
Termination of Isabelle Functions via
Termination of Rewriting?

Alexander Krauss,1 Christian Sternagel,2 René Thiemann,2 Carsten Fuhs,3 and
Jürgen Giesl3

1 Institut für Informatik, Technische Universität München, Germany
2 Institute of Computer Science, University of Innsbruck, Austria

3 LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. We show how to automate termination proofs for recursive
functions in (a first-order subset of) Isabelle/HOL by encoding them as
term rewrite systems and invoking an external termination prover. Our
link to the external prover includes full proof reconstruction, where all
necessary properties are derived inside Isabelle/HOL without oracles.
Apart from the certification of the imported proof, the main challenge is
the formal reduction of the proof obligation produced by Isabelle/HOL to
the termination of the corresponding term rewrite system. We automate
this reduction via suitable tactics which we added to the IsaFoR library.

1 Introduction

In a proof assistant based on higher-order logic (HOL), such as Isabelle/HOL
[15], recursive function definitions typically require a termination proof. To re-
lease the user from finding suitable termination arguments manually, it is desir-
able to automate these termination proofs as much as possible.

There have already been successful approaches to port and adapt existing
termination techniques from term rewriting and other areas to Isabelle [5,12].
They indeed increase the degree of automation for termination proofs of HOL
functions. However, these approaches do not cover all powerful techniques that
have been developed in term rewriting, e.g., [7,20]. These techniques are imple-
mented in a number of termination tools (e.g., AProVE [9], TTT2 [11] and many
others) that can show termination of (first-order) term rewrite systems (TRSs)
automatically. (In the remainder we use ‘termination tool’ exclusively to refer
to such fully automatic and external provers.) Instead of porting further proof
techniques to Isabelle, we prefer to use the existing termination tools, giving
direct access to an abundance of methods and their efficient implementations.

Using termination tools inside proof assistants has been an open problem for
some time and is often mentioned as future work when discussing certification of
termination proofs [3,6]. However, this requires more than a communication in-
terface between two programs. In LCF-style proof assistants [10] such as Isabelle,
all proofs must be checked by a small trusted kernel. Thus, integrating external
tools as unverified oracles is unsatisfactory: any error in the external tool or in
? Supported by the DFG grant GI 274/5-3 and the FWF project P22767-N13.

the integration code would compromise the overall soundness. Instead, the ex-
ternal tool must provide a certificate that can be checked by the proof assistant.

Our approach involves the following steps.

1. Generate the definition of a TRS Rf which corresponds to the function f .
2. Prove that termination of Rf indeed implies the termination goal for f .
3. Run the termination tool on Rf and obtain a certificate.
4. Replay the certificate using a formally verified checker.

While steps 1 and 3 are not hard, and the ground work for step 4 is already
available in the IsaFoR library [17,19], which formalizes term rewriting and sev-
eral termination techniques,1 this paper is concerned with the missing piece, the
reduction of termination proof obligations for HOL functions to the termination
of a TRS. This is non-trivial, as the languages differ considerably. Termination
of a TRS expresses the well-foundedness of a relation over terms, i.e., of type
(term × term) set, where terms are first-order terms. In contrast, the termina-
tion proof obligation for a HOL function states the well-foundedness of its call
relation, which has the type (α × α) set , where α is the argument type of the
function. In essence, we must move from a shallow embedding (the functional
programming fragment of Isabelle/HOL) to a deep embedding (the formalization
of term rewriting in IsaFoR).

The goal of this paper is to provide this formal relationship between termi-
nation of first-order HOL functions and termination of TRSs. More precisely,
we develop a tactic that automatically reduces the termination proof obligation
of a HOL function to the termination problem of a TRS. This allows us to use
arbitrary termination tools for fully automated termination proofs inside Isa-
belle. Thus, powerful termination tools become available to the Isabelle user,
while retaining the strong soundness guarantees of an LCF-style proof assistant.
Since our approach is generic, it automatically benefits from future improve-
ments to termination tools and the termination techniques within IsaFoR. Our
implementation is available as part of IsaFoR.

Outline of this paper. We give a short introduction on term rewriting, HOL and
HOL functions in §2. Then we show our main result in §3 on how to systemati-
cally discharge the termination proof obligation of a HOL function via proving
termination of a TRS. In §4 we present some examples which show the strengths
and limitations of our technique. How to extend our approach to support more
HOL functions is discussed in §5. We conclude in §6.

