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Abstra
t

Re
ently, Arts and Giesl developed the dependen
y pair approa
h whi
h

allows automated termination and innermost termination proofs for many

term rewriting systems for whi
h su
h proofs were not possible before. The

motivation for this approa
h was that virtually all previous te
hniques for

automated termination proofs of term rewriting systems were based on

simpli�
ation orderings. In pra
ti
e, however, many rewrite systems are

not simply terminating, i.e., their termination 
annot be veri�ed by any

simpli�
ation ordering.

In this arti
le we introdu
e a re�nement of the dependen
y pair frame-

work whi
h further extends the 
lass of term rewriting systems for whi
h

termination or innermost termination 
an be shown automati
ally. By

means of this re�nement, one 
an now prove termination in a modular

way. Thus, this re�nement is inevitable in order to verify the termination

of large rewrite systems o

urring in pra
ti
e. To be more pre
ise, one

may use several di�erent orderings in one termination proof.

Subsequently, we present several new modularity results based on de-

penden
y pairs. First, we show that the well-known modularity of simple

termination for disjoint unions 
an be extended to DP quasi-simple ter-

mination, i.e., to the 
lass of rewrite systems where termination 
an be

shown automati
ally by the dependen
y pair te
hnique in 
ombination

with quasi-simpli�
ation orderings. Under 
ertain additional 
onditions,

this new result also holds for 
onstru
tor-sharing and 
omposable sys-

tems. Se
ond, the above-mentioned re�nement of the dependen
y pair

method yields new modularity 
riteria for innermost termination whi
h

extend previous results in this area 
onsiderably. In parti
ular, existing

results for modularity of innermost termination 
an easily be shown to be

dire
t 
onsequen
es of our new 
riteria.
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1. Introdu
tion

In many appli
ations of term rewriting systems (TRSs), termination is an im-

portant property. A TRS is said to be terminating if it does not allow in�nite re-

du
tions. Sin
e termination is in general unde
idable [Huet and Lankford, 1978℄,

several methods for proving this property have been developed; for surveys see

e.g. [Dershowitz, 1987, Steinba
h, 1995, Dershowitz and Hoot, 1995℄. Pra
ti
ally

all known methods that are amenable to automation use simpli�
ation orderings

[Dershowitz, 1979, 1987, Steinba
h, 1995, Middeldorp and Zantema, 1997℄ and in

fa
t, even total orderings [Ferreira and Zantema, 1994℄. However, there exist nu-

merous important TRSs for whi
h termination 
annot be proved by this kind of

orderings. For that reason, Arts and Giesl [2000℄ developed the so-
alled depen-

den
y pair approa
h. Given a TRS, the dependen
y pair te
hnique automati
ally

generates a set of 
onstraints and the existen
e of a well-founded (quasi-)ordering

satisfying these 
onstraints is suÆ
ient for termination. The advantage is that

standard (automati
) te
hniques 
an often synthesize su
h a well-founded order-

ing even if a dire
t termination proof with the same te
hniques fails. In this way,

simpli�
ation orderings 
an now be used to prove termination of non-simply ter-

minating TRSs. Several su
h systems from di�erent areas of 
omputer s
ien
e

(in
luding many 
hallenging problems from the literature) 
an for instan
e be

found in [Arts and Giesl, 2001℄ and appli
ations of dependen
y pairs for realisti


industrial problems in the area of distributed tele
ommuni
ation pro
esses are

dis
ussed in [Giesl and Arts, 2001℄. For an implementation of the dependen
y

pair approa
h see [Arts, 2000℄ or [CiME 2, 1999℄. Dependen
y pairs have also

been su

essfully applied in automati
 termination proofs of logi
 programs, see

[Ohlebus
h et al., 2000, Ohlebus
h, 2001℄.

After introdu
ing required preliminaries on orderings in Se
tion 2, in Se
tion 3

a re�nement of the dependen
y pair te
hnique is presented that allows modular

termination proofs using dependen
y pairs. In other words, now several well-

founded relations may be used in the termination proof of one TRS. Applying the

dependen
y pair approa
h in the proposed modular way 
annot 
ompli
ate the

proof, whereas it may allow a su

essful appli
ation where the original te
hnique

failed. Hen
e, it is always advantageous, and often more powerful, to take this

modular approa
h into a

ount.

The above-mentioned notion of modularity is expressed in terms of depen-

den
y pairs. Therefore, it di�ers slightly from the 
onventional notion, where a

property ' of TRSs (like termination) is 
alled modular if whenever R

1

and R

2

are TRSs both satisfying ', then their 
ombined system R

1

[R

2

also satis�es '.

The knowledge that (perhaps under 
ertain 
onditions) a property ' is modular

provides a divide and 
onquer approa
h to establish properties of TRSs. If one

wants to know whether a large TRS has a 
ertain modular property ', then this

system 
an be de
omposed into small subsystems and one merely has to 
he
k
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whether ea
h of these subsystems has property '. This 
onventional notion of

modularity is inspired by a well-known paradigm in 
omputer s
ien
e; programs

are developed in small modules that together form the whole program. In pra
-

ti
e it is an enormous bene�t if it suÆ
es to prove a property of a module just

on
e, independent of the 
ontext in whi
h the module is used afterwards.

Clearly, this 
onventional notion of modularity 
an also be applied su

essfully

in 
ombination with the original dependen
y pair approa
h. However, termina-

tion and innermost termination are not modular properties for arbitrary TRSs.

The modular re�nement of the dependen
y pair approa
h introdu
ed in Se
tion

3 is appli
able to numerous TRSs that do not belong to one of the restri
ted


lasses where 
onventional modularity results are appli
able.

Toyama [1987℄ showed that termination is not even modular for disjoint unions,

i.e., 
ombinations of TRSs without 
ommon fun
tion symbols. So the question

is what restri
tions have to be imposed on the 
onstituent TRSs so that their

disjoint union is again terminating. The �rst results were obtained by inves-

tigating the distribution of 
ollapsing rules and dupli
ating rules among the

TRSs; see [Rusinowit
h, 1987, Middeldorp, 1989℄. In [Toyama et al., 1995℄ it is

shown that termination is modular for 
on
uent and left-linear TRSs. Ever sin
e

an abundan
e of modularity results for disjoint unions, 
onstru
tor-sharing sys-

tems, 
omposable systems, and hierar
hi
al 
ombinations has been published;

see [Middeldorp, 1990, Ohlebus
h, 1994a, Gramli
h, 1996b℄ for an overview.

Most of the modularity results are often not appli
able in pra
ti
e. For exam-

ple, 
ollapsing and dupli
ating rules o

ur naturally in most TRSs. In 
ontrast

to this, sin
e most standard methods for automated termination proofs are based

on synthesizing simpli�
ation orderings, the result of Kurihara and Ohu
hi [1992℄

for 
onstru
tor-sharing systems is of pra
ti
al relevan
e. They showed that the


onstru
tor-sharing 
ombination of �nite simply terminating TRSs is again sim-

ply terminating. Their result was extended to 
omposable systems [Ohlebus
h,

1995℄ and to 
ertain hierar
hi
al 
ombinations [Krishna Rao, 1994℄. Moreover,

all these results also hold for in�nite TRSs; see [Middeldorp and Zantema, 1997℄.

Thus, if one has a method to prove simple termination of a TRS, then one


an use this method in a modular way for the above-mentioned 
lasses of TRSs,

whereas an arbitrary method for proving termination 
annot be used in this way.

