
Proving Termination by Bounded Increase⋆

Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-Kamp

LuFG Informatik 2, RWTH Aachen, Germany,
{giesl,thiemann,swiderski,psk}@informatik.rwth-aachen.de

Abstract. Most methods for termination analysis of term rewrite sys-
tems (TRSs) essentially try to find arguments of functions that decrease
in recursive calls. However, they fail if the reason for termination is that
an argument is increased in recursive calls repeatedly until it reaches
a bound. In this paper, we solve that problem and show how to prove
innermost termination of TRSs with bounded increase automatically.

1 Introduction

In programming, one often writes algorithms that terminate because a value is in-
creased until it reaches a bound. Hence, to apply termination techniques of TRSs
in practice, they must be able to deal with those algorithms successfully. But un-
fortunately, all existing methods and tools for automated termination analysis of
TRSs fail on such examples. Therefore, proving termination of TRSs with boun-
ded increase was identified as one of the most urgent and challenging problems
at the annual International Competition of Termination Tools 2006 [16].

Example 1. As an example consider a TRS for subtraction. TRSs of this form
often result from the transformation of conditional TRSs or from functional,
logic, or imperative programs.

minus(x, y) → cond(gt(x, y), x, y) (1) gt(0, v) → false (4)
cond(false, x, y) → 0 (2) gt(s(u), 0) → true (5)
cond(true, x, y) → s(minus(x, s(y))) (3) gt(s(u), s(v)) → gt(u, v) (6)

To handle TRSs like Ex. 1, we propose to use polynomial interpretations [14].
But instead of classical polynomial interpretations on natural numbers, we use
interpretations on integers. Such interpretations can measure the difference be-
tween the first and second argument of minus. Indeed, minus is terminating since
this difference decreases in each recursive call. However, using integer polynomial
interpretations is unsound in the existing termination techniques for TRSs.

This is also true for the dependency pair (DP) method [1], which is a powerful
method for automated termination analysis of TRSs that is implemented in
virtually all current automated termination tools. This method relies on the use
of reduction pairs (%,≻) to compare terms. Here, % is a stable quasi-order and ≻

⋆ Proc. CADE-21, LNAI, 2007. Supported by the Deutsche Forschungsgemeinschaft
DFG under grant GI 274/5-1 and the DFG Research Training Group 1298 (AlgoSyn).

is a stable order, where % and ≻ are compatible (i.e., ≻ ◦ % ⊆ ≻ or % ◦ ≻ ⊆ ≻).
Moreover, % and ≻ have to satisfy the following properties:

(a) % is monotonic (b) ≻ is well founded

After recapitulating the DP method in Sect. 2, in Sect. 3 we extend it to
general reduction pairs (without requirements (a) and (b)). Then one can also
use reduction pairs based on integer polynomial interpretations, which violate
the requirements (a) and (b).

In Sect. 4 we extend the DP method further to exploit implicit conditions.
This is needed to prove that an increase is bounded. For instance, the recursive
call of minus in Ex. 1 only takes place under the condition gt(x, y) = true.1 With
our extensions, termination provers based on DPs can handle most algorithms
with bounded increase that typically occur in practice. In Sect. 5, we discuss the
implementation of our method in our termination tool AProVE [9].

2 Dependency Pairs

We assume familiarity with term rewriting [2] and briefly recapitulate the DP
method. See [1, 8, 10, 12, 13] for further motivations and extensions.

Definition 2 (Dependency Pairs). For a TRS R, the defined symbols D are
the root symbols of left-hand sides of rules. All other function symbols are called
constructors. For every defined symbol f ∈ D, we introduce a fresh tuple symbol
f ♯ with the same arity. To ease readability, we often write F instead of f ♯, etc.
If t = f(t1, . . . , tn) with f ∈ D, we write t♯ for f ♯(t1, . . . , tn). If ℓ→ r ∈ R and t
is a subterm of r with defined root symbol, then the rule ℓ♯ → t♯ is a dependency
pair of R. The set of all dependency pairs of R is denoted DP(R).

Ex. 1 has the following DPs, where MINUS is the tuple symbol for minus, etc.

MINUS(x, y)→COND(gt(x, y), x, y) (7) COND(true, x, y)→MINUS(x, s(y)) (9)
MINUS(x, y)→GT(x, y) (8) GT(s(u), s(v))→GT(u, v) (10)

In this paper, we only focus on innermost termination, i.e., we only regard the
innermost rewrite relation i→. The reason is that proving innermost termination
is considerably easier than proving full termination and there are large classes
of TRSs where innermost termination is already sufficient for termination. In
particular, this holds for non-overlapping TRSs like Ex. 1.

1 Proving termination of TRSs like Ex. 1 is far more difficult than proving termi-
nation of programs in a language where one uses a predefined function gt. (For
such languages, there already exist termination techniques that can handle certain
forms of bounded increase [5, 15].) However, if a function like gt is not predefined but
written by the “user”, then the termination technique cannot presuppose any knowl-
edge about gt’s semantics. In contrast, the termination technique has to deduce any
needed informations about gt from the user-defined gt-rules.

2

The main result of the DP method for innermost termination states that
a TRS R is innermost terminating iff there is no infinite minimal innermost
(DP (R),R)-chain. For any TRSs P and R, a minimal innermost (P ,R)-chain
is a sequence of (variable renamed) pairs s1 → t1, s2 → t2, . . . from P such that
there is a substitution σ (with possibly infinite domain) where tiσ

i→∗
R
si+1σ,

all siσ are in normal form, and all tiσ are innermost terminating w.r.t. R.

Termination techniques are now called DP processors and they operate on
sets of dependency pairs (which are called DP problems).2 Formally, a DP pro-
cessor Proc takes a DP problem as input and returns a set of new DP prob-
lems which then have to be solved instead. A processor Proc is sound if for
all DP problems P with infinite minimal innermost (P ,R)-chain there is also a
P ′ ∈ Proc(P) with infinite minimal innermost (P ′,R)-chain. Soundness of a DP
processor is required to prove innermost termination and in particular, to con-
clude that there is no infinite minimal innermost (P ,R)-chain if Proc(P) = {∅}.

