
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Lower Bounds for Runtime Complexity of Term Rewriting
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Abstract We present the first approach to deduce lower bounds for (worst-case)
runtime complexity of term rewrite systems (TRSs) automatically. Inferring lower
runtime bounds is useful to detect bugs and to complement existing methods
that compute upper complexity bounds. Our approach is based on two techniques:
The induction technique generates suitable families of rewrite sequences and uses
induction proofs to find a relation between the length of a rewrite sequence and
the size of the first term in the sequence. The loop detection technique searches
for “decreasing loops”. Decreasing loops generalize the notion of loops for TRSs,
and allow us to detect families of rewrite sequences with linear, exponential, or
infinite length. We implemented our approach in the tool AProVE and evaluated it
by extensive experiments.
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1 Introduction

There exist numerous methods to infer upper bounds for the runtime complexity of
TRSs [3,16,19,25,32]. We present the first automatic approach to infer lower bounds

for their runtime complexity, based on two techniques: the induction technique (Sect.
3) and loop detection (Sect. 4). Runtime complexity [16] refers to the “worst” cases in
terms of evaluation length and our goal is to find lower bounds for these cases (i.e.,
in this paper we are not interested in “best-case lower bounds”, but in “worst-case
lower bounds”). While upper bounds for runtime complexity help to prove the
absence of bugs that worsen the performance of programs, lower bounds can be used
to find such bugs. Moreover, in combination with methods for upper bounds, our
approach can prove tight complexity results. In addition to asymptotic lower bounds,
our induction technique can often compute concrete bounds. We implemented our
contributions in the tool AProVE [2,15] and demonstrate its power by extensive
experiments in Sect. 5. In App. A we briefly discuss the adaption of our techniques
for innermost rewriting and App. B contains all proofs.
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While most methods to infer upper bounds are adaptions of termination tech-
niques, our approach is related to methods that prove non-termination of TRSs.
More precisely, the induction technique is inspired by our technique to prove non-
termination of (possibly non-looping) TRSs [8]. Both techniques generate “meta-
rules” (called rewrite lemmas in the present paper) which represent infinitely many
rewrite sequences. However, our rewrite lemmas are more general than the meta-
rules in [8], as they can be parameterized by several variables. Loop detection is
related to techniques that search for loops (e.g., [12,13,27,29,31,34]), where each
loop gives rise to a non-terminating rewrite sequence. Our approach generalizes the
notion of loops to decreasing loops, which give rise to families of rewrite sequences
with linear, exponential, or infinite runtime complexity.

Recently, we also introduced a technique to infer lower bounds on the worst-case
runtime complexity of integer programs [10]. In contrast to the current paper, in
[10] we do not consider structured data like lists or trees (which can easily be
represented in TRSs), but we we handle programs operating on built-in integers,
which are not available in TRSs. Hence, the current paper is orthogonal to the
work from [10], and a combination of both techniques is subject of future work.

We published a preliminary version of the induction technique (for innermost
rewriting) in [9]. In the present paper, we adapted the technique to full rewriting
and improved it by using a more general form of rewrite lemmas that do not have
to express the exact length of rewrite sequences anymore, but just a lower bound.
Consequently, we can now use more general forms of induction proofs to prove
rewrite lemmas, which increases the applicability of our approach. Moreover, we
included all proofs (which were missing in [9]) and extended the experimental
evaluation substantially. The loop detection technique of Sect. 4 is completely new.

2 Preliminaries

In this section, we introduce the required notions and notations for term rewriting.

Example 1 (TRS Rplus for Addition) Consider the following TRS Rplus for addition.

plus(zero, y)→ y plus(succ(x), y)→ succ(plus(x, y))

See, e.g., [5] for the basics of rewriting, where we only consider finite TRSs.
T (Σ,V) is the set of all terms over a (finite) signature Σ and a set of variables V,
and T (Σ) = T (Σ,∅) is the set of ground terms. For any term t, V(t) is the set of
its variables, and for a non-variable term t, root(t) denotes its top symbol (i.e.,
root(f(t1, . . . , tk)) = f).

Let N∗ be the set of all finite sequences of natural numbers, where ε is the
empty sequence. For any term t, the set pos(t) ⊆ N∗ of its positions is defined
by pos(x) = {ε} for x ∈ V and pos(f(t1, . . . , tk)) = {i.π | 1 ≤ i ≤ k, π ∈ pos(ti)}.
For π ∈ pos(t), t|π denotes the subterm of t at position π, where t|ε = t and
f(t1, . . . , tk)|i.π = ti|π. Moreover, t[s]π is the result of replacing t’s subterm at
position π by s. Thus, t[s]ε = s and f(t1, . . . , ti, . . . , tk)[s]i.π = f(t1, . . . , ti[s]π, . . . , tk).
As an example, for t = plus(succ(x), y) we have pos(t) = {ε, 1, 1.1, 2}, t|1 = succ(x),
and t[x]1 = plus(x, y). We write tD s iff s is a subterm of t, i.e., iff t|π = s for some
π ∈ pos(t). For two positions ξ and π we have ξ < π (“ξ is above π”) iff ξ is a proper
prefix of π, i.e., iff there is a ξ′ 6= ε with ξ.ξ′ = π. For example, we have 1 < 1.1.
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A context C is a term from T (Σ]{�},V) which contains exactly one occurrence
of the constant � (called “hole”). If C|π = �, then C[s] is a shorthand for C[s]π. An
example for a context is C = plus(�, y) and we have C[succ(x)] = plus(succ(x), y).

A substitution is a function σ : V → T (Σ,V) whose domain dom(σ) = {x | x 6=
σ(x)} is finite. A substitution σ with dom(σ) = {x1, . . . , xn} can be denoted as
[x1/σ(x1), . . . , xn/σ(xn)]. The range of a substitution σ is range(σ) = {xσ | x ∈
dom(σ)}. As an example, for σ = [x/succ(x)] we have dom(σ) = {x}, range(σ) =
{succ(x)}, σ(x) = succ(x), and σ(y) = y for all y ∈ V \ {x}. Substitutions are
extended homomorphically to terms where we often write tσ instead of σ(t). Thus,
we have plus(x, y)σ = plus(succ(x), y). For V ′ ⊆ V, let σ|V′ denote the restriction of
σ to V ′ where σ|V′(x) = σ(x) for x ∈ V ′ and σ|V′(x) = x for x ∈ V \ V ′.

A TRS R is a set of rules ` → r where `, r ∈ T (Σ,V) such that ` /∈ V
and V(r) ⊆ V(`). The rewrite relation →R is defined as s →R t iff there is a
π ∈ pos(s), a rule ` → r ∈ R, and a substitution σ such that s|π = `σ and
t = s[rσ]π. Any instance `σ of a left-hand side of a rule is called a redex. For
example, we have plus(succ(succ(zero)), y) →Rplus

succ(plus(succ(zero)), y) →Rplus

succ(succ(plus(zero, y))) →Rplus
succ(succ(y)). The transitive closure of →R is de-

noted by →+
R and the transitive-reflexive closure of →R is denoted by →∗R (thus,

plus(succ(succ(zero)), y) →+
Rplus

succ(succ(y)) and plus(succ(succ(zero)), y) →∗Rplus

succ(succ(y))). Moreover for n ∈ N, →n
R denotes the n-fold application of →R

(e.g., plus(succ(succ(zero)), y)→3
Rplus

succ(succ(y))). A term t is in normal form w.r.t.

→R iff there is no term t′ with t →R t′. We say that t is a normal form of s iff
s→∗R t and t is in normal form. If the normal form t of s is unique, we write s↓R= t.
In our example, we have plus(succ(succ(zero)), y)↓R= succ(succ(y)). Finally, a term
is linear if it does not contain multiple occurrences of the same variable (thus,
plus(succ(x), y) is linear while plus(succ(x), x) is not). A TRS is left-linear iff it only
contains rules ` → r where ` is a linear term. A TRS is linear iff for every rule
`→ r, both ` and r are linear terms.

Moreover, we also consider rewriting modulo a set of equations E of the form
` = r with `, r ∈ T (Σ,V). We write s ≡E t as a shorthand for E |= s = t,
i.e., s ≡E t means that the equation s = t is true in all models of E. For a
TRS R and a set of equations E, the rewrite relation of R modulo E is defined as
→R/E = ≡E ◦ →R ◦ ≡E . Similarly, we also define narrowing modulo equations by
performing unification instead of matching when applying rewrite rules: s R/E t
holds iff there is a term s′, a π ∈ pos(s′) with s′|π /∈ V, a variable-renamed rule
`→ r ∈ R, and a substitution σ such that sσ ≡E s′σ, s′|π σ = `σ, and s′[r]π σ ≡E t.

Our goal is to infer lower bounds for the runtime complexity rcR of a TRS R. To
define rcR, the derivation height of a term t w.r.t. a relation → is the length of the
longest→-sequence starting with t, i.e., dh(t,→) = sup{m | ∃t′ ∈ T (Σ,V). t→m t′ },
cf. [17,25]. Here, for any M ⊆ N ∪ {ω}, supM is the least upper bound of M and
sup∅ = 0. Since we only regard finite TRSs, dh(t,→R) = ω iff t starts an infinite
sequence of →R-steps. Hence as in [25], dh treats terminating and non-terminating
terms in a uniform way. In our example, dh(plus(succn1(zero), succn2(zero)),→Rplus

)
= n1 + 1 for all n1, n2 ≥ 0, because of the rewrite sequence

plus(succn1 (zero), succn2 (zero))→n1
Rplus

succn1 (plus(zero, succn2 (zero)))→Rplus
succn1+n2 (zero).

The defined symbols of a TRS R are Σdef (R) = { root(`) | `→ r ∈ R} and the
constructors Σcon(R) are all other function symbols in R. Thus, Σdef (Rplus) =
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{plus} and Σcon(Rplus) = {zero, succ}. When analyzing the complexity of pro-

grams, one is interested in evaluations of basic terms f(t1, . . . , tk) where a de-
fined symbol f ∈ Σdef (R) is applied to data objects t1, . . . , tk ∈ T (Σcon(R),V).
We define TB to be the set of all basic terms. Thus, in our example we have
TB = {plus(succn1(t1), succn2(t2)) | t1, t2 ∈ V ∪ {zero}, n1, n2 ≥ 0}. The runtime

complexity function rcR corresponds to the usual notion of “complexity” for pro-
grams. It maps any n ∈ N to the length of the longest sequence of →R-steps
starting with a basic term t with |t| ≤ n. Here, the size of a term is |x| = 1 for
x ∈ V and |f(t1, . . . , tk)| = 1 + |t1| + . . . + |tk|. Hence in our example, we have
| plus(succn1(t1), succn2(t2)) | = n1 + n2 + 3 for all t1, t2 ∈ V ∪ {zero}.

Definition 2 (Runtime Complexity rcR [16,25]) For a TRS R, its runtime com-
plexity function rcR : N→ N ∪ {ω} is rcR(n) = sup{dh(t,→R) | t ∈ TB , |t| ≤ n }.

In our example, for n ≥ 3 we have rcRplus
(n) = n − 2. The reason is that

the basic term of size at most n with the longest possible derivation is, e.g.,
plus(succn−3(zero), zero) with plus(succn−3(zero), zero)→n−2

Rplus
succn−3(zero). This im-

plies rcRplus
(n) ∈ O(n) and rcRplus

(n) ∈ Ω(n), i.e., rcRplus
(n) ∈ Θ(n). While there

exist several techniques and tools to compute upper bounds for rcR (e.g., to infer
rcRplus

(n) ∈ O(n)), the goal of the present paper is to compute lower bounds for rcR
(e.g., to infer rcRplus

(n) ∈ Ω(n)). In this way, one can check whether the deduced
asymptotic upper bounds are tight (e.g., our implementation in AProVE [2] can now
prove rcRplus

(n) ∈ Θ(n)). Moreover, such lower bounds have important applications
for security analysis, e.g., to detect possible denial-of-service attacks.

Note that rcR refers to the “worst” cases in terms of evaluation length. Al-
ternatively, one could also consider lower bounds for the “best” cases in terms of
evaluation length. However, for many algorithms, these best cases correspond to
(trivial) base cases and thus, these “best-case lower bounds” are not always useful.
To illustrate this, consider the TRS Rplus again. For n ≥ 3, the basic term of size n
with the shortest possible derivation is, e.g., plus(x, succn−3(zero)). Since this term
is in normal form, the resulting “best-case lower bound” is 0. If one only considers
evaluations of basic ground terms, then the basic term of size n with the shortest
evaluation is, e.g., plus(zero, succn−3(zero)) and the “best-case lower bound” is 1.

3 Induction Technique to Infer Lower Bounds

In this section, we present our first approach to generate lower bounds for rcR
(by the so-called induction technique). To illustrate the idea, consider the following
TRS Rqs for Quicksort.1 The auxiliary function low(x, xs) returns those elements
from the list xs that are smaller than x (and high works analogously). To ease
readability, we use infix notation for the function symbols ≤ and ++.

1 This TRS corresponds to the example “Rubio 04/quick.xml” from the Termination Problem
Data Base (TPDB) used in the annual Termination Competition [28].
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Example 3 (TRS Rqs for Quicksort)

qs(nil) → nil (1)
qs(cons(x, xs)) → qs(low(x, xs)) ++ cons(x, qs(high(x, xs))) (2)

low(x, nil) → nil

low(x, cons(y, ys)) → ifLow(x ≤ y, x, cons(y, ys))
ifLow(true, x, cons(y, ys)) → low(x, ys)
ifLow(false, x, cons(y, ys)) → cons(y, low(x, ys))

high(x, nil) → nil

high(x, cons(y, ys)) → ifHigh(x ≤ y, x, cons(y, ys))
ifHigh(true, x, cons(y, ys)) → cons(y, high(x, ys))
ifHigh(false, x, cons(y, ys)) → high(x, ys)

zero ≤ x → true

succ(x) ≤ zero → false

succ(x) ≤ succ(y) → x ≤ y
nil ++ ys → ys (3)

cons(x, xs) ++ ys → cons(x, xs ++ ys)

For any n ∈ N, let γList(n) be the term

n times︷ ︸︸ ︷
cons(zero, . . . , cons(zero, nil) . . . ), i.e.,

the list of length n where all elements have the value zero (we also use the nota-

tion “consn(zero, nil)”). To find lower bounds, we show how to automatically generate

rewrite lemmas that describe families of rewrite sequences. For example, our induction

technique infers the following rewrite lemma automatically.

qs(γList(n)) →≥3n2+2n+1 γList(n) (4)

The rewrite lemma means that for any n ∈ N, there is a rewrite sequence of at least

length 3n2+2n+1 that reduces qs(consn(zero, nil)) to consn(zero, nil). From this rewrite

lemma, our technique concludes that the runtime of Rqs is at least quadratic.

Sect. 3.1 introduces the concepts of rewrite lemmas and generator functions like
γList. Sect. 3.2 shows how our implementation automatically speculates conjectures
that may result in rewrite lemmas. In Sect. 3.3, we explain how to verify speculated
conjectures automatically by induction. From these induction proofs, one can
deduce information on the lengths of the rewrite sequences that are represented by
a rewrite lemma, cf. Sect. 3.4. Thus, the use of induction to infer lower runtime
bounds is a novel application for automated inductive theorem proving. This
complements our earlier work on using induction proofs for termination analysis
[11]. Finally, Sect. 3.5 shows how rewrite lemmas are used to infer lower bounds
for the runtime complexity of a whole TRS.

3.1 Generator Functions and Rewrite Lemmas

Our approach is based on rewrite lemmas containing generator functions such as
γList for types like List. Thus, in the first step of our approach we compute
suitable types for the TRS R to be analyzed. Ordinary TRSs do not have any
type annotations or built-in types, but they are defined over untyped signatures Σ.
Def. 4 extends them with types (see, e.g., [11,19,33]), where for simplicity, here we
restrict ourselves to monomorphic types.
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Definition 4 (Typing) Let Σ be an (untyped) signature. A many-sorted signature

Σ′ is a typed variant of Σ if it contains the same function symbols as Σ, with the

same arities. Similarly, in a typed variant V ′ of the variables V, every variable has a

type τ . We always assume that for every type τ , V ′ contains infinitely many variables

of type τ . Given Σ′ and V ′, t ∈ T (Σ,V) is a well-typed term of type τ w.r.t. Σ′,V ′ iff

• t ∈ V ′ is a variable of type τ or

• t = f(t1, . . . , tk) with k ≥ 0, where each ti is a well-typed term of type τi, and

where f ∈ Σ′ has the type τ1 × . . .× τk → τ .

A rewrite rule `→ r is well typed iff ` and r are well-typed terms of the same type. A

TRS is well typed iff all of its rules are well typed.2

For any TRS R, a standard type inference algorithm (e.g., [23]) can compute
a typed variant Σ′ such that R is well typed. Here, we compute typed variants
where the set of terms is decomposed into as many types as possible (i.e., where as
few terms as possible are considered to be “well typed”). Thus, to make Rqs from
Ex. 3 well typed, we obtain a typed variant of its signature with the types Nats,
Bool, and List, where the function symbols have the following types:

nil : List qs : List→ List

cons : Nats× List→ List ++ : List× List→ List

zero : Nats ≤ : Nats×Nats→ Bool

succ : Nats→ Nats low, high : Nats× List→ List

true, false : Bool ifLow, ifHigh : Bool×Nats× List→ List

A type τ depends on τ ′ (denoted τ wdep τ ′) iff τ = τ ′ or if there is a c ∈ Σ′con(R)
of type τ1 × . . .× τk → τ where τi wdep τ ′ for some 1 ≤ i ≤ k. For example, we have
List wdep Nats. To ease the presentation, we do not allow mutually recursive types
(i.e., if τ wdep τ ′ and τ ′ wdep τ , then τ ′ = τ).

To represent families of terms, we now introduce generator functions γτ . For
any n ∈ N, γτ (n) is a term from T (Σ′con(R)) where a recursive constructor of
type τ is nested n times. A constructor c : τ1 × . . . × τk → τ is called recursive

iff τi = τ for some 1 ≤ i ≤ k. For Nats above, we have γNats(0) = zero and
γNats(n+ 1) = succ(γNats(n)). If a constructor has a non-recursive argument of
type τ ′, then γτ instantiates this argument by γτ ′(0). For List, we get γList(0) = nil

and γList(n+ 1) = cons(γNats(0), γList(n)) = cons(zero, γList(n)). If a constructor
has several recursive arguments, then several generator functions are possible. For
a type Tree with the constructors leaf : Tree and node : Tree×Tree→ Tree, we
have γTree(0) = leaf, and γTree(n + 1) = node(γTree(n), leaf) or γTree(n + 1) =
node(leaf, γTree(n)). Similarly, if a type has several non-recursive or recursive
constructors, then different generator functions can be obtained by considering all
combinations of non-recursive and recursive constructors.

To ease readability, we only consider generator functions for simply structured

types τ . Such types have exactly two constructors c, d ∈ Σ′con(R), where c is not
recursive, d has exactly one argument of type τ , and each argument type τ ′ 6= τ of

2 W.l.o.g., here one may rename the variables in every rule. Then it is not a problem if the
variable x is used with type τ1 in one rule and with type τ2 in another rule. Requiring that `
and r have the same type ensures that rewriting transforms any well-typed term of type τ into
a well-typed term of the same type τ .
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c or d is simply structured, too. Our approach is easily extended to more complex
types by heuristically choosing one of the possible generator functions.3

Definition 5 (Generator Functions and Equations) Let R be a TRS that is well

typed w.r.t. Σ′ and V ′. We extend the set of types by a fresh type N. For every type

τ 6= N, let γτ be a fresh generator function symbol of type N → τ . The set GR
consists of the following generator equations for every simply structured type τ with

the constructors c : τ1 × . . .× τk → τ and d : ρ1 × . . .× ρb → τ , where ρj = τ .