However, simple termination is a 
onsiderably restri
ted form of termination. As

indi
ated above, the reason for the development of the dependen
y pair approa
h

was that there are numerous relevant TRSs for whi
h simpli�
ation orderings

fail in proving termination. Thus, now TRSs for whi
h automated termination

proofs are (potentially) feasible are no longer just simply terminating systems,

but DP (quasi-)simply terminating systems, i.e., systems whose termination 
an

be veri�ed by using (quasi-)simpli�
ation orderings in 
ombination with depen-

den
y pairs. Hen
e, a natural question is whether the 
urrent state of the art

of modularity 
an be re�ned as well by extending the 
onventional modularity

results from simple to DP (quasi-)simple termination. In Se
tion 4 we show that

this is indeed possible. Thus, the number of TRSs for whi
h termination 
an be



Giesl, Arts, Ohlebus
h: Modular Termination Proofs Using Dependen
y Pairs 4

proved in a modular way is extended signi�
antly. The pra
ti
al 
onsequen
e of

this result is that if one has proved termination of a TRS using the dependen
y

pair approa
h, then adding a TRS and proving termination of the new 
ombi-

nation redu
es to no more than proving termination of the added TRS with the

dependen
y pair te
hnique.

Subsequently, we 
onsider innermost termination, i.e., the requirement that

all redu
tions where only innermost redexes are rewritten are �nite. We develop

a modular te
hnique for innermost termination proofs using dependen
y pairs

in Se
tion 5.

The known modularity results for innermost termination are less restri
tive

than those for termination. Innermost termination is modular for disjoint unions

and for TRSs with shared 
onstru
tors [Gramli
h, 1995℄, for 
omposable 
on-

stru
tor systems [Middeldorp and Toyama, 1993℄, for 
omposable TRSs [Ohle-

bus
h, 1995℄, and for proper extensions [Krishna Rao, 1995℄, whi
h are spe
ial

hierar
hi
al 
ombinations. As innermost termination implies termination for sev-

eral 
lasses of TRSs [Gramli
h, 1995, 1996a℄, these results 
an also be used for

termination proofs of su
h systems. For example, this holds for lo
ally 
on
uent

overlay systems (and in parti
ular for non-overlapping TRSs).

In Se
tion 6 we show that the modular dependen
y pair approa
h leads to

new modularity 
riteria for innermost termination (whi
h 
an also be used in-

dependently of the dependen
y pair te
hnique). Moreover, we demonstrate that

in our framework the known modularity results for innermost termination of


omposable TRSs and proper extensions are obtained as easy 
onsequen
es.

Preliminary versions of parts of this arti
le appeared in [Arts and Giesl, 1998℄

and [Giesl and Ohlebus
h, 2000℄.

2. Preliminaries on Orderings

We assume the reader to be familiar with the basi
 notions of term rewriting.

For an introdu
tion to term rewriting see e.g. [Dershowitz and Jouannaud, 1990,

Klop, 1992, Baader and Nipkow, 1998℄. We restri
t ourselves to �nite signatures


ontaining at least one 
onstant (i.e., we assume that there exist ground terms)

and to TRSs with �nitely many rules. In the following we introdu
e the ba
k-

ground material on orderings whi
h is relevant to this arti
le. A rewrite ordering

� over a set of terms T (F ;V) is an ordering (i.e., an irre
exive and transitive

relation) that is (strongly) monotoni
 (i.e., s � t implies f(: : : s : : :) � f(: : : t : : :)

for all fun
tion symbols f 2 F) and 
losed under substitutions (i.e., s � t implies

s� � t� for all substitutions �). A simpli�
ation ordering is a rewrite ordering

having the subterm property (i.e., f(: : : x : : :) � x for all f 2 F). It is a well-

known 
onsequen
e of Kruskal's theorem that every simpli�
ation ordering over

T (F ;V) is well founded provided that F is �nite.

�

It is also well known that

simpli�
ation orderings satisfy the following property.

�

For details on in�nite signatures see [Middeldorp and Zantema, 1997℄.
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Lemma 2.1 (Variables and Simplifi
ation Orderings): Let � be a sim-

pli�
ation ordering. If s � t, then Var(t) � Var(s) and s 62 V.

A TRS R over a �nite signature F is 
alled simply terminating if its ter-

mination 
an be proven by a simpli�
ation ordering. This is equivalent to the

statement that the TRS R[ Emb(F) is terminating, where

Emb(F) = ff(x

1

; : : : ; x

n

)! x

i

j f 2 F , f is n-ary, and 1 � i � ng

is the set of embedding rules.

A quasi-rewrite ordering % over a set of terms T (F ;V) is a quasi-ordering

(i.e., a re
exive and transitive relation) that is (weakly) monotoni
 (i.e., s % t

implies f(: : : s : : :) % f(: : : t : : :) for all f 2 F) and 
losed under substitutions.

In the dependen
y pair method a set of inequalities is generated from a TRSR.

To prove termination of R, one has to show that these inequalities are satis�ed

by some pair (%;�) 
onsisting of a quasi-rewrite ordering % and an ordering �

with the properties

� � is 
losed under substitutions and well founded

� % Æ � � � or � Æ % � �.

(Note that � need not be monotoni
.) Su
h a pair is 
alled a redu
tion pair

[Kusakari et al., 1999℄. Given a quasi-rewrite ordering %, a natural 
andidate

for the 
orresponding ordering � is the stri
t relation �

s

de�ned by t �

s

u

if and only if t % u and u 6% t. Unfortunately, �

s

is in general not 
losed

under substitutions (see below). Therefore, to determine suitable redu
tion pairs

automati
ally, one usually 
hooses � to be the so-
alled stable-stri
t relation �

ss


orresponding to the quasi-rewrite ordering %. We have t �

ss

u if and only if

t� �

s

u� holds for all ground substitutions �, where a ground substitution is a

substitution mapping all variables to ground terms. In other words, for all those

substitutions � we must have t� % u� and u� 6% t�.

For instan
e, many useful quasi-orderings are 
onstru
ted by using mappings

j:j from the set of ground terms to a well-founded set like the natural numbers

IN, 
f. e.g. [Lankford, 1979, \polynomial orderings"℄. Then % is de�ned as t % u

if and only if jt�j �

IN

ju�j holds for all ground substitutions �. A natural way

to de�ne a 
orresponding irre
exive ordering � is to let t � u hold if and

only if jt�j >

IN

ju�j for all ground substitutions �. However, now � is not the


orresponding stri
t relation, but the stable-stri
t relation 
orresponding to %.

Thus, the irre
exive relation intuitively asso
iated with a quasi-ordering is often

the stable-stri
t one instead of the stri
t one. In parti
ular, if the quasi-ordering

% is stable (i.e., 
losed under substitutions), then the 
orresponding stable-stri
t

relation �

ss

is 
losed under substitutions too, whereas this is not ne
essarily true

for the stri
t relation �

s

.

For example, if j0j = 0, js(t)j = jtj+1, and jf(t)j = 2jtj for all ground terms t,

then we have f(x) % x and x 6% f(x). Hen
e, this implies f(x) �

s

x. However, �

s
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is not 
losed under substitutions be
ause f(0) �

s

0 does not hold. This example

also demonstrates that in general �

s

� �

ss

is not true be
ause for the stable-

stri
t relation �

ss

we have f(x) 6�

ss

x.

Moreover, in general �

ss

� % does not hold either (hen
e, �

ss

� �

s

is false,

too). If R is the TRS 
ontaining only the rule f(0)! 0 and % is de�ned as!

�

R

,

then we have f(x) �

ss

x, but f(x) 6% x.

The following lemma states some straightforward properties of stable-stri
t

relations.