2 Preliminaries

2.1 Higher-Order Logic

We consider classical HOL, which is based on simply-typed lambda-calculus,
enriched with a simple form of ML-like polymorphism. Among its basic types
are a type bool of truth values and a function space type constructor ⇒ (where
α⇒ β denotes the type of total functions mapping values of type α to values of
1 See http://cl-informatik.uibk.ac.at/software/ceta for a list of supported techniques.

http://cl-informatik.uibk.ac.at/software/ceta

type β). Sets are modeled by a type α set, which just abbreviates α⇒ bool.
By an add-on tool, HOL supports algebraic datatypes, which includes the

types nat (with constructors 0 and Suc) and list (with constructors [] and #).
Another add-on tool, the function package [13], completes the functional pro-

gramming layer by allowing recursive function definitions, which are not covered
by the primitives of the logic. Since it internally employs a well-founded recur-
sion principle, it requires the user to prove well-foundedness of a certain relation,
extracted automatically from the function definition (cf. §2.3). This proof obliga-
tion, by its construction, directly corresponds to the termination of the function
being defined. It is the proof of this goal that we want to automate.

As opposed to functional programming languages, there is no operational
semantics for HOL; the meaning of its expressions is instead given by a set-
theoretic denotational semantics. As a consequence, there is no direct notion of
evaluation or termination of an expression. Thus, when we informally say that
we prove “termination of a HOL function,” this simply means that we discharge
the proof obligation produced by the function package.

2.2 Supported Fragment

Isabelle supports a wide spectrum of specifications, using various forms of induc-
tive, coinductive and recursive definitions, as well as quantifiers and Hilbert’s
choice operator. Clearly, not all of them can be easily expressed using TRSs.
Thus, we must limit ourselves to a subset which is sufficiently close to rewriting,
and consider only algebraic datatypes, given by a set of constructors together
with their types, and recursive functions, given by their defining equations with
pattern matching. Additionally, we impose the following restrictions:

1. Functions and constructors must be first-order (no functions as arguments).
2. Patterns are constructor terms and must be linear and non-overlapping.
3. Patterns must be complete.
4. Expressions consist of variables, function applications, and case-expressions

only. In particular, partial applications and λ-abstractions are excluded.

Linearity is always satisfied by function definitions that are accepted by Isabelle’s
function package, and pattern overlaps are eliminated automatically. For ease of
presentation, we assume that there is no mutual recursion (f calls g and g calls
f) and no nested recursion (arguments of a recursive call contain other recursive
calls; they may of course contain calls to other defined functions).

Most of the above restrictions are not fundamental, and we discuss in §5 how
some of them can be removed. Our chosen fragment of HOL rather represents a
compromise between expressive power and a reasonably simple presentation and
implementation of our reduction technique. Note that case-expressions encom-
pass the simpler if-expressions, which can be seen as case-expressions on type
bool. Isabelle’s (non-recursive and monomorphic) let-expressions can simply be
inlined or replaced by case-expressions if patterns are involved.

The functions half and log below (log computes the logarithm) illustrate our
supported fragment and will be used as running examples throughout this paper.

half 0 = 0
half (Suc 0) = 0
half (Suc (Suc n)) = Suc (half n)
log n = (case half n of 0 ⇒ 0 | Suc m ⇒ Suc (log (Suc m)))

2.3 Function Definitions by Well-Founded Recursion

When the user writes a recursive definition, the function package analyzes the
equations and extracts the recursive calls. This information is then used to syn-
thesize the termination proof obligation.

Formally, we define the operation callsf that computes the set of calls to f
inside an expression, each together with a condition under which it occurs.

• callsf (g e1 . . . ek) ≡ callsf (e1)∪ . . .∪callsf (ek) if g is a constructor or
a defined function other than f ,

• callsf (f e1 . . . en) ≡ callsf (e1)∪ . . .∪callsf (en)∪{(e1, . . . , en,True)},
• callsf (x) ≡ ∅ for all variables x, and
• callsf (case e of p1 ⇒ e1 | . . . | pk ⇒ ek) ≡ callsf (e) ∪ (callsf (e1) ∧ e =
p1)∪ . . .∪(callsf (ek)∧e = pk) where callsf (ei)∧e = pi is like callsf (ei),
but every (t1, . . . , tm, ϕ) ∈ callsf (ei) is replaced by (t1, . . . , tm, ϕ∧ e = pi).

The termination proof obligation requires us to exhibit a strongly normaliz-
ing relation � such that for each defining equation f p1 . . . pn = e and each
(r1, . . . , rn, φ) ∈ callsf (e) we can prove φ =⇒ (p1, . . . , pn) � (r1, . . . , rn).

Consider for example the definition of half, where we have callshalf(0) ≡ ∅
and callshalf(Suc (half n)) ≡ {(n,True)}. We obtain the following obligation.

1. SN ?R
2. ∀n. (Suc (Suc n), n) ∈ ?R

The variable ?R :: (nat × nat) set is a schematic variable, which can be instan-
tiated during the proof, i.e., it can be seen as existentially quantified.

For log, we have callslog(case half n of 0⇒ 0 | Suc m⇒ Suc (log (Suc m))) ≡
{(Suc m, half n = Suc m)}, and the following proof obligation is produced.