γτ (0) = c(γτ1(0), . . . , γτk(0))
γτ (n+ 1) = d(γρ1(0), . . . , γρj−1(0), γτ (n), γρj+1(0), . . . , γρb(0))

We write G instead of GR if R is clear from the context.

We extend wdep to Σdef (R) by defining f wdep h iff f = h or if there is a rule
f(. . .) → r and a symbol g in r with g wdep h. For example, we have qs wdep low.
When speculating conjectures, we take the dependencies between defined symbols
into account. If f wdep g and g 6wdep f , then we first generate a rewrite lemma for
g. This lemma can be used when generating a lemma for f afterwards.

For f ∈ Σ′def (R) of type τ1× . . .×τk → τ with simply structured types τ1, . . . , τk,
our goal is to speculate a conjecture of the form f(γτ1(s1), . . . , γτk(sk)) →∗ t, where
s1, . . . , sk are polynomials over some variables n1, . . . , nm of type N. Moreover, t is
a term built from Σ, polynomials over n1, . . . , nm, and generator functions. After
speculating such a conjecture (in Sect. 3.2), in Sect. 3.3 we prove its validity.

Definition 6 (Validity of Conjectures) Let R be a well-typed TRS w.r.t. Σ′ and

V ′, and let A be the infinite set of all valid equalities in the theory of N with addition

and multiplication. For any term q, let q ↓G/A be q’s normal form w.r.t. GR, where

the generator equations are applied from left to right and A-equivalent (sub)terms are

considered to be equal.4 Let s →∗ t be a conjecture with V(s) = {n1, . . . , nm} 6= ∅,

where n = (n1, . . . , nm) are pairwise different variables of type N, s is well typed,

root(s) ∈ Σdef (R), and s has no symbol from Σdef (R) below the root. Then the

conjecture s→∗ t is valid for R iff sσ↓G/A →∗R tσ↓G/A holds for all σ : V(s)→ N.

For instance, the conjecture qs(γList(n))→∗ γList(n) is valid for Rqs, as σ(n) = b

∈ N implies qs(γList(b))↓G/A= qs(consb(zero, nil))→∗ consb(zero, nil) = γList(b)↓G/A.

From a valid conjecture f(γτ1(s1), . . . , γτk(sk)) →∗ t, we then infer a rewrite

lemma f(γτ1(s1), . . . , γτk(sk)) →≥rt(n1,...,nm) t in Sect. 3.4, whose runtime function
rt : Nm → N describes a lower bound for the length of the corresponding evaluation.

3 For types with several recursive or non-recursive constructors, our heuristic prefers to use
those constructors for the generator equations that occur in the left-hand sides of (preferably
recursive) rules of the TRS. For a constructor with several recursive argument positions like
node, we examine how often the TRS contains recursive calls in the respective arguments
of node. If there are more recursive calls in the first arguments of node than in the second
one, then we take the generator equation γTree(n + 1) = node(γTree(n), leaf) instead of
γTree(n+ 1) = node(leaf, γTree(n)).

4 Termination of →G/A follows from the definition of generator equations (Def. 5), since the
argument of γτ decreases with each application of an equation and since we excluded mutually
recursive types.



8 Florian Frohn et al.

Definition 7 (Rewrite Lemma) Let R, s, t, n be as in Def. 6 and let rt : Nm → N
be weakly monotonic (i.e., ni ≥ n′i implies rt(n1, ..., ni, ..., nm) ≥ rt(n1, ..., n

′
i, ..., nm)).

Then s→≥rt(n) t is a rewrite lemma for R iff sσ↓G/A →
≥rt(nσ)
R tσ↓G/A holds for all

σ : V(s)→ N, i.e., sσ↓G/A reduces to tσ↓G/A in at least rt(n1σ, . . . , nmσ) R-steps.

The reason for the restriction to weakly monotonic runtime functions rt is that
in this way, one can infer a suitable bound from the induction proof of a conjecture
s→∗ t, cf. Sect. 3.4.

3.2 Speculating Conjectures

We now show how to speculate conjectures f(γτ1(s1), . . . , γτk(sk)) →∗ t (whose
validity must be proved afterwards in Sect. 3.3). While lemma speculation was
investigated in inductive theorem proving and verification since decades [6], we
want to find lemmas of a special form in order to extract suitable lower bounds
from their induction proofs.

Of course, our algorithm for the speculation of conjectures is just one possible
implementation for this task. The soundness of our approach (i.e., the correctness
of the theorems and lemmas in Sect. 3.3 – 3.5) is independent of the specific
implementation that is used for the speculation of conjectures.

To speculate a conjecture for a function f , we first generate sample conjectures

that describe the effect of applying f to specific arguments. To obtain them, we
narrow f(γτ1(n1), . . . , γτk(nk)) where n1, . . . , nk ∈ V, using the rules of the TRS
and the lemmas we have proven so far, taking also the generator equations and
integer arithmetic into account. This narrowing corresponds to a case analysis over
the possible derivations.

For any proven rewrite lemma s→≥rt(... ) t, let the set L contain the rule s→ t.
Then let “s t” be a shorthand for “s (R∪L)/(G∪A) t”. Thus, as explained in Sect.

2, s t holds if there is a term s′, a position π with s′|π /∈ V, a variable-renamed rule
`→ r ∈ R ∪ L, and a substitution σ that maps variables of type N to polynomials,
such that sσ ≡G∪A s′σ, s′|πσ = `σ, and s′[r]πσ ≡G∪A t. For instance, we have
qs(γList(n)) nil using the substitution [n/0] and Rule (1).

Although checking sσ ≡G∪A s′σ is undecidable for general equations G, equa-
tional unification is decidable in quadratic time for the generator equations of Def.
5 [22]. Moreover, the resulting integer constraints can usually be solved easily by
SMT solvers. Thus, due to the restricted form of generator equations in Def. 5, the
required narrowing works reasonably efficient in practice.

Example 8 (Narrowing) In Ex. 3 we have qs wdep low and qs wdep high. If the lemmas

low(γNats(0), γList(n))→≥3n+1 γList(0) (5) high(γNats(0), γList(n))→≥3n+1 γList(n) (6)

were already proved, then the narrowing tree in Fig. 1 can be generated to find sam-

ple conjectures for qs. The arrows are labeled with the rules and substitutions used

for variables of type N. To save space, some arrows correspond to several narrowing

steps. The goal is to get representative rewrite sequences, not to cover all reductions.
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qs(γList(n1))

nil

Rule (1)
[n1/0]

cons(zero, qs(γList(n′1)))

cons(zero, nil)

Rule (1)
[n′1/0]

cons(zero, cons(zero, qs(γList(n′′1 ))))

cons(zero, cons(zero, nil))

Rule (1)
[n′′1/0]

. . .

Rule (2), Lemmas (5)&(6), Rules (1)&(3)
[n′1/n

′′
1 + 1]

Rule (2), Rewrite Lemmas (5)&(6), Rules (1)&(3)
[n1/n′1 + 1]

Fig. 1: Narrowing Tree

Hence, we stop constructing the tree after some steps and choose suitable narrowings

heuristically.5

After constructing a narrowing tree for f , we collect sample points (t, σ, d). Here,
t results from a leaf q of the tree which is in  -normal form by normalizing q w.r.t.
the generator equations G applied from right to left.6 Thus, terms from T (Σ,V)
are rewritten to generator symbols with polynomials as arguments. Moreover, σ is
the substitution for variables of type N on the path from the root to q, and d is
the number of applications of recursive f-rules on the path (the recursion depth).
A rule f(. . .)→ r is recursive iff r contains a symbol g with g wdep f .

Example 9 (Sample Points) In Ex. 8, we obtain the following set of sample points:7

S = { (γList(0), [n1/0], 0), (γList(1), [n1/1], 1), (γList(2), [n1/2], 2) } (7)

The sequence from qs(γList(n1)) to nil does not use recursive qs-rules. Hence, its recur-

sion depth is 0 and the  -normal form nil rewrites to γList(0) when applying the gen-

erator equations G from right to left. The sequence from qs(γList(n1)) to cons(zero, nil)
(resp. cons(zero, cons(zero, nil))) uses the recursive qs-rule (2) once (resp. twice), i.e.,

it has recursion depth 1 (resp. 2). Moreover, this  -normal form rewrites to γList(1)
(resp. γList(2)) when applying G from right to left.

A sample point (t, σ, d) for a narrowing tree with the root s = f(. . .) represents
the sample conjecture sσ →∗ t, which stands for a reduction with d applications
of recursive f-rules. For s = qs(γList(n1)), the sample points in (7) represent
the sample conjectures qs(γList(0)) →∗ γList(0), qs(γList(1)) →∗ γList(1), and

5 In our implementation, the (breadth-first) construction of a narrowing tree is aborted when
reaching depth 50, or when the tree has 250 nodes or 40 leaves. Here, we prefer narrowing with
previously proven rewrite lemmas L (i.e., narrowing with the rules R is only done for those
subterms where no rewrite lemma is applicable). Our implementation generates (at most) one

rewrite lemma f(. . .)→≥rt(... ) . . . for every f ∈ Σdef (R).
6 Rewriting with {r → ` | ` = r ∈ GR} terminates as each rewrite step reduces the number

of symbols from Σcon (R).
7 We always simplify arithmetic expressions in terms and substitutions, e.g., the substitution

[n1/0 + 1] in the second sample point is simplified to [n1/1].
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qs(γList(2))→∗ γList(2). Now the goal is to find a maximal subset of these sample
conjectures whose elements are suitable for generalization. Then, this subset is
used to speculate a general conjecture (whose validity must be proved afterwards).

For a narrowing tree with root s, let Smax be a maximal subset of all sample
points such that for all (t, σ, d), (t′, σ′, d′) ∈ Smax, the sample conjectures sσ →∗ t
and sσ′ →∗ t′ are identical up to the occurring natural numbers and variable names.
For instance, qs(γList(0))→∗ γList(0), qs(γList(1))→∗ γList(1), and qs(γList(2))→∗
γList(2) are identical up to the occurring numbers. To obtain a general conjecture,
we replace all numbers in these sample conjectures by polynomials. In our example,
we want to speculate a conjecture of the form qs(γList(pol left ))→∗ γList(polright ).
Here, pol left and polright are polynomials in one variable n (the induction variable

of the conjecture) that stands for the recursion depth. This facilitates the proof of
the resulting conjecture by induction on n.

For any term q, let Πq
N = {π ∈ pos(q) | q|π ∈ N}. Then for each π ∈ Πsσ

N (resp.

π ∈ Πt
N) with (t, σ, d) ∈ Smax, we search for a polynomial pol leftπ (resp. polrightπ ). To

obtain these polynomials, for every (t, σ, d) ∈ Smax we generate the constraints

“pol leftπ (d) = sσ|π” for all π ∈ Πsσ
N and “polrightπ (d) = t|π” for all π ∈ Πt

N. (8)

Here, pol leftπ and polrightπ are polynomials with abstract coefficients. If one searches
for polynomials of degree e, then the polynomials have the form c0+c1 ·n+. . .+ce ·ne
and the constraints in (8) are linear diophantine equations over the unknown
coefficients ci ∈ N.8 These equations are easily solved automatically. Finally, the
generalized speculated conjecture is obtained from sσ →∗ t by replacing sσ|π with
pol leftπ for every π ∈ Πsσ

N and by replacing t|π with polrightπ for every π ∈ Πt
N.

Example 10 (Speculating Conjectures) In Ex. 8, we narrowed s= qs(γList(n1)) and

Smax is the set S in (7), cf. Ex. 9. For each (t, σ, d) ∈ Smax, Πsσ
N only contains the po-

sition 1.1 and Πt
N = {1}. Hence, from the sample conjecture qs(γList(0))→ ∗γList(0),

where the recursion depth is d= 0, we obtain the constraints pol left1.1 (d) = pol left1.1 (0) =

qs(γList(0))|1.1 = 0 and polright1 (d) = polright1 (0) = γList(0)|1 = 0. Similarly, from

the two other sample conjectures we get pol left1.1 (1) = polright1 (1) = 1 and pol left1.1 (2) =

polright1 (2) = 2. When using pol left1.1 = c0+c1·n+c2 ·n2 and polright1 = d0+d1·n+d2 ·n2
with the abstract coefficients c0, . . . , c2, d0, . . . , d2, the solution c0 = c2 = d0 = d2 = 0,

c1 = d1 = 1 (i.e., pol left1.1 =n and polright1 =n) is easily found automatically. The result-

ing speculated conjecture is qs(γList(pol left1.1 ))→∗ γList(polright1 ), i.e., qs(γList(n))→∗
γList(n).

If Smax contains sample points with e different recursion depths,9 then there
are unique polynomials of at most degree e− 1 satisfying the constraints (8). The
reason is that the sample points give rise to e independent constraints for the

8 In the constraints (8), n is instantiated by an actual number d. Thus, if pol leftπ = c0 + c1 · n
+ . . .+ ce ·ne, then pol leftπ (d) is a linear polynomial over the unknowns c0, . . . , ce. While solving
the constraints (8) only requires linear integer arithmetic, the resulting rewrite lemmas contain

polynomials pol leftπ and polrightπ of degree e. Thus, rewriting or narrowing w.r.t. the rewrite
lemmas L may require non-linear integer arithmetic.

9 In our implementation, whenever 5 new depths of a narrowing tree have been computed,
we check how many sample points one can generate from the current tree. If we can create at
least 3 sample points with different recursion depths, we stop constructing the narrowing tree.
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unknown coefficients of the polynomial, and a polynomial of degree e − 1 has e
coefficients.

Example 11 (Several Variables in Conjecture) We consider the TRSRplus from Ex. 1 to

show how to speculate conjectures with several variables. Narrowing s=plus(γNats(n1),
γNats(n2)) yields the sample points (γNats(n2), [n1/0], 0), (γNats(n2 + 1), [n1/1], 1),
(γNats(n2 + 2), [n1/2], 2), and (γNats(n2 + 3), [n1/3], 3). For the last three sample

points (t, σ, d), the only number in sσ is at position 1.1 and the polynomial pol left1.1 = n

satisfies the constraint pol left1.1 (d) = sσ|1.1. Moreover, the only number in t is at position

1.2 and the polynomial polright1.2 = n satisfies polright1.2 (d) = t|1.2. Thus, we speculate the

conjecture plus(γNats(n), γNats(n2))→∗ γNats(n2 +n) with the induction variable n.

Example 12 (Larger Coefficients of Polynomials) The following TRS illustrates how

we speculate conjectures where the coefficients of the polynomials are larger than 1.

half(zero)→ zero half(succ(succ(x)))→ succ(half(x))

By narrowing s = half(γNats(n1)), we obtain the sample points (γNats(0), [n1/0], 0),
(γNats(1), [n1/2], 1), (γNats(2), [n1/4], 2). For these sample points (t, σ, d), the only

numbers in sσ (resp. t) are at position 1.1 (resp. at position 1). The polynomial pol left1.1 =

2 ·n satisfies the constraint pol left1.1 (d) = sσ|1.1 and the polynomial polright1 = n satisfies

polright1 (d) = t|1. Hence, we speculate the conjecture half(γNats(2 · n)) →∗ γNats(n)
with the induction variable n.

Algorithm 13 (Speculating Conjectures) The following algorithm summarizes

our method to speculate conjectures for a TRS R.

(i) Compute a typed variant of the TRS R which decomposes T (Σ,V) into as many

types as possible.

(ii) For every f ∈ Σdef (R) (starting with the smallest symbols w.r.t. wdep):

(ii.1) Compute a narrowing tree for f(γτ1(n1), . . . , γτk(nk)).
(ii.2) Obtain a maximal set Smax of sample points suitable for generalization.

(ii.3) Generalize the sample conjectures corresponding to Smax.

For this, replace all occurring numbers by polynomials.

3.3 Proving Conjectures

Now we show how to prove the validity of speculated conjectures, cf. Def. 6. To
prove validity of a conjecture s →∗ t by induction, we use rewriting with ⇀ =
→(R∪L)/(G∪A). In the induction step, we try to reduce s[n/n + 1] to t[n/n + 1],
where one may use the rule IH: s→ t as induction hypothesis. Here, the induction
variable n must not be instantiated and the remaining variables in IH may only
be instantiated by an increasing substitution. A substitution σ is increasing iff
A |= xσ ≥ x holds for all x ∈ dom(σ). For example, the substitution σ = {x / (x+y)}
is increasing because A |= x + y ≥ x. The restriction to increasing substitutions
results in induction proofs that are particularly suitable for inferring runtimes of
rewrite lemmas. More precisely, increasing substitutions are necessary to ensure
the soundness of the recurrence equations that we will construct for lower bounds
in Sect. 3.4.
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Thus, for any rule IH: ` → r containing only variables of type N and any
n ∈ V, let s 7→IH,n t iff there exist a term s′, an increasing substitution σ with
nσ = n, and a position π such that s ≡G∪A s′, s′|π = `σ, and s′[rσ]π ≡G∪A t. Let
⇀IH,n = ⇀ ∪ 7→IH,n. Moreover, ⇀∗ (resp. ⇀∗IH,n) is the union of the transitive-
reflexive closure of ⇀ (resp. ⇀IH,n) and ≡G∪A. Thm. 14 shows which rewrite
sequences are needed to prove a conjecture s→∗ t by induction on its induction
variable n.

Theorem 14 (Proving Conjectures) Let R, s, t, and n be as in Def. 6 and let

n ∈ V(s). If s[n/0] ⇀∗ t[n/0] and s[n/n+ 1] ⇀∗IH,n t[n/n+ 1], where IH is the rule

s→ t, then the conjecture s→∗ t is valid for R.

Example 15 (Proof of Conjecture for qs) We continue the analysis of Rqs. As in Ex. 8,

assume that we already know the rewrite lemmas (5) and (6). To prove the conjecture

qs(γList(n)) →∗ γList(n) from Ex. 10, in the induction base we show qs(γList(0)) ⇀
γList(0) and in the induction step, we obtain the sequence qs(γList(n + 1)) ⇀∗

nil ++ cons(zero, qs(γList(n))) 7→IH,n nil ++ cons(zero, γList(n)) ⇀ γList(n+ 1).

Example 16 (Instantiating Non-Induction Variables) This alternative TRS for addition

illustrates why one may have to instantiate non-induction variables in the induction

hypothesis when proving conjectures. For that reason, our preliminary version of the

induction technique in [9] failed to infer a linear lower bound in this example.

add(zero, y) → y add(succ(x), y) → add(x, succ(y))

The technique of Sect. 3.2 speculates the conjecture add(γNats(n), γNats(n2))→∗
γNats(n2 +n) with the induction variable n. To prove this conjecture, in the induction

base we have add(γNats(0), γNats(n2)) ⇀ γNats(n2 + 0). In the induction step, we

obtain add(γNats(n + 1), γNats(n2)) ⇀ add(γNats(n), γNats(n2 + 1)). To apply the

induction hypothesis IH : add(γNats(n), γNats(n2)) → γNats(n2 + n), we therefore

have to instantiate the non-induction variable n2 by n2+1. Clearly, this is an increasing

substitution since n2 + 1 ≥ n2. Thus, the proof of the induction step continues with

add(γNats(n), γNats(n2 + 1)) 7→IH,n γNats((n2 + 1) + n) ≡A γNats(n2 + (n+ 1)).