Lemma 2.2 (Properties of Stable-Stri
t Relations):

Let % be a quasi-ordering that is 
losed under substitutions. Then we have

(i) �

ss

is irre
exive

(ii) �

ss

is transitive

(iii) �

ss

is 
losed under substitutions

(iv) if % is total, then �

ss

� �

s

(v) if �

s

is 
losed under substitutions, then �

s

� �

ss

(vi) if �

s

is well founded, then �

ss

is well founded, too

(vii) s % t �

ss

u implies s �

ss

u

(viii)s �

ss

t % u implies s �

ss

u

(ix) if % is a quasi-rewrite ordering and �

s

is well founded,

then (%;�

ss

) is a redu
tion pair

Proof: The statements (i) and (ii) follow from the re
exivity and the transitivity

of %. Statements (iii), (iv), and (v) are dire
t 
onsequen
es of the de�nition. For

(vi), every potential in�nite des
ending sequen
e t

0

�

ss

t

1

�

ss

: : : would result

in an in�nite des
ending sequen
e t

0

� �

s

t

1

� �

s

: : : Statements (vii) and (viii)

follow from the transitivity and stability of %. Statement (ix) follows from (i),

(ii), (iii), (vi) and (vii) (or (viii)). 2

In this arti
le, � always denotes an arbitrary ordering su
h that (%;�) forms

a redu
tion pair. As shown in Lemma 2.2 (ix), one possibility is to 
hoose � to be

the stable-stri
t relation 
orresponding to the quasi-rewrite relation % (provided

that it is well founded). Lemma 2.2 (v) indi
ates that this 
hoi
e is at least as

powerful as 
hoosing � to be the stri
t relation 
orresponding to %.

A quasi-simpli�
ation ordering (QSO) is a quasi-rewrite ordering % whi
h has

the (weak) subterm property (i.e., f(: : : x : : :) % x for all f 2 F). Kruskal's theo-

rem implies that every quasi-simpli�
ation ordering over T (F ;V) is well founded

(more pre
isely, the 
orresponding (stable-)stri
t relation is well founded) pro-

vided that F is �nite. Redu
tion pairs with quasi-simpli�
ation orderings satisfy

a property analogous to Lemma 2.1.

Lemma 2.3 (Variables in Stri
t Inequalities): Let % be a QSO and

let (%;�) be a redu
tion pair. If s � t, then Var(t) � Var(s) and s 62 V.
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Proof: Assume that there is a variable x 2 Var(t) n Var(s). Then t = C[x℄ for

some 
ontext C. With � = fx 7! sg it follows that s = s� � t� = C[s℄. Sin
e

C[s℄ % s a

ording to the subterm property, we obtain s � C[s℄ % s. This is a


ontradi
tion to the well-foundedness of �. Thus Var(t) � Var(s) holds. The

proof of s 62 V is just as straightforward. 2

A similar property even holds for non-stri
t inequalities.

Lemma 2.4 (Variables in Non-Stri
t Inequalities): Let % be a QSO

and let (%;�) be a redu
tion pair su
h that s

0

� t

0

for some terms s

0

; t

0

where

Var(t

0

) 6= ;. If s % t, then Var(t) � Var(s).

Proof: First of all, s

0

� t

0

implies Var(t

0

) � Var(s

0

) a

ording to Lemma 2.3.

Without loss of generality, we assume that s and t are renamed su
h that they

have no variables in 
ommon with s

0

or t

0

. We show Var(t) � Var(s) indire
tly.

Suppose that there is a variable y 2 Var(t) n Var(s). Sin
e Var(t

0

) 6= ;, there is

a variable x 2 Var(t

0

) � Var(s

0

). Let � = fx 7! sg and �

0

= fx 7! tfy 7! s

0

�gg.

We have (a) s

0

� � t

0

� be
ause s

0

� t

0

and � is 
losed under substitutions, (b)

t

0

� % t

0

�

0

be
ause s % t and % is weakly monotoni
, and (
) t

0

�

0

% x�

0

% s

0

�

be
ause % has the weak subterm property and % is 
losed under substitutions.

In summary, s

0

� � t

0

� % t

0

�

0

% s

0

� is a 
ontradi
tion to the well-foundedness of

�. 2

Examples of simpli�
ation orderings and QSOs in
lude path orderings like the

lexi
ographi
 path ordering (LPO) [Kamin and L�evy, 1980℄, the re
ursive path

ordering (RPO) [Dershowitz, 1987, Steinba
h, 1995, Ferreira, 1995℄, the Knuth-

Bendix ordering (KBO) [Knuth and Bendix, 1970, Di
k et al., 1990, Korovin and

Voronkov, 2001℄, et
. Polynomial orderings, however, are not QSOs in general.

For instan
e, if the 
onstant 0 is asso
iated with the number 0, s(x) is asso
iated

with x + 1, and f(x; y) is asso
iated with the multipli
ation of x and y, then

this polynomial ordering does not satisfy the subterm property (for example,

f(s(0); 0) % s(0) does not hold). However, the following lemma shows that if the

polynomial ordering respe
ts some restri
tions, then it is indeed a QSO.

Lemma 2.5 (Polynomial Orderings as QSOs): Let % be a polynomial or-

dering where every fun
tion symbol is asso
iated with a polynomial 
ontaining

only non-negative 
oeÆ
ients.

� If every fun
tion symbol f(x

1

; : : : ; x

n

) is asso
iated with a polynomial whi
h


ontains a (non-mixed) monomial of the form m

i

x

k

i

i

(with m

i

; k

i

� 1) for

every i = 1; : : : ; n, then % is a QSO.

� If every fun
tion symbol f(x

1

; : : : ; x

n

) is asso
iated with a polynomial 
on-

taining all variables x

1

; : : : ; x

n

and if every 
onstant is asso
iated with a

number > 0, then % is a QSO.

Proof: Straightforward. 2

In fa
t, the 
onditions in Lemma 2.5 also entail (strong) monotoni
ity of the

stri
t and stable-stri
t relations 
orresponding to the polynomial ordering.
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3. Modular Termination Proofs With Dependen
y Pairs

Arts and Giesl [2000℄ introdu
ed the dependen
y pair te
hnique to prove the

termination of term rewriting systems automati
ally. In this se
tion we brie
y

re
apitulate its basi
 
on
epts and present a new modular approa
h for auto-

mated termination proofs. We �rst introdu
e a modular termination 
riterion

in Se
tion 3.1 and develop an approa
h to 
he
k this 
riterion automati
ally in

Se
tion 3.2.

3.1. A Modular Termination Criterion

In the following we des
ribe the notions relevant to the dependen
y pair method.

For motivations and further re�nements see [Arts and Giesl, 2000℄. We adopt the

notation of [Giesl and Middeldorp, 2000℄ and [Kusakari et al., 1999℄. The root of

a term f(: : :) is the leading fun
tion symbol f . For a TRS R over a signature F ,

D = froot(l)jl ! r 2 Rg is the set of the de�ned symbols and C = F n D is the

set of 
onstru
tors of R. Let F

℄

denote the union of the signature F and ff

℄

j f

is a de�ned symbol of Rg, where f

℄

has the same arity as f . The fun
tions f

℄

are


alled tuple symbols. Given a term t = f(t

1

; : : : ; t

n

) 2 T (F ;V) with f de�ned,

we write t

℄

for the term t = f

℄

(t

1

; : : : ; t

n

). If l ! r 2 R and t is a subterm of

r with de�ned root symbol, then the rewrite rule l

℄

! t

℄

is 
alled a dependen
y

pair of R. The set of all dependen
y pairs of R is denoted by DP(R). We often

write F for f

℄

, et
.

For example, 
onsider the following TRS with the 
onstru
tors s and 
 and

the de�ned symbol f:

f(x; 
(y)) ! f(x; s(f(y; y)))

f(s(x); y) ! f(x; s(
(y)))

Note that this TRS is not simply terminating as f(x; 
(s(x))) 
an be redu
ed

to the term f(x; s(f(x; s(
(s(x)))))) in whi
h it is embedded. The TRS has the

following dependen
y pairs:

F(x; 
(y)) ! F(x; s(f(y; y))) (1)

F(x; 
(y)) ! F(y; y) (2)

F(s(x); y) ! F(x; s(
(y))) (3)

A sequen
e of dependen
y pairs s

1

! t

1

, s

2

! t

2

; : : : is an R-
hain if there

exists a substitution � su
h that t

j

�!