So innermost termination proofs in the DP framework start with the initial
DP problem DP (R). Then the DP problem is simplified repeatedly by sound
DP processors. If all resulting DP problems have been simplified to ∅, then
innermost termination is proved. In Thm. 3, we recapitulate one of the most
important processors of the framework, the so-called reduction pair processor.

For a DP problem P , the reduction pair processor generates inequality con-
straints which should be satisfied by a reduction pair (%,≻). The constraints
require that all DPs in P are strictly or weakly decreasing and all usable rules
U(P) are weakly decreasing. Then one can delete all strictly decreasing DPs.

The usable rules include all rules that can reduce the terms in right-hand sides
of P when their variables are instantiated with normal forms. More precisely,
for a term containing a defined symbol f , all f -rules are usable. Moreover, if
the f -rules are usable and g occurs in the right-hand side of an f -rule, then the
g-rules are usable as well. In Thm. 3, note that both TRSs and relations can be
seen as sets of pairs of terms. Thus, “P \≻” denotes {s→ t ∈ P | s 6≻ t}.

Theorem 3 (Reduction Pair Processor and Usable Rules). Let (%,≻)
be a reduction pair. Then the following DP processor Proc is sound.

Proc(P) =

{

{P \≻} if P ⊆ ≻∪ % and U(P) ⊆ %
{P } otherwise

For any function symbol f , let Rls(f) = {ℓ → r ∈ R | root(ℓ) = f}. For any
term t, the usable rules U(t) are the smallest set such that

• U(x) = ∅ for every variable x and
• U(f(t1, . . . , tn)) =Rls(f) ∪

⋃

ℓ→r∈Rls(f) U(r) ∪
⋃n
i=1 U(ti)

For a set of dependency pairs P, its usable rules are U(P) =
⋃

s→t∈P
U(t).

2 To ease readability we use a simpler definition of DP problems than [8], since this
simple definition suffices for the presentation of the new results of this paper.

3

For the TRS of Ex. 1, according to Thm. 3 we search for a reduction pair
with s

(
%

)
t for all dependency pairs s → t ∈ DP (R) = {(7), . . . , (10)} and with

ℓ % r for all usable rules ℓ→ r ∈ U(DP (R)) = {(4), (5), (6)}.

A popular method to search for suitable relations % and ≻ automatically is
the use of polynomial interpretations [14]. A polynomial interpretation Pol maps
every n-ary function symbol f to a polynomial fPol over n variables x1, . . . , xn.
Traditionally, one uses polynomials with coefficients from N = {0, 1, 2, . . .}. This
mapping is then extended to terms by defining [x]Pol = x for all variables x
and by defining [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol). If Pol is clear from
the context, we also write [t] instead of [t]Pol. Now one defines s ≻Pol t (resp.
s %Pol t) iff [s] > [t] (resp. [s] ≥ [t]) holds for all instantiations of the variables
with natural numbers. It is easy to see that (%Pol,≻Pol) is a reduction pair.

As an example, consider the polynomial interpretation Pol1 with GTPol1 =
x1, MINUSPol1 = x1+1, CONDPol1 = x2+1, sPol1 = x1+1, and fPol1 = 0 for all
other function symbols f . Then the DPs (8) and (10) are strictly decreasing. The
reason for GT(s(x), s(y)) ≻Pol1 GT(x, y) is that [GT(s(x), s(y))] = x + 1 is grea-
ter than [GT(x, y)] = x for all natural numbers x. Moreover, all other DPs and
the usable rules are weakly decreasing w.r.t. %Pol1 . Thus, the DPs (8) and (10)
can be removed and the reduction pair processor transforms the initial DP prob-
lem DP (R) into {(7), (9)}. We refer to [4, 7] for efficient algorithms to generate
suitable polynomial interpretations automatically. However, it is impossible to
transform the problem further into the empty DP problem ∅. More precisely,
there is no reduction pair based on polynomial interpretations (or on any other
classical order amenable to automation) where one of the DPs (7) and (9) is
strictly decreasing and the other one and the usable rules are weakly decreasing,
cf. [11]. Indeed, up to now all implementations of the DP method failed on Ex. 1.

3 General Reduction Pairs

Our aim is to handle integer polynomial interpretations. More precisely, we
want to use polynomial interpretations where all function symbols except tuple
symbols are still mapped to polynomials with natural coefficients, but where
tuple symbols may be mapped to polynomials with arbitrary integer coefficients.
For such integer polynomial interpretations, we still define s ≻Pol t (resp. s %Pol

t) iff [s] > [t] (resp. [s] ≥ [t]) holds for all instantiations of the variables with
natural (not with integer) numbers. If F is the original signature without tuple
symbols, then the relations ≻Pol and %Pol are F -stable, i.e., s

(
%

)Pol
t implies

sσ
(
%

)Pol
tσ for all substitutions σ with terms over F . It is easy to show that F -

stability is sufficient for the reduction pairs used in the reduction pair processor.

To solve the remaining DP problem {(7), (9)}, we want to use the integer
polynomial interpretation Pol2 where MINUSPol2 = x1 − x2, CONDPol2 = x2 −
x3, sPol2 = x1 + 1, and fPol2 = 0 for all other symbols f . Then DP (9) would
be strictly decreasing and could be removed. The resulting DP problem {(7)} is
easy to solve by Pol3 with MINUSPol3 =1 and fPol3 =0 for all other symbols f .

4

But such integer interpretations may not be used, since (%Pol2 , ≻Pol2) is no
reduction pair: %Pol2 is not monotonic (e.g., s(0) %Pol2 0, but MINUS(s(0), s(0))
6%Pol2 MINUS(s(0), 0)). Moreover, ≻Pol2 is not well founded (e.g., MINUS(0, 0)
≻Pol2 MINUS(0, s(0)) ≻Pol2 MINUS(0, s(s(0))) ≻Pol2 . . .). So integer interpreta-
tions violate both requirements (a) and (b) for reduction pairs, cf. Sect. 1.