3.4 Inferring Bounds for Rewrite Lemmas

For a valid conjecture s →∗ t, we now show how to infer a lower bound on the
length of the corresponding rewrite sequences, i.e., how to generate a rewrite lemma

s→≥rt(n) t, cf. Def. 7. More precisely, we show that one can infer a suitable bound
from the induction proof of a conjecture s→∗ t. If n ∈ n is the induction variable
and the induction hypothesis is applied ih times in the induction step, then we get
the following recurrence equations for rt where ñ is n without the variable n:

rt(n[n/0]) = ib(ñ) and rt(n[n/n+ 1]) = ih · rt(n) + is(n) (9)

Here, ib(ñ) is a lower bound on the length of the reduction s[n/0] ↓G/A →∗R
t[n/0] ↓G/A, which must exist due to the induction base. The addend is(n) is a
lower bound on the length of s[n/n + 1] ↓G/A →∗R t[n/n + 1] ↓G/A, but without
those subsequences that are covered by the induction hypothesis IH : s→ t.
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When applying IH, s and t are instantiated by an increasing substitution σ.
By the induction hypothesis, each rewrite sequence sσ →∗ tσ has at least length
rt(nσ). Since σ is increasing, we have nσ ≥ n when comparing tuples pointwise. As
rt is weakly monotonic, this implies rt(nσ) ≥ rt(n). Thus, rt(n) is a lower bound for
the length of the reduction sσ →∗ tσ. Hence, the restriction to weakly monotonic
functions rt and increasing substitutions σ allows us to underapproximate rt(nσ)
by rt(n) in (9), resulting in recurrence equations that are suitable for automation.

For each previous rewrite lemma s′ →≥rt ′(n′) t′ that was used in the proof of
the conjecture s→∗ t, we assume that rt ′ is known. Thus, rt ′ can be used as a lower
bound on the length of the rewrite sequences represented by that previous lemma.
Then one can obtain ib and is directly from the induction proof of the conjecture.
To avoid treating rules and rewrite lemmas separately, in Def. 17 we regard each
rule s→ t ∈ R ∪ {IH} as a rewrite lemma s→≥1 t.

Definition 17 (ih , ib, is) Let s →∗ t be a conjecture with an induction proof as in

Thm. 14. More precisely, let u1 ⇀ . . . ⇀ ub+1 be the rewrite sequence s[n/0] ⇀∗

t[n/0] for the induction base and v1 ⇀IH,n . . . ⇀IH,n vk+1 be the rewrite sequence

s[n/n+1] ⇀∗IH,n t[n/n+1] for the induction step, where IH: s→ t is applied ih times.

For j ∈ {1, . . . , b}, let `j →≥rtj(yj) rj and σj be the rewrite lemma and substitution

used to reduce uj to uj+1. Similarly for j ∈ {1, . . . , k}, let pj →≥rt ′j(zj) qj and θj be

the lemma and substitution used to reduce vj to vj+1. Then we define:

ib(ñ) =
∑

j∈{1,...,b}
rt j(yjσj) and is(n) =

∑
j∈{1,...,k}, pj→qj 6=IH

rt ′j(zjθj)

By solving the recurrence equations (9), we can now compute rt explicitly.

Theorem 18 (Explicit Runtime of Rewrite Lemmas) Let s→∗ t be a conjecture

with an induction proof as in Thm. 14, where ih, ib, and is are as in Def. 17. Then

s→≥rt(n) t is a rewrite lemma, where rt(n) = ihn · ib(ñ) +
∑n−1
i=0 ihn−1−i · is(n[n/i]).

Example 19 (Computing rt for qs) Reconsider the induction proof of the conjecture

qs(γList(n))→∗ γList(n) in Ex. 15. The proof of the induction base is qs(γList(0)) ≡G
qs(nil)→Rqs

nil ≡G γList(0). Hence, ib = rt1 = 1. The proof of the induction step is as

follows. Here, we use 3n+ 1 as the runtime function of both previously proved rewrite

lemmas (5) and (6). Moreover, →L/G stands for ≡G ◦ →L ◦ ≡G .

qs(γList(n+ 1)) ≡G qs(cons(zero, γList(n))) →Rqs rt ′1 = 1
qs(low(zero, γList(n))) ++ cons(zero, qs(high(zero, γList(n)))) →L/G rt ′2(n) = 3n+ 1

qs(nil) ++ cons(zero, qs(high(zero, γList(n)))) →L/G rt ′3(n) = 3n+ 1
qs(nil) ++ cons(zero, qs(γList(n))) →Rqs rt ′4 = 1

nil ++ cons(zero, qs(γList(n))) 7→IH,n rt ′5(n) = rt(n)
nil ++ cons(zero, γList(n)) →Rqs rt ′6 = 1

cons(zero, γList(n)) ≡G γList(n+ 1)

Thus, is(n) =
∑
j∈{1,2,3,4,6} rt ′j(zjθj) = rt ′1 + rt ′2(n) + rt ′3(n) + rt ′4 + rt ′6

= 1 + (3n+ 1) + (3n+ 1) + 1 + 1 = 6n+ 5.

In our example we have ih = 1. Now Thm. 18 implies rt(n) = ib +
∑n−1
i=0 is(i) =

1 +
∑n−1
i=0 (6i+ 5) =3n2+2n+1. Hence, we get the following rewrite lemma:

qs(γList(n))→≥3n2+2n+1 γList(n) (4)
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In general, the recurrence equations (9) do not describe the exact length of
the corresponding rewrite sequence. The reason is that when proving a conjecture
s→∗ t by induction, one may instantiate non-induction variables in the induction
hypothesis, but this instantiation is ignored in the recurrence equations (9). Hence,
in general the function rt in Thm. 18 is only a lower bound for the runtime.

Example 20 (Non-Exact Bounds) The proof of add(γNats(n), γNats(n2)) →∗
γNats(n2 + n) in Ex. 16 used one rewrite step for the induction base and one for

the induction step (i.e., ib(n2) = 1 and is(n, n2) = 1). As the induction hypothesis was

applied once (i.e., ih = 1), Thm. 18 results in rt(n, n2) = ib(n2)+
∑n−1
i=0 is(i, n2) = 1+n.

This yields the rewrite lemma add(γNats(n), γNats(n2))→≥1+n γNats(n2 +n), which

results in a linear lower bound for the runtime complexity of the whole TRS.

In this example, the bound 1 + n for the runtime of the rewrite lemma is exact,

because ib(n2) and is(n, n2) do not depend on n2. But the following modification of

the add-TRS illustrates why our approach might fail to compute exact bounds. Here,

add double(x, y) corresponds to a subsequent application of add and double, i.e., it first

computes the addition of x and y, and then it doubles the result.

add double(zero, y) → double(y) double(zero) → zero
add double(succ(x), y) → add double(x, succ(y)) double(succ(x)) → succ(succ(double(x)))

For double, we infer the rewrite lemma double(γNats(n)) →≥1+n γNats(2n). For

add double, the technique of Sect. 3.2 speculates the conjecture add double(γNats(n),
γNats(n2)) →∗ γNats(2n2 + 2n), which is proved by induction. In the induction

base, we have add double(γNats(0), γNats(n2)) ≡G add double(zero, γNats(n2)) →R
double(γNats(n2))→L γNats(2n2) which yields ib(n2) = 2+n2. In the induction step,

we get is(n, n2) = 1 and ih = 1 as before. Now Thm. 18 yields rt(n, n2) = ib(n2) +∑n−1
i=0 is(i, n2) = 2 + n2 + n, resulting in the rewrite lemma add double(γNats(n),

γNats(n2))→≥2+n2+n γNats(2n2 + 2n).
However, 2 + n2 + n is only a lower bound on the length of this rewrite sequence:

The non-induction variable n2 in add double’s second argument increases in each ap-

plication of add double’s recursive rule. Therefore finally, double(γNats(n2 +n)) has to

be evaluated and rewriting add double(γNats(n), γNats(n2)) takes 2 + n2 + 2n steps.

However, the increase of n2 is ignored in the recurrence equations (9) and in Thm. 18.

Often, one is mainly interested in asymptotic instead of explicit bounds. Based
on Thm. 18, asymptotic bounds for rewrite lemmas can be obtained automatically
from their induction proofs, i.e., one only needs ib, is, and ih and does not have
to solve any recurrence equation. To express asymptotic bounds w.r.t. just one
variable, we define the unary function rtN : N→ N as rtN(n) = rt(n, . . . , n).

If the induction hypothesis was not used in the proof of a rewrite lemma (i.e.,
ih = 0), then (9) implies rt(n[n/0]) = ib(ñ) and rt(n[n/n+ 1]) = is(n). Thus, if ib
and is are polynomials of degree dib and dis , we obtain rtN(n) ∈ Ω(nmax{dib ,dis}).

If ih = 1, then Thm. 18 implies rt(n) = ib(ñ) +
∑n−1
i=0 is(n[n/i]). Again, let

ib and is be polynomials of degree dib and dis , respectively. Then is(n) = t0 + t1n+
t2n

2 + . . . + tdisn
dis , where the tj are polynomials of degree at most dis − j over

variables from ñ. Moreover, there is at least one tj with tj 6= 0 which has the exact

degree dis − j. Hence, rt(n) = ib(ñ) +
∑n−1
i=0 (t0 + t1i+ t2i

2 + . . .+ tdis i
dis ) =

ib(ñ) + t0 ·
∑n−1

i=0
i0+ t1 ·

∑n−1

i=0
i1 + t2 ·

∑n−1

i=0
i2 + . . .+ tdis ·

∑n−1

i=0
idis . (10)
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By Faulhaber’s formula [21], for any e ∈ N,
∑n−1
i=0 i

e is a polynomial of degree e+ 1

over n. Thus for e = 1,
∑n−1
i=0 i

1 = n·(n−1)
2 has degree 2. By taking also the degree

dib of ib into account, rt has degree max{dib , dis + 1}, i.e., rtN(n) ∈ Ω(nmax{dib ,dis+1}).
Finally we consider the case where the induction hypothesis was used several

times, i.e., ih > 1. By construction we always have is(n) ≥ 1 (since the induction
step cannot only consist of applying the induction hypothesis). Thus, Thm. 18
implies rt(n) ≥

∑n−1
i=0 ihn−1−i =

∑n−1
j=0 ihj = ihn−1

ih−1 . Hence, rtN(n) ∈ Ω(ihn), i.e.,
the runtime of the rewrite lemma is exponential. Cor. 21 summarizes the above
observations.

Corollary 21 (Asymptotic Runtime of Rewrite Lemmas) Let s →∗ t be a

valid conjecture with ih, ib, and is as in Def. 17. Moreover, let ib and is be polynomials

of degree dib and dis , respectively. Then there is a rewrite lemma s→≥rt(n) t such that

• rtN(n) ∈ Ω(nmax{dib ,dis}), if ih = 0
• rtN(n) ∈ Ω(nmax{dib ,dis+1}), if ih = 1
• rtN(n) ∈ Ω(ihn), if ih > 1

Example 22 (Exponential Runtime) To illustrate Cor. 21, let Rexp = {f(succ(x),
succ(x))→ f(f(x, x), f(x, x)), f(zero, zero)→zero}. Our approach speculates and proves

the conjecture f(γNats(n), γNats(n)) →∗ zero. The induction base is f(γNats(0),
γNats(0)) ≡G f(zero, zero) →Rexp

zero, i.e., ib = 1. The induction step is:

f(γNats(n+ 1), γNats(n+ 1)) ≡G f(succ(γNats(n)), succ(γNats(n))) →Rexp rt ′1 = 1

f(f(γNats(n), γNats(n)), f(γNats(n), γNats(n))) 7→2
IH

f(zero, zero) →Rexp rt ′4 = 1
zero

Thus, ih = 2 and is(n) is the constant 2 for all n ∈ N. Hence, by Cor. 21 there is a

rewrite lemma f(γNats(n), γNats(n))→≥rt(n) zero with rt(n) ∈ Ω(2n). Indeed, Thm.

18 implies rt(n) = 2n +
∑n−1
i=0 2n−1−i · 2 = 2n+1 + 2n − 2.

3.5 Inferring Bounds for TRSs

We now use rewrite lemmas to infer lower bounds for the runtime complexity rcR
of a TRS R. Sect. 3.4 showed how to compute a lower bound rt(n) for the length
of the rewrite sequences represented by a valid conjecture s→∗ t, where n are the
variables in s. However, rcR is defined w.r.t. the size of the start term of a rewrite
sequence (i.e., rcR(n) = sup{dh(t,→R) | t ∈ TB , |t| ≤ n }, cf. Def. 2). Thus, to
obtain a lower bound for rcR from rt(n), for any σ : V(s)→ N one has to take the
relation between rt(nσ) and the size of the start term sσ↓G/A into account. Our
approach in Sect. 3.2 only speculates lemmas where s = f(γτ1(s1), . . . , γτk(sk)) for
some f ∈ Σdef (R), polynomials s1, . . . , sk with V(sj) ⊆ V(s), and simply structured
types τ1, . . . , τk. For any τi, let dτi : ρ1 × · · · × ρb → τ be τi’s recursive constructor.
Then for any n ∈ N, Def. 5 implies |γτi(n)↓G/A | = szτi(n) for szτi :N→ N with

szτi(n) = |γτi(0)↓G/A |+n·
(
1 + |γρ1(0)↓G/A |+ · · ·+ |γρb(0)↓G/A | − |γτi(0)↓G/A |

)
.

The reason is that γτi(n)↓G/A contains n occurrences of dτi and of each γρ1(0)↓G/A,
. . . , γρb(0) ↓G/A except γτi(0) ↓G/A, and just one occurrence of γτi(0) ↓G/A. For



16 Florian Frohn et al.

instance, |γNats(n)↓G/A| is szNats(n) and |γList(n)↓G/A| is szList(n) with

szNats(n) = |γNats(0)↓G/A|+ n · (1 + |γNats(0)↓G/A| − |γNats(0)↓G/A|) = |zero|+ n

= 1 + n

szList(n) = |γList(0)↓G/A|+ n · (1 + |γNats(0)↓G/A|) = |nil|+ n · (1 + |zero|)
= 1 + n · 2

Thus |s↓G/A| = |f(γτ1(s1), . . . , γτk(sk))↓G/A| with V(s) = n is given by sz : Nm → N:

sz(n) = 1 + szτ1(s1) + · · ·+ szτk(sk)

For instance, qs(γList(n)) ↓G/A= qs(consn(zero, nil)) has the size sz(n) = 1 +
szList(n) = 2n + 2. Since |γτ (0) ↓G/A | is a constant for each type τ , sz is a
polynomial whose degree is the maximal degree of the polynomials s1, . . . , sk.

Hence, the rewrite lemma (4) for qs states that there are terms of size sz(n) =
2n+ 2 with reductions of at least length rt(n) = 3n2 + 2n+ 1. To determine a lower
bound for rcRqs

, we construct an inverse function sz−1 with (sz ◦ sz−1)(n) = n. In

our example where sz(n) = 2n+2, we have sz−1(n) = n−2
2 if n is even. Thus, for all

even n there are terms of size n with reductions of length rt(sz−1(n)) = rt(n−2
2 ) =

3
4n

2 − 2n+ 2. Since multivariate polynomials sz(n1, . . . , nm) cannot be inverted, we
invert the unary function szN : N→ N with szN(n) = sz(n, . . . , n) instead.

Of course, inverting szN fails if szN is not injective. However, the conjectures
speculated in Sect. 3.2 only contain polynomials with natural coefficients. Then,
szN is always strictly monotonically increasing. Hence, we only proceed if there is a
sz−1

N : img(szN) → N where (szN ◦ sz−1
N )(n) = n holds for all n ∈ img(szN) = {n ∈

N | ∃v ∈ N. szN(v) = n}. To extend sz−1
N to a function on N, for any (total) function

h : M → N with M ⊆ N, we define bhc(n) : N→ N by:

bhc(n) = h( max{n′ | n′ ∈M,n′ ≤ n} ), if n ≥ min(M) and bhc(n) = 0, otherwise

Using this notation, Thm. 23 states how we can derive lower bounds for rcR.

Theorem 23 (Explicit Bounds for rcR) Let s→≥rt(n1,...,nm) t be a rewrite lemma

for R, let sz : Nm → N such that sz(b1, . . . , bm) is the size of s[n1/b1, . . . , nm/bm]↓G/A
for all b1, ..., bm ∈ N, and let szN be injective, i.e., sz−1

N exists. Then for all n ∈ N with n

≥ min(img(szN)), rtN◦bsz−1
N c is a lower bound for rcR, i.e., (rtN◦bsz−1

N c)(n) ≤ rcR(n).

In the rewrite lemma (4) for qs where szN(n) = 2n + 2, we have bsz−1
N c(n) =

bn−2
2 c ≥

n−3
2 and rcRqs

(n) ≥ rt(bsz−1
N c(n)) ≥ rt(n−3

2 ) = 3
4n

2− 7
2n+ 19

4 for all n ≥ 2.

However, even if sz−1
N exists, finding resp. approximating sz−1

N automatically
can be non-trivial in general. Therefore, we now show how to obtain an asymptotic
lower bound for rcR directly from a rewrite lemma f(γτ1(s1), . . . , γτk(sk))→≥rt(n)

t without constructing sz−1
N . As mentioned, if e is the maximal degree of the

polynomials s1, . . . , sk, then sz is also a polynomial of degree e and thus, szN(n) ∈
O(ne). Moreover, from the induction proof of the rewrite lemma we obtain an
asymptotic lower bound for rtN, cf. Cor. 21. Using these bounds, Lemma 24 can be
used to infer an asymptotic lower bound for rcR directly.10

10 In the second case of Lemma 24, we fix a small inaccuracy from [9,10] where we inadvertently

wrote (rtN ◦ bsz−1
N c)(n) ∈ Ω(b

e√n).
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Lemma 24 (Asymptotic Bounds for Function Composition) Let rtN, szN :
N→ N where szN ∈ O(ne) for some e ≥ 1 and szN is strictly monotonically increasing.

• If rtN(n) ∈ Ω(nd) with d ≥ 0, then (rtN ◦ bsz−1
N c)(n) ∈ Ω(n

d
e ).

• If rtN(n) ∈ Ω(bn) with b ≥ 1, then (rtN ◦ bsz−1
N c)(n) ∈ bΩ( e

√
n).

For the rewrite lemma qs(γList(n))→≥rt(n) γList(n) where rtN = rt and szN =
sz, we only need the asymptotic bounds sz(n) ∈ O(n) and rt(n) ∈ Ω(n2) to infer

that Quicksort has at least quadratic complexity, i.e., rcRqs
(n) ∈ Ω(n

2
1 ) = Ω(n2).

While Thm. 23 explains how to find concrete lower bounds for rcR (if szN can
be inverted), Cor. 25 summarizes our results on asymptotic lower bounds for rcR.
It combines Cor. 21 on inferring asymptotic bounds for rt with Lemma 24.

Corollary 25 (Asymptotic Bounds for rcR) Let s→∗ t be a valid conjecture and

let sz : Nm → N be the function sz(b1, . . . , bm) =
∣∣s[n1/b1, . . . , nm/bm]↓G/A

∣∣, where

szN(n) ∈ O(ne) for some e ≥ 1, and szN is strictly monotonically increasing. Moreover,

let ih, ib, and is be defined as in Def. 17, where ib and is have the degrees dib and dis .