1. SN ?R
2. ∀n m. half n = Suc m =⇒ (n, Suc m) ∈ ?R

Two things should be noted here. First, the fact that the recursive call is guarded
by a case-expression is reflected by a condition in the corresponding subgoal.
Without this condition, which models the usual evaluation behavior of case,
the goal would be unprovable. Second, the goal may refer to previously defined
functions. To prove it, we must refer to properties of these functions, either
through their definitions, or through other lemmas about them.

When the proof obligation is discharged, the function package can use the
result to derive the recursive equations as theorems (previously, they were just
conjectures—consider the recursive equation f x = Suc (f x), which is incon-
sistent). Additionally, an induction rule is provided, which expresses “induction
along the computation.” The induction rules for half and log are shown below.

P 0 =⇒ P (Suc 0) =⇒ (∀n. P n =⇒ P (Suc (Suc n))) =⇒ ∀n. P n
(∀n. (∀m. half n = Suc m =⇒ P (Suc m)) =⇒ P n) =⇒ ∀n. P n

2.4 IsaFoR - Term Rewriting Formalized in Isabelle/HOL

In the following, we assume that the reader is familiar with the basics of term
rewriting [1]. Many notions and facts from rewriting have been formalized in the
Isabelle library IsaFoR [19]. Before we can give the reduction from termination of
HOL functions to termination of corresponding TRSs in §3, we need some more
details on IsaFoR. Terms are represented straightforwardly by the datatype:

datatype (α, β) term = Var β | Fun α ((α, β) term list)

The type variables α and β, which represent function and variable symbols,
respectively, are always instantiated with the type string in our setting. Hence,
we abbreviate (string, string) term by term in the following. For example, the
term f(x, y) is represented by Fun “f” [Var “x”,Var “y”]. A TRS is represented
by a value of type (term× term) set.

The semantics of a TRS is given by its rewrite relation→R, defined by closing
R under contexts and substitutions. Termination ofR is formalized as SN (→R).

IsaFoR formalizes many criteria commonly used in automated termination
proofs. Ultimately, it contains an executable and terminating function

check-proof :: (term× term) list⇒ proof⇒ bool

and a proof of the following soundness theorem:

Theorem 1 (Soundness of Check). check-proof R prf =⇒ SN (→R)

Here, prf is a certificate (i.e., a termination proof of R) from some external
source, encoded as a value of a suitable datatype, and R is the TRS under
consideration.2 Whenever check-proof returns True for some given TRS R and
certificate prf, we have established (inside Isabelle) that prf is a valid termination
proof for R. Thus, we can prove termination of concrete TRSs inside Isabelle.

The technical details on the supported termination techniques and the struc-
ture of the certificate (i.e., the type proof) are orthogonal to our use of the check
function, which only relies on Theorem 1.

2.5 Terminology and Notation

The layered nature of our setting requires that we carefully distinguish three
levels of discourse. Primarily, there is higher-order logic (implemented in Isa-
belle/HOL), in which all mechanized reasoning takes place. The termination
goals we ultimately want to solve are formulated on this level. Of course, the
syntax of HOL consists of terms, but to distinguish them from the embedded
term language of term rewriting, we refer to them as expressions. They are uni-
formly written in italics and follow the conventions of the lambda-calculus (in
particular, function application is denoted by juxtaposition). HOL equality is
2 To be executable, check-proof demands that R is given as a list of rules and not as

a set. We ignore this difference, since it is irrelevant for this paper.

denoted by =. For example, the definition of half above is a HOL expression.
The second level is the “sub-language” of first-order terms, which is deeply

embedded into HOL by the datatype term. When we speak of a term, we al-
ways refer to a value of that type, not an arbitrary HOL expression. While this
embedding is simple and adequate, the concrete syntax with the Fun and Var
constructors and string literals is rather unwieldy. Hence, for readability, we use
sans-serif font to abbreviate the constructors and the quotes: Instead of Var “v”
we write v, and instead of Fun “f” [. . .] we write f(. . .), omitting the parentheses
() for nullary functions. This recovers the well-known concrete syntax of term
rewriting, but we must keep in mind that the constructors and strings are still
present, although they are not written as such.

Finally, we must relate the two languages with each other, and describe
the proof procedures that derive the relevant properties. While the properties
themselves can be stated in HOL for each concrete instance, the general schema
cannot, as it must talk about “all HOL expressions.” Thus, we use a meta-
language as another level above HOL, in which we express the transformations
and tactics. This level corresponds to our implementation (in ML). Functions of
the meta-language are written in small capitals (e.g., callsf), and variables
of the meta-language, which typically range over arbitrary HOL expressions or
patterns, are written e or p, possibly with annotations. For HOL expressions that
are arguments of recursive calls we also use r. Equality of the meta-language is
written ≡ and denotes syntactic equality of HOL expressions. In particular,
e ≡ e′ implies e = e′, since HOL’s equality is reflexive.