Indeed, using such polynomial interpretations in Thm. 3 is unsound. As ≻Pol2

is not well founded (i.e., as it violates requirement (b)), Pol2 could be used for a
wrong innermost termination proof of the TRS {minus(x, y) → minus(x, s(y))}.
But even if requirement (b) were not violated, a violation of requirement (a)
would still render Thm. 3 unsound. We demonstrate this in Ex. 4.

Example 4. Consider the following TRS which is not innermost terminating.
Here, round(x) = x if x is even and round(x) = s(x) if x is odd.

minus(s(x), x) → minus(s(x), round(x)) (11) round(0) → 0 (12)
round(s(0)) → s(s(0)) (13)

round(s(s(x))) → s(s(round(x))) (14)

We use a modification Pol′2 of Pol2, where MINUSPol′2
= (x1−x2)

2, roundPol′2
= x1 + 1, and ROUNDPol′2

= 0. Now requirement (b) is satisfied. The MINUS-
DPs are strictly decreasing (i.e., MINUS(s(x), x) ≻Pol′2

MINUS(s(x), round(x))
and MINUS(s(x), x) ≻Pol′2

ROUND(x)) and the ROUND-DP and the usable rules

are weakly decreasing. Thus, if we were allowed to use Pol′2 in Thm. 3, then we
could remove the MINUS-DPs. The remaining DP problem is easily solved and
thus, we would falsely prove innermost termination of this TRS.

Ex. 4 shows the reason for the unsoundness when dropping requirement (a).
Thm. 3 requires ℓ % r for all usable rules ℓ→ r. This is meant to ensure that all
reductions with usable rules will weakly decrease the reduced term (w.r.t. %).
However, this only holds if the quasi-order % is monotonic. In Ex. 4, we have
round(x) %Pol′2

x, but MINUS(s(x), round(x)) 6%Pol′2
MINUS(s(x), x).

Therefore, one should take into account on which positions the used quasi-
order % is monotonically increasing and on which positions it is monotonically
decreasing. If a defined function symbol f occurs at a monotonically increasing
position in the right-hand side of a dependency pair, then one should require
ℓ % r for all f -rules. If f occurs at a monotonically decreasing position, then
one should require r % ℓ. Finally, if f occurs at a position which is neither
monotonically increasing nor decreasing, one should require ℓ ≈ r. Here, ≈ is
the equivalence relation associated with %, i.e., ≈ = % ∩ -.

So we modify our definition of usable rules.3 When computing U(f(t1, ..., tn)),
for any i ∈ {1, ..., n} we first check how the quasi-order % treats f ’s i-th argu-
ment. We say that f is %-dependent on i iff there exist terms t1, ..., tn, t

′
i where

f(t1, . . . , ti, ..., tn) 6≈ f(t1, ..., t
′
i, . . . , tn). Moreover, f is %-monotonically increas-

ing (resp. decreasing) on i iff ti % t
′
i implies f(t1, ..., ti, ..., tn) % f(t1, ..., t

′
i, ..., tn)

(resp. f(t1, ..., ti, ..., tn) - f(t1, ..., t
′
i, ..., tn)) for all terms t1, ..., tn and t′i.

3 Now U(t) is no longer a subset of R. We nevertheless refer to U(t) as “usable” rules
in order to keep the similarity to Thm. 3.

5

Now if f is not %-dependent on i, then U(ti) does not have to be included in
U(f(t1, . . . , tn)) at all. (This idea was already used in recent refined definitions
of the “usable rules”, cf. [10].) Otherwise, we include the usable rules U(ti) if f is
%-monotonically increasing on i. If it is %-monotonically decreasing, we include
the reversed rules U−1(ti) instead. Finally, if f is %-dependent on i, but neither
%-monotonically increasing nor decreasing, then we include the usable rules of ti
in both directions, i.e., we include U2(ti) which is defined to be U(ti) ∪U−1(ti).

Definition 5 (General Usable Rules). For any function symbol f and any
i ∈ {1, . . . , arity(f)}, we define

ord(f, i) =

0, if f is not %-dependent on i
1, otherwise, if f is %-monotonically increasing on i

−1, otherwise, if f is %-monotonically decreasing on i
2, otherwise

For any TRS U , we define U0 = ∅, U1 = U , U−1 = {r → ℓ | ℓ → r ∈ U},
and U2 = U ∪U−1. For any term t, we define U(t) as the smallest set such that4

• U(x) = ∅ for every variable x and

• U(f(t1, . . . , tn)) = Rls(f) ∪
⋃

ℓ→r∈Rls(f) U(r) ∪
⋃n
i=1 U

ord(f,i)(ti)

For a set of dependency pairs P, we again define U(P) =
⋃

s→t∈P
U(t).

So in Ex. 4, if MINUSPol′2
= (x1 − x2)

2 then MINUS is %Pol′2
-dependent on

2, but neither %Pol′2
-monotonically increasing nor decreasing. Hence, the usable

rules include ℓ → r and r → ℓ for all round-rules ℓ → r ∈ {(12), (13), (14)}.
Thus, we cannot falsely prove innermost termination with Pol′2 anymore. Indeed,
with the modified definition of usable rules above, Thm. 3 can also be used for
reduction pairs where % is not monotonic, i.e., where requirement (a) is violated.

We now also show how to omit the requirement (b) that the order ≻ in a
reduction pair has to be well founded. Instead, we replace well-foundedness by
the weaker requirement of non-infinitesimality.

Definition 6 (Non-Infinitesimal). A relation ≻ is non-infinitesimal if there
do not exist any t, s0, s1, . . . with si ≻ si+1 and si ≻ t for all i ∈ IN.

Any well-founded relation is non-infinitesimal. Thm. 7 shows that integer
polynomial orders (which are not well founded) are non-infinitesimal as well.5

Theorem 7 (Non-Infinitesimality of Integer Polynomial Orders). Let
Pol be an integer polynomial interpretation. Then ≻Pol is non-infinitesimal.

Note that non-infinitesimality of ≻Pol does not hold for polynomial interpre-
tations on rational numbers. To see this, let aPol = 1, bPol = 0, and fPol = x1

2 .