(a) rcR(n) ∈ Ω(n
max{dib ,dis}

e ), if ih = 0

(b) rcR(n) ∈ Ω(n
max{dib ,dis +1}

e ), if ih = 1

(c) rcR(n) ∈ ihΩ( e
√
n), if ih > 1

4 Detecting Decreasing Loops to Infer Lower Bounds

As mentioned, the induction technique of Sect. 3 is related to our approach for
proving (possibly non-looping) non-termination from [8]. In contrast, most other
non-termination techniques for TRSs try to detect loops. In this section, we show
how to adapt such techniques in order to infer lower complexity bounds.

The induction technique of Sect. 3 has two main drawbacks: its efficiency is
limited, since it heavily relies on SMT solving and equational unification. Moreover,
it builds upon several heuristics, which restrict its power. For instance, narrowing
is used to speculate conjectures in Sect. 3.2, which is non-deterministic. Hence,
heuristics are applied to reduce the search space and to decide when to stop
narrowing. Consequently, the induction technique may fail due to unfavorable
heuristic decisions during the construction of narrowing trees. Moreover, the
definition of the generator functions in Def. 5 is a heuristic as well, i.e., γτ (n)
should be a “suitable” term of type τ whose size is linear in n. However, there are
examples where other generator functions than those in Def. 5 are needed.

Example 26 (Failure due to γList) This TRS checks if a list contains zero.

contains(nil) → false contains(cons(succ(x), xs)) → contains(xs)
contains(cons(zero, xs)) → true

If one uses the heuristic of Def. 5 for the choice of generator functions, γList only yields

lists of zeros. However, for such inputs the complexity of contains is constant, i.e., then

one cannot prove the desired linear lower bound.



18 Florian Frohn et al.

The loop detection technique of this section does not require SMT solving
or equational unification (i.e., it is more efficient than the induction technique).
Moreover, it is not based on type inference and generator equations. Thus, it avoids
the problems that are due to the heuristics in the induction technique. While the loop
detection technique also applies narrowing, it only needs to find a single narrowing
sequence satisfying a specific condition. In contrast, the induction technique requires
multiple narrowing sequences which are suitable for generalization, resulting in a
narrowing tree. However, the loop detection technique can only infer linear and
exponential bounds. Hence, it does not subsume the induction technique.

In Sect. 4.1 we adapt the notion of loops to prove linear lower bounds. Sect. 4.2
extends this approach to exponential bounds. Finally, Sect. 4.3 discusses the relation
between the induction technique of Sect. 3 and the loop detection technique.

4.1 Loop Detection for Linear Lower Bounds

A loop is a reduction sequence s →+
R C[s σ] for some context C and some substi-

tution σ. Each loop gives rise to a non-terminating reduction s →+
R C[s σ] →+

R
C[C σ[s σ2]]→+

R . . . The idea of the technique in this section is to detect rewrite
sequences which are similar to loops, but at some position π of s, a context D of
constant size is removed (i.e., we want to detect so-called decreasing loops). Hence,
we want to find infinite families of rewrite sequences of the form

s[Dn[t]]π →+
R C[s[Dn−1[t]]π σ] D s[Dn−1[t]]π σ
→+
R C[s[Dn−2[t]]π σ

2] D s[Dn−2[t]]π σ
2

→+
R ◦D . . . →+

R ◦ D s[t]π σ
n.

Again, s′ D s means that s is a subterm of s′, cf. Sect. 2. If there is a decreasing
loop, then the runtime complexity of R is at least linear, i.e., rcR(n) ∈ Ω(n). To
find such families of rewrite sequences, we look for a rewrite step of the form
s[D[x]]π →R C[s[x]π σ] for a variable x. Then the term s[Dn[x]]π starts a reduction
of length n. This term is obtained by applying the substitution θn with θ = [x/D[x]]
to s[x]π.

The rule contains(cons(succ(x), xs)) → contains(xs) from Ex. 26 removes the
context D = cons(succ(x),�) around the variable xs in every rewrite step. The size
of this context is constant. Thus, if one starts with a context Dn of size 3 · n, then
one can perform n rewrite steps to remove this context, which shows rcR(n) ∈ Ω(n).

Note that the variable xs occurs exactly once in the left-hand side ` =
contains(cons(succ(x), xs)), at position π = 1.2 (i.e., ` is linear). Moreover, this
variable also appears in the right-hand side r at a position ξ = 1 that is above
π (i.e., ξ < π). Thus, every rewrite step removes the context that is around xs

in `|ξ = cons(succ(x), xs). Let ` be the term that results from ` by replacing the
subterm `|ξ by the variable xs, i.e., ` = `[xs]ξ = contains(xs). Moreover, let θ be the
substitution that replaces xs by `|ξ again (i.e., θ = [xs/cons(succ(x), xs)]). Suppose
that ` σ = r for some matcher σ that does not instantiate the variables in `|ξ (i.e., σ
does not interfere with θ). A rewrite rule `→ r satisfying these conditions is called
a decreasing loop. In our example, ` = contains(xs) matches the right-hand side
r = contains(xs) with the matcher σ = ∅, i.e., with the identical substitution. Thus,
rewriting ` θ = ` results in an instance of ` again (i.e., in r = ` σ). Hence, every
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Fig. 2: Decreasing Loop

decreasing loop results in a rewrite sequence of linear length: if one starts with ` θn,
then this rewrite step can be repeated n times, removing one application of θ in each
step. More precisely, we have ` θn = ` θn−1 →R r θn−1 = ` σ θn−1 = ` θn−1 σ′ for
some substitution σ′, as σ does not interfere with θ. Hence, in our example, the term
` θn = contains(Dn[xs]) with D = cons(succ(x),�) starts a reduction of length n.

Based on this idea, three improvements enhance the applicability of the resulting
technique: First, it suffices to require that ` matches a subterm r of the right-hand
side (i.e., the right-hand side may have the form C[r] for some context C). Second,
instead of creating ` by replacing one subterm `|ξ of ` with a variable x ∈ V(`|ξ),
we can replace several subterms `|ξ1 , . . . , `|ξm with variables xi ∈ V(`|ξi). Here,
ξ1, . . . , ξm must be parallel positions, i.e., we have ξi 6≤ ξj and ξj 6≤ ξi whenever
i 6= j. The structure of `, `, and r is illustrated in Fig. 2. Here, a dashed arrow

labeled with a substitution like `
θ
99K ` means that applying the substitution θ

to ` results in `. Third, instead of checking whether a single rule ` →R C[r] is a
decreasing loop, we can also consider rewrite sequences `→+

R C[r]. To find such
rewrite sequences, we repeatedly narrow the right-hand sides of those rules whose
left-hand sides are basic.11 This leads to Def. 27. (Note that here, (a) implies that
ξ1, . . . , ξm are parallel positions, since the r|ξi are pairwise different variables.)

Definition 27 (Decreasing Loop) Let `→+
R C[r] for some linear basic term ` and

some r /∈ V. We call ` →+
R C[r] a decreasing loop if there are pairwise different

variables x1, . . . , xm (with m ≥ 0) and positions π1, . . . , πm with xi = `|πi for all

1 ≤ i ≤ m such that:

(a) for each xi, there is a ξi < πi such that r|ξi = xi
(b) there is a substitution σ with ` σ = r for ` = `[x1]ξ1 . . . [xm]ξm

We call σ the result substitution, θ = [xi/`|ξi | 1 ≤ i ≤ m] the pumping substitution,

and ξ1, . . . , ξm the abstracted positions of the decreasing loop.

11 For each node t in the resulting narrowing tree, we check if the corresponding rewrite se-
quence from the root to t is a decreasing loop. As a heuristic, our implementation stops the
(breadth-first) construction of narrowing trees if we reach depth 20 or constructed 100 terms.
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Example 28 (Result Substitution) Consider Ex. 16 again to illustrate the result substi-

tution σ. The rule add(succ(x), y) → add(x, succ(y)) is a decreasing loop where ` =
add(x, y), ξ = 1, θ = [x/succ(x)], and σ = [y/succ(y)]. Indeed, we have ` θn →n

R ` σn.

Example 29 (Linearity) To see why we require linearity of `, consider R = {f(succ(x),
x)→ f(x, x)}. If non-linear terms ` were allowed by Def. 27, then f(succ(x), x)→ f(x, x)
would be a decreasing loop with the abstracted position ξ = 1. Thus, we would falsely

conclude a linear lower runtime bound although rcR(n) is constant.

Example 30 (Non-Variable Right-Hand Sides) The requirement r /∈ V in Def. 27 is
needed to ensure that θ instantiates variables by constructor terms. Otherwise, for
the TRS R = {f(x)→ x} we would falsely detect a decreasing loop although rcR(n)
is constant. The reason is that for ` = x and θ = [x/f(x)], ` θn starts a rewrite
sequence of length n, but ` θn is not a basic term.

Thm. 31 states that any decreasing loop gives rise to a linear lower bound.

Theorem 31 (Linear Lower Bounds by Loop Detection) If a TRS R has a

decreasing loop, then we have rcR(n) ∈ Ω(n).

Of course, the linear bound recognized by Thm. 31 is just a lower bound. In
particular, if {ξ1, . . . , ξm} = ∅ (i.e., ` = `), then we have the loop ` →+

R C[r] D r =
` σ = ` σ. Thus, there is even an infinite lower bound (i.e., a basic term starts an
infinite reduction). Hence, loops are indeed special cases of decreasing loops.

Corollary 32 (Infinite Lower Bounds by Loop Detection) If there is a decreas-

ing loop for a TRS R with an empty set of abstracted positions, then rcR(n) ∈ Ω(ω).

4.2 Loop Detection for Exponential Lower Bounds

We now adapt the criterion of Thm. 31 in order to detect exponential lower bounds.
Thm. 31 characterizes TRSs where a context around a variable x is removed in
each rewrite step and the same rewrite rule is again applicable to the right-hand
side. We now consider reduction sequences `→+ r such that r = C1[r1]ι1 = C2[r2]ι2
for parallel positions ι1 and ι2 where both ` →+ C1[r1]ι1 and ` →+ C2[r2]ι2 are
decreasing loops. Then each rewrite step removes some context, but at the same
time it creates two redexes on the right-hand side where the same rewrite rule is
applicable again. This give rise to an (asymptotic) exponential lower bound of 2n.

Example 33 (Exponential Bound for Fibonacci Numbers) Consider the following TRS

R with rcR(n) ∈ Ω(2n) which computes the Fibonacci numbers.

fib(zero) → zero add(zero, y) → y

fib(succ(zero)) → succ(zero) add(succ(x), y) → add(x, succ(y))
fib(succ(succ(x))) → add(fib(succ(x)), fib(x))

In the last fib-rule, there are two recursive calls on the right-hand side where each

recursive call gives rise to a decreasing loop. More precisely, fib(succ(succ(x))) →
C1[fib(succ(x))] is a decreasing loop with `1 = fib(succ(x)), pumping substitution θ1 =
[x/succ(x)], and result substitution σ1 = ∅. On the other hand, fib(succ(succ(x)))→
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C2[fib(x)] is a decreasing loop with `2 = fib(x), pumping substitution θ2 = [x/
succ(succ(x))], and result substitution σ2 = ∅.

The two decreasing loops give rise to an exponential lower bound. We have `1 θ
n
1 θ

n
2

→R add(`1 θ
n−1
1 θn2 , `2 θ

n−1
1 θn2 ). Note that the pumping substitutions θ1 and θ2 com-

mute, i.e., θ1 θ2 = θ2 θ1. Thus, for the subterm in the second argument of add, we have

`2 θ
n−1
1 θn2 = `2 θ2 θ

n−1
1 θn−1

2 . Hence after each application of the recursive fib-rule to

`i θ
n
1 θ

n
2 we obtain two new similar terms where one application of θi has been removed,

but 2n− 1 applications of pumping substitutions remain. Since the pumping substitu-

tions commute, the next reduction step again yields two new similar terms with 2n−2
remaining applications of pumping substitutions. Thus, rewriting `1 θ

n
1 θ

n
2 yields a bi-

nary “tree” of reductions which is complete up to height n. Hence, the resulting rewrite

sequence has an exponential length, i.e., rcR(n) ∈ Ω(2n).

Example 34 (Commutation) The commutation of the pumping substitutions is indeed

crucial. Otherwise, it would not be sound to infer an exponential lower bound from

the existence of two parallel decreasing loops. For instance, we would then obtain false

exponential bounds for typical algorithms that traverse trees (the TRS below represents

the simplest possible tree traversal algorithm).

traverse(leaf) → leaf traverse(tree(xs, ys)) → tree(traverse(xs), traverse(ys))

Each recursive call in the right-hand side of the last rule gives rise to a decreasing

loop. For traverse(tree(xs, ys)) → C1[traverse(xs)] we have `1 = traverse(xs) with the

pumping substitution θ1 = [xs/tree(xs, ys)] and the result substitution σ1 = ∅. The

decreasing loop traverse(tree(xs, ys)) → C2[traverse(ys)] has `2 = traverse(ys) with

θ2 = [ys/tree(xs, ys)] and σ2 = ∅. However, this does not imply an exponential

lower bound. The reason is that θ1 and θ2 do not commute. Thus, `1 θ
n
1 θ

n
2 →R

tree(`1 θ
n−1
1 θn2 , `2 θ

n−1
1 θn2 ). But instead of `2 θ

n−1
1 θn2 = `2 θ2 θ

n−1
1 θn−1

2 as in Ex.

33, we have `2 θ
n−1
1 θn2 = `2 θ

n
2 . Thus, the resulting runtime is only linear.

The following example shows that in addition to the commutation property of
the pumping substitutions, the result substitution of one decreasing loop must not
interfere with the pumping substitution of the other loop.

Example 35 (Interference of Result and Pumping Substitution) The rule `→ r with ` =
f(succ(x), succ(y)) and r = c(f(x, succ(zero)), f(x, y)) gives rise to two decreasing loops.

The first one is ` → C1[f(x, succ(zero))] with `1 = f(x, succ(y)), r1 = f(x, succ(zero)),
θ1 = [x/succ(x)], and σ1 = [y/zero]. The other is ` → C2[f(x, y)] with `2 = f(x, y),
r2 = f(x, y), θ2 = [x/succ(x), y/succ(y)], and σ2 = ∅. However, this does not imply an

exponential lower bound. The reason is that the domain of the pumping substitution

σ1 contains the variable y which also occurs in the domain and range of θ2. Hence:

f(x, succ(y)) θn1 θ
n
2 `1 θ

n
1 θ

n
2

= f(succ(x), succ(y)) θn−1
1 θn2 = ` θn−1

1 θn2
→R c(f(x, succ(zero)), f(x, y)) θn−1

1 θn2 →R C1[r1] θn−1
1 θn2

D f(x, succ(zero)) θn−1
1 θn2 D `1 σ1 θ

n−1
1 θn2

= f(succ(x), succ(zero)) θn−2
1 θn2 = ` σ1 θ

n−2
1 θn2

→R c(f(x, succ(zero)), f(x, zero)) θn−2
1 θn2 →R C2[r2]σ1 θ

n−2
1 θn2

To obtain the desired rewrite sequence of exponential length, each f-term in the resulting

term should again create a binary “tree” of reductions which is complete up to height
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n − 2 (as there are still at least n − 2 applications of each pumping substitution).

However, the underlined subterm f(x, zero) (i.e., r2 σ1) is a normal form. The problem

is that the result substitution σ1 = [y/zero] was applied in the first reduction step and

this prevents the subsequent use of θ2 = [y/succ(y)] in order to turn the subterm f(x, y)
of the right-hand side into a redex again.

In general, after one rule application one obtains the terms `1 σ1 θ
n−1
1 θn2 and

`2 σ2 θ2 θ
n−1
1 θn−1

2 , which are “similar” to the start term `1 θ
n
1 θ

n
2 up to the result

substitutions σ1 and σ2. Therefore, one has to require that the result substitutions do

not interfere with the pumping substitutions. Then these result substitutions do not

prevent the desired exponentially long rewrite sequence.

The following definition introduces the concept of compatible decreasing loops.
Two decreasing loops are compatible if (a) they result from the same rewrite
sequence, (b) they operate on parallel positions of the right-hand side, (c) the
result substitution of each loop does not interfere with the pumping substitution
of the other loop, and (d) their pumping substitutions commute.

Definition 36 (Compatible Decreasing Loops) Let `→+
R C[r]ι and `→+

R C′[r′]ι′
be decreasing loops with pumping substitutions θ resp. θ′, result substitutions σ resp.

σ′, and abstracted positions ξ1, . . . , ξm resp. ξ′1, . . . , ξ
′
m′ . We call ` →+

R C[r]ι and

`→+
R C′[r′]ι′ compatible iff

(a) C[r]ι = C′[r′]ι′
(b) ι and ι′ are parallel positions

(c) dom(σ) ∩ (V(`|ξ′1) ∪ · · · ∪ V(`|ξ′
m′

)) = dom(σ′) ∩ (V(`|ξ1) ∪ · · · ∪ V(`|ξm)) = ∅
(d) θ θ′ = θ′θ

Thm. 37 shows that several compatible decreasing loops lead to exponential runtime.

Theorem 37 (Exponential Lower Bounds by Loop Detection) If a TRS R
has d ≥ 2 pairwise compatible decreasing loops, then we have rcR(n) ∈ Ω(dn).

4.3 Relationship between Induction Technique and Loop Detection

We now presented two different procedures to infer lower bounds, i.e., the induction
technique of Sect. 3 and the loop detection technique of the current section. Thm.
38 shows that for linear lower bounds, loop detection subsumes the induction
technique (provided that the TRS is left-linear).

Theorem 38 (Loop Detection Subsumes Induction for Linear Bounds) Let

R be a TRS and L be the set of rewrite lemmas that were speculated and proved by the

technique of Sect. 3. If R is left-linear and there is a rewrite lemma s →≥rt(n) t ∈ L
where rt(n) is not a constant, then R has a decreasing loop.

Thus, for linear lower bounds, loop detection is superior to the induction
technique (e.g., loop detection proves the tight lower bound Ω(n) for Ex. 26, while
the induction technique fails). However, as shown by the following theorem, loop
detection is not a complete technique for the detection of linear lower bounds. The
reason is that even for quite restricted classes of TRSs R it is not semi-decidable
if rcR(n) ∈ Ω(n) holds. The reason is that the immortality problem of Turing
machines can be reduced to the problem of linear lower bounds, where (im)mortality
of Turing machines is known to be undecidable [20].
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Theorem 39 (Undecidability and Incompleteness of Loop Detection for Lin-

ear Bounds) For the class of linear TRSs where `, r ∈ TB for all rewrite rules `→ r,

it is not semi-decidable if rcR(n) ∈ Ω(n) holds. Hence for this class, loop detection is

not complete for the inference of linear lower bounds.

Thus for linear lower bounds, loop detection is incomplete but more powerful
than the induction technique. Similarly, the induction technique fails for the
Fibonacci example of Ex. 33, while loop detection proves the lower bound Ω(2n).
However, for exponential bounds, the induction technique is not subsumed by loop
detection.

Example 40 (Loop Detection does not Subsume Induction Technique) Consider the

TRS R with the rules f(zero) → zero and f(succ(x)) → succ(f(f(x))). Here, f rewrites

its only argument to itself in exponentially many steps. The induction technique can

prove the rewrite lemma f(γNats(n))→≥rt(n) γNats(n) with rt(n) ∈ Ω(2n) and thus,

conclude rcR(n) ∈ Ω(2n). The reason is that the induction hypothesis is applied twice

in the proof of the induction step. However, Thm. 37 cannot infer an exponential lower

bound by loop detection. The reason is that in this TRS, there is no function symbol

with an arity greater than 1. With such symbols one cannot construct terms that have

two parallel positions ι1, ι2. Hence, there are no two compatible decreasing loops.