Both embeddings are deep, that is, each level can talk about the syntax of the
lower levels. As a simple example, the concept of a ground term can be defined
as a recursive HOL function ground :: term⇒ bool:

ground (Var x) = False
ground (Fun f ts) = (∀t∈set(ts). ground t)

Then we can immediately deduce that ground (f(x)) = False, due to the presence
of x. Note however that the similar-looking statement ground (f(x)) = False is
not uniformly true. More precisely, its universal closure ∀x. ground (f(x)) = False
does not hold, since we could instantiate x with the term c (i.e., Fun “c” []).
Thus, we must not confuse variables of the different levels. Obviously, we cannot
quantify over a variable x, which is just the Var constructor applied to a string.

Similarly, the meta-language can talk about the syntax of HOL, as in the
definition of callsf , which is recursive over the structure of HOL expressions.

3 The Reduction to Rewriting

3.1 Encoding Expressions and Defining Equations

We define a straightforward encoding of HOL expressions as terms, denoted by
the meta-level operation enc. For case-free expressions, we turn variables into
term variables and (curried) applications into applications on the term level:

enc(x) ≡ x

enc(f e1 . . . en) ≡ f(enc(e1), . . . ,enc(en))

Each case-expression is replaced by a new function symbol, for which we will
include additional rules below. To simplify bookkeeping, we assume that each
occurrence of a case-expression is annotated with a unique integer j.

enc(casej e of p1 ⇒ e1 | . . . | pk ⇒ ek)
≡ casej(enc(e),enc(y1), . . . ,enc(ym))

where y1, . . . , ym are all variables that occur free in some ei but not in pi.
The operation rules yields the rewrite rules for a function or case-expression.

For a function f with defining equations `1 = r1, . . . , `k = rk, they are

rules(f) ≡ { enc(`1)→ enc(r1), . . . , enc(`k)→ enc(rk) } .

For the case-expression casej e of p1 ⇒ e1 | . . . | pk ⇒ ek we have

rules(casej) ≡ { casej(enc(p1),enc(y1), . . . ,enc(ym))→ enc(e1),
. . . ,

casej(enc(pk)),enc(y1), . . . ,enc(ym))→ enc(ek) } .

We define the TRS for f as Rf = rules(f)∪
⋃
g∈Sf

rules(g) where Sf is the
set of all functions that are used (directly or indirectly) by f . Our encoding is
similar to the well known technique of unraveling which transforms conditional
into unconditional TRSs [14,16].3

For example, Rlog is defined as follows and completely contains Rhalf.

half(0)→ 0 log(n)→ case0(half(n))
half(Suc(0))→ 0 case0(0)→ 0

half(Suc(Suc(n)))→ Suc(half(n)) case0(Suc(m))→ Suc(log(Suc(m)))

3.2 Embedding Functions

At this point, we have defined a translation, but we cannot reason about it in
Isabelle, since enc is only an extra-logical concept, defined on the meta-level. In
fact, it is easy to see that it cannot be defined in HOL: If we had a HOL function
enc satisfying enc 0 = 0 and enc (half 0) = half(0), we would immediately have
a contradiction, since half 0 = 0, and half(0) 6= 0, but a function must always
yield the same result on the same input.

In a typical reflection scenario, we would proceed by defining an interpreta-
tion for term. For example, if we were modeling the syntax of integer arithmetic
expressions, then we could define a function eval :: term⇒ int (possibly also de-
pending on a variable assignment) which interprets terms as integers. However,
3 It would be possible to directly generate dependency pair problems. However, tech-

niques like [18] and several termination tools rely on the notion of “minimal chains,”
which is not ensured by our approach.

in our setting, the result type of such a function is not fixed, as our terms rep-
resent HOL expressions of arbitrary types. Thus, the result type of eval would
depend on the actual term it is applied to. This cannot be expressed in a logic
without dependent types, which means we cannot use this approach here.

Instead, we take the opposite route: For all relevant types σ, we define a
function embσ :: σ ⇒ term, mapping values of type σ to their canonical term
representation.

Using Isabelle’s type classes, we use a single overloaded function emb, which
belongs to a type class embeddable. Concrete datatypes can be declared to be
instances of this class by defining emb, usually by structural recursion w.r.t. the
datatype. For example, here are the definitions for the types nat and list :

emb 0 = 0 emb [] = Nil
emb (Suc n) = Suc(emb n) emb (x # xs) = Cons(emb x , emb xs)

This form of definition is canonical for all algebraic datatypes, and suitable
definitions of emb can be automatically generated for all user-defined datatypes,
turning them into instances of the class embeddable. This is analogous to the
instances generated automatically by Haskell’s “deriving” statement. It is also
possible to manually provide the definition of emb for other types if they behave
like datatypes like the predefined type bool for the Booleans.

Note that by construction, the result of emb is always a constructor ground
term. For a HOL expression e that consists only of datatype constructors, (e.g.,
Suc (Suc 0)), we have emb e = enc(e). For other expressions this is not the case,
e.g., emb (half 0) = emb 0 = 0, but enc(half 0) ≡ half(0).