4 To ease readability, for k ∈ {−1, 0, 1, 2} we write “Uk(t)” instead of “(U(t))k”.
5 All proofs can be found in [11].

6

For si = fi(a) and t = b, we get the infinite sequence a ≻Pol f(a) ≻Pol f(f(a))
≻Pol . . . (i.e., si ≻Pol si+1 for all i) and fi(a) ≻Pol b (i.e., si ≻Pol t) for all i.

We now extend the reduction pair processor from Thm. 3 to general reduction
pairs. A general reduction pair (%,≻) consists of an F -stable quasi-order % and
a compatible F -stable non-infinitesimal order ≻, where F is the original signa-
ture of the TRS, i.e., without tuple symbols. Moreover, the equivalence relation
≈ associated with % must be monotonic (i.e., s ≈ t implies u[s]π ≈ u[t]π for
any position π of any term u). But we do not require monotonicity of % or well-
foundedness of ≻, i.e., both requirements (a) and (b) are dropped. So for any
integer polynomial interpretation Pol, (%Pol,≻Pol) is a general reduction pair.

In contrast to the reduction pair processor from Thm. 3, the new processor
transforms a DP problem into two new problems. As before, the first problem
results from removing all strictly decreasing dependency pairs. The second DP
problem results from removing all DPs s → t from P that are bounded from
below, i.e., DPs which satisfy the inequality s % c for a fresh constant c.

Theorem 8 (General Reduction Pair Processor). Let (%,≻) be a general
reduction pair. Let c be a fresh constant not occurring in the signature and let
Pbound = {s → t ∈ P | s % c}. Then the following DP processor Proc is sound.
Here, U(P) is defined as in Def. 5.

Proc(P) =

{

{P \≻, P \ Pbound } if P ⊆ ≻∪ % and U(P) ⊆ %
{P } otherwise

Example 9. To modify Ex. 4 into an innermost terminating TRS, we replace rule
(11) by minus(s(x), x) → minus(s(x), round(s(x))). We regard the interpretation
Pol′′2 with MINUSPol′′2

= x1 − x2, sPol′′2 = x1 + 1, 0Pol′′2 = 0, roundPol′′2 = x1,
ROUNDPol′′2

= 0, and cPol′′2 = 0. Then the MINUS-DPs are strictly decreas-
ing and the ROUND-DP and the usable rules are weakly decreasing. Here, the
usable rules are the reversed round-rules, since MINUS is %-monotonically de-
creasing on 2. Moreover, all dependency pairs are bounded from below (i.e.,
MINUS(s(x), x) %Pol′′2

c and ROUND(s(s(x))) %Pol′′2
c). Thus, we can transform

the initial DP problem P = DP (R) into P \ Pbound = ∅ and into P \≻, which
only contains the ROUND-DP. This remaining DP problem is easily solved and
thus, we can prove innermost termination of the TRS.

Since U(P) now depends on %, the constraints that the reduction pair has to
satisfy in Thm. 8 depend on the reduction pair itself. Nevertheless, if one uses re-
duction pairs based on polynomial interpretations, then the search for suitable re-
duction pairs can still be mechanized efficiently. More precisely, one can reformu-
late Thm. 8 in a way where one first generates constraints (that are independent
of %) and searches for a reduction pair satisfying the constraints afterwards. We
showed in [10, Sect. 7.1] how to reformulate “f is %-dependent on i” accordingly
and “f is %-monotonically increasing on i” can be reformulated by requiring
that the partial derivative of fPol w.r.t. xi is non-negative, cf. [1, Footnote 11].

There have already been previous approaches to extend the DP method to
non-monotonic reduction pairs. Hirokawa and Middeldorp [13] allowed interpre-

7

tations like MINUSPol = max(x1 − x2, 0).6 However, instead of detecting %-
monotonically increasing and decreasing positions, they always require ℓ ≈ r for
the usable rules. Therefore, their technique fails on Ex. 9, since their constraints
cannot be fulfilled by the interpretations considered in their approach, cf. [11].

Another approach was presented in [1, Thm. 33] and further extended in
[6]. Essentially, here one permits non-monotonic quasi-orders % provided that
f is %-monotonically increasing on a position i whenever there is a subterm
f(t1, ..., ti, ..., tn) in a right-hand side of a dependency pair or of a usable rule
where ti contains a defined symbol. Then Thm. 3 is still sound (this also follows
from Def. 5 and Thm. 8). However, this approach would not allow us to handle
arbitrary non-monotonic reduction pairs and therefore, it also fails on Ex. 9.

4 Conditions for Bounded Increase

With Thm. 8 we still cannot use our desired integer polynomial interpretation
Pol2 with MINUSPol2 = x1 −x2, CONDPol2 = x2 −x3, sPol2 = x1 +1, and fPol2
= 0 for all other function symbols f to prove innermost termination of Ex. 1.
When trying to solve the remaining DP problem {(7), (9)}, the DP (9) would
be strictly decreasing but none of the two DPs would be bounded. The reason is
that we have neither MINUS(x, y) %Pol2 c nor COND(true, x, y) %Pol2 c for any
possible value of cPol2 . Thus, the reduction pair processor would return the two
DP problems {(7)} and {(7), (9)}, i.e., it would not simplify the DP problem. (Of
course since {(7)} ⊆ {(7), (9)}, it suffices to regard just the problem {(7), (9)}.)

The solution is to consider conditions when requiring inequalities like s
(
%

)
t

or s % c. For example, to include the DP (7) in Pbound, we do not have to demand
MINUS(x, y) % c for all instantiations of x and y. Instead, it suffices to require the
inequality only for those instantiations of x and y which can be used in potential-
ly infinite minimal innermost chains. So we require MINUS(x, y) % c only for in-
stantiations σ where (7)’s instantiated right-hand side COND(gt(x, y), x, y)σ re-
duces to an instantiated left-hand side uσ for some DP u → v.7 Here, u → v
should again be variable renamed. As our DP problem contains two DPs (7) and
(9), we get the following two constraints (by considering all possibilities u→ v ∈
{(7), (9)}). If both constraints are satisfied, then we can include (7) in Pbound.

COND(gt(x, y), x, y) = MINUS(x′, y′) ⇒ MINUS(x, y) % c (15)
COND(gt(x, y), x, y) = COND(true, x′, y′) ⇒ MINUS(x, y) % c (16)

Def. 10 introduces the syntax and semantics of such conditional constraints.