Hence, for exponential bounds, there exist examples where the induction tech-
nique is successful whereas loop detection fails and vice versa. Moreover, as illus-
trated with the Quicksort-TRS of Ex. 3, the induction technique can also infer
non-linear polynomial bounds, which is not possible with loop detection. Hence,
the induction technique and loop detection are orthogonal. Thus, one would like
to couple them to obtain even better results. Moreover, an obvious question is
whether loop detection can be extended such that besides linear and exponential
lower bounds, it can also infer non-linear polynomial bounds. We considered two
possibilities for a coupling of loop detection and the induction technique:

(A) In Def. 27, instead of a rewrite sequence `→+
R C[r], one could use a sequence

`→≥rt(n) C[r] that is obtained by using rewrite lemmas which were generated
by the induction technique. If this sequence corresponds to a decreasing loop
and rtN(n) ∈ Ω(nd), then one could infer the lower bound rcR(n) ∈ Ω(nd+1). In
this way, one could infer non-linear polynomial lower bounds by loop detection.

(B) One could try to obtain rewrite lemmas from the loop detection technique
(i.e., these rewrite lemmas would have to express the infinite families of rewrite
sequences induced by a decreasing loop). Such a rewrite lemma for a function
f could be used in the induction technique when inferring a lower bound for a
function g that calls f as an auxiliary function.

Unfortunately, in general the approach in (A) is not sound.

Example 41 (Using Rewrite Lemmas for Loop Detection 1) Consider the TRS

f(zero) → zero f(succ(x)) → f(x) g(succ(x), y) → g(x, f(y))

The induction technique infers the rewrite lemma f(γNats(n))→≥n γNats(0). Thus, we

get the rewrite sequence g(succ(x),γNats(n))→ g(x, f(γNats(n)))→≥n g(x,γNats(0)).
It corresponds to a decreasing loop with ` = g(x, γNats(n)), pumping substitution
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θ = [x/succ(x)], and result substitution σ = [n/0]. However, this does not give rise to

a quadratic lower bound, i.e., the runtime complexity of the TRS is linear.

The reason is that the result substitution σ instantiates n with 0. To infer correct

lower bounds from rewrite sequences of the form ` →≥rt(n) C[r], we therefore require

that rt(n) must not depend on variables in the domain of the result substitution σ.

However, this requirement is still not sufficient, as the following example shows.

Example 42 (Using Rewrite Lemmas for Loop Detection 2) We replace the g-rule of Ex.

41 by g(cons(x, xs)) → c(f(x), g(xs)). Now we have the sequence g(cons(γNats(n), xs))
→ c(f(γNats(n)), g(xs)) →≥n c(γNats(0), g(xs)). The subterm g(xs) in its last term

results in a decreasing loop with pumping substitution θ = [xs/cons(γNats(n), xs)] and

result substitution σ = ∅. Again this does not yield a quadratic lower bound, i.e., the

runtime complexity is linear.

Here, the reason is that while the terms g(xs) θn indeed start rewrite sequences of

quadratic length, the size of g(xs) θn is also quadratic in n, since each application of θ

introduces a subterm whose size is linear in n. Therefore, to infer correct lower bounds

from rewrite sequences of the form `→≥rt(n) C[r], we also require that rt(n) must not

depend on variables in the range of the pumping substitution θ.

We applied a prototypical implementation of (A) that complies with the re-
strictions imposed by Ex. 41 and 42 to the TRSs from the “Runtime Complexity”

category of the Termination Problem Data Base (TPDB 10.3). This is the collection
of examples which was used for the Termination Competition 2015 [28]. The im-
provement in (A) only yielded 8 additional non-linear lower bounds that cannot be
proven by the induction technique on its own. Hence, this improvement seems to
apply only to very few additional TRSs, so we did not investigate it further.

(B) is also problematic, because the families of rewrite sequences that are in-
ferred by loop detection are usually difficult to express with generator functions.
By Thm. 31, ` θn can be reduced to C[r] θn−1 = C[` σ] θn−1. Since the conditions
of Thm. 31 ensure that the same reduction can be applied to ` σ θn−1 again, we
obtain a term12 Cn[`σn] after at least n steps. Here, C and the range of σ may
contain defined symbols and variables. In contrast, the generator equations in Def.
5 can only express terms Cn[t] where the context C and the term t consist of
constructors. Moreover, even if C and the range of σ only contain constructors, it is
still difficult to represent Cn[` σn] with generator equations, as one has to express
the “pumping” both in the context and in the substitution simultaneously.

Example 43 (Generating Rewrite Lemmas from Loop Detection) We extend Ex. 16 by

times(zero, y) → zero and times(succ(x), y) → add(y, times(x, y)). The second times-

rule yields the decreasing loop times(succ(x), y)→ C[times(x, y)] with C = add(y,�),
` = times(x, y), θ = [x/succ(x)], and σ = ∅. The infinite family of rewrite sequences

represented by this decreasing loop is times(succn(x), y) →n Cn[times(x, y)], i.e., we

might want to obtain the rewrite lemma times(succn(zero), y)→≥n Cn[zero]. However,

such a rewrite lemma cannot be represented in the current formalism of the induction

technique, since the context C is not ground and contains the defined symbol add.

12 To simplify the explanation, here we consider the case where V(C) ∩ dom(θ) = V(C) ∩
dom(σ) = ∅ and dom(θ)∩V(range(σ)) = ∅. Otherwise, the resulting term is more complicated.
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Hence, more general generator equations G would be required for (B). However,
then it is not clear if equational unification would still be (efficiently) decidable.
In contrast, for the generator equations in Def. 5, equational unification is decidable
in quadratic time [22]. Efficient equational unification is crucial for the induction
technique, as it is based on narrowing and rewriting modulo G. Indeed, a prototypical
implementation of (B) was much less efficient (and also less powerful due to timeouts)
than the induction technique on its own, such that we discarded (B), too.

Thus, in our implementation we apply loop detection and the induction tech-
nique separately: For left-linear TRSs R, we first apply loop detection. If the
inferred bound for rcR is not ω, we try the induction technique afterwards to
improve the found lower bound.

5 Experiments and Conclusion

We presented the first approach to infer lower bounds for the runtime complexity rcR
of TRSs automatically, consisting of two techniques. The induction technique (Sect.
3) is based on speculating conjectures by narrowing and proving them by induction.
From this proof, one infers a lower bound on the length of the corresponding rewrite
sequences. By taking the size of the start term into account, this yields a lower
bound for rcR. Loop detection (Sect. 4) is based on decreasing loops (a generalization
of loops). While a single decreasing loop results in a linear or infinite lower bound
for rcR, multiple compatible decreasing loops yield an exponential lower bound.

In [9], we presented two improvements for the induction technique: First,
argument filtering removes certain arguments of function symbols. Second, the
induction technique can be extended by allowing indefinite rewrite lemmas with
unknown right-hand sides. With these two improvements, rewrite lemmas do not
have to represent rewrite sequences of the original TRS precisely anymore. Our
experimental evaluation includes benchmarks with and without these improvements.
They show that these improvements are crucial to increase the power of the
induction technique. But if the induction technique is combined with the new loop
detection technique, then these improvements only have a minor impact. For that
reason (and for reasons of space), we did not present them in the current paper.

Both the induction technique and loop detection can also be adapted to inner-

most rewriting. A lower bound for the runtime of full rewriting is not necessarily
also a lower bound for innermost rewriting. As an example, in the TRS R with
the rules a→ f(b), f(b)→ f(b), b→ c, the basic term a starts an infinite reduction
and thus rcR(n) = ω for all n ≥ 1. In contrast, the innermost runtime complexity
is finite since R is innermost terminating. For the induction technique of Sect. 3,
we presented an adaption to innermost rewriting already in [9]. Here, one has to
use non-overlapping rewriting to prove rewrite lemmas, where it is not allowed to
rewrite redexes that have a proper subterm which unifies with the left-hand side
of a rule. Similarly, to adapt loop detection to the innermost strategy, one may
only use decreasing loops ` no→+

R C[r] where ` reduces to C[r] by non-overlapping
rewriting (see App. A for details).
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Moreover, we also lifted both techniques to relative rewriting. A relative TRS
consists of two sets of rules R and S. In contrast to R, the rules from S do not
contribute to the derivation height of a term. For example, in this way S can be
used to model arithmetic operations like addition, which are “built-in” in real
programming languages but have to be implemented explicitly in term rewriting.
To adapt the induction technique to relative rewriting, recall that we compute ih,
ib, and is to infer lower bounds from the induction proofs of conjectures. In the
corresponding Def. 17, each relative rule s→ t from S now has to be regarded as
a rewrite lemma s→≥0 t. To extend loop detection to relative rewriting, Def. 27
has to be adapted. To find decreasing loops, one may now only consider rewrite
sequences `→+

R∪S C[r] where at least one rule from R was applied.

We implemented our approach in our tool AProVE [15], using Z3 [7] to solve
the arising (possibly non-linear) arithmetic constraints in the induction technique.
While the induction technique can also infer concrete bounds, currently AProVE

only computes asymptotic bounds. If a lower bound was inferred by the induction
technique, then AProVE reports the used rewrite lemmas as witnesses. If AProVE

applies loop detection, then the decreasing loops with their pumping and result
substitutions are provided as witnesses.

There exist a few results on lower bounds for derivational complexity of TRSs
[18,24,30]13 and in the Termination Competitions 2009 – 2011, Matchbox [29] proved
lower bounds for derivational complexity.14 Moreover, [1] presents techniques to
infer exact lower and upper bounds from given recurrence equations. In contrast,
our main goal is the step from the TRS (i.e., the “program”) to asymptotic lower
bounds without solving recurrence equations. (Recall that our loop detection
technique does not use any recurrence equations at all and that in the induction
technique, no recurrence equations have to be solved if one is only interested in
asymptotic bounds, cf. Cor. 21).

Since there are no other tools for lower runtime complexity bounds of TRSs,
we compared our results with the asymptotic upper bounds computed by TcT2 and
TcT3 [4], the most powerful tools for inferring upper bounds of “Runtime Complexity

– Full Rewriting” at the Termination Competition 2015. We tested with 865 TRSs
from this category of the TPDB 10.3. We omitted 60 non-standard TRSs with
extra variables on right-hand sides. We also disregarded 34 TRSs where TcT2 or
TcT3 proved rcR(n) ∈ O(1) (gray cells in the tables below), since these TRSs have
no non-trivial lower bounds (i.e., no lower bounds larger than Ω(1)). Each tool
had a time limit of 300 s for each example. The following tables compare the lower
bounds found by different combinations of our techniques with the minimum upper
bounds computed by TcT2 or TcT3. In the tables, EXP means an exponential
bound (i.e., rcR(n) ∈ O(kn) resp. rcR(n) ∈ Ω(kn) for some k > 1).

13 The slides in [18] propose an approach for derivational complexity, where lower bounds are
also deduced from induction proofs. However, no formal details are given in [18].
14 For derivational complexity, one considers arbitrary rewrite sequences that may also

start with non-basic terms. Here, every non-empty TRS has a trivial linear lower bound.
In contrast, proving linear lower bounds for runtime complexity is not trivial. Thus, lower
bounds for derivational complexity are in general unsound for runtime complexity. Therefore,
an experimental comparison with tools for derivational complexity is not meaningful.
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rcR(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n>3) EXP Ω(ω)

O(1) (34) – – – – – –

O(n) 112 43 – – – – –

O(n2) 9 7 2 – – – –

O(n3) 1 1 1 1 – – –

O(n>3) 2 – – – – – –

EXP – – – – – – –

O(ω) 307 302 60 13 1 3 –

Table 1: Induction Technique
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Table 1 shows the results of the induction technique. The average runtime per ex-
ample was 25.6 s, but according to the chart on the right, it was usually much faster.
The examples that are missing in the chart were aborted after 300 s. For these
examples, we took the best lower bound that AProVE obtained within15 these 300 s.
The induction technique is especially suitable for polynomial bounds (it proves 353
linear and 78 non-linear polynomial bounds). In particular, it is powerful for TRSs
that implement realistic non-linear algorithms, e.g., it shows rcR(n) ∈ Ω(n2) for
many implementations of sorting algorithms from the TPDB, cf. [2].

rcR(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n>3) EXP Ω(ω)

O(1) (34) – – – – – –

O(n) 41 114 – – – – –

O(n2) 5 10 3 – – – –

O(n3) 1 1 1 1 – – –

O(n>3) – 2 – – – – –

EXP – – – – – – –

O(ω) 145 445 69 13 1 13 –

Table 2: Induction Technique & Improvements
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Table 2 shows that the induction technique yields significantly better results
with argument filtering and indefinite lemmas [9]. In this setting, 673 non-trivial
lower bounds were proved. The average runtime was 24.5 s. Hence, even the
efficiency of the induction technique benefits a little from the improvements.

rcR(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n>3) EXP Ω(ω)

O(1) (34) – – – – – –

O(n) 15 140 – – – – –

O(n2) – 18 – – – – –

O(n3) – 4 – – – – –

O(n>3) – 2 – – – – –

EXP – – – – – – –

O(ω) 13 439 – – – 144 90

Table 3: Loop Detection
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Table 3 presents the results of loop detection. The average runtime was 3.4 s,
i.e., it is much more efficient than the induction technique. Loop detection infers
non-trivial bounds for almost all analyzed TRSs: There are only 28 cases where

15 Our implementation stops as soon as we have rewrite lemmas for all defined function
symbols, i.e., we do not backtrack to replace a generated rewrite lemma for a function f by a
“better” rewrite lemma for f . Thus if we run into a timeout, then we did not manage to obtain
rewrite lemmas for all defined function symbols.
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loop detection fails. Note that for some of these examples, there might not even
exist a non-trivial lower bound. Furthermore, loop detection is also powerful for
non-polynomial lower bounds (it finds 144 exponential and 90 infinite lower bounds).

rcR(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n>3) EXP Ω(ω)

O(1) (34) – – – – – –

O(n) 15 140 – – – – –

O(n2) – 16 2 – – – –

O(n3) – 2 1 1 – – –

O(n>3) – 2 – – – – –

EXP – – – – – – –

O(ω) 14 382 46 10 – 144 90

Table 4: Induction Technique & Loop Detection
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In Table 4, we apply loop detection and the induction technique after each
other, as described at the end of Sect. 4. Thus, we first use loop detection and if
it succeeds, we apply the induction technique afterwards and try to improve the
found lower bound. The average runtime was 24.6 s. Like loop detection on its own,
this configuration proves non-trivial lower bounds for almost all analyzed TRSs
(compared to Table 3, it fails for one more TRS due to a timeout). There are less
non-linear polynomial lower bounds than in Table 1, since loop detection infers
a better exponential or infinite lower bound for some TRSs where the induction
technique can only prove a non-linear polynomial bound.

rcR(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n>3) EXP Ω(ω)

O(1) (34) – – – – – –

O(n) 15 140 – – – – –

O(n2) – 15 3 – – – –

O(n3) – 2 1 1 – – –

O(n>3) – 2 – – – – –

EXP – – – – – – –

O(ω) 14 374 52 10 1 145 90

Table 5: Induction Technique & Loop Detection & Improvements
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Finally, in Table 5 we combine loop detection and the induction technique with
argument filtering and indefinite lemmas. Here, argument filtering was applied prior
to the induction technique, but not before loop detection, since further experiments
showed that loop detection does not benefit from argument filtering (see [2]). The
average runtime was 24.4 s, but again the analysis usually finished much faster.
The median of the runtime was 2.6 s. This is the most powerful combination of our
techniques to infer lower bounds with AProVE. However, the comparison of Table 4
and 5 shows that argument filtering and indefinite lemmas have little impact on
the results if we use both loop detection and the induction technique.

According to Table 5, our implementation inferred non-trivial lower bounds for
836 (97%) of the 865 TRSs. Upper bounds were only obtained for 179 (21%) TRSs,
although upper bounds smaller than ω exist for at least all 647 TRSs where AProVE

shows termination. Hence, although this is the first technique for lower runtime
bounds, its applicability exceeds the applicability of the techniques for upper
bounds which were developed for years. Of course, the task of finding worst-case
upper bounds is very different from the task of inferring worst-case lower bounds.
Tight bounds (where the lower and upper bounds are equal) were proven for the
234 TRSs on the diagonal of the table.
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The examples in the TPDB contain many common functional programs. Thus,
our experiments are indeed useful to evaluate the performance of our approach on
typical realistic algorithms. For instance, AProVE infers quadratic lower bounds for
numerous sorting algorithms from the TPDB (e.g., for 3 different implementations
of Quicksort, 2 implementations of Minsort, 4 implementations of Maxsort, and
one implementation of Selectionsort). However, there are also 3 implementations of
Quicksort in the TPDB where AProVE only detects a linear lower bound. The reason
is that here the filtering functions (which correspond to the functions low and high

in the Quicksort TRS of Ex. 3) also delete duplicates. Therefore, for homogeneous
lists, the worst case runtime is linear, not quadratic. Since our generator functions
only represent homogeneous data objects (e.g., lists or trees where all elements
have the same value), the induction technique cannot detect a non-linear lower
bound here.

To evaluate the power of the adaption of our approach for innermost rewriting,
we performed experiments similar to the ones in Tables 1 - 5 on 970 TRSs from
the category “Runtime Complexity – Innermost Rewriting” of the TPDB 10.3. The
results are analogous to the ones for full rewriting: Again, loop detection is much
more efficient and powerful than the induction technique, but a combination of
loop detection and the induction technique is preferable in order to also detect
non-linear polynomial lower bounds. In this way, AProVE can infer non-trivial lower
bounds for 956 (99%) of the 970 TRSs.

Detailed experimental results (which also show the performance of our tech-
nique for innermost (and possibly relative) rewriting) and a web interface for our
implementation are available at [2]: http://aprove.informatik.rwth-aachen.de/
eval/lowerbounds-journal/.
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A Detecting Innermost Decreasing Loops to Infer Lower Bounds

So far, we used loop detection to prove lower bounds for runtime complexity of full

rewriting. However, TRSs resulting from the translation of programs typically have
to be evaluated with an innermost strategy (e.g., [14,26]). As usual, a rewrite step
is innermost (denoted s i→R t) if the reduced subterm of s does not have redexes
as proper subterms. Hence, we now show how to adapt loop detection to innermost
runtime complexity. (A corresponding adaption of the induction technique from Sect.
3 was already presented in [9].) To do so, we introduce innermost decreasing loops,
which are like decreasing loops, but here only non-overlapping rewrite sequences
are considered.
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Definition 44 (Non-Overlapping Rewriting) For a TRS R, we say that a term

s reduces to t by non-overlapping rewriting (denoted s no→ t) iff there is a π ∈ pos(s),
a substitution σ, and a rule `→ r ∈ R such that s|π = `σ, t = s[rσ]π, and no proper

non-variable subterm of `σ unifies with any (variable-renamed) left-hand side of a rule

in R.

Clearly, any non-overlapping rewrite step is an innermost step (i.e., s no→ t

implies s i→ t), but not vice versa. For innermost decreasing loops, instead of

reductions `→+
R C[r] we now consider reductions of the form ` no→+

R C[r].