�

R

s

j+1

� holds for every two 
onse
utive

pairs s

j

! t

j

and s

j+1

! t

j+1

in the sequen
e. We always assume that di�erent

(o

urren
es of) dependen
y pairs have disjoint sets of variables and we always


onsider substitutions whose domains may be in�nite. In 
ase R is 
lear from

the 
ontext we often write 
hain instead of R-
hain. Hen
e, in our example we

have the 
hain

F(x

1

; 
(y

1

))! F(y

1

; y

1

); F(x

2

; 
(y

2

))! F(y

2

; y

2

); F(x

3

; 
(y

3

))! F(y

3

; y

3

);
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as F(y

1

; y

1

)�!

�

R

F(x

2

; 
(y

2

))� and F(y

2

; y

2

)�!

�

R

F(x

3

; 
(y

3

))� hold for the sub-

stitution � = fy

1

7! 
(
(y

3

)); x

2

7! 
(
(y

3

)); y

2

7! 
(y

3

); x

3

7! 
(y

3

)g. In fa
t any

�nite sequen
e of the dependen
y pair (2) is a 
hain. As proved by Arts and

Giesl [2000℄, the absen
e of in�nite 
hains is a suÆ
ient and ne
essary 
riterion

for termination.

Theorem 3.1 (Termination Criterion): A TRS R is terminating if and

only if there exists no in�nite R-
hain.

Some dependen
y pairs 
an never o

ur twi
e in any 
hain and hen
e they

need not be 
onsidered when proving that no in�nite 
hain exists. For identifying

these insigni�
ant dependen
y pairs, the notion of dependen
y graph has been

introdu
ed by Arts and Giesl [2000℄.

Definition 3.2 (Dependen
y graph): The dependen
y graph of a TRS R

is the dire
ted graph whose nodes are the dependen
y pairs and there is an ar


from s! t to v ! w i� s! t, v ! w is a 
hain.

The dependen
y graph for our example is given in Figure 1.

?

��

?

��

�

�

�

�*

H

H

H

Hj

-

F(x; 
(y))! F(y; y) F(s(x); y)! F(x; s(
(y)))

F(x; 
(y))! F(x; s(f(y; y)))

Figure 1: Dependen
y graph.

A non-empty set P of dependen
y pairs is 
alled a 
y
le if for any two pairs

s! t and v ! w in P there is a non-empty path from s! t to v ! w whi
h

only traverses pairs from P. Thus, in the example above there are two 
y
les,

viz. f(2)g and f(3)g. Sin
e we restri
t ourselves to �nite TRSs, obviously any

in�nite 
hain 
orresponds to a 
y
le. Hen
e, the dependen
y pairs that are not

on a 
y
le in the dependen
y graph are insigni�
ant for the termination proof.

In other words, in our example we may disregard the dependen
y pair (1).

Now we 
ome to our �rst modularity result, stating that one 
an prove ter-

mination of a TRS in a modular way, be
ause absen
e of in�nite 
hains 
an be

proved separately for every 
y
le.

Theorem 3.3 (Modular Termination Criterion): A TRS R is termi-

nating if and only if for ea
h 
y
le P in the dependen
y graph there exists no

in�nite R-
hain of dependen
y pairs from P.

Proof: The only-if dire
tion is a dire
t 
onsequen
e of Theorem 3.1. For the other

dire
tion, suppose that R is not terminating. Then by Theorem 3.1 there exists

an in�nite R-
hain. As we only regard �nite TRSs R, there are only �nitely
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many dependen
y pairs and hen
e, one dependen
y pair o

urs in�nitely many

times in the 
hain (up to renaming of the variables). Thus, the in�nite 
hain has

the form

: : : ; s�

1

! t�

1

; : : : ; s�

2

! t�

2

; : : : ; s�

3

! t�

3

; : : : ;

where �

1

; �

2

; �

3

; : : : are renamings. Hen
e, the tail s�

1

! t�

1

; : : : ; s�

2

! t�

2

; : : :

is an in�nite R-
hain whi
h 
onsists of dependen
y pairs from one 
y
le in the

dependen
y graph only. 2

A

ording to the above theorem, in our example we 
an separate the proof

that there is no in�nite 
hain 
onsisting of the dependen
y pair f(2)g from the


orresponding proof for the dependen
y pair f(3)g.

One should remark that for the soundness of this theorem one indeed has to

regard all 
y
les, not just the minimal ones (i.e., not just those 
y
les whi
h


ontain no other 
y
les as proper subsets). For a 
ounterexample to illustrate

this fa
t see [Giesl and Arts, 2001, p. 50℄.

Note that in standard graph terminology, a path v

0

) v

1

) : : : ) v

k

in a

dire
ted graph forms a 
y
le if v

0

= v

k

and k � 1. In our 
ontext we identify


y
les with the set of elements that o

ur in it, i.e., we 
all fv

0

; v

1

; : : : ; v

k�1

g a


y
le. Sin
e a set never 
ontains multiple o

urren
es of an element, this results

in several 
y
ling paths being identi�ed with the same set. Moreover, for a �nite

TRS we only have �nitely many 
y
les, sin
e the number of dependen
y pairs is

�nite, too.

3.2. Che
king the Modular Termination Criterion Automati
ally

For an automati
 approa
h the de�nition of a dependen
y graph is impra
ti
al,

sin
e it is in general unde
idable whether two dependen
y pairs form a 
hain.

However, in order to obtain a sound te
hnique for termination proofs, we 
an

safely use any approximation of the dependen
y graph that preserves all its


y
les. To estimate whi
h dependen
y pairs may o

ur 
onse
utive, the estimated

dependen
y graph has been introdu
ed, 
f. [Arts and Giesl, 2000℄. Let 
ap(t)

result from repla
ing all subterms of t that have a de�ned root symbol by di�erent

fresh variables and let ren(t) result from repla
ing all variables in t by di�erent

fresh variables. Then, to determine whether v ! w 
an follow s! t in a 
hain,

we 
he
k whether ren(
ap(t)) uni�es with v. So we have ren(
ap(F(y; y))) =

ren(F(y; y)) = F(y

1

; y

2

) and ren(
ap(F(x; s(f(y; y))))) = ren(F(x; s(z))) =

F(x

1

; s(z

1

)). Hen
e, (1) 
an never follow itself in a 
hain, be
ause F(x

1

; s(z

1

))

does not unify with F(x; 
(y)).

Definition 3.4 (Estimated Dependen
y Graph): The estimated depen-

den
y graph of a TRS R is the dire
ted graph whose nodes are the dependen
y

pairs and there is an ar
 from s! t to v ! w i� ren(
ap(t)) and v are uni�-

able.
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In our example, the estimated dependen
y graph is the same as the depen-

den
y graph given in Figure 1. For an automation of the modular 
riterion of

Theorem 3.3, we use this estimated dependen
y graph. Indeed, Theorem 3.3 also

holds for the estimated dependen
y graph instead of the dependen
y graph, be-


ause all dependen
y pairs on a 
y
le in the dependen
y graph are also on a 
y
le

in its estimation. The only-if dire
tion of Theorem 3.3 holds anyway regardless

of the estimation used, sin
e whenever a TRS is terminating, then there is no

in�nite 
hain (Theorem 3.1).