Definition 10 (Conditional Constraint). For given relations % and ≻, the
set C of conditional constraints is the smallest set with

6 While such interpretations always result in well-founded orders, they are difficult to
generate automatically. In contrast, the search for integer polynomial interpretations
is as for ordinary polynomial interpretations, e.g., by using SAT solving as in [7].

7 Moreover, COND(gt(x, y), x, y)σ must be innermost terminating, COND(gt(x, y), x, y)σ
i
→

∗

R
uσ, and uσ must be in normal form, since we consider minimal innermost chains.

8

• {TRUE , s % t, s ≻ t, s = t} ⊆ C for all terms s and t
• if {ϕ1, ϕ2} ⊆ C, then ϕ1 ⇒ ϕ2 ∈ C and ϕ1 ∧ ϕ2 ∈ C
• if ϕ ∈ C and y ∈ V, then ∀y ϕ ∈ C

Now we define which normal F-substitutions8 σ satisfy a constraint ϕ ∈ C,
denoted “σ |= ϕ”:

• σ |= TRUE for all normal F-substitutions σ
• σ |= s % t iff sσ % tσ and σ |= s ≻ t iff sσ ≻ tσ
• σ |= s = t iff sσ is innermost terminating, sσ i→∗

R
tσ, tσ is a normal form

• σ |= ϕ1 ⇒ ϕ2 iff σ 6|= ϕ1 or σ |= ϕ2

• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

• σ |= ∀y ϕ iff σ′ |= ϕ for all normal F-substitutions σ′ where σ′(x) = σ(x)
for all x 6= y

A constraint ϕ is valid (“ |=ϕ”) iff σ |=ϕ holds for all normal F-substitutions σ.

Now we refine the reduction pair processor by taking conditions into account.
To this end, we modify the definition of Pbound and introduce P≻ and P%.

Theorem 11 (Conditional General Reduction Pair Processor). Let (%,
≻) be a general reduction pair. Let c be a fresh constant and let

P≻ = { s→ t ∈ P | |=
∧

u→v∈P
(t = u′ ⇒ s≻ t) }

P% = { s→ t ∈ P | |=
∧

u→v∈P
(t = u′ ⇒ s% t) }

Pbound = { s→ t ∈ P | |=
∧

u→v∈P
(t = u′ ⇒ s%c) }

where u′ results from u by renaming its variables into fresh variables. Then the
following DP processor Proc is sound. Here, U(P) is defined as in Def. 5.

Proc(P) =

{

{P \ P≻, P \ Pbound } if P≻ ∪ P% = P and U(P) ⊆ %

{P } otherwise

To ease readability, in Thm. 11 we only consider the conditions resulting from
two DPs s→ t and u→v which follow each other in minimal innermost chains.
To consider also conditions resulting from n+1 adjacent DPs, one would have to
modify P≻ as follows (of course, P% and Pbound have to be modified analogously).

P≻ ={s→ t∈P | |=
^

u1→v1,...,un→vn∈P
(t = u

′

1 ∧ v
′

1=u
′

2 ∧ . . . ∧ v
′

n−1=u
′

n ⇒ s≻ t)}

Here, the variables in u′i and v′i must be renamed in order to be disjoint to the
variables in u′j and v′j for j 6= i. Moreover, instead of regarding DPs which follow
s → t in chains, one could also regards DPs which precede s → t. Then instead
of (or in addition to) the premise “t = u′”, one would have the premise “v′ = s”.

The question remains how to check whether conditional constraints are valid,
since this requires reasoning about reductions resp. reachability. We now in-
troduce a calculus of seven rules to simplify conditional constraints. For ex-
ample, the constraint (15) is trivially valid, since its condition is unsatisfiable.

8 A normal F-substitution σ instantiates all variables by normal forms that do not
contain tuple symbols (i.e., for any x ∈ V, all function symbols in σ(x) are from F).

9

The reason is that there is no substitution σ with σ |= COND(gt(x, y), x, y) =
MINUS(x′, y′), since COND is no defined function symbol (i.e., it is a constructor)
and therefore, COND-terms can only be reduced to COND-terms.

This leads to the first inference rule. In a conjunction ϕ1 ∧ . . .∧ϕn of condi-
tional constraints ϕi, these rules can be used to replace a conjunct ϕi by a new
formula ϕ′

i. Of course, TRUE ∧ϕ can always be simplified to ϕ. Eventually, the
goal is to remove all equalities “p = q” from the constraints. The soundness of
the rules is shown in Thm. 14: if ϕi is replaced by ϕ′

i, then |= ϕ′
i implies |= ϕi.

I. Constructor and Different Function Symbol

f(p1, ..., pn) = g(q1, ..., qm)∧ϕ ⇒ ψ

TRUE
if f is a constructor and f 6= g

Rule (II) handles conditions like COND(gt(x, y), x, y) = COND(true, x′, y′)
where both terms start with the constructor COND. So (16) is transformed to

gt(x, y) = true ∧ x = x′ ∧ y = y′ ⇒ MINUS(x, y) % c (17)

II. Same Constructors on Both Sides

f(p1, ..., pn) = f(q1, ..., qn) ∧ ϕ ⇒ ψ

p1 = q1 ∧ . . . ∧ pn = qn ∧ ϕ ⇒ ψ
if f is a constructor

Rule (III) removes conditions of the form “x = q” or “q = x” by applying
the substitution [x/q] to the constraint.9 So (17) is transformed to

gt(x, y) = true ⇒ MINUS(x, y) % c (18)

III. Variable in Equation

x=q ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x ∈ V and
σ = [x/q]

q=x ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x∈V , q has no
defined symbols,
σ=[x/q]

Of course, one can also omit arbitrary conjuncts from the premise of an impli-
cation. To ease notation, we regard a conjunction as a set of formulas. So their
order is irrelevant and we write ϕ′ ⊆ ϕ iff all conjuncts of ϕ′ are also conjuncts
of ϕ. The empty conjunction is TRUE (i.e., TRUE ⇒ ψ can be simplified to ψ).

