Limit Problems). Let S be a trivial limit prob-
lem. Then vSn is a solution of S where for all n ∈ N, vSn is defined as follows:

vSn(x) = n, if x+ ∈ S vSn(x) = 1, if x+! ∈ S vSn(x) = 0, otherwise
vSn(x) = −n, if x− ∈ S vSn(x) = −1, if x−! ∈ S

For instance, if V`0 = {x, y, tv} and S = {x+, y−!}, then S is a trivial limit
problem and vSn with vSn(x) = n,vSn(y) = −1, and vSn(tv) = 0 is a solution for S.

However, in general the initial limit problem S = {a•11 , . . . , a
•k
k , cost(t)

+}
is not trivial. Therefore, we now define a transformation to simplify limit
problems until one reaches a trivial problem. With our transformation, S S′

ensures that each solution of S′ also gives rise to a solution of S.
If S contains f(a1, a2)• for some standard arithmetic operation f like addi-

tion, subtraction, multiplication, division, and exponentiation, we use a so-called
limit vector (•1, •2) with •i ∈ {+,−,+!,−!} to characterize for which kinds of
arguments the operation f is increasing (if • = +) resp. decreasing (if • = −)
resp. a positive or negative constant (if • = +! or • = −!).

8 Then S can be
transformed into the new limit problem S \ {f(a1, a2)•} ∪ {a•11 , a

•2
2 }.

For example, (+,+!) is an increasing limit vector for subtraction. The reason
is that a1−a2 is increasing if a1 is increasing and a2 is a positive constant. Hence,
our transformation allows us to replace (a1 − a2)+ by a+1 and a+!

2 .
To define limit vectors formally, we say that (•1, •2) is an increasing (resp. de-

creasing) limit vector for f iff the function λn. f(g(n), h(n)) satisfies + (resp. −)
for any functions g and h that satisfy •1 and •2, respectively. Here, “λn. f(g(n),
h(n))” is the function from N→ R that maps any n ∈ N to f(g(n), h(n)). Simi-
larly, (•1, •2) is a positive (resp. negative) limit vector for f iff λn. f(g(n), h(n))
satisfies +! (resp. −!) for any functions g and h that satisfy •1 and •2, respectively.

With this definition, (+,+!) is indeed an increasing limit vector for subtraction,
since limn 7→ω g(n) = ω and limn 7→ω h(n) = m with m > 0 implies limn 7→ω(g(n)−
h(n)) = ω. In other words, if g(n) satisfies + and h(n) satisfies +!, then g(n)−
h(n) satisfies + as well. In contrast, (+,+) is not an increasing limit vector for
subtraction. To see this, consider the functions g(n) = h(n) = n. Both g(n) and
h(n) satisfy +, whereas g(n)− h(n) = 0 does not satisfy +. Similarly, (+!,+!) is

8 To ease the presentation, we restrict ourselves to binary operations f . For operations
of arity m, one would need limit vectors of the form (•1, . . . , •m).

Lower Runtime Bounds for Integer Programs 13

not a positive limit vector for subtraction, since for g(n) = 1 and h(n) = 2, both
g(n) and h(n) satisfy +!, but g(n)− h(n) = −1 does not satisfy +!.

Limit vectors can be used to simplify limit problems, cf. (A) in the following
definition. Moreover, for numbers m ∈ Z, one can easily simplify constraints of
the form m+! and m−! (e.g., 2+! is obviously satisfied since 2 > 0), cf. (B).

Definition 21 (). Let S be a limit problem. We have:

(A) S ∪ {f(a1, a2)•} S ∪ {a•11 , a
•2
2 } if • is + (resp. −,+!,−!) and (•1, •2) is

an increasing (resp. decreasing, positive, negative) limit vector for f

(B) S ∪ {m+!} S if m ∈ Z with m > 0, S ∪ {m−!} S if m < 0

Example 22 (Bound for Fig. 6 Continued). For the initial limit problem from
Ex. 15, we have {tv+, (1

2x
2 + 1

2x − tv)+!} {tv+, (1
2x

2 + 1
2x)+! , tv−!}

{tv+, (1
2x

2)+! , (1
2x)+! , tv−!} ∗ {tv+, x+! , tv−!} using the positive limit vector

(+!,−!) for subtraction and the positive limit vector (+!,+!) for addition.