To formulate our proofs, we need another encoding of expressions as terms:
The operation genc is a slight variant of enc, which treats variables differently,
mapping them to their embeddings instead of term variables.

genc(x) ≡ emb x
genc(f e1 . . . en) ≡ f(genc(e1), . . . ,genc(en))
genc(casej e of p1 ⇒ e1 | . . . | pk ⇒ ek)
≡ casej(genc(e),genc(y1), . . . ,genc(ym))

where y1, . . . , ym are all variables that occur free in some ei but not in pi.
Hence, genc(e) never contains term variables. However, it contains the same

HOL variables as e. For example, genc(half (Suc n)) ≡ half(Suc(emb n)).

3.3 Rewrite Lemmas

The definitions of Rhalf and Rlog above are straightforward, but reasoning with
them is clumsy and low-level: To establish a single rewrite step, we must extract
the correct rule (that is, prove that it is in the set Rhalf or Rlog), invoke closure
under substitution, and construct the correct substitution explicitly as a function
of type string⇒ term.

To avoid such repetitive reasoning, we automatically derive an individual
lemma for each rewrite rule. From the definition of Rhalf, we obtain the following
rules, which we call rewrite lemmas:

half(0) →Rhalf 0 half(Suc(0)) →Rhalf 0

∀t . half(Suc(Suc(t))) →Rhalf Suc(half(t))

Note that the term variable n in the last rule has been turned into a universally-
quantified HOL variable by applying the “generic substitution” {n 7→ t}. The
advantage of this format is that applying a rewrite rule merely involves instan-
tiating a universal quantifier, for which we can use the matching facilities of
Isabelle. In particular, we can instantiate t with emb n, which in general results
in a rewrite lemma of the form genc(f p1 . . . pn) →R genc(e) for a defining
equation f p1 . . . pn = e.

3.4 The Simulation Property

The following property connects our generated TRSs with HOL expressions.

Definition 2 (Simulation Property). For every expression e and R =
⋃
{Rf

| f occurs in e}, the simulation property for e is the statement

genc(e)→∗R emb e.

As we cannot quantify over all HOL expressions within HOL itself, we cannot
formalize that the simulation property holds for all e.

However, we will devise a tactic that derives this property for any given
concrete expression. The basic building blocks of such proofs are lemmas of the
following form, which are derived for each function symbol and can be composed
to show the simulation property for a given expression.

Definition 3 (Simulation Lemma). The simulation lemma for a function f
of arity n is the statement

∀x1 . . . xn. f(emb x1, . . . , emb xn)→∗Rf emb (f x1 . . . xn) .

E.g., the simulation lemma for half is ∀n. half(emb n) →∗Rhalf emb (half n).
The lemma claims that the rules that we produced for f can indeed be used to

reduce a function application to the (embedding of) the value of the function. Of
course, this way of saying “Rf computes f” admits the possibility that there are
otherRf -reductions that lead to different normal forms or that do not terminate,
since we are not requiring confluence or strong normalization. But this form of
simulation lemma is sufficient for our purpose.

We show in §3.6 how simulation lemmas are proved automatically.

3.5 Reduction of Termination Goals

After having proved termination of Rf using a termination tool in combination
with IsaFoR and Theorem 1, we now show how to use this result to solve the
termination goal for the HOL function f . Recall from §2.3 that we must exhibit
a strongly normalizing relation � such that φ =⇒ (p1, . . . , pn) � (r1, . . . , rn)
for all (r1, . . . , rn, φ) ∈ callsf (e) for each defining equation f p1 . . . pn = e.

To this end, we first define as →Rf ∪ B where B is the strict subterm
relation. The addition of B is required to strip off constructors and non-recursive
function applications that are wrapped around recursive calls in right-hand sides
of Rf . Since →Rf is strongly normalizing and closed under contexts, also is
strongly normalizing. This allows us to finally choose � as the following relation.

(x1, . . . , xn) � (y1, . . . , yn) iff f(emb x1, . . . , emb xn) + f(emb y1, . . . , emb yn)

It remains to show that the arguments of recursive calls decrease w.r.t. �.
That is, for each recursive call we have a goal of the form

φ =⇒ f(emb p1, . . . , emb pn) + f(emb r1, . . . , emb rn)

where f p1 . . . pn = e is a defining equation of f and (r1, . . . , rn, φ) ∈ callsf (e).
In the following, we illustrate the automated proof of this goal.

Note that since the pi’s are patterns, we have emb pi = genc(pi), and hence

f(emb p1, . . . , emb pn)
= f(genc(p1), . . . ,genc(pn)) (pi are patterns)
≡ genc(f p1 . . . pn) (definition of genc)

→Rf genc(e) (rewrite lemma)

Thus, it remains to construct a sequence genc(e) ∗ f(emb r1, . . . , emb rn),
which reduces the right-hand side of the definition to a particular recursive call,
eliminating any surrounding context. We proceed recursively over e.