To 
he
k the 
riterion of Theorem 3.3 automati
ally, for ea
h 
y
le P, we

generate a set of inequalities su
h that the existen
e of redu
tion pairs (%

P

;�

P

)

satisfying these inequalities is suÆ
ient for the absen
e of in�nite 
hains. For

that purpose we have to ensure that the dependen
y pairs from P are de
reasing

w.r.t. %

P

. More pre
isely, for any sequen
e of dependen
y pairs s

1

! t

1

; s

2

! t

2

;

s

3

! t

3

; : : : from P and for any substitution � with t

j

�!

�

R

s

j+1

� (for all j) we

demand

s

1

� %

P

t

1

� %

P

s

2

� %

P

t

2

� %

P

s

3

� %

P

t

3

� %

P

: : : ;

and for at least one s! t in P we demand the stri
t inequality s� �

P

t�. Then

there exists no 
hain of dependen
y pairs from P whi
h traverses all dependen
y

pairs in P in�nitely many times.

Sin
e %

P

is 
losed under substitutions and weakly monotoni
, to guarantee

t

j

� %

P

s

j+1

� whenever t

j

�!

�

R

s

j+1

� holds, it is suÆ
ient to demand l %

P

r for

all rules l! r of the TRS. Moreover, s

j

%

P

t

j

and s

j

�

P

t

j

ensure s

j

� %

P

t

j

�

and s

j

� �

P

t

j

�, respe
tively, for all substitutions �.

Be
ause rewrite rules and dependen
y pairs are just pairs of terms, we write

R[ P � %

P

as a shorthand for l %

P

r for every rewrite rule l! r in R and

every dependen
y pair l ! r from P. Moreover, P \ �

P

6= ; denotes that l �

P

r

holds for at least one dependen
y pair l ! r from P.

Theorem 3.5 (Modular Termination Proofs): A TRS R is terminating

if and only if for ea
h 
y
le P in the (estimated) dependen
y graph there is a

redu
tion pair (%

P

;�

P

) su
h that

(a) R[ P � %

P

and

(b) P \ �

P

6= ;.

Proof: For the if dire
tion, suppose that there exists an in�nite R-
hain of de-

penden
y pairs from a 
y
le P. Without loss of generality let P be su
h that for

all proper sub
y
les P

0

of P, there is no in�nite 
hain of dependen
y pairs from

P

0

.

For one dependen
y pair s! t in P we have the stri
t inequality s �

P

t. Due

to the minimality of P, s! t o

urs in�nitely many times in the 
hain (up to

variable renaming), i.e., the 
hain has the form

v

1;1

! w

1;1

; :::; v

1;n

1

! w

1;n

1

; s�

1

! t�

1

; v

2;1

! w

2;1

; :::; v

2;n

2

! w

2;n

2

; s�

2

! t�

2

; :::;
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where �

1

; �

2

; : : : are renamings. Hen
e, there exists a substitution � su
h that

w

i;j

�!

�

R

v

i;j+1

�, w

i;n

i

�!

�

R

s�

i

�, and t�

i

�!

�

R

v

i+1;1

�. As l %

P

r holds for all

rules of R and as %

P

is weakly monotoni
 and 
losed under substitutions, we

have !

�

R

� %

P

. Moreover, all dependen
y pairs from P are weakly de
reasing.

Thus, we obtain

v

1;1

� %

P

w

1;1

� %

P

: : : v

1;n

1

� %

P

w

1;n

1

� %

P

s�

1

� �

P

t�

1

� %

P

v

2;1

� %

P

w

2;1

� %

P

: : : v

2;n

2

� %

P

w

2;n

2

� %

P

s�

2

� �

P

t�

2

� %

P

: : :

But this is a 
ontradi
tion to the well-foundedness of �

P

. Hen
e, no in�nite


hain of dependen
y pairs from P exists and by Theorem 3.3, R is terminating.

For the only-if dire
tion we refer to [Arts and Giesl, 2000, Theorem 7℄, where it

is shown that termination ofR even implies termination ofR[DP(R). A simple

alternative proof for this statement using typing 
an be found in [Middeldorp

and Ohsaki, 2000℄. 2

We already mentioned that for Theorem 3.3 (and hen
e, also for the above

theorem) 
onsidering just the minimal 
y
les would be unsound. In fa
t, for

Theorem 3.5 it would also be unsound just to 
onsider maximal 
y
les (i.e.,

those 
y
les whi
h are not 
ontained in any other 
y
le). The problem is that

it is not suÆ
ient if just one dependen
y pair of ea
h maximal 
y
le is stri
tly

de
reasing. For a 
ounterexample to illustrate this fa
t see [Giesl and Arts, 2001,

p. 51℄. Thus, it is 
ru
ial to 
onsider all 
y
les P for Theorem 3.5.

With the above theorem, termination of our example 
an easily be proved au-

tomati
ally (where for an automation of Theorem 3.5 we again use the estimated

dependen
y graph instead of the (real) dependen
y graph). After 
omputing the

graph in Figure 1, two redu
tion pairs (%

1

;�

1

), (%

2

;�

2

) have to be generated

whi
h satisfy

f(x; 
(y)) %

1

f(x; s(f(y; y))) (4)

f(s(x); y) %

1

f(x; s(
(y))) (5)

F(x; 
(y)) �

1

F(y; y) (6)

f(x; 
(y)) %

2

f(x; s(f(y; y))) (7)

f(s(x); y) %

2

f(x; s(
(y))) (8)

F(s(x); y) �

2

F(x; s(
(y))): (9)

Of 
ourse, our aim is to use standard te
hniques to obtain suitable redu
tion

pairs satisfying the 
onstraints of Theorem 3.5. However, most existing methods

generate orderings whi
h are strongly monotoni
, whereas for the dependen
y

pair approa
h we only need a weakly monotoni
 quasi-ordering. For that reason,

before synthesizing a suitable ordering, some of the arguments of the fun
tion

symbols 
an be eliminated, 
f. [Arts and Giesl, 2000℄. For instan
e, in the in-

equalities (4) - (6) one may eliminate the se
ond argument of the fun
tion symbol

f. Then every term f(s; t) in the inequalities is repla
ed by f(s) (where f is a new

unary fun
tion symbol). So instead of (4) we obtain the inequality f(x) %

1

f(x).

By 
omparing the terms resulting from this repla
ement (instead of the original

terms) we 
an take advantage of the fa
t that f does not have to be strongly

monotoni
 in its se
ond argument. Now the inequalities resulting from (4) - (6)
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are satis�ed by the lexi
ographi
 path ordering (LPO) where subterms are 
om-

pared right-to-left (i.e., %

1

is 
hosen to be %

LPO

and �

1

is 
hosen to be the

(stable-)stri
t relation �

LPO

). For the inequalities (7) - (9) we again delete the

se
ond argument of f. Then these inequalities are also satis�ed by LPO (with

the pre
eden
e F > s; F > 
), but this time subterms are 
ompared left-to-right.

Hen
e, termination of the TRS under 
onsideration is proved. Note that this

TRS is not simply terminating. So in the dependen
y pair approa
h, simpli�-


ation orderings like LPO 
an be used to prove termination of TRSs for whi
h

their dire
t appli
ation would fail.

Apart from eliminating arguments of fun
tion symbols, another possibility is

to repla
e fun
tions by one of their arguments. So instead of deleting the se
ond

argument of f, one 
ould also repla
e all terms f(s; t) by f's �rst argument s. Then

the resulting inequalities are again satis�ed by LPO. To perform this elimination

of arguments resp. of fun
tion symbols the 
on
ept of argument �ltering was

introdu
ed by Arts and Giesl [2000℄ (here we use the notation of [Kusakari et al.,

1999℄).