Definition 45 (Innermost Decreasing Loop) Let ` no→+
R C[r] for some linear basic

term ` and some r /∈ V. We call ` no→+
R C[r] an innermost decreasing loop if there

are pairwise different variables x1, . . . , xm (with m ≥ 0) and positions π1, . . . , πm with

xi = `|πi for all 1 ≤ i ≤ m such that

(a) for each xi, there is a ξi < πi such that r|ξi = xi
(b) there is a substitution σ with ` σ = r for ` = `[x1]ξ1 . . . [xm]ξm

To find non-overlapping rewrite sequences, non-overlapping narrowing can be
used instead of narrowing. Similar to non-overlapping rewriting, non-overlapping
narrowing does not allow reduction steps where a proper non-variable subterm of
the redex unifies with a (variable-renamed) left-hand side of a rule.

The following theorem shows that each innermost decreasing loop gives rise to a
linear lower bound for innermost runtime complexity. Here, the innermost runtime
complexity ircR is defined analogous to rcR, i.e., ircR(n) = sup{dh(t, i→R) | t ∈
TB , |t| ≤ n }.

Theorem 46 (Linear Lower Bounds for irc by Loop Detection) If a TRS R
has an innermost decreasing loop, then we have ircR(n) ∈ Ω(n).

The following example shows that we indeed have to require ` no→+
R C[r] instead

of just ` i→
+
R C[r] in the definition of innermost decreasing loops. The essential

property of non-overlapping rewriting is that if a substitution δ instantiates all
variables with normal forms, then s no→ t still implies sδ i→ tδ. In contrast, s i→ t

does not imply sδ i→ tδ.

Example 47 (Non-Overlapping Rewriting) Consider the TRS R with the rules f(y)→
h(g(y)), h(g(y)) → f(g(y)), and g(g(y)) → y. We clearly have f(y) i→

+
R f(g(y)),

but f(y) 6 no→+
R f(g(y)). If we replaced “` no→+

R C[r]” by “` i→
+
R C[r]” in Def. 45, then

f(y) i→
+
R f(g(y)) would be an innermost decreasing loop. However, all innermost rewrite

sequences that start with basic terms have at most length 4 for this TRS, i.e., ircR(n) ∈
Ω(1). The problem is that the rewrite sequence f(y) i→

+
R f(g(y)) does not remain an

innermost sequence anymore if one instantiates y with the normal form g(y), i.e., we

have f(g(y)) 6 i→
+
R f(g(g(y))).

Based on Def. 45 and Thm. 46, it is straightforward to adapt the concept of
compatible decreasing loops in Def. 36 and Thm. 37 to innermost rewriting.
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B Proofs

Theorem 14 (Proving Conjectures) Let R, s, t, and n be as in Def. 6 and let

n ∈ V(s). If s[n/0] ⇀∗ t[n/0] and s[n/n+ 1] ⇀∗IH,n t[n/n+ 1], where IH is the rule

s→ t, then the conjecture s→∗ t is valid for R.

Proof The theorem is implied by the stronger Thm. 18, which we prove instead
below. ut

To prove Thm. 18, we need two auxiliary lemmas. Lemma 48 shows that ⇀ is
closed under instantiations of variables with natural numbers.

Lemma 48 (Stability of ⇀ and ⇀`→r,n) Let R be a TRS, let `, r, s, t be terms

where s only contains variables of type N, and let µ : V(s)→ N. Then we have:

(a) s ⇀ t implies sµ ⇀ tµ

(b) s ⇀`→r,n t implies that there is a substitution σ : V(`) → N with nσ = nµ and

mσ ≥ mµ for all m ∈ V(`) \ {n} such that sµ ⇀`σ→rσ,n tµ.

Proof Since rewriting is closed under substitutions, we immediately have (a). For (b),
let s ⇀`→r,n t. If we also have s ⇀ t, then the claim follows from (a). Otherwise,
we have s 7→`→r,n t. Hence, there is a term s′, an increasing substitution σ′,
and π ∈ pos(s′) such that s ≡G∪A s′, s′|π = `σ′, and s′[rσ′]π ≡G∪A t, where
nσ′ = n. Let σ = σ′µ. Then sµ 7→`σ→rσ,n tµ, since sµ ≡G∪A s′µ, s′µ|π = s′|πµ =
`σ′µ = `σ, and s′µ[rσ]π = s′µ[rσ′µ]π = (s′[rσ′]π)µ ≡G∪A tµ. Moreover, nσ =
nσ′µ = nµ and as σ′ is increasing, mσ′ ≥ m implies mσ = mσ′µ ≥ mµ. ut

Lemma 49 infers information on rewrite sequences with →R from the relation
⇀. Here, we again regard each rule `→ r ∈ R as a rewrite lemma `→≥1 r.

Lemma 49 (From ⇀ to →R) Let R be a TRS, let `, r be terms with root(`) ∈
Σdef (R), and let s, t be ground terms. Moreover, let R, ` → r, and s be well typed

w.r.t. Σ′ and V ′, where s does not have the type N.

(a) If s ⇀ t and this reduction is done using `→≥rt(n) r ∈ R∪L and the substitution

σ, then we have s↓G/A →
≥rt(nσ)
R t↓G/A.

(b) If s 7→`→r,n t and `, r are ground terms, then s↓G/A →{ ↓̀G/A→ r↓G/A} t↓G/A.

Proof In (a), we have s ⇀ t, i.e., there is a term s′, a substitution σ, and π ∈ pos(s′)
such that s ≡G∪A s′, s′|π = `σ, and s′[rσ]π ≡G∪A t.

Note that s ≡G∪A s′ implies s ↓G/A ≡A s′ ↓G/A as →G/A is terminating and
confluent modulo A. Again, →G/A is the rewrite relation resulting from orienting G
from left to right where rewriting is performed modulo A (i.e., modulo arithmetic).
As s is a ground term that does not have the type N, s ↓G/A does not contain

subterms of type N and therefore, s↓G/A ≡A s′ ↓G/A implies s↓G/A = s′ ↓G/A.

Since ` matches s′|π, s′ has a symbol from Σdef (R) at position π. Hence,
there are no generator symbols and no subterms of type N in s′ on or above the
position π. Therefore, G and A cannot be applied on or above π. This implies
s↓G/A = s′ ↓G/A = s′ ↓G/A [(s′|π)↓G/A]π = s′ ↓G/A [`σ↓G/A]π.

If ` → r ∈ L, then Def. 7 implies that `σ ↓G/A →
≥rt(nσ)
R rσ ↓G/A. Hence,

s↓G/A = s′ ↓G/A [`σ↓G/A]π →≥rt(nσ)
R s′ ↓G/A [rσ ↓G/A]π = (s′[rσ]π)↓G/A ≡A t↓G/A.

As t↓G/A does not contain subterms of type N, we have (s′[rσ]π)↓G/A = t↓G/A.
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If `→ r ∈ R, then ` does not contain generator function symbols or subterms
of type N. Hence, we have s ↓G/A = s′ ↓G/A [`σ ↓G/A]π = s′ ↓G/A [`σ′]π for the

substitution where xσ′ = xσ ↓G/A for all x ∈ V. Then s↓G/A = s′ ↓G/A [`σ′]π →R
s′ ↓G/A [rσ′]π = s′ ↓G/A [rσ↓G/A]π = (s′[rσ]π)↓G/A = t↓G/A.

In case (b), s 7→`→r,n t implies that there is a term s′ and a π ∈ pos(s′) such that
s ≡G∪A s′, s′|π = `, and s′[r]π ≡G∪A t, since `, r are ground. As in case (a), since s
is a ground term that does not have the type N, we can conclude s↓G/A = s′ ↓G/A.

Moreover, s′ again has a defined symbol at position π, since root(`) ∈ Σdef (R). As
in (a), this implies s↓G/A = s′ ↓G/A = s′ ↓G/A [`↓G/A]π. Thus, we obtain s↓G/A =

s′ ↓G/A [`↓G/A]π →{ ↓̀G/A→ r↓G/A} s
′ ↓G/A [r ↓G/A]π = s′[r]π ↓G/A ≡A t↓G/A. Since

`→ r is well typed and ` does not have type N, t↓G/A does not contain subterms

of type N. Hence, we have s′[r]π ↓G/A = t↓G/A, which proves (b). ut

Now we can prove Thm. 18 (on proving conjectures by induction and on inferring
complexity bounds from this proof).

Theorem 18 (Explicit Runtime of Rewrite Lemmas) Let s→∗ t be a conjecture

with an induction proof as in Thm. 14, where ih, ib, and is are as in Def. 17. Then

s→≥rt(n) t is a rewrite lemma, where rt(n) = ihn · ib(ñ) +
∑n−1
i=0 ihn−1−i · is(n[n/i]).

Proof Let rt be defined by the recurrence equations (9). We show that s→≥rt(n) t

is a rewrite lemma. More precisely, for any µ : V(s)→ N we prove sµ↓G/A →
≥rt(nµ)
R

tµ↓G/A by induction on nµ.
In the induction base, we have nµ = 0. We first regard the case s[n/0] ≡G/A

t[n/0]. This implies sµ = s[n/0]µ ≡G/A t[n/0]µ = tµ. Since →G/A is terminating
and confluent modulo A, sµ ≡G/A tµ implies sµ↓G/A ≡A tµ↓G/A. Since sµ and tµ

are ground terms that do not have the type N, sµ↓G/A and tµ↓G/A do not contain
any subterms of type N. Hence, sµ ↓G/A ≡A tµ ↓G/A implies sµ ↓G/A = tµ ↓G/A,
which proves the desired claim, since ib(ñµ) = 0 and thus rt(nµ) = 0.

Now we regard the case s[n/0] = u1 ⇀ . . . ⇀ ub+1 = t[n/0] for b ≥ 1. By Lemma
48 (a), ⇀ is stable and thus, sµ = s[n/0]µ = u1µ ⇀ . . . ⇀ ub+1µ = t[n/0]µ = tµ.
When regarding rewrite rules also as rewrite lemmas, Lemma 49 (a) implies

sµ↓G/A = u1µ↓G/A →
≥rt(y1σ1µ)
R . . .→≥rt(ybσbµ)

R ub+1µ↓G/A = tµ↓G/A. This means

sµ↓G/A →
≥ib(ñµ)
R tµ↓G/A or in other words, sµ↓G/A →

≥rt(nµ)
R tµ↓G/A.

In the induction step, we have nµ > 0. Let µ′ : V(s)→ N where µ′ is like µ for
all V(s) \ {n} and nµ′ = nµ − 1. If s[n/n + 1] ≡G/A t[n/n + 1], we obtain sµ ≡A
s[n/n + 1]µ′ ≡G/A t[n/n + 1]µ′ ≡A tµ. Thus, we again have sµ ↓G/A ≡A tµ ↓G/A
which implies sµ↓G/A = tµ↓G/A. This proves the desired claim, since ih = 0 and

is(nµ′) = 0 and thus rt(nµ) = rt(n[n/n+ 1]µ′) = 0.
Now we regard the case s[n/n + 1] = v1 ⇀IH,n . . . ⇀IH,n vk+1 = t[n/n + 1]

for k ≥ 1. By Lemma 48 (b), we obtain s[n/n + 1]µ′ = v1µ
′ ⇀IHσ1,n . . . ⇀IHσk,n

vk+1µ
′ = t[n/n+ 1]µ′ for substitutions σj such that IHσj is ground and such that

nσj = nµ′ and mσj ≥ mµ′ for all m ∈ V(s) \ {n}.

If vjµ
′ ⇀ vj+1µ

′, then Lemma 49 (a) implies vjµ
′ ↓G/A →

≥rt ′j(zjθjµ
′)

R vj+1µ
′ ↓G/A.

Otherwise, if vjµ
′ 7→IHσj ,n vj+1µ

′, then by Lemma 49 (b) we have vjµ
′ ↓G/A

→{sσj↓G/A→ tσj↓G/A} vj+1µ
′ ↓G/A. The induction hypothesis implies sσj ↓G/A

→≥rt(nσj)
R tσj ↓G/A, since nσj = nµ′ = nµ − 1. As nσj ≥ nµ′ and as rt is weakly
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monotonic, this implies sσj ↓G/A →
≥rt(nµ′)
R tσj ↓G/A. Hence, from vjµ

′ ↓G/A
→{sσj↓G/A→ tσj↓G/A} vj+1µ

′ ↓G/A we can infer vjµ
′ ↓G/A →

≥rt(nµ′)
R vj+1µ

′ ↓G/A.

Since there are ih many of these steps, we get s[n/n+ 1]µ′ ↓G/A →
≥ih·rt(nµ′)+is(nµ′)
R

t[n/n + 1]µ′ ↓G/A or in other words, s[n/n + 1]µ′ ↓G/A →
≥rt(n[n/n+1]µ′)
R t[n/n +

1]µ′ ↓G/A. This proves the desired claim, since sµ ↓G/A = s[n/n + 1]µ′ ↓G/A,

tµ↓G/A = t[n/n+ 1]µ′ ↓G/A, and rt(nµ) = rt(n[n/n+ 1]µ′).
Finally we show by induction on n that the closed form for rt(n) in Thm. 18

satisfies the recurrence equations (9). We obtain rt(n[n/0]) = ih0 · ib(ñ) = ib(ñ), as
required in (9). Similarly, rt(n[n/n+ 1]) = ihn+1 · ib(ñ) +

∑n
i=0 ihn−i · is(n[n/i]) =

ih · ( ihn · ib(ñ) +
∑n−1
i=0 ihn−1−i · is(n[n/i]) ) + is(n) = ih · rt(n) + is(n), as in (9). ut

Corollary 21 (Asymptotic Runtime of Rewrite Lemmas) Let s→∗ t be a valid

conjecture with ih, ib, and is as in Def. 17. Moreover, let ib and is be polynomials of

degree dib and dis , respectively. Then there is a rewrite lemma s→≥rt(n) t such that

• rtN(n) ∈ Ω(nmax{dib ,dis}), if ih = 0
• rtN(n) ∈ Ω(nmax{dib ,dis+1}), if ih = 1
• rtN(n) ∈ Ω(ihn), if ih > 1

Proof Let rt be defined as in Thm. 18. As explained in the text, if ih = 0 then Cor.
21 follows from (9), and if ih > 1, we have rt(n) ≥ ihn−1

ih−1 and thus, rtN(n) ∈ Ω(ihn).

Finally if ih = 1, then rt(n) has the form (10). Hence, we obtain

degree(rt) = max{dib ,degree(tk ·
∑n−1
i=0 i

k) | 0 ≤ k ≤ dis} by (10)
= max{dib ,degree(tk) + k + 1 | 0 ≤ k ≤ dis} by Faulhaber’s formula
= max{dib , dis + 1},

as dis = max{degree(tkn
k) | 0 ≤ k ≤ dis} = max{degree(tk) + k | 0 ≤ k ≤ dis}. ut

Theorem 23 (Explicit Bounds for rcR) Let s→≥rt(n1,...,nm) t be a rewrite lemma

for R, let sz : Nm → N such that sz(b1, . . . , bm) is the size of s[n1/b1, . . . , nm/bm]↓G/A
for all b1, ..., bm ∈ N, and let szN be injective, i.e., sz−1

N exists. Then for all n ∈ N with n

≥ min(img(szN)), rtN◦bsz−1
N c is a lower bound for rcR, i.e., (rtN◦bsz−1

N c)(n) ≤ rcR(n).

Proof If n ≥ min(img(szN)), then there is a maximal n′ ≤ n such that n′ ∈ img(szN).
Thus, bsz−1

N c(n) = sz−1
N (n′). By the rewrite lemma s→≥rt(n1,...,nm) t, s[n1/sz−1

N (n′),
. . . , nm/sz−1

N (n′)]↓G/A has an evaluation of at least length rt(sz−1
N (n′), . . . , sz−1

N (n′))

= rt(bsz−1
N c(n), . . . , bsz−1

N c(n)) = (rtN ◦ bsz−1
N c)(n). The size of the start term

s[n1/sz−1
N (n′), . . . , nm/sz−1

N (n′)]↓G/A is sz(sz−1
N (n′), . . . , sz−1

N (n′)) = szN(sz−1
N (n′)) =

n′. As s has a defined symbol only at the root, s[n1/sz−1
N (n′), ..., nm/sz−1

N (n′)]↓G/A
is a basic term. As this basic term has the size n′ ≤ n and its evaluation has at
least the length (rtN ◦ bsz−1

N c)(n), this implies (rtN ◦ bsz−1
N c)(n) ≤ rcR(n). ut

Lemma 24 (Asymptotic Bounds for Function Composition) Let rtN, szN : N→
N where szN ∈ O(ne) for some e ≥ 1 and szN is strictly monotonically increasing.

• If rtN(n) ∈ Ω(nd) with d ≥ 0, then (rtN ◦ bsz−1
N c)(n) ∈ Ω(n

d
e ).

• If rtN(n) ∈ Ω(bn) with b ≥ 1, then (rtN ◦ bsz−1
N c)(n) ∈ bΩ( e

√
n).
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Proof To prove the lemma, we first have to prove that

bhc(n) ∈ {dhe(n), dhe(n)− 1} for all n ∈ N (11)

holds for any infinite subset M of N and any function h : M → N that is strictly
monotonically increasing and surjective. Here, dhe(n) : N → N is defined by
dhe(n) = h(min{n′ | n′ ∈M,n′ ≥ n}). Note that infinity of h’s domain M ensures
that there is always an n′ ∈M with n′ ≥ n.

To prove (11), let n ∈ N. If n ∈M , then bhc(n) = dhe(n).
If n /∈ M and n < min(M), then bhc(n) = 0. Moreover, since h is strictly

monotonically increasing and surjective, we also have dhe(n) = 0.
If n /∈M and n > min(M), let n′ = max{n′ | n′ ∈M,n′ < n} and n′′ = min{n′′ |

n′′ ∈M,n′′ > n}. Thus, n′ < n < n′′. Strict monotonicity of h implies h(n′) < h(n′′).
Assume that h(n′′)− h(n′) > 1. Then by surjectivity of h, there is an n̂ ∈M with
h(n̂) = h(n′) + 1 and thus h(n′) < h(n̂) < h(n′′). By strict monotonicity of h,
we obtain n′ < n̂ < n′′. Since n /∈ M and n̂ ∈ M implies n 6= n̂, we either have
n̂ < n which contradicts n′ = max{n′ | n′ ∈M,n′ < n} or n̂ > n which contradicts
n′′ = min{n′′ | n′′ ∈ M,n′′ > n}. Hence, bhc(n) = h(n′) = h(n′′) − 1 = dhe(n) − 1,
which proves (11).

Now we prove Lemma 24. Here, szN(n)∈O(ne) implies ∃n0, c > 0. ∀n∈N, n > n0.

c · ne ≥ szN(n). By instantiating n with sz−1
N (n), we obtain

∃n0, c > 0. ∀n ∈ img(szN), sz−1
N (n) > n0. c · (sz−1

N (n))e ≥ szN(sz−1
N (n)).

Since szN is strictly monotonically increasing, this also holds for sz−1
N . Thus, there

is an n1 such that sz−1
N (n) > n0 holds for all n > n1 with n ∈ img(szN). Hence,

∃n1, c > 0. ∀n ∈ img(szN), n > n1. c · (sz−1
N (n))e ≥ szN(sz−1

N (n)).

This simplifies to ∃n1, c > 0. ∀n ∈ img(szN), n > n1. c · (sz−1
N (n))e ≥ n. When

dividing by c and building the e-th root on both sides, we get ∃n1, c > 0.
∀n ∈ img(szN), n > n1. sz−1

N (n) ≥ e
√

n
c . By monotonicity of e

√
n
c , this implies

∃n1, c > 0. ∀n ∈ N, n > n1. dsz−1
N e(n) ≥ e

√
n
c .