• If e ≡ g e1 . . . em for a constructor g or a defined function symbol g 6≡ f ,
then (r1, . . . , rn, φ) ∈ calls(ei) for some particular i. Hence, we have

genc(e)
≡ g(genc(e1), . . . ,genc(em)) (definition of genc)
B genc(ei) (definition of B)
 ∗ f(emb r1, . . . , emb rn) (apply tactic recursively)

• If e ≡ f e1 . . . en then (since we excluded nested recursion) we have ei = ri
for all i. Hence, we have

genc(e)
≡ f(genc(r1), . . . ,genc(rn)) (definition of genc)

→∗Rf f(emb r1, . . . , emb rn) (simulation property)

• If e ≡ casej e0 of p1 ⇒ e1 | . . . | pk ⇒ ek then we distinguish where the
recursive call is located. If (r1, . . . , rn, φ) ∈ callsf (e0), then we have

genc(e)
≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)
B genc(e0) (definition of B)
 ∗ f(emb r1, . . . , emb rn) (apply tactic recursively)

Otherwise, φ ≡ (χ∧ e0 = pi) for some χ and 1 6 i 6 k, and (r1, . . . , rn, χ) ∈
calls(ei). We may therefore use the assumption e0 = pi and proceed with

genc(e)
≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)

→∗Rf casej(emb e0,genc(y1), . . . ,genc(ym)) (simulation property)
= casej(emb pi,genc(y1), . . . ,genc(ym)) (assumption e0 = pi)
= casej(genc(pi),genc(y1), . . . ,genc(ym)) (since pi is a pattern)

→Rf genc(ei) (rewrite lemma)
 ∗ f(emb r1, . . . , emb rn) (apply tactic recursively)

3.6 Proof of the Simulation Property

We have seen that for the reduction of termination goals it is essential to use
the simulation property genc(e)→∗Rf emb e for expressions e that occur below
recursive calls or within conditions that guard a recursive call. Below, we show
how this property is derived for an individual expression, assuming that we
already have simulation lemmas for all functions that occur in it. We again
proceed recursively over e.

• If e is a HOL variable x then genc(e) ≡ genc(x) ≡ emb x ≡ emb e and
thus, the result follows by reflexivity of →∗Rf .
• If e ≡ g e1 . . . ek for a function symbol g then

genc(e)
≡ g(genc(e1), . . . ,genc(ek)) (definition of genc)

→∗Rf g(emb e1, . . . , emb ek) (apply tactic recursively)
→∗Rf emb (g e1 . . . ek) (simulation lemma for g)
≡ emb e

• If e ≡ casej e0 of p1 ⇒ e1 | . . . | pk ⇒ ek then we construct the following
rewrite sequence:

genc(e)
≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)

→∗Rf casej(emb e0,genc(y1), . . . ,genc(ym)) (apply tactic recursively)

Now we apply a case analysis on e0, which must be equal (in HOL, not
syntactically) to one of the patterns. In each particular case we may assume
e0 = pi. Then we continue:

casej(emb e0,genc(y1), . . . ,genc(ym))
= casej(emb pi,genc(y1), . . . ,genc(ym)) (assumption e0 = pi)
= casej(genc(pi),genc(y1), . . . ,genc(ym)) (since pi is a pattern)

→Rf genc(ei) (rewrite lemma)
→∗Rf emb ei (apply tactic recursively)

= emb e (assumption e0 = pi)

The tactic above assumes that simulation lemmas for all functions in e are al-
ready present. Note the simulation lemma is trivial to prove if f is a constructor,
since f(emb x1, . . . , emb xn) = emb (f x1 . . . xn) by definition of emb.

For defined symbols of non-recursive functions the simulation lemmas are de-
rived by unfolding the definition of the function and applying the tactic above.
Thus, simulation lemmas are proved bottom-up in the order of function depen-
dencies. When a function is recursive, the proof of its simulation lemma proceeds
by induction using the induction principle from the function definition.

Example 4. We show how the simulation lemma for log is proved, assuming that
the simulation lemmas for 0, Suc, and half are already available.

So our goal is to show log(emb n) →∗Rlog emb (log n) for any n :: nat. We
apply the induction rule of log and obtain the following induction hypothesis.

∀m. half n = Suc m =⇒ log(emb (Suc m))→∗Rlog emb (log (Suc m))

Let c abbreviate case half n of 0⇒ 0 | Suc m⇒ Suc (log (Suc m)). Then

log(emb n)
→Rlog case0(half(emb n)) (rewrite lemma)
→∗Rlog case0(emb (half n)) (simulation lemma of half)

We continue by case analysis on half n. We only present the more interesting
case half n = Suc m (the other case half n = 0 is similar):

case0(emb (half n))
= case0(emb (Suc m)) (assumption half n = Suc m)
= case0(Suc(emb m)) (def. of emb)

→Rlog Suc(log(Suc(emb m))) (rewrite lemma)
→∗Rlog Suc(log(emb (Suc m))) (simulation lemma of Suc)
→∗Rlog Suc(emb (log (Suc m))) (induction hypothesis)
→∗Rlog emb (Suc (log (Suc m))) (simulation lemma of Suc)

= emb c (assumption half n = Suc m)
= emb (log n) (def. of log)

4 Examples

We show some characteristic examples that illustrate the strengths and weak-
nesses of our approach. Each example is representative for several similar ones
that occur in the Isabelle distribution.