The resulting problem in Ex. 22 is not trivial as it contains tv+ and tv−! , i.e.,
we failed to compute an asymptotic lower bound. However, if we substitute tv
with its upper bound 1

2x
2 + 1

2x−1, then we could reduce the initial limit problem
to a trivial one. Hence, we now extend by allowing to apply substitutions.

Definition 23 (Continued). Let S be a limit problem and let σ : V`0 →
A(V`0) be a substitution such that x does not occur in xσ and v(xσ) ∈ Z for all
valuations v ∈ Val `0 and all x ∈ V`0 . Then we have9

(C) S σ Sσ

Example 24 (Bound for Fig. 6 Continued). For the initial limit problem from

Ex. 15, we now have10 {tv+, (12x
2+ 1

2x−tv)+!} [tv/ 1
2x

2+ 1
2x−1] {(12x

2+ 1
2x−1)+,

1+!} {(1
2x

2 + 1
2x− 1)+} {(1

2x
2 + 1

2x)+, 1+!} ∗ {x+}, which is trivial.

Although Def. 23 requires that variables may only be instantiated by integer
terms, it is also useful to handle limit problems that contain non-integer terms.

Example 25 (Non-Integer Metering Functions Continued). After chaining the
accelerated transition of Ex. 8 with the transition from the start location, for
the resulting initial limit problem we get {tv+, (1

2x − tv + 1)+! , (tv + 1)+} 2

{tv+, (1
2x− tv + 1)+!} [x/2tv−1] {tv+, 12

+!} {tv+, 1+! , 2+!} 2 {tv+}, using
the positive limit vector (+!,+!) for division. This allows us to infer rcT (n)∈Ω(n).

However, up to now we cannot prove that, e.g., a transition t with guard(t) =
x2 − x > 0 and cost(t) = x has a linear lower bound, since (+,+) is not an
increasing limit vector for subtraction. To handle such cases, the following rules
allow us to neglect polynomial sub-expressions if they are “dominated” by other
polynomials of higher degree or by exponential sub-expressions.

Definition 26 (Continued). Let S be a limit problem, let ± ∈ {+,−}, and
let a, b, e ∈ A({x}) be (univariate) polynomials. Then we have:

(D) S ∪ {(a± b)•} S ∪ {a•}, if • ∈ {+,−}, and a has a higher degree than b

9 The other rules for are implicitly labeled with the identical substitution id.
10 σ = [tv/ 1

2
x2 + 1

2
x−1] satisfies the condition v(yσ) ∈ Z for all v ∈ Val`0 and y ∈ V`0 .

14 F. Frohn et al.

(E) S ∪ {(ae ± b)+} S ∪ {(a− 1)•, e+}, if • ∈ {+,+!}.

Thus, {(x2−x)+} {(x2)+} = {(x ·x)+} {x+} by the increasing limit vector
(+,+) for multiplication. Similarly, {(2x − x3)+} {(2 − 1)+! , x+} {x+}.
Rule (E) can also be used to handle problems like (ae)+ (by choosing b = 0).

Thm. 27 states that is indeed correct. When constructing the valuation
from the resulting trivial limit problem, one has to take the substitutions into
account which were used in the derivation. Here, (vn ◦σ)(x) stands for vn(σ(x)).

Theorem 27 (Correctness of). If S σ S′ and the family vn is a solution
of S′, then vn ◦ σ is a solution of S.

Example 28 (Bound for Fig. 6 Continued). Ex. 24 leads to the solution v′n ◦σ of
the initial limit problem for the program from Fig. 6 where σ = [tv/ 1

2x
2+ 1

2x−1],
v′n(x) = n, and v′n(tv) = v′n(y) = v′n(z) = v′n(u) = 0. Hence, v′n ◦ σ = vn where
vn is as in Ex. 15. As explained in Ex. 18, this proves rcT (n) ∈ Ω(n4).