Definition 3.6 (Argument filtering): An argument �ltering for a signa-

ture F is a mapping � that asso
iates with every n-ary fun
tion symbol an ar-

gument position i 2 f1; : : : ; ng or a (possibly empty) list [i

1

; : : : ; i

m

℄ of argument

positions with 1 � i

1

< : : : < i

m

� n. The signature F

�


onsists of all fun
tion

symbols f su
h that �(f) = [i

1

; : : : ; i

m

℄, where in F

�

the arity of f is m. Every

argument �ltering � indu
es a mapping from T (F ;V) to T (F

�

;V), also denoted

by �, whi
h is de�ned as:

�(t) =

8

<

:

t if t is a variable,

�(t

i

) if t = f(t

1

; : : : ; t

n

) and �(f) = i,

f(�(t

i

1

); : : : ; �(t

i

m

)) if t = f(t

1

; : : : ; t

n

) and �(f) = [i

1

; : : : ; i

m

℄.

As proved by Arts and Giesl [2000℄, in order to �nd a redu
tion pair satisfying

a parti
ular set of inequalities, one may �rst apply an argument �ltering for the

signature F

℄

to the terms in the inequalities. Subsequently, one only has to �nd

a redu
tion pair that satis�es these modi�ed inequalities. In the following, for

any set of rules or pairs R and any argument �ltering � let

�(R) = f�(l)! �(r)jl ! r 2 R and �(l) 6= �(r)g:

Criterion 3.7 (Modular Automated Termination Criterion):

A TRS R over a signature F is terminating if and only if for ea
h 
y
le P in

the (estimated) dependen
y graph there is an argument �ltering �

P

for F

℄

and

a redu
tion pair (%

P

;�

P

) su
h that

(a) �

P

(R[ P) � %

P

and

(b) �

P

(P)\ �

P

6= ;.
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Note that there exist only �nitely many possibilities for the 
hoi
e of su
h

argument �lterings. Therefore in prin
iple, all these possibilities 
an be 
he
ked

automati
ally. Hen
e, by 
ombining the generation of a suitable argument �lter-

ing with well-known automati
 te
hniques for the synthesis of (strongly mono-

toni
) simpli�
ation orderings, now the sear
h for a weakly monotoni
 ordering

satisfying the 
onstraints 
an be automated. As mentioned before, in a redu
tion

pair (%;�) one usually 
hooses � to be the stable-stri
t relation 
orresponding

to the quasi-ordering %. By using the estimated dependen
y graph, this results

in a fully automati
 termination proof of our TRS, whereas a dire
t termination

proof with simpli�
ation orderings was not possible. So Criterion 3.7 allows us

to use di�erent quasi-orderings resp. redu
tion pairs to prove the absen
e of


hains for di�erent 
y
les. In our example this is essential, be
ause there exists

no redu
tion pair with a quasi-simpli�
ation ordering satisfying all inequalities

(4) - (9) (not even after elimination of arguments). The reason is that (9) and

(6) entail

F(s(x); s(x)) �

2

F(x; s(
(s(x))))!

Emb(F

℄

)

F(x; 
(s(x))) �

1

F(s(x); s(x)):

Hen
e, without our modularity result, an automated termination proof with the

dependen
y pair approa
h fails.

In order to synthesize suitable redu
tion pairs, the argument �lterings should

be 
hosen in a way su
h that for all resulting inequalities the variables in the

right-hand side also o

ur in the left-hand side. Then the resulting inequalities


ould be transformed into a TRS as well and for proving termination of the

original TRS it would be suÆ
ient to prove termination of the transformed

TRSs for all 
y
les.

Criterion 3.8 (Termination Criterion by Transformation): A TRS

R over a signature F is terminating if and only if for ea
h 
y
le P in the

(estimated) dependen
y graph there is an argument �ltering �

P

for F

℄

su
h that

�

P

(R[ P) is a terminating TRS and su
h that �

P

(P) 6= ;.

This 
riterion is suÆ
ient for termination, sin
e one may 
hoose (!

�

�

P

(R[P)

;

!

+

�

P

(P)

) as the redu
tion pairs in Criterion 3.7. It is also ne
essary for termina-

tion, be
ause due to [Arts and Giesl, 2000, Theorem 7℄, termination of R implies

termination of all R[P (and hen
e, of �

P

(R[P), if �

P

(f) = [1; : : : ; n℄ for every

f 2 F with arity n, i.e., if �

P

does not �lter any arguments).

4. Modularity Results for DP (Quasi-)Simple Termination

The modularity as proposed in Criteria 3.7 and 3.8 
ould be seen as rather

method-spe
i�
. The more 
onventional approa
h of dividing the termination

proof into parts is to split the TRS into subsystems and to prove termination

of the subsystems separately. This, however, only works for very spe
i�
 
lasses
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of TRSs. The two-rule TRS of our example 
an only be split in one way and no


onventional modularity result exists that justi�es this partitioning.

The advantage of this 
onventional notion of modularity is that TRSs that

have been proved terminating do not have to be re
onsidered after 
ombining

them with other TRSs of this kind. Thus, termination proofs never have to be re-

done for these 
ombinations. Therefore, results whi
h guarantee that termination

of subsystems suÆ
es for termination of the whole TRS are of pra
ti
al interest.

Based on the approa
h of the previous se
tion, in this se
tion we develop su
h

results for the 
ase where we use the dependen
y pair approa
h for proving

termination.

More pre
isely, we extend the existing modularity results for simple termina-

tion to DP (quasi-)simple termination. The latter notion is formally de�ned in

Se
tion 4.2. Basi
ally, a TRS is DP (quasi-)simply terminating if the 
onstraints

of Criterion 3.7 are satis�ed by a suitable (quasi-)simpli�
ation ordering or if

simple termination 
an be proved for all TRSs 
onstru
ted by the transforma-

tion of Criterion 3.8, respe
tively.

First we brie
y re
all the basi
 notions and notations for the 
ombination

of TRSs in Se
tion 4.1. In Se
tion 4.3 we show that DP quasi-simple termina-

tion is modular for disjoint unions. Se
tion 4.4 
ontains similar results about


onstru
tor-sharing and 
omposable TRSs.

4.1. Basi
 Notions of the Union of Term Rewriting Systems

Let R

1

and R

2

be TRSs over the signatures F

1

and F

2

, respe
tively. Their


ombined system is the union R = R

1

[R

2

over the signature F = F

1

[F

2

. Its

set of de�ned symbols is D = D

1

[ D

2

and its set of 
onstru
tors is C = F n D,

where D

i

(C

i

) denotes the de�ned symbols (
onstru
tors) in R

i

.

(1) R

1

and R

2

are disjoint if F

1

\ F

2

= ;.

(2) R

1

and R

2

are 
onstru
tor-sharing if F

1

\ F

2

= C

1

\ C

2

(� C).

(3) R

1

and R

2

are 
omposable if C

1

\ D

2

= D

1

\ C

2

= ; and both systems


ontain all rewrite rules that de�ne a de�ned symbol whenever that symbol

is shared: fl ! r 2 R j root(l) 2 D

1

\ D

2

g � R

1

\R

2

.

(4) R

1

and R

2

form a hierar
hi
al 
ombination if D

1

\ D

2

= C

1

\ D

2

= ;. So

de�ned symbols of R

1

may o

ur as 
onstru
tors in R

2

, but not vi
e versa.

We introdu
e some basi
 notions that are helpful when reasoning about dis-

joint unions. Let 2 62 F

1

[ F

2

be a spe
ial 
onstant. A 
ontext C is a term

in T (F

1

[ F

2

[ f2g;V) and C[t

1

; : : : ; t

n

℄ is the result of repla
ing from left to

right the n � 0 o

urren
es of 2 with t

1

; : : : ; t

n

. We write t = C[[t

1

; : : : ; t

n

℄℄ if

C 2 T (F

i

[f2g;V), C 6= 2, and root(t

1

); : : : root(t

n

) 2 F

3�i

for some i 2 f1; 2g.