IV. Delete Conditions

ϕ ⇒ ψ

ϕ′ ⇒ ψ
if ϕ′ ⊆ ϕ

Rule (IV) is especially useful for omitting conditions q = x where x is a va-
riable which does not occur anywhere else. So one could also transform (17) to

9 To remove the condition q = x, we must ensure that for any normal F-substitution δ,
the term qδ is normal, too. Otherwise, Rule (III) would not be sound, cf. [11].

10

(18) by Rule (IV). The meaning of (18) is that MINUS(x, y)σ % c must hold
whenever gt(x, y)σ is innermost terminating and gt(x, y)σ i→∗

R
true holds for a

normal F -substitution σ. To simplify this constraint further, the next inference
rule performs an induction on the length of gt(x, y)σ’s reduction.10 Since gt(x, y)
and true do not unify, at least one reduction step is needed, i.e., some rule
gt(ℓ1, ℓ2) → r must be applied. To detect all possibilities for the first reduction
step, we consider all narrowings of the term gt(x, y). We obtain

gt(x, y) [x/0,y/v] false, gt(x, y) [x/s(u),y/0] true, gt(x, y) [x/s(u),y/s(v)] gt(u, v)

Thus, we could replace (18) by the following three new constraints where we
always apply the respective narrowing substitution to the whole constraint:

false = true ⇒ MINUS(0, v) % c (19)
true = true ⇒ MINUS(s(u), 0) % c (20)

gt(u, v) = true ⇒ MINUS(s(u), s(v)) % c (21)

So to transform a constraint f(x1, . . . , xn) = q ∧ ϕ ⇒ ψ, we consider all rules
f(ℓ1, . . . , ℓn) → r. Then the constraint could be replaced by the new constraints

r = qσ ∧ ϕσ ⇒ ψσ, where σ = [x1/ℓ1, . . . , xn/ℓn]. (22)

However, we perform a better transformation. Suppose that r contains a
recursive call, i.e., a subterm f(r1, . . . , rn), and that the ri do not contain defined
symbols. Obviously, f(r1, . . . , rn)σ’s reduction is shorter than the reduction of
f(x1, . . . , xn)σ. Thus for µ = [x1/r1, . . . , xn/rn] one can assume

∀y1, . . . , ym f(r1, . . . , rn) = qµ ∧ ϕµ ⇒ ψµ (23)

as induction hypothesis when requiring (22).11 Here, y1, . . . , ym are all occurring
variables except those in r. Of course, we may assume that variables in rewrite
rules (i.e., in r) are disjoint from variables in constraints (i.e., in q, ϕ, and ψ).
So instead of (22), it suffices to demand (23) ⇒ (22), or equivalently

r = qσ ∧ ϕσ ∧ (23) ⇒ ψσ. (24)

This leads to Rule (V). Here, x1, . . . , xn denote pairwise different variables.

10 More precisely, we use an induction on i→R ◦ D, where D is the subterm relation. The
idea for this inference rule was inspired by our earlier work on termination of simple
first-order functional programs [3]. But [3] only considered a very restricted form of
functional programs (left-linear, sufficiently complete, non-overlapping constructor
systems without defined symbols in arguments of recursive calls), whereas we regard
arbitrary TRSs. Moreover, we integrate this idea of performing induction into the
whole framework of termination techniques and tools available for TRSs. Finally, in
contrast to [3], we do not need an underlying induction theorem prover. Nevertheless,
our approach is significantly stronger (e.g., [3] fails on examples like Ex. 12, cf. [11]).

11 If there are more recursive calls in r, then one can obtain a corresponding induction
hypothesis (23) for each recursive call. But similar to Footnote 9, if the ri contain
defined symbols, then one may not assume (23) as induction hypothesis.

11

V. Induction (Defined Symbol with Pairwise Different Variables)

f(x1, ..., xn) = q ∧ ϕ ⇒ ψ
∧

f(ℓ1,...,ℓn)→r∈R

(r = q σ ∧ ϕσ ∧ ϕ′ ⇒ ψ σ)

if f is a defined symbol and
f(x1, ..., xn) does not unify
with q

where σ = [x1/ℓ1, ..., xn/ℓn]

and ϕ′ =

∀y1, ..., ym f(r1, . . . , rn) = qµ ∧ ϕµ⇒ ψ µ, if

• r contains the subterm f(r1, ..., rn),
• there is no defined symbol in any ri,
• µ = [x1/r1, ..., xn/rn], and
• y1, ..., ym are all occurring variables except V(r)

TRUE , otherwise

In our example, the above rule transforms the original constraint (18) into
the three new constraints (19), (20), and (25). Here, (25) is obtained from the
narrowing step gt(x, y) [x/s(u),y/s(v)] gt(u, v), i.e., we have σ = [x/s(u), y/s(v)],
r1 = u, r2 = v, and µ = [x/u, y/v]. There are no variables y1, . . . , ym.

gt(u, v) = true

∧ (gt(u, v) = true ⇒ MINUS(u, v) % c) ⇒ MINUS(s(u), s(v)) % c (25)

To simplify (25) further, now we can “apply” the induction hypothesis, since
its condition gt(u, v) = true is guaranteed to hold. So we can transform (25) to

gt(u, v) = true ∧ MINUS(u, v) % c ⇒ MINUS(s(u), s(v)) % c. (26)

In general, to simplify conditions one may of course also instantiate universally
quantified variables.12 This leads to the following rule.

VI. Simplify Condition

ϕ ∧ (∀y1, . . . , ym ϕ′ ⇒ ψ′) ⇒ ψ

ϕ ∧ ψ′ σ ⇒ ψ

if DOM(σ) ⊆ {y1, . . . , ym},
there is no defined symbol and
no tuple symbol in any σ(yi),
and ϕ′ σ ⊆ ϕ

To simplify the remaining constraints (19), (20), and (26), note that (19) can
be eliminated by Rule (I) since it has an unsatisfiable condition false = true.
Moreover, Rule (II) can delete the trivial condition true = true of the constraint
(20). For (26), with Rule (IV) one can of course always omit conditions like
gt(u, v) = true from conditional constraints. In this way, all conditions with
equalities p = q are removed in the end.