So we start with an initial limit problem S = {a•11 , . . . , a
•k
k , cost(t)

+} that
represents guard(t) and requires non-constant costs, and transform S with
into a trivial S′, i.e., S σ1 . . . σm S′. For automation, one should leave the •i
in the initial problem S open, and only instantiate them by a value from {+,+!}
when this is needed to apply a particular rule for the transformation . Then
the resulting family vS

′

n of valuations gives rise to a solution vS
′

n ◦ σm ◦ . . . ◦ σ1
of S. Thus, we have rcT (|vS′

n ◦ σ|) ∈ Ω(vS
′

n (σ(cost(t)))), where σ = σm ◦ . . . ◦ σ1,
which leads to a lower bound for rcT (n) with Lemma 17.

Our implementation uses the following strategy to apply the rules from Def. 21,
23, 26 for . Initially, we reduce the number of variables by propagating bounds
implied by the guard, i.e., if γ =⇒ x ≥ a or γ =⇒ x ≤ a for some a ∈ A(V`0\{x}),
then we apply the substitution [x/a] to the initial limit problem by rule (C). For
example, we simplify the limit problem from Ex. 19 by instantiating x with y2,
as the guard of the corresponding transition implies x = y2. So here, we get
{(x−y2 +1)+! , (y2−x+1)+! , y+} [x/y2] {1+! , y+} {y+}. Afterwards, we use
(B) and (D) with highest and (E) with second highest priority. The third priority
is trying to apply (A) to univariate terms (since processing univariate terms
helps to guide the search). As fourth priority, we apply (C) with a substitution
[x/m] if x+! or x−! in S, where we use SMT solving to find a suitable m ∈ Z.
Otherwise, we apply (A) to multivariate terms. Since is well founded and,
except for (C), finitely branching, one may also backtrack and explore alternative
applications of . In particular, we backtrack if we obtain a contradictory limit
problem. Moreover, if we obtain a trivial S′ where vS

′

n (σ(cost(t))) is a polynomial,
but cost(t) is a polynomial of higher degree or an exponential function, then we
backtrack to search for other solutions which might lead to a higher lower bound.
However, our implementation can of course fail, since solvability of limit problems
is undecidable (due to Hilbert’s Tenth Problem).

6 Experiments and Conclusion

We presented the first technique to infer lower bounds on the worst-case run-

Lower Runtime Bounds for Integer Programs 15

time complexity of integer programs, based on a modular program simplification
framework. The main simplification technique is loop acceleration, which relies
on recurrence solving and metering functions, an adaptation of classical ranking
functions. By eliminating loops and locations via chaining, we eventually obtain
simplified programs. We presented a technique to infer asymptotic lower bounds
from simplified programs, which can also be used to find vulnerabilities.

Our implementation LoAT (“Lower Bounds Analysis Tool”) is freely available
at [23]. It was inspired by KoAT [8], which alternates runtime- and size-analysis to
infer upper bounds in a modular way. Similarly, LoAT alternates runtime-analysis
and recurrence solving to transform loops to loop-free transitions independently.
LoAT uses the recurrence solver PURRS [4] and the SMT solver Z3 [10].

We evaluated LoAT on the benchmarks [5] from the evaluation of [8]. We omit-
ted 50 recursive programs, since our approach cannot yet handle recursion. As we
know of no other tool to compute worst-case lower bounds for integer programs,
we compared our results with the asymptotically smallest results of leading tools
for upper bounds: KoAT, CoFloCo [14], Loopus [26], RanK [2]. We did not compare
with PUBS [1], since the cost relations analyzed by PUBS significantly differ from
the integer programs handled by LoAT. Moreover, as PUBS computes best-case
lower bounds, such a comparison would be meaningless since the worst-case lower
bounds computed by LoAT are no valid best-case lower bounds. We used a timeout
of 60 seconds. In the following, we disregard 132 examples where rcT (n) ∈ O(1)
was proved since there is no non-trivial lower bound in these cases.

rcT (n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω)

O(1) (132) – – – – – –
O(n) 45 125 – – – – –
O(n2) 9 18 33 – – – –
O(n3) 2 – – 3 – – –
O(n4) 1 – – – 2 – –
EXP – – – – – 5 –
O(ω) 57 31 3 – – – 173