Note that szN is total and hence, sz−1
N is surjective. Moreover, by strict monotonicity

of szN, img(szN) is infinite. Hence, by (11) we get bsz−1
N c(n) + 1 ≥ dsz−1

N e(n) for all
n ∈ N. Thus, ∃n1, c > 0. ∀n ∈ N, n > n1. bsz−1

N c(n) + 1 ≥ e
√

n
c . Hence,

∃n1, c > 0. ∀n ∈ N, n > n1. bsz−1
N c(n) ≥ e

√
n
c − 1. (12)

Let rtN(n) ∈ Ω(nd) (the case rtN(n) ∈ Ω(bn) is analogous). This implies ∃n0, c′ > 0.
∀n ∈ N, n > n0. c′ · nd ≤ rtN(n). By instantiating n with bsz−1

N (n)c, we get

∃n0, c′ > 0. ∀n ∈ N, bsz−1
N c(n) > n0. c′ · (bsz−1

N c(n))d ≤ rtN(bsz−1
N c(n)).

Since sz−1
N is strictly monotonically increasing, bsz−1

N c is weakly monotonically
increasing by construction. As bsz−1

N c is surjective, there is an n2 such that for all
n > n2 we have bsz−1

N c(n) > n0. Thus, we obtain

∃n2, c′ > 0. ∀n ∈ N, n > n2. c′ · (bsz−1
N c(n))d ≤ rtN(bsz−1

N c(n)).

With (12) and weak monotonicity of c′ · nd, by choosing n3 = max{n1, n2} we
get ∃n3, c, c′ > 0. ∀n ∈ N, n > n3. c′ · ( e

√
n
c − 1)d ≤ rtN(bsz−1

N c(n)). Therefore,

∃c > 0. (rtN◦bsz−1
N c)(n) ∈ Ω

(
( e
√

n
c − 1

)d
) and thus, (rtN◦bsz−1

N c)(n) ∈ Ω(n
d
e ). ut
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Corollary 25 (Asymptotic Bounds for rcR) Let s→∗ t be a valid conjecture and

let sz : Nm → N be the function sz(b1, . . . , bm) =
∣∣s[n1/b1, . . . , nm/bm]↓G/A

∣∣, where

szN(n) ∈ O(ne) for some e ≥ 1, and szN is strictly monotonically increasing. Moreover,

let ih, ib, and is be defined as in Def. 17, where ib and is have the degrees dib and dis .

(a) rcR(n) ∈ Ω(n
max{dib ,dis}

e ), if ih = 0

(b) rcR(n) ∈ Ω(n
max{dib ,dis +1}

e ), if ih = 1

(c) rcR(n) ∈ ihΩ( e
√
n), if ih > 1

Proof (a) In this case, Cor. 21 implies that there is a rewrite lemma s →≥rt(n) t

such that rtN(n) ∈ Ω(nmax{dib ,dis}). With Lemma 24, we get (rtN ◦ bsz−1
N c)(n) ∈

Ω(n
max{dib ,dis}

e ). Moreover, Thm. 23 states that (rtN ◦ bsz−1
N c)(n) ≤ rcR(n) holds

for all n ∈ N. Thus, we obtain rcR(n) ∈ Ω(n
max{dib ,dis}

e ).
(b) Now Cor. 21 implies that there is a rewrite lemma s→≥rt(n) t with rtN(n) ∈

Ω(nmax{dib ,dis+1}). Thus, with Lemma 24, we result in (rtN ◦ bsz−1
N c)(n) ∈

Ω(n
max{dib ,dis +1}

e ). Similar to (a), this implies rcR(n) ∈ Ω(n
max{dib ,dis +1}

e ).
(c) By Cor. 21 there is a lemma s→≥rt(n) t with rtN(n) ∈ Ω(ihn). By Lemma 24,

we get (rtN ◦ bsz−1
N c)(n) ∈ ihΩ( e

√
n). As in (a), we have rcR(n) ∈ ihΩ( e

√
n). ut

Theorem 31 (Linear Lower Bounds by Loop Detection) If a TRS R has a

decreasing loop, then we have rcR(n) ∈ Ω(n).

Proof For all n ∈ N and any substitution δ, we prove that ` θn δ →+
R ◦D ` θn−1 δ′

for a substitution δ′. Thus, these rewrite steps can be repeated n times. We have

` θn δ = ` θn−1 δ →+
R C[r] θn−1 δ D r θn−1 δ

= ` σ θn−1 δ
(?)
= ` θn−1 (σθn−1)|dom(σ) δ = ` θn−1 δ′

for the substitution δ′ = (σ θn−1)|dom(σ) δ. Here, (σ θn−1)|dom(σ) denotes the com-

position of the substitutions σ and θn−1, but restricted to the domain of σ.

The step marked with (?) holds since σ does not instantiate variables in the
domain or range of θ. To see why dom(σ) is disjoint from dom(θ) = {x1, . . . , xm},
note that xi σ 6= xi would mean `|ξi σ 6= r|ξi . As `|ξi σ = ` σ|ξi , this would imply
` σ|ξi 6= r|ξi , which contradicts ` σ = r. Moreover, since ` is linear, the sets V(`) and
(V(`|ξ1) ∪ . . . ∪ V(`|ξm)) \ {x1, . . . , xm} are disjoint. Clearly, the substitution σ that
matches ` to r can be chosen such that its domain only includes variables occurring
in `. Then σ also does not instantiate any variables occurring in the range of θ.

Thus, for each n ∈ N, there is a rewrite sequence of length n starting with ` θn.
This term is basic, since the range of θ only contains terms of the form `|ξi . Each
`|ξi is a constructor term, since ξi cannot be the root position, due to r /∈ V. By
construction, θ does not duplicate variables, as ` and thus `|ξ1 , . . . , `|ξm only contain
each xi once. Therefore, we have |` θn| ∈ O(n) and obtain rcR(n) ∈ Ω(n). ut

Corollary 32 (Infinite Lower Bounds by Loop Detection) If there is a decreas-

ing loop for a TRS R with an empty set of abstracted positions, then rcR(n) ∈ Ω(ω).

Proof The corollary holds because of the loop `→+
R C[r]D r = `σ = `σ. ut
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The following lemma is needed for the proof of Thm. 37. It shows that for
compatible loops, the ranges and domains of pumping substitutions do not interfere
with each other. This ensures that the size of a start term like `1 θ

n
1 θ

n
2 is linear in

n (i.e., applying pumping substitutions a linear number of times only leads to a
term of linear size).

Lemma 50 (Ranges and Domains of Pumping Substitutions) Let there be two

compatible loops with pumping substitutions θ and θ′. For any x ∈ dom(θ), we have

(a) V(x θ) ∩ dom(θ) = {x} and x only occurs once in x θ

(b) V(x θ) ∩ dom(θ′) ⊆ {x}

Proof The claim (a) follows from Def. 27, as ` is linear. For (b), assume there is y ∈
V(x θ)∩dom(θ′) with y 6= x. Let ρ1, . . . , ρd be all positions of x θ where y occurs, i.e.,
(x θ)|ρ1 = . . . = (x θ)|ρd = y. Thus, ρ1, . . . , ρd are parallel positions. Note that

x ∈ dom(θ′). (13)

To prove (13), note that otherwise, we would have (x θ′ θ)|ρ1 = (x θ)|ρ1 = y. On the
other hand, we obtain (x θ θ′)|ρ1 = (x θ)|ρ1 θ′ = y θ′. Since θ and θ′ commute, this
implies y = y θ′ which is a contradiction to y ∈ dom(θ′).

Since x ∈ dom(θ) ∩ dom(θ′), by (a) there exist positions π 6= ε and ζ 6= ε such
that (x θ)|π = x and (x θ′)|ζ = x. By (a), x only occurs once in x θ and only once
in x θ′. Moreover, (a) implies that applying θ (resp. θ′) to any variable y 6= x does
not introduce occurrences of x. Hence, x only occurs once in x θ′ θ. Since θ and θ′

commute, the same holds for x θ θ′.
Hence, (x θ′ θ)|ζ.π = x and (x θ θ′)|π.ζ = x implies ζ.π = π.ζ. This means that

there is an α ∈ N+ such that π = αn and ζ = αm for n,m ∈ N. (14)

Here, αn stands for the position α . α . . . α where the sequence α is repeated n

times. To see why (14) holds, we prove that (14) follows from ζ.π = π.ζ for arbitrary
positions π and ζ (in this proof, we also allow π = ε or ζ = ε). The proof is done
by induction on π and ζ. In the induction base, π = ε or ζ = ε immediately imply
(14). In the induction step, we have π 6= ε and ζ 6= ε. W.l.o.g., let |π| ≤ |ζ|. Then
ζ.π = π.ζ implies ζ = π.π′ for some position π′. Hence, ζ.π = π.ζ now becomes
π.π′.π = π.π.π′ and thus, π′.π = π.π′. Since π 6= ε, the induction hypothesis implies
π = αn and π′ = αm for some α ∈ N+ and n,m ∈ N. Thus, ζ = π.π′ = αn+m, which
proves (14).

We now perform a case analysis on the relationship between π and ζ.

Case 1: π ≤ ζ
In this case, we have ζ = π.π′ for some position π′. We obtain (x θ′ θ)|ζ.ρ1 =
((x θ′)|ζ θ)|ρ1 = (x θ)|ρ1 = y. The commutation of θ′ and θ implies that we also
have (x θ θ′)|ζ.ρ1 = y. However, (x θ θ′)|ζ.ρ1 = (x θ θ′)|π.π′.ρ1 = ((x θ)|π θ′)|π′.ρ1 =
(x θ′)|π′.ρ1 . Note that x θ′ cannot contain the variable y, since y ∈ dom(θ′) by the
assumption at the beginning of the proof and V(x θ′) ∩ dom(θ′) = {x} by (13) and
(a).16 Thus, this contradicts (x θ θ′)|ζ.ρ1 = y.

16 To see why V(x θ′) ∩ dom(θ′) = {x} holds, note that we have x ∈ dom(θ′) by (13). Since
(a) holds for the pumping substitution of any decreasing loop, it also holds for θ′. Hence,
x ∈ dom(θ′) implies V(x θ′) ∩ dom(θ′) = {x}.
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Case 2: π 6≤ ζ
By (14), we have ζ = αm and π = αm+k for m > 0 and k > 0 (since ζ 6= ε and
π 6= ε). As y ∈ dom(θ′), by (a) there is a unique position κ such that yθ′|κ = y.
Recall that ρ1, . . . , ρd are the only positions where y occurs in xθ. Due to (a),
ρ1.κ, . . . , ρd.κ are the only positions where y occurs in xθθ′ (since (x θ θ′)|ρi.κ =
((x θ)ρi θ

′)|κ = (y θ′)|κ = y). Similarly, ζ.ρ1, . . . , ζ.ρd are the only positions where y
occurs in x θ′ θ (since (x θ′ θ)|ζ.ρi = ((x θ′)|ζ θ)|ρi = (x θ)|ρi = y). As x θ θ′ = x θ′ θ,
the positions ρ1.κ, . . . , ρd.κ are the same as the positions ζ.ρ1, . . . , ζ.ρd. Let ρ1, . . . , ρd
be ordered according to the (total) lexicographic ordering @ on tuples of numbers
(i.e., ρ1 @ ρ2 @ . . . @ ρd).

17 Then we also have ρ1.κ @ . . . @ ρd.κ (as the ρi are
parallel positions) and ζ.ρ1 @ . . . @ ζ.ρd. This implies ρi.κ = ζ.ρi for all 1 ≤ i ≤ d,
i.e., in particular ρ1.κ = ζ.ρ1. As ζ = αm, this means ρ1.κ = αm.ρ1.

Let e be the largest number such that ρ1 = αe.ρ′ for some position ρ′. Thus, α
is no prefix of ρ′. We perform a case analysis on the relation between e and k.

If e ≥ k, then y = (x θ θ′)|αm.ρ1 = (x θ θ′)|αm+e.ρ′ E (x θ θ′)|αm+k = (x θ)|αm+k θ′

= xθ′. But this contradicts (a), as x ∈ dom(θ′) by (13). Thus, xθ′ cannot contain y.
Now we consider the case e < k. Note that ρ1.κ = αm.ρ1 implies αe.ρ′.κ =

αm.αe.ρ′, i.e., ρ′.κ = αm.ρ′. Since α is no prefix of ρ′, ρ′ must be a (proper) prefix of
α, since m > 0. Thus, we have ρ′ < α, which implies αm.ρ1 = αm+e.ρ′ < αm+e+1 ≤
αm+k, as e < k. Hence, we have y = (x θ θ′)|αm.ρ1 B (x θ θ′)|αm+k = x. This is an
immediate contradiction, because the variable y cannot contain the variable x as a
subterm. ut

Theorem 37 (Exponential Lower Bounds by Loop Detection) If a TRS R has

d ≥ 2 pairwise compatible decreasing loops, then we have rcR(n) ∈ Ω(dn).

Proof For each 1 ≤ j ≤ d, let θj be the pumping substitution and σj be the result
substitution of the decreasing loop `→+

R Cj [rj ]ιj where r = Cj [rj ]ιj . If ξ1, . . . , ξm
are the abstracted positions of the j-th decreasing loop and xi = rj |ξi for all
1 ≤ i ≤ m, then let `j = `[x1]ξ1 . . . [xm]ξm . Thus, we have `j θj = ` and `j σj = rj .

For all 1 ≤ j ≤ d, all n ∈ N, and any substitution δ, `j θ
n
1 . . . θ

n
d δ starts a reduc-

tion of asymptotic length dn. To show this, we prove `j θ
n
1 . . . θ

n
d δ →

+
R q for some q

such that for all 1≤ k ≤ d, there is a substitution δ′k with q|ιk = `k θ
n
1 . . . θ

n−1
j . . . θnd δ

′
k.

Hence, q contains d terms of the form `k θ
n
1 . . . θ

n−1
j . . . θnd δ

′
k at parallel positions.

`j θ
n
1 . . . θ

n
d δ

(†)
= `j θj θ

n
1 . . . θ

n−1
j . . . θnd δ =

` θn1 . . . θ
n−1
j . . . θnd δ →

+
R r θn1 . . . θ

n−1
j . . . θnd δ = q

where (†) holds as θj commutes with all θi by Def. 36 (d). For any 1 ≤ k ≤ d,

q|ιk = rk θ
n
1 . . . θ

n−1
j . . . θnd δ = `k σk θ

n
1 . . . θ

n−1
j . . . θnd δ

(?)
= `k θ

n
1 . . . θ

n−1
j . . . θnd (σk θ

n
1 . . . θ

n−1
j . . . θnd )|dom(σk) δ = `k θ

n
1 . . . θ

n−1
j . . . θnd δ

′
k

for the substitution δ′k = (σk θ
n
1 . . . θ

n−1
j . . . θnd )|dom(σk) δ.

For the step marked with (?), as in the proof of Thm. 31, σk does not instantiate
variables in the domain or the range of θk. By Def. 36 (c) it also does not instantiate
variables in the domain or the range of any other pumping substitution θi.

17 (a1...an) @ (b1...bm) iff n = 0 and m > 0 or a1 < b1 or a1 = b1 and (a2...an) @ (b2...bm).
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Since q contains `k θ
n
1 . . . θ

n−1
j . . . θnd δ

′
k at parallel positions ιk (for 1 ≤ k ≤ d),

this results in a d-ary tree of rewrite sequences with root `j θ
n
1 . . . θ

n
d for a 1 ≤ j ≤ d

which is complete up to height n. The reason is that in the beginning, there are n
substitutions θj for each 1 ≤ j ≤ d and each rewrite step removes one of them.

Hence, the tree has at least bd
n+1−1
d−1 c nodes. By Lemma 50, θ1 . . . θd does not

duplicate variables. Thus,
∣∣`j θn1 . . . θnd ∣∣ is linear in n and we get rcR(n) ∈ Ω(dn). ut

Theorem 38 (Loop Detection Subsumes Induction for Linear Bounds) Let

R be a TRS and L be the set of rewrite lemmas that were speculated and proved by the

technique of Sect. 3. If R is left-linear and there is a rewrite lemma s →≥rt(n) t ∈ L
where rt(n) is not a constant, then R has a decreasing loop.

Proof Let s →≥rt(n) t ∈ L be the “first” rewrite lemma where the induction
technique infers non-constant runtime. Thus, in its induction proof (according to

Sect. 3.3) one only uses other rewrite lemmas of the form s′ →≥rt ′(n′) t′ where
rt ′(n′) is a constant. Hence, in the induction proof for the conjecture s→∗ t, is(n)
is a constant and the induction hypothesis is applied at least once, i.e., ih ≥ 1.
Therefore the rewrite sequence s[n/n+ 1] ⇀∗IH,n t[n/n+ 1] of Thm. 14 starts with
s[n/n + 1] ⇀∗ C[sσ] for some context C and an increasing substitution σ with
nσ = n. We even have s[n/n+ 1] ⇀+ C[sσ], since s[n/n+ 1] 6= C[sσ]. To see this,
note that s[n/n+ 1] 6= sσ since n occurs in s and nσ = n. Moreover, sσ cannot be
a proper subterm of s[n/n+ 1], since s does not contain defined symbols below the
root by Def. 6.

For any µ : V(s) → N, Lemma 48 (a) and 49 (a) imply s[n/n + 1]µ ↓G/A
→+
R Cµ[sσµ]↓G/A. The procedure in Sect. 3.2 only speculates conjectures where

s has the form f(γτ1(s1), . . . , γτk(sk)). Here, the arguments si of the generator
functions are polynomials over the variables n with coefficients from N. In other
words, s = f(γτ1(pol1 (n)), . . . , γτk(polk (n))) for polynomials pol1 , . . . , polk . By the
definition of generator functions (see Def. 5) we get

s[n/n+ 1]µ↓G/A = f [D
pol1 (n[n/n+1]µ)
1 [t1], . . . , D

polk (n[n/n+1]µ)
k [tk]] →+

R
Cµ↓G/A [f [D

pol1 (nσµ)
1 [t1], . . . , D

polk (nσµ)
k [tk]]] = Cµ[sσµ]↓G/A

for non-empty constructor ground contexts D1, . . . , Dk and constructor ground

terms t1, . . . , tk. The reason is γτi(poli(nµ)) ≡G∪A D
poli(nµ)
i [ti] where ti = γτi(0).

If pol i is a constant, we have D
poli(n[n/n+1]µ)
i [ti] = D

poli(nσµ)
i [ti] = qi for some

constructor ground term qi. Hence, f [D
pol1 (n[n/n+1]µ)
1 [t1], . . . , D

polk (n[n/n+1]µ)
k [tk]]

is of the form C′[D
poli1 (n[n/n+1]µ)
i1

[ti1 ], . . . , D
polim (n[n/n+1]µ)
im

[tim ]] for a ground con-

text C′ with root f which has no defined symbols below the root. Here, 1 ≤ i1 <
. . . < im ≤ k, all polij are non-constant, and all poli with i ∈ {1, . . . , k} \ {i1, . . . , im}
are constant. Similarly, Cµ ↓G/A [f [D

pol1 (nσµ)
1 [t1], . . . , D

polk (nσµ)
k [tk]]] = Cµ ↓G/A

[C′[D
poli1 (nσµ)
i1

[ti1 ], . . . , D
polim (nσµ)
im

[tim ]]]. Note that the length of the reduction

C′[D
poli1 (n[n/n+1]µ)
i1

[ti1 ], . . . , D
polim (n[n/n+1]µ)
im

[tim ]]

→+
R Cµ↓G/A [C′[D

poli1 (nσµ)
i1

[ti1 ], . . . , D
polim (nσµ)
im

[tim ]]]
(15)
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is at most is(nµ). Thus, its length is constant and does not depend on n. Therefore,
the subterms ti1 , . . . , tim are not crucial for the reduction, i.e., we also have

C′[D
poli1 (n[n/n+1]µ)
i1

[x1], . . . , D
polim (n[n/n+1]µ)
im

[xm]]

→+
R Cµ↓G/A [C′[D

poli1 (nσµ)
i1

[x1], . . . , D
polim (nσµ)
im

[xm]]]

for fresh pairwise different variables x1, . . . , xm. The reason is that each tij is

embedded in the context D
polij (n[n/n+1]µ)

ij
. Since polij is not a constant, the num-

ber polij (n[n/n + 1]µ) depends on the instantiation µ. Therefore, the context

D
polij (n[n/n+1]µ)

ij
cannot be decomposed in the same constant number of rewrite

steps for every µ. Hence, when replacing the subterm tij by a fresh variable, the
rewrite sequence (15) is still possible. Note that while several of the subterms
tij might be equal, we can still replace them by pairwise different fresh variables
without affecting the rewrite sequence, since R is left-linear.