In this 
ase, the t

j

are the aliens of t and C is the topmost F

i

-homogeneous part

of t, denoted by top

i

(t) (whereas top

3�i

(t) is 2). This de�nition is similar to the

de�nition of 
ap where the roles of the de�ned symbols and the 
onstru
tors
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are repla
ed by F

1

and F

2

. Note, however, that we now use the more standard

2 symbol instead of a fresh variable to repla
e the subterms. So for example, if

R

1


onsists of the following two rules

f(0; 1; x) ! f(s(x); x; x) (10)

f(x; y; s(z)) ! s(f(0; 1; z)); (11)

and R

2


ontains the rules

g(x; y) ! x (12)

g(x; y) ! y; (13)

then R

1

and R

2

are disjoint and a term like f(g(0; 0); x; g(y; y)) 
an be written

as C[[g(0; 0); g(y; y)℄℄, where C is f(2; x;2). Thus top

1

(f(g(0; 0); x; g(y; y))) =

f(2; x;2) and top

2

(f(g(0; 0); x; g(y; y))) = 2.

Moreover, for any term t its rank is the maximal number of alternating fun
-

tion symbols (from F

1

and F

2

, respe
tively) in any path through the term, i.e.,

rank(t) = 1 + maxf rank(t

j

) j 1 � j � ng where t = C[[t

1

; : : : ; t

n

℄℄

and max ; = 0. So for example we have rank(f(g(0; 0); x; g(y; y))) = 3. Our

modularity results 
ru
ially depend on the well-known fa
t that s !

R

1

[R

2

t

implies rank(s) � rank(t).

A rewrite step s!

R

1

[R

2

t is destru
tive at level 1 if root(s) 2 F

i

and root(t) 2

F

3�i

for some i 2 f1; 2g. A redu
tion step s!

R

1

[R

2

t is destru
tive at level m+1

(for some m � 1) if s = C[[s

1

; : : : ; s

j

; : : : ; s

n

℄℄ !

R

1

[R

2

C[s

1

; : : : ; t

j

; : : : ; s

n

℄ = t

with s

j

!

R

1

[R

2

t

j

destru
tive at level m. Obviously, if a rewrite step is destru
-

tive, then the rewrite rule applied is 
ollapsing, i.e., the right-hand side of the rule

is a variable. For example, the rewrite step f(g(0; 0); x; g(y; y))! f(0; x; g(y; y))

is destru
tive at level 2.

4.2. DP (Quasi-)Simple Termination

Most methods for �nding well-founded orderings sear
h for total orderings. How-

ever, we 
on
entrate on simpli�
ation orderings or quasi-simpli�
ation orderings

[Dershowitz, 1987, Steinba
h, 1995, Middeldorp and Zantema, 1997℄ be
ause all

TRSs that are totally terminating have been shown to be simply terminating

[Zantema, 1994℄ and be
ause simple termination has a ni
e modular behaviour,

whereas modularity of total termination is still an open problem.

Now we formally de�ne the notion of DP quasi-simple termination whi
h re-

sults from restri
ting ourselves to QSOs when using the dependen
y pair ap-

proa
h (i.e., when using Criterion 3.7). The motivation for this notion is that it


ontains all TRSs where termination 
an be proved automati
ally in the follow-

ing way: First, the 
onstraints des
ribed in Theorem 3.5 are generated using the

estimated dependen
y graph, whi
h 
an be determined me
hani
ally. Then an
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argument �ltering is applied to eliminate arguments of fun
tion symbols (or to

repla
e fun
tions by their arguments) as in Criterion 3.7, and �nally a standard

te
hnique is used to generate a QSO % su
h that a redu
tion pair (%;�) satis�es

the resulting 
onstraints. For example, � 
an be 
hosen to be the stable-stri
t

relation 
orresponding to %.

Definition 4.1 (DP quasi-simple termination): A TRS R over a signa-

ture F is 
alled DP quasi-simply terminating if and only if for ea
h 
y
le P in

the estimated dependen
y graph there exists an argument �ltering �

P

for F

℄

and

a redu
tion pair (%

P

;�

P

) with a QSO %

P

su
h that

(a) �

P

(R[ P) � %

P

and

(b) �

P

(P)\ �

P

6= ;.

De�nition 4.1 
aptures the TRSs for whi
h an automated termination proof

using dependen
y pairs with the estimated dependen
y graph

y

is potentially

feasible (sin
e virtually all quasi-orderings that 
an be generated are QSOs). In

fa
t, there are numerous DP quasi-simply terminating TRSs whi
h are not simply

terminating; 
f. e.g. the 
olle
tion by Arts and Giesl [2001℄. This observation mo-

tivated the development of the dependen
y pair approa
h and it also motivated

the work of the present se
tion, as our aim is to extend well-known modular-

ity results for simple termination to DP quasi-simple termination. For instan
e,

the TRS from Se
tion 3 is obviously DP quasi-simply terminating, be
ause the

resulting 
onstraints are satis�ed by LPO (whi
h is a quasi-simpli�
ation order-

ing). Similarly, for the TRS R

1

= f(10); (11)g from Se
tion 4.1 we obtain the

following dependen
y pairs

F(0; 1; x) ! F(s(x); x; x) (14)

F(x; y; s(z)) ! F(0; 1; z): (15)

Our estimation te
hnique determines that the �rst dependen
y pair (14) 
an

never follow itself in a 
hain, be
ause F(s(x

1

); x

2

; x

3

)� !

�

R

1

F(0; 1; x

4

)� does not

hold for any substitution �. So in our example, the estimated dependen
y graph


ontains an ar
 from (14) to (15) and ar
s from (15) to (14) and to itself. Thus,

the only 
y
les in our example are f(15)g and f(14); (15)g. Hen
e, a

ording to

Theorem 3.5, to prove the absen
e of in�nite 
hains from the 
y
le f(15)g we

have to �nd a redu
tion pair satisfying

f(0; 1; x) % f(s(x); x; x)

f(x; y; s(z)) % s(f(0; 1; z))

F(x; y; s(z)) � F(0; 1; z):

y

Note that the notion of DP quasi-simple termination and therefore also our modularity

results depend on the estimation of the dependen
y graph. Thus, for other approximation

te
hniques one would have to investigate the resulting modularity properties separately.
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By using the argument �ltering that maps f to its third argument, these 
on-

straints are satis�ed by RPO with the pre
eden
e s > 0 and s > 1. Similarly,

(by eliminating the �rst two arguments of F) one 
an also prove the absen
e of

in�nite 
hains from the 
y
le f(14); (15)g. Hen
e, termination of the TRS 
on-

sisting of the rules (10) and (11) is proved and (as RPO is a quasi-simpli�
ation

ordering), it is DP quasi-simply terminating.

In this arti
le, we impose a minor restri
tion on the argument �lterings used,

viz. for all 
y
les P we restri
t ourselves to argument �lterings �

P

su
h that for

all rules s ! t in �

P

(R [ P) both Var(t) � Var(s) and s 62 V. This restri
tion

ensures that the rules �

P

(R[P) from Criterion 3.8 indeed form a term rewrit-

ing system. A

ording to Lemma 2.4, if there is a quasi-simpli�
ation ordering

satisfying the 
onstraints in Criterion 3.7 (i.e., in De�nition 4.1) and if these


onstraints in
lude at least one stri
t inequality with variables in its right-hand

side, then Var(�(r)) � Var(�(l)) is always satis�ed for all l ! r in R [ P. In

other words, the restri
tion is not very severe.