So to finish the termination proof of Ex. 1, we can include the DP (7)
in Pbound if the constraints MINUS(s(u), 0) % c and MINUS(u, v) % c ⇒
MINUS(s(u), s(v)) % c are satisfied. Of course, these constraints obviously hold
for Pol2 if we choose cPol2 = 1. Then the DP (9) is strictly decreasing and (7)
is bounded from below and thus, the reduction pair processor transforms the
remaining DP problem {(7), (9)} into {(7)} and {(9)}. Now the resulting DP

12 As in Footnote 9, one may only instantiate them by terms without defined symbols.

12

problems are easy to solve and thus, innermost termination of Ex. 1 is proved.
The rules (I) - (VI) are not always sufficient to exploit the conditions of a

constraint. We demonstrate this with the following example.

Example 12. We regard a TRS R containing the gt-rules (4) - (6) together with

plus(n, 0) → n f(true, x, y, z) → f(gt(x,plus(y, z)), x, s(y), z)
plus(n, s(m)) → s(plus(n, m)) f(true, x, y, z) → f(gt(x,plus(y, z)), x, y, s(z))

The termination of gt and of plus is easy to show. So the initial DP problem
can easily be transformed into {(27), (28)} with

F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z) (27)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z)) (28)

To include (27) in Pbound, we have to impose the following constraint:

F(gt(x, plus(y, z)), x, s(y), z) = F(true, x′, y′, z′) ⇒ F(true, x, y, z) % c (29)

With the rules (II) and (IV), it can be transformed into

gt(x, plus(y, z)) = true ⇒ F(true, x, y, z) % c (30)

Now we want to use induction. However, Rule (V) is only applicable for con-
ditions f(x1, . . . , xn) = q where x1, . . . , xn are pairwise different variables. To
obtain such conditions, we use the following rule. Here, x denotes a fresh variable.

VII. Defined Symbol without Pairwise Different Variables

f(p1, . . . , pi, . . . , pn) = q ∧ ϕ ⇒ ψ

pi=x ∧ f(p1, . . . , x , . . . , pn) = q ∧ ϕ ⇒ ψ

if f is a defined symbol and
(pi /∈V or pi=pj for a j 6= i)

So the constraint (30) is transformed into

plus(y, z) = w ∧ gt(x,w) = true ⇒ F(true, x, y, z) % c

Example 13. To continue, we can now perform induction on gt which yields

plus(y, z) = v ∧ false = true ⇒ F(true, 0, y, z) % c (31)
plus(y, z) = 0 ∧ true = true ⇒ F(true, s(u), y, z) % c (32)

plus(y, z) = s(v) ∧ gt(u, v) = true ∧ (34) ⇒ F(true, s(u), y, z) % c (33)

Here, (34) is the induction hypothesis:

∀y, z plus(y, z) = v ∧ gt(u, v) = true ⇒ F(true, u, y, z) % c (34)

With Rule (I) we delete constraint (31) and Rule (II) simplifies constraint (32)
to “plus(y, z) = 0 ⇒ F(true, s(u), y, z)% c”. Similar to our previous example,
by induction via plus and by removing the constraint with the unsatisfiable
condition s(plus(n,m)) = 0, we finally transform it to

F(true, s(u), 0, 0) % c (35)

13

The other constraint (33) is simplified further by induction via plus as well:

n = s(v) ∧ gt(u, v) = true ∧ (34) ⇒ F(true, s(u), n, 0) % c (36)
s(plus(n,m))=s(v) ∧ gt(u, v)= true ∧ (34) ∧ ϕ′ ⇒ F(true, s(u), n, s(m))%c (37)

where ϕ′ is the new induction hypothesis. We apply Rules (III) and (IV) on (36)
to obtain “gt(u, v) = true ⇒ F(true, s(u), s(v), 0) % c”. By another induction on
gt and by applying Rules (I), (II), (IV), and (VI) we get the final constraints

F(true, s(s(i)), s(0), 0) % c (38)
F(true, s(i), s(j), 0) % c ⇒ F(true, s(s(i)), s(s(j)), 0) % c (39)

In the only remaining constraint (37) we delete ϕ′ with Rule (IV) and by
removing the outermost s in the first condition with Rule (II), we get

plus(n,m) = v ∧ gt(u, v) = true ∧ (34) ⇒ F(true, s(u), n, s(m)) % c

Now we can simplify the condition by applying the induction hypothesis (34).
In (34), the variables y and z were universally quantified. We instantiate y
with n and z with m. With Rule (VI) we replace (34) by the new condition
F(true, u, n,m) % c. By deleting the first two remaining conditions we finally get

F(true, u, n,m) % c ⇒ F(true, s(u), n, s(m)) % c (40)

So to summarize, the constraint (29) can be transformed into (35), (38),
(39), and (40). These constraints are satisfied by the interpretation Pol where
FPol = x2 − x3 − x4, sPol = x1 + 1, 0Pol = 0, and cPol = 1. Therefore, we can
include the DP (27) in Pbound. For a similar reason, the other DP (28) is also
bounded. Moreover, both DPs are strictly decreasing and there are no usable
rules since F is not %Pol-dependent on 1. Hence, the reduction pair processor
can remove both DPs and innermost termination of Ex. 12 is proved.

We define ϕ ⊢ ϕ′ iff ϕ′ results from ϕ by repeatedly applying the above
inference rules to the conjuncts of ϕ. Thm. 14 states that these rules are sound.

Theorem 14 (Soundness). If ϕ ⊢ ϕ′, then |= ϕ′ implies |= ϕ.

With Thm. 14 we can now refine the reduction pair processor from Thm. 11.

Corollary 15 (Conditional General Reduction Pair Processor with In-
ference). Let (%,≻) be a general reduction pair and let c be a fresh constant.
For every s → t ∈ P and every inequality ψ ∈ { s ≻ t, s % t, s % c },
let ϕψ be a constraint with

∧

u→v∈P
(t = u′ ⇒ ψ) ⊢ ϕψ. Here, u′ re-

sults from u by renaming its variables into fresh variables. Then the processor
Proc from Thm. 11 is still sound if we define P≻ = {s → t ∈ P | |= ϕs≻t },
P% = {s→ t ∈ P | |= ϕs%t }, and Pbound = {s→ t ∈ P | |= ϕs%c }.