By choosing an arbitrary fixed instantiation µ : V(s)→ N, we obtain

C′[Dc1+d1i1
[x1], . . . , Dcm+dm

im
[xm]] →+

R Cµ↓G/A [C′[Dc1i1 [x1], . . . , Dcmim [xm]]]

for constants c1, ..., cm, d1, ..., dm ∈ N. As C′ is ground, C′[Dc1+d1i1
[x1], ..., Dcm+dm

im
[xm]]

is linear. Thus, this reduction sequence is a decreasing loop with the pumping
substitution θ = [x1/D

d1
i1

[x1], . . . , xm/D
dm
im

[xm]] and result substitution σ = ∅. ut

To prove Thm. 39, we need several auxiliary lemmas. In the following, we
restrict ourselves to linear TRSs R containing only rules `→ r where both ` and r

are basic. We first show that every rewrite sequence with basic terms gives rise to
a corresponding narrowing sequence starting with a basic term f(x1, . . . , xk). For
our restricted class of TRSs, a basic term s narrows to t (“s R t”) iff there is a
variable-renamed rule `→ r ∈ R with σ = mgu(s, `) and t = rσ.

Lemma 51 (From Rewrite Sequences to Narrowing Sequences) Let R be a

linear TRS where the terms in all rules are basic. Let m ∈ N and let s ∈ TB with

root(s) = f such that s →m
R t. Then we have f(x1, . . . , xk)  m

R t′ for pairwise

different variables x1, . . . , xk, where t′ matches t.

Proof The proof is done by induction on m. For m = 0, the claim is trivial. In
the induction step, we have s →m

R `δ →R rδ = t for some rule ` → r ∈ R and
some substitution δ. The induction hypothesis implies s m

R u where u matches `δ.
W.l.o.g., ` is variable-disjoint from u. Thus, u and ` are unifiable. Let θ = mgu(u, `).
Hence, there exists a substitution µ such that θµ is like δ on the variables of `.
Then we have u R rδ and rθµ = rδ = t, i.e., rθ matches t. ut

Moreover, we need the following lemma.

Lemma 52 (Size of Unified Terms) Let s, t ∈ TB be linear terms such that V(s)∩
V(t) = ∅ and let mgu(s, t) = θ. Then for all x ∈ V \ V(t) we have |xθ| ≤ |t|.

Proof If x /∈ dom(θ), then we trivially have |xθ| = |x| = 1 ≤ |t|. Otherwise,
x ∈ dom(θ) and x /∈ V(t) imply x ∈ V(s). Since s is linear, there is a unique position
π such that s|π = x. Moreover, x ∈ dom(θ) implies π ∈ pos(t). Since t is linear and
V(s) ∩ V(t) = ∅, we have xθ = t|π and thus |xθ| = | t|π | ≤ |t|. ut
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Now we can show that a linear lower bound is equivalent to non-termination of
narrowing for a term of the form f(x1, . . . , xk).

Lemma 53 (Linear Lower Bound Means Non-Termination of Narrowing)

Let R be a linear TRS where the terms in all rules are basic. Then there is an infinite

narrowing sequence that starts with a basic term f(x1, . . . , xk) for pairwise different

variables x1, . . . , xk iff rcR(n) ∈ Ω(n).

Proof For the “only if” direction, we have an infinite sequence f(x1, . . . , xk) =

t0
σ1 R t1

σ2 R . . . for pairwise different variables xi, where σi is the mgu used
in the i-th narrowing step. Since the terms in all rules of R are basic, all σi are
constructor substitutions (i.e., range(σi) does not contain defined symbols). As
t0 and R are linear, t0σ1 . . . σi is linear and basic, and we have |V(t0σ1 . . . σi)| ≤ k
for all i ∈ N. By induction on i, we now prove that there is a c ∈ N such that
|t0σ1 . . . σi| ≤ |t0|+ c · i for all i ∈ N. Then the infinite family of rewrite sequences
t0σ1 . . . σi →i

R ti is a witness for rcR(n) ∈ Ω(n). Let c = max{|`| | `→ r ∈ R} · k.
The case i = 0 is trivial. In the induction step, by the induction hypothesis we

know |t0σ1 . . . σi| ≤ |t0|+ c · i. Note that σi+1 is the mgu of ti and `, both of which
are linear. Hence by Lemma 52 we have |xσi+1| ≤ |`| for all x ∈ V(t0σ1 . . . σi). As
t0σ1 . . . σi is linear and |V(t0σ1 . . . σi)| ≤ k, this implies |t0σ1 . . . σi+1| ≤ |t0σ1 . . . σi|+
|`| · k ≤ |t0σ1 . . . σi|+ c ≤ |t0|+ c · (i+ 1).

For the “if” direction, rcR(n) ∈ Ω(n) implies that the TRS does not have
constant runtime complexity. Hence, for each m ∈ N there is a rewrite sequence of
length m staring with a basic term f(. . .). Since Σdef (R) is finite, there exists an
f ∈ Σdef (R) such that there are rewrite sequences of lengths m1 < m2 < m3 < . . .

that start with basic terms with root symbol f . By Lemma 51 this means that the
term f(x1, . . . , xk) starts narrowing sequences of lengths m1 < m2 < m3 < . . ., i.e.,
the narrowing tree with the root f(x1, . . . , xk) has infinitely many nodes. Since  R
is finitely branching, by König’s Lemma the tree has an infinite path, i.e., there is
an infinite narrowing sequence starting with f(x1, . . . , xk). ut

We now show that non-termination of narrowing is equivalent to non-termination
of rewriting on possibly infinite basic terms. To prove this equivalence, we need
the following auxiliary lemma.

Lemma 54 (Unification with Infinite Terms) Let s, t be variable-disjoint linear

finite terms. If there is a substitution σ such that sσ = tσ and range(σ) contains

infinite terms, then s and t unify and the range of mgu(s, t) consists of linear finite

terms.

Proof We use structural induction on s. If s ∈ V, then mgu(s, t) = [s/t] and if
t ∈ V, then mgu(s, t) = [t/s]. Now let s = f(s1, . . . , sk) and since sσ = tσ, we
have t = f(t1, . . . , tk). By the induction hypothesis, the ranges of the substitutions
σ1 = mgu(s1, t1), . . . , σk = mgu(sk, tk) consist of linear finite terms. Let V(σi) =
dom(σi) ∪ V(range(σi)) for all 1 ≤ i ≤ n. Since s and t are variable-disjoint and
linear, the sets V(σi) are pairwise disjoint and we have (V(si) ∪ V(ti)) ∩ V(σj) = ∅
for all i 6= j. Hence, we get mgu(s, t) = σ1 . . . σn. As, by the induction hypothesis,
range(σi) consists of linear terms and the sets V(σi) are pairwise disjoint, the range
of mgu(s, t) consists of linear terms, too. Similarly, as range(σi) only contains finite
terms, this also holds for range(σ1 . . . σn). ut
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Lemma 55 (Narrowing and Rewriting with Infinite Terms) Let R be a linear

TRS where the terms in all rules are basic. Then  R terminates on basic terms of the

form f(x1, . . . , xk) iff →R terminates on possibly infinite basic terms.

Proof For the “if” direction, assume there is an infinite sequence f(x1, . . . , xk) = t1
σ1 R t2

σ2 R . . . Then t1σ
ω
1 →R t2σ

ω
2 →R . . . is an infinite→R-sequence where σωi =

σiσi+1 . . . Since the terms in the rules of R are basic, all terms tiσ
ω
i are basic, too.

For the “only if” direction, assume that there is an infinite rewrite sequence
t1 →R t2 →R . . . on possibly infinite basic terms ti. We now show that for every
finite prefix t1 →R t2 →R · · · →R tm of this sequence, there is a rewrite sequence
t′1 →R t′2 →R · · · →R t′m with finite and linear basic terms t′i. This suffices for the
current lemma, because it implies that the TRS does not have constant runtime
complexity. As in the proof of Lemma 53 one can then show that there is an infinite
narrowing sequence starting with a term f(x1, . . . , xk).

It remains to prove that for every finite rewrite sequence t1 →R t2 →R · · · →R
tm with possibly infinite basic terms ti, there is a rewrite sequence t′1 →R t′2 →R
· · · →R t′m with finite linear basic terms t′i, where there exists a substitution σ such
that t′iσ = ti for all 1 ≤ i ≤ m. We prove this claim by induction on m.

The case m = 1 is trivial. In the induction step, we consider the rewrite
sequence t1 →R t2 →R · · · →R tm →R tm+1 of possibly infinite basic terms. By
the induction hypothesis we have t′1 →R t′2 →R · · · →R t′m for finite linear basic
terms t′i where t′iσ = ti for all i. Let ` → r be the rule applied in the rewrite
step from tm to tm+1, i.e., tm = `δ and tm+1 = rδ. As t′mσ = tm = `δ and as
w.l.o.g., ` is variable-disjoint from the t′i, this means that t′m and ` are unifiable.
Let θ = mgu(t′m, `). By Lemma 54, the range of θ consists of linear finite terms,
as t′m and ` are linear and finite. Let µ be a substitution such that θµ is like σ
on t′1, . . . , t

′
m and like δ on `. We define t′′i = t′iθ for all 1 ≤ i ≤ m and t′′m+1 = rθ.

Then we have t′′1 →R . . . →R t′′m = t′mθ = `θ →R rθ = t′′m+1. Moreover, we have
t′′i µ = t′iθµ = t′iσ = ti for all 1 ≤ i ≤ m and t′′m+1µ = rθµ = rδ = tm+1.

It remains to show that all t′′i are linear. Let V ′ = V(t′1) ∪ . . . ∪ V(t′m). Since `
is variable-disjoint from the t′i and θ = mgu(t′m, `), range(θ|V′) does not contain
variables from V ′. Since each t′i is linear and range(θ) consists of linear terms, this
implies that t′′1 , . . . , t

′′
m are linear, too. Similarly, t′′m+1 is linear, as θ|V(r) does not

contain variables from V(r), r is linear, and range(θ) consists of linear terms. ut

Lemma 53 and 55 imply that for linear TRSs where the left- and right-hand sides
of all rules are basic terms, a linear lower bound is equivalent to non-termination of
rewriting on possibly infinite basic terms. We now reduce the immortality problem
for Turing machines to this latter problem in order to show that it is undecidable.

LetM = (Q,Γ, δ) be a Turing machine where Q is the set of states, Γ is the tape
alphabet, and ∈ Γ is the blank symbol. A configuration of the Turing machine
has the form (q, w, a, w′) with q ∈ Q, w,w′ ∈ Γω, and a ∈ Γ . It means that q is the
current state, the symbol at the current position of the tape is a, the symbols right
of the current position are described by the infinite word w′, and the symbols left
of it are described by the infinite word w. To ease the formulation, if w = b . w

then this means that b is the symbol directly left of the current position, i.e., w is
the word obtained when reading the symbols on the tape from right to left. The
transition function δ : (Q × Γ ) → (Q × Γ × {L,R}) induces a transition relation
→M on configurations where (q1, w1, a1, w

′
1)→M (q2, w2, a2, w

′
2) iff either
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• w1 = a2 . w2, w
′
2 = b . w′1, and δ(q1, a1) = (q2, b, L) or

• w2 = b . w1, w
′
1 = a2 . w

′
2, and δ(q1, a1) = (q2, b, R)

We say that M is mortal iff there is no infinite sequence (q1, w1, a1, w
′
1) →M

(q2, w2, a2, w
′
2)→M . . . of configurations. The difference to the halting problem is

that for the mortality problem, one may start with a tape containing infinitely
many non-blank symbols. Moreover, one can begin with any state q1 ∈ Q. As shown
in [20], the (im)mortality problem for Turing machines is undecidable.

To reduce immortality of Turing machines to the termination of rewriting with
infinite terms, we use the following encoding. For any Turing machineM = (Q,Γ, δ),
we define the TRS RM. Here, f has arity 4, all symbols from Γ become function
symbols of arity 1, and Q ∪ {a | a ∈ Γ} are constants.

RM = {f(q1, a2(xs), a1, ys)→ f(q2, xs, a2, b(ys)) | a2 ∈ Γ, δ(q1, a1) = (q2, b, L)} ∪
{f(q1, xs, a1, a2(ys))→ f(q2, b(xs), a2, ys) | a2 ∈ Γ, δ(q1, a1) = (q2, b, R)}.

RM is a linear TRS where all terms are basic. Lemma 56 shows that mortality of
M is equivalent to termination of RM on possibly infinite basic terms.

Lemma 56 (Mortality of Turing machines and Rewriting) A Turing machine

M is immortal iff there is a possibly infinite basic term that starts an infinite rewrite

sequence with RM.

Proof We define the following functions word and word−1 to convert infinite words
over Γ to possibly infinite basic terms and vice versa.

word(a .w) = a(word(w)) word−1(t) =

{
a .word−1(t′) if t = a(t′)
ω otherwise

For each configuration (q, w, a, w′) let term(q, w, a, w′) = f(q,word(w), a,word(w′)).

For the “only if” direction, it suffices to show that (q1, w1, a1, w
′
1)→M (q2, w2,

a2, w
′
2) implies term(q1, w1, a1, w

′
1) →RM term(q2, w2, a2, w

′
2). We regard the case

where δ(q1, a1) = (q2, b, L) (the case δ(q1, a1) = (q2, b, R) works analogously). Then
w1 = a2 . w2 and w′2 = b . w′1. Thus, term(q1, w1, a1, w

′
1) = f(q1, a2(word(w2)), a1,

word(w′1))→M f(q2,word(w2), a2, b(word(w′1))) = term(q2, w2, a2, w
′
2), as desired.

For the “if” direction, it suffices to show that if t1 is a possibly infinite basic term
with t1 →RM t2, then conf 1 →M conf 2 with conf i = (ti|1,word−1(ti|2), char(ti|3),
word−1(ti|4)) for both i ∈ {1, 2}, where char(a) = a . Clearly, we have ti|1 ∈ Q and
ti|3 ∈ {a | a ∈ Γ}. We regard the case where the rule of RM used for the rewrite
step corresponds to a shift to the left (the right shift works analogously). Then
we have t1 = f(q1, a2(s), a1, s

′) and t2 = f(q2, s, a2, b(s
′)) for a1, a2, b ∈ Γ , some

possibly infinite constructor terms s, s′, and q1, q2 ∈ Q. Moreover, by construction
we have δ(q1, a1) = (q2, b, L). Hence, conf 1 = (q1, a2 .word−1(s), a1,word−1(s′))→M
(q2,word−1(s), a2, b .word−1(s′)) = conf 2. ut

Theorem 39 (Undecidability and Incompleteness of Loop Detection for Lin-

ear Bounds) For the class of linear TRSs where `, r ∈ TB for all rewrite rules `→ r,

it is not semi-decidable if rcR(n) ∈ Ω(n) holds. Hence for this class, loop detection is

not complete for the inference of linear lower bounds.
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Proof For any Turing machine M we have the following:

M is immortal
iff →RM does not terminate on possibly infinite basic terms (by Lemma 56)
iff  RM does not terminate on basic terms f(x1, . . . , xk) (by Lemma 55)
iff rcRM(n) ∈ Ω(n) (by Lemma 53)

Note that for linear TRSs R where the terms in all rules are basic, it is obviously
semi-decidable if  RM terminates on basic terms of the form f(x1, . . . , xk). Thus,
a semi-decision procedure for rcRM(n) ∈ Ω(n) would result in a decision procedure
for mortality of Turing machines. However, mortality of Turing machines is known
to be undecidable [20]. Thus, rcR(n) ∈ Ω(n) cannot be semi-decidable for the class
of linear TRSs R where `, r ∈ TB holds for all rewrite rules `→ r.

Note that the existence of decreasing loops is semi-decidable, since one can
recursively enumerate all possible rewrite sequences ` →+

R C[r] and since it is
decidable whether an actual rewrite sequence is a decreasing loop. This implies
that loop detection by decreasing loops cannot be complete for linear lower bounds
of linear TRSs where the terms in all rules are basic. ut

Theorem 46 (Linear Lower Bounds for irc by Loop Detection) If a TRS R
has an innermost decreasing loop, then we have ircR(n) ∈ Ω(n).

Proof Let θ = [xi/`|ξi | 1 ≤ i ≤ m] be the pumping substitution of the innermost
decreasing loop. We show that for all n ∈ N and any substitution δ where ` θn δ is

innermost terminating, we have ` θn δ i→
+
R ◦D ` θn−1 δ′ for a substitution δ′. Thus,

these rewrite steps can be repeated n times. In the following, let δ be a substitution
such that for all x ∈ V(` θn), we have x δ i→

∗
R x δ and x δ is in normal form. Then

we obtain

` θn δ i→
∗
R ` θn δ = ` θn−1 δ i→

+
R C[r] θn−1 δ

D r θn−1 δ = ` σ θn−1 δ
(?)
= ` θn−1 (σ θn−1)|dom(σ) δ = ` θn−1 δ′

for the substitution δ′ = (σ θn−1)|dom(σ) δ. The rewrite sequence ` θn−1 δ i→
+
R

C[r] θn−1 δ is indeed an innermost reduction. To see this, recall that δ only instan-
tiates variables by normal forms. Moreover, θ has no defined symbols in its range,
since ` is basic. For this reason, θn−1 δ also instantiates all variables by normal
forms, i.e., no rewrite step is possible for the terms in the range of θn−1 δ. Moreover,
the subterms of the redexes in the reduction ` no→+

R C[r] do not unify with left-hand
sides of rules. Hence, these subterms remain in normal form if one instantiates

them with θn−1 δ. This implies ` θn−1 δ i→
+
R C[r] θn−1 δ. The step marked with

(?) holds because σ does not instantiate variables that occur in the domain or the
range of θ, as in the proof of Thm. 31.

Note that for any n ∈ N, the term ` θn is basic, since the range of θ only contains
constructor terms `|ξi (since ξi cannot be the root position due to the requirement
r /∈ V). Hence, if ` θn is not innermost terminating for some n ∈ N, then we obtain
ircR(n) ∈ Ω(ω), and therefore also ircR(n) ∈ Ω(n). Otherwise, by the observations
above, for each n ∈ N there is an innermost rewrite sequence of length n starting
with ` θn. As in the proof of Thm. 31, θ does not duplicate variables and thus,
|` θn| ∈ O(n). Hence, we obtain ircR(n) ∈ Ω(n). ut