Example 5. Consider binary trees defined by the type

datatype tree = E | N tree nat tree

and a function remdups that removes duplicates from a tree. The function is
defined by the following equations (the auxiliary function del removes all occur-
rences of an element from a tree; we omit its straightforward definition here):

remdups E = E
remdups (N l x r) = N (remdups (del x l)) x (remdups (del x r))

The termination argument for remdups relies on a property of del : the result of
del is smaller than its argument. In Isabelle, the user must manually state and
prove (by induction) the lemma size (del x t) ≤ size t, before termination can
be shown. Here, size is an overloaded function generated automatically for every
algebraic datatype.

For a termination tool, termination of the related TRS is easily proved using
standard techniques, eliminating the need for finding and proving the lemma.

Example 6. The following function (originally due to Boyer and Moore [4]) nor-
malizes conditional expressions consisting of atoms (AT) and if-expressions (IF).

norm (AT a) = AT a
norm (IF (AT a) y z) = IF (AT a) (norm y) (norm z)
norm (IF (IF u v w) y z) = norm (IF u (IF v y z) (IF w y z))

Isabelle’s standard size measure is not sufficient to prove termination of norm,
and a custom measure function must be specified by the user. Using a termina-
tion tool, the proof is fully automatic and no measure function is required.

Example 7. The Isabelle distribution contains the following implementation of
the merge sort algorithm (transformed into non-overlapping rules internally):

msort [] = []
msort [x] = [x]
msort xs = merge (msort (take (length xs div 2) xs)) (msort (drop
(length xs div 2) xs))

The situation is similar to Example 5, as we must know how take and drop affect
the length of the list. However, in this case, Isabelle’s list theory already provides
the necessary lemmas, e.g., length (take n xs) = min n (length xs). Together with
the built-in arithmetic decision procedures (which know about div and min),
the termination proof works fully automatically.

For termination tools, the proof is a bit more challenging and requires tech-
niques that are not yet formalized in IsaFoR (in particular, the technique of
rewriting dependency pairs [8]). Thus, our connection to termination tools can-
not handle msort yet. However, when this technique is added to IsaFoR in the
future, no change will be required in our implementation to benefit from it.

These examples show the main strength of our reduction to rewriting: ab-
solutely no user input in the form of lemmas or measure functions is required.
On the other hand, Isabelle’s ability to pick up previously established results
can make the built-in termination prover surprisingly strong in the presence of

a good library, as the msort example shows. Even though that example can be
solved by termination tools (and only the formalization lags behind), it shows
an intrinsic weakness of the approach, since existing facts are not used and must
be rediscovered by the termination tool if necessary.

5 Extensions

In this section, we reconsider the restrictions imposed in §2.2.

Nested Recursion. So far, we excluded nested recursion like f (Suc n) = f (f n).
The problem is that to prove termination of f we need its simulation lemma to
reduce the inner call in the proof of the outer call, cf. §3.5. But proving the sim-
ulation lemma uses the induction rule of f , which in turn requires termination.

To solve this problem, we can use the partial induction rule that is gener-
ated by the function package even before a termination proof [13]. This rule,
which is similar to the one used previously, contains extra domain conditions
of the form domf x. It allows us to derive the restricted simulation lemma
domf n =⇒ f(emb n)→∗Rf emb (f n). In the termination proof obligation for
the outer recursive call, we may assume this domain condition for the inner call
(a convenience provided by the function package), so that this restricted form of
simulation lemma suffices. Hence, dealing with nested recursion simply requires
a certain amount of additional bookkeeping.

Underspecification. So far, we require functions to be completely defined, i.e., no
cases are missing in left-hand sides or case-expressions. However, head (x# xs) =
x is a common definition. It is internally completed by head [] = undefined in
Isabelle, where undefined :: α is an arbitrary but unknown value of type α.

For such functions, we cannot derive the simulation lemma, since this would
require head(Nil) to be equal to emb undefined, which is an unknown term of the
form Suck(0). The obvious idea of adding the rule head(Nil)→ undefined to the
TRS does not work, since undefined cannot be equal to emb undefined.

We can solve the problem by using fresh variables for unspecified cases, e.g.,
by adding the rule head(Nil) → x. Then, the simulation lemma holds. However,
the resulting TRS is no longer terminating. This new problem can be solved by
using a variant of innermost rewriting, which would require support by IsaFoR
as well as the termination tool.