LoAT infers non-trivial lower bounds
for 393 (78%) of the remaining 507 ex-
amples. Tight bounds (i.e., the lower
and the upper bound coincide) are
proved in 341 cases (67%). Whenever
an exponential upper bound is proved,
LoAT also proves an exponential lower
bound (i.e., rcT (n) ∈ Ω(kn) for some k > 1). In 173 cases, LoAT infers unbounded
runtime complexity. In some cases, this is due to non-termination, but for this
particular goal, specialized tools are more powerful (e.g., whenever LoAT proves
unbounded runtime complexity due to non-termination, the termination analyzer
T2 [7] shows non-termination as well). The average runtime of LoAT was 2.4
seconds per example. These results could be improved further by supplementing
LoAT with invariant inference as implemented in tools like APRON [20]. For a
detailed experimental evaluation of our implementation as well as the sources
and a pre-compiled binary of LoAT we refer to [16].

Acknowledgments We thank S. Genaim and J. Böker for discussions and comments.

References

1. Albert, E., Genaim, S., Masud, A.N.: On the inference of resource usage upper and
lower bounds. ACM Transactions on Computational Logic 14(3) (2013)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, program
termination, and complexity bounds of flowchart programs. In: Proc. SAS ’10. pp.
117–133. LNCS 6337 (2010)

16 F. Frohn et al.

3. Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost
analysis. In: Proc. SAS ’12. pp. 405–421. LNCS 7460 (2012)

4. Bagnara, R., Pescetti, A., Zaccagnini, A., Zaffanella, E.: PURRS: Towards com-
puter algebra support for fully automatic worst-case complexity analysis. CoRR
abs/cs/0512056 (2005)

5. Benchmark examples, https://github.com/s-falke/kittel-koat/tree/master/
koat-evaluation/examples

6. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Proc.
CAV ’05. pp. 491–504. LNCS 3576 (2005)

7. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Proc. CAV ’13. pp. 413–429. LNCS 8044 (2013)

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime
and size complexity analysis of integer programs. In: Proc. TACAS ’14. pp. 140–155.
LNCS 8413 (2014), full version in ACM Trans. on Prog. Languages and Systems

9. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Proc. PLDI ’15. pp. 467–478 (2015)

10. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. TACAS ’08. pp.
337–340. LNCS 4963 (2008)

11. Debray, S., López-Garćıa, P., Hermenegildo, M.V., Lin, N.: Lower bound cost esti-
mation for logic programs. In: Proc. ILPS ’97. pp. 291–305 (1997)

12. Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using
bitvector arithmetic. In: Proc. VSTTE ’12. pp. 261–277. LNCS 7152 (2012)

13. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: Proc. FMCAD ’15.
pp. 57–64 (2015)

14. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Proc. APLAS ’14. pp. 275–295. LNCS 8858 (2014)

15. Frohn, F., Giesl, J., Emmes, F., Ströder, T., Aschermann, C., Hensel, J.: Inferring
lower bounds for runtime complexity. In: Proc. RTA ’15. pp. 334–349. LIPIcs 36
(2015)

16. Frohn, F., Naaf, M., Hensel, J., Brockschmidt, M., Giesl, J.: Proofs and empirical
evaluation of “Lower Runtime Bounds for Integer Programs” (2016), available at
http://aprove.informatik.rwth-aachen.de/eval/integerLower/

17. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation
analysis. In: Proc. SAS ’06. pp. 144–160. LNCS 4134 (2006)

18. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Proc. RTA ’89. pp. 167–177. LNCS 355 (1989)

19. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Transactions on Programming Languages and Systems 34(3) (2012)

20. Jeannet, B., Miné, A.: APRON: A library of numerical abstract domains for static
analysis. In: Proc. CAV ’09. pp. 661–667. LNCS 5643 (2009)

21. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general
linear loops. ACM SIGPLAN Notices 49(1), 529–540 (2014)

22. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. Form. Meth. Sys. Des. 47(1), 75–92 (2015)

23. LoAT, https://github.com/aprove-developers/LoAT
24. Madhukar, K., Wachter, B., Kroening, D., Lewis, M., Srivas, M.K.: Accelerating

invariant generation. In: Proc. FMCAD ’15. pp. 105–111 (2015)
25. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking

functions. In: Proc. VMCAI ’04. pp. 239–251. LNCS 2937 (2004)
26. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound analy-

sis and amortized complexity analysis. In: CAV ’14. pp. 745–761. LNCS 8559 (2014)