For automation, one of course needs a strategy for the application of the
rules (I) - (VII). Essentially, we propose to apply the rules with the priority (I),
(II), (IV)′, (VI), (III), (VII), (V), cf. [11]. Here, (IV)′ is a restriction of (IV)
which only deletes conditions q = x where x is a variable which does not occur

14

anywhere else. Moreover, to ensure termination of the inference rules, one has
to impose a limit on the number of inductions with Rule (V). In the end, we use
Rule (IV) to remove all remaining conditions containing “=” or “⇒”. Moreover,
if there are several conditions of the form s

(
%

)
t, we remove all but one of them.

Thus, the constraints ϕψ in Cor. 15 are conjunctions where the conjuncts
have the form “t1 (

%
)
t2” or “s1 (

%
)
s2 ⇒ t1 (

%
)
t2”. However, most existing meth-

ods and tools for the generation of orders and of polynomial interpretations can
only handle unconditional inequalities [4, 7]. To transform such conditional con-
straints into unconditional ones, note that any constraint “s % c ⇒ t % c” can
be replaced by “t % s”. More generally, if one uses polynomial orders, then any
constraint “s1 (

%
)
s2 ⇒ t1 (

%
)
t2” can be replaced by “[t1]− [t2] ≥ [s1]− [s2]”. So

in Ex. 13, instead of (39) and (40), we would require [F(true, s(s(i)), s(s(j)), 0)] ≥
[F(true, s(i), s(j), 0)] and [F(true, s(u), n, s(m))] ≥ [F(true, u, n,m)].

In practice, it is not recommendable to fix the reduction pair (%,≻) in ad-
vance and to check the validity of the constraints of the reduction pair processor
afterwards. Instead, one should leave the reduction pair open and first simplify
the constraints of the reduction pair processor using the above inference rules.
Afterwards, one uses the existing techniques to generate a reduction pair (e.g.,
based on integer polynomial interpretations) satisfying the resulting constraints.

More precisely, we start the following procedure REDUCTION PAIR(P) with
P = DP (R). If REDUCTION PAIR(DP (R)) returns “Yes”, then innermost ter-
mination is proved. Of course, this procedure can be refined by also applying
other DP processors than just the reduction pair processor to P .

Procedure REDUCTION PAIR(P)

1. If P = ∅ then stop and return “Yes”.
2. Choose non-empty subsets P≻ ⊆ P and Pbound ⊆ P . Let P% = P \ P≻.
3. Generate the following constraint ϕ (where % and ≻ are not yet fixed):
∧

s→t∈P≻, u→v∈P
(t = u′ ⇒ s≻ t) ∧

∧

s→t∈Pbound, u→v∈P
(t = u′ ⇒ s%c) ∧

∧

s→t∈P%, u→v∈P
(t = u′ ⇒ s% t) ∧

∧

ℓ→r∈U(P) (ℓ%r)

4. Use Rules (I) - (VII) to transform ϕ to a constraint ϕ′ without “=”.
5. Generate an integer polynomial interpretation satisfying ϕ′, cf. e.g. [7].
6. If REDUCTION PAIR(P%) = “Yes” and REDUCTION PAIR(P \ Pbound) =

“Yes”, then return “Yes”. Otherwise, return “Maybe”.

5 Conclusion

We have extended the reduction pair processor of the DP method in order to
handle TRSs that terminate because of bounded increase. To be able to measure
the increase of arguments, we permitted the use of general reduction pairs (e.g.,
based on integer polynomial interpretations). Moreover, to exploit the bounds
given by conditions, we developed a calculus based on induction which simplifies
the constraints needed for the reduction pair processor.

We implemented the new reduction pair processor of Cor. 15 in our termina-
tion prover AProVE [9]. To demonstrate the power of our method, [11] contains a

15

collection of typical TRSs with bounded increase. These include examples with
non-boolean (possibly nested) functions in the bound, examples with combina-
tions of bounds, examples containing increasing or decreasing defined symbols,
examples with bounds on lists, examples with different increases in different ar-
guments, increasing TRSs that go beyond the shape of functional programs, etc.
Although AProVE was the most powerful tool for termination analysis of TRSs
in the International Competition of Termination Tools, up to now AProVE (as
well as all other tools participating in the competition) failed on all TRSs from
our collection. In contrast, with the results from this paper, the new version of
AProVE can prove innermost termination for all of them. Thus, these results rep-
resent a substantial advance in automated termination proving. To experiment
with our implementation, the new version of AProVE can be accessed via the
web at http://aprove.informatik.rwth-aachen.de/eval/Increasing/.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
3. J. Brauburger and J. Giesl. Termination analysis by inductive evaluation. In Proc.

15th CADE, LNAI 1421, pages 254–269, 1998.
4. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving ter-

mination using polynomial interpretations. J. Aut. Reason., 34(4):325–363, 2005.
5. B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In Proc.

CAV ’06, LNCS 4144, pages 415–418, 2006.
6. M.-L. Fernández. Relaxing monotonicity for innermost termination. Information

Processing Letters, 93(3):117–123, 2005.
7. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.

SAT solving for termination analysis with polynomial interpretations. In Proc.
SAT ’07, LNCS, 2007. To appear.

8. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR’04, LNAI
3452, pages 301–331, 2005.

9. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. Proc. IJCAR ’06, LNAI 4130, p. 281–286, 2006.

10. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

11. J. Giesl, R. Thiemann, S. Swiderski, and P. Schneider-Kamp. Proving termina-
tion by bounded increase. Technical Report AIB-2007-03, RWTH Aachen, 2007.
Available from http://aib.informatik.rwth-aachen.de.

12. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

13. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and fea-
tures. Information and Computation, 205(4):474–511, 2007.

14. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

15. P. Manolios and D. Vroon. Termination analysis with calling context graphs. In
Proc. CAV ’06, LNCS 4144, pages 401–414, 2006.

16. C. Marché and H. Zantema. The termination competition. In Proc. RTA ’07, 2007.
To appear.

16