Non-Representable Types and Polymorphism. Clearly, our embedding is limited
to types that admit a term representation. This excludes uncountable types such
as real numbers and most function types. However, even if such types occur in
HOL functions, they may not be relevant for termination. Then, we can simply
map all such values to a fixed constant by defining, e.g., emb (r :: real) = real.
Hence, the simulation lemmas for functions returning real numbers are trivial
to prove. Furthermore, a termination proof that does not rely on these values
works without problems. Like for underspecified functions, the generated TRS

no longer models the original function completely, but is only an abstraction
that is sufficient to prove termination.

A similar issue arises with polymorphic functions: To handle a function of
type α list ⇒ α list we need a definition of emb on type α. Mapping values
of type α to a constant is unproblematic, since the definition is irrelevant for
the proof. However, a class instance α :: embeddable would violate the type
class discipline. This can be solved by either replacing the use of type classes
by explicit dictionary constructions (where emblist would take the embedding
function to use for the list elements as an argument), or by restricting α to class
embeddable. Since the type class does not carry any axioms, the system allows
us to remove the class constraint from the final theorem, so no generality is lost.

Higher-Order Functions. Higher-order functions pose new difficulties. First, we
cannot hope to define emb on function types. In particular, this means that
we cannot even state the simulation lemma for a function like map. Second,
the termination conditions for functions with higher-order recursion depend on
user-provided congruence rules of a certain format [13]. These congruence rules
then influence the form of the premise φ in the termination condition.

A partial solution could be to create a first-order function mapf for each
invocation of map on a concrete function f . Commonly used combinators like
map, filter and fold could be supported in this way.

6 Conclusion

We have presented a generic approach to discharge termination goals of HOL
functions by proving termination of a corresponding generated TRS. Hence,
where before a manual termination proof might have been required, now external
termination tools can be used. Since our approach is not tied to any particular
termination proof technique, its power scales up as the capabilities of termination
tools increase and more techniques are formalized in IsaFoR.

A complete prototype of our implementation is available in the IsaFoR/CeTA
distribution (version 1.18, http://cl-informatik.uibk.ac.at/software/ceta), which
also includes usage examples. It remains as future work to extend our approach
to a larger class of HOL functions. Moreover, the implementation has to be more
smoothly embedded into the Isabelle system such that a user can easily access
the provided functionality. The general approach is not limited to Isabelle, and
could be ported to other theorem provers like Coq, which has similar recursive
definition facilities (e.g., [2]) and rewriting libraries similar to IsaFoR [3,6].

Acknowledgment. Jasmin Blanchette gave helpful feedback on a draft of this
paper.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

http://cl-informatik.uibk.ac.at/software/ceta

2. G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about
recursive functions: a practical tool for the Coq proof assistant. In Proc. FLOPS’06,
volume 3945 of LNCS, pages 114–129. Springer, 2006.

3. F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded rewrite rela-
tions and its application to the automated verification of termination certificates.
Math. Struct. Comp. Science, 2011. To appear.

4. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
5. L. Bulwahn, A. Krauss, and T. Nipkow. Finding lexicographic orders for termina-

tion proofs in Isabelle/HOL. In Proc. TPHOLs’07, volume 4732 of LNCS, pages
38–53. Springer, 2007.

6. E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of
automated termination proofs. In Proc. FroCoS’07, volume 4720 of LNCS, pages
148–162. Springer, 2007.

7. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. J. Autom. Reasoning, 40(2-3):195–220, 2008.

8. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl.
Algebr. Eng. Comm., 12(1,2):39–72, 2001.

9. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. IJCAR’06, volume 4130
of LNCS, pages 281–286. Springer, 2006.

10. M. Gordon. From LCF to HOL: A short history. In Proof, Language, and Inter-
action, pages 169–185. MIT Press, 2000.

11. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool
2. In Proc. RTA’09, volume 5595 of LNCS, pages 295–304. Springer, 2009.

12. A. Krauss. Certified size-change termination. In Proc. CADE’07, volume 4603 of
LNCS, pages 460–475. Springer, 2007.

13. A. Krauss. Partial and nested recursive function definitions in higher-order logic.
J. Autom. Reasoning, 44(4):303–336, 2010.

14. M. Marchiori. Logic programs as term rewriting systems. In ALP ’94, volume 850
of LNCS, pages 223–241. Springer, 1994.

15. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

16. E. Ohlebusch. Termination of logic programs: Transformational methods revisited.
Appl. Algebr. Eng. Comm., 12(1-2):73–116, 2001.

17. C. Sternagel. Automatic Certification of Termination Proofs. PhD thesis, Institut
für Informatik, Universität Innsbruck, Austria, 2010.

18. C. Sternagel and R. Thiemann. Certified subterm criterion and certified usable
rules. In Proc. RTA’10, volume 6 of LIPIcs, pages 325–340, 2010.

19. R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In
Proc. TPHOLs’09, volume 5674 of LNCS, pages 452–468. Springer, 2009.

20. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta
Informaticae, 24:89–105, 1995.

	Termination of Isabelle Functions via Termination of Rewriting