In fa
t, in the proof of modularity of DP quasi-simple termination it is suÆ-


ient to know that for every 
y
le of a DP quasi-simply terminating TRS there

is at least one argument �ltering satisfying the minor restri
tion and a suitable

QSO that prove termination. However, it is an open problem whether for ev-

ery DP quasi-simply terminating TRS su
h an argument �ltering and a suitable

QSO always exist. Nevertheless, even if there were a 
ounterexample, then the

QSO satisfying the 
onstraints must ful�ll s % C[y℄ % y for some term s with

y 62 Var(s) or x % t for a term t 6= x. Clearly, this is impossible for path or-

derings like LPO or RPO. Hen
e, whenever the 
onstraints of De�nition 4.1 are

satis�ed by su
h a path ordering, then the restri
tion on the argument �lterings

is ful�lled anyway. A 
onstraint of the form s % y with y 62 Var(s) 
annot be

satis�ed by polynomial orderings either unless terms are only mapped to �nitely

many di�erent numbers. Thus, the question whether DP quasi-simple termina-

tion would also be modular without the above restri
tion is not so important for

pra
ti
al termination proofs.

A straightforward way to generate a QSO � from a simpli�
ation ordering �

is to de�ne t � u if and only if t � u or t = u, where = is synta
ti
 equality. In

the following, we denote the re
exive 
losure of a relation by underlining, i.e., �

denotes the re
exive 
losure of �. By restri
ting ourselves to this 
lass of QSOs,

we obtain the notion of DP simple termination.

Definition 4.2 (DP simple termination): A TRS R over a signature F is


alled DP simply terminating if and only if for ea
h 
y
le P in the estimated

dependen
y graph there is an argument �ltering �

P

for F

℄

and a simpli�
ation

ordering �

P

su
h that

(a) �

P

(R[ P) � �

P

and

(b) �

P

(P)\ �

P

6= ;.
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Note that whenever there exist argument �lterings and simpli�
ation order-

ings satisfying the 
onstraints (a) and (b) of De�nition 4.2, then the minor

restri
tion on the argument �lterings is satis�ed a

ording to Lemma 2.1. Due

to that lemma, there is the following alternative 
hara
terization for DP simple

termination (whi
h uses Criterion 3.8 instead of Criterion 3.7).

Corollary 4.3 (Alternative Chara
t. of DP simple termination):

A TRS R over a signature F is DP simply terminating if and only if for ea
h


y
le P in the estimated dependen
y graph there is an argument �ltering �

P

for

F

℄

su
h that �

P

(R[ P) is a simply terminating TRS.

For instan
e, both the TRS from Se
tion 3 and R

1

= f(10); (11)g from Se
tion

4.1 are already DP simply terminating, be
ause for their termination proofs

we may use quasi-simpli�
ation orderings in whi
h only synta
ti
ally identi
al

terms are 
onsidered to be equivalent. Moreover, it also turns out that most of

the examples in [Arts and Giesl, 2001℄ are not only DP quasi-simply terminating

but even DP simply terminating. The following lemma illustrates the 
onne
tions

between the di�erent notions.

Lemma 4.4 (Chara
terizing DP (quasi-)simple termination): The fol-

lowing impli
ations hold: simple termination ) DP simple termination ) DP

quasi-simple termination ) termination.

Proof: The se
ond impli
ation holds as� is 
losed under substitutions and there-

fore (�;�) is a redu
tion pair. The last impli
ation follows from Criterion 3.7.

It remains to show the �rst impli
ation. Let R be a simply terminating TRS

over the signature F . IfR is simply terminating, then there exists a simpli�
ation

ordering � su
h that l � r holds for all rules l ! r of R.

Let 
 be the fun
tion whi
h repla
es every tuple symbol f

℄

in a term s 2

T (F

℄

;V) by its 
orresponding fun
tion symbol f 2 F . Then � 
an be extended

to a simpli�
ation ordering �

0

on T (F

℄

;V) by de�ning t �

0

u if and only if


(t) � 
(u) holds. We 
laim that the simpli�
ation ordering �

0

satis�es the


onstraints (a) and (b) of De�nition 4.2 without applying an argument �ltering.

Obviously, l �

0

r holds for all rules l ! r of R. Moreover, for every de-

penden
y pair s! t we have s �

0

t. The reason is that ea
h dependen
y pair

f

℄

(s

1

; : : : ; s

n

)! g

℄

(t

1

; : : : ; t

m

) originates from a rule f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ;

t

m

)℄ in R. Thus, f(: : :) � C[g(: : :)℄ implies f(: : :) � g(: : :) by the subterm prop-

erty whi
h in turn implies f

℄

(: : :) �

0

g

℄

(: : :). Hen
e, �

0

satis�es both 
onstraints

(a) and (b) of De�nition 4.2. 2

The following examples show that none of the 
onverse impli
ations of Lemma

4.4 holds.

Example 4.5: The system ff(f(x)) ! f(
(f(x)))g is DP simply terminating

as the only dependen
y pair on a 
y
le is F(f(x))! F(x). Hen
e, the resulting
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onstraints are satis�ed by RPO if one uses the argument �ltering that maps


(x) to its argument. However, this TRS is not simply terminating. The TRS

f(f(x)) ! f(
(f(x))) g(
(x)) ! x g(
(0)) ! g(d(1))

f(f(x)) ! f(d(f(x))) g(d(x)) ! x g(
(1)) ! g(d(0))

is DP quasi-simply terminating as 
an be proved in a similar way using the

argument �ltering whi
h maps 
 and d to their arguments, and RPO where 0 and

1 are equal in the pre
eden
e. However, it is not DP simply terminating, be
ause

due to the �rst four rules, the argument �ltering must redu
e 
(x) and d(x) to

their arguments. But then g(0) � g(1) and g(1) � g(0) lead to a 
ontradi
tion.

Finally, the system ff(0; 1; x) ! f(x; x; x)g is terminating but not DP quasi-

simply terminating. The reason is that fF(0; 1; x) ! F(x; x; x)g is a 
y
le in

the estimated dependen
y graph, but there is no argument �ltering � and no

redu
tion pair (%;�) with a QSO % that satis�es �(F(0; 1; x)) � �(F(x; x; x)).

One might remark that the de�nition of argument �ltering 
ould be modi�ed

by not only eliminating arguments but by also identifying di�erent fun
tion

symbols. This would 
hange the notion of DP simple termination, but DP simple

termination and DP quasi-simple termination would still not 
oin
ide. To see

this, one 
an repla
e the last two rules in the se
ond system of Example 4.5.

f(f(x)) ! f(
(f(x))) g(
(x)) ! x g(
(h(0))) ! g(d(1))

f(f(x)) ! f(d(f(x))) g(d(x)) ! x g(
(1)) ! g(d(h(0)))

g(h(x)) ! g(x)

The system is still DP quasi-simply terminating as 
an be shown by a polyno-

mial ordering with jh(t)j = jtj + 1, j0j = 0, j1j = 1, jf(t)j = jtj + 1, where all

other fun
tion symbols are mapped to the identity. However, even with the new

de�nition of argument �ltering, the system is still not DP simply terminating.

The reason is that again, the argument �ltering � must map 
 and d to their

arguments. Then the third and fourth g-rule imply �(g(h(0))) = �(g(1)). Sin
e

�(g) 6= [ ℄ due to the �rst g-rule, this implies �(h(0)) = �(1). Due to the depen-

den
y pair G(h(x)) ! G(x), � may neither map h to its argument nor to any


onstant like 1. Hen
e, even with this alternative de�nition of argument �ltering,

these 
onstraints are not satis�able.

4.3. Combining Disjoint Systems

In this se
tion we show that DP quasi-simple termination is modular for disjoint

TRSs. For the proof, we need the following lemma.

Lemma 4.6 (Transforming Redu
tion Sequen
es): Let R

1

and R

2

be

two TRSs over disjoint signatures F

1

and F

2

, respe
tively. Furthermore, let

R = R

1

[ R

2

be their union. If u; v are terms over the signature F

1

su
h that

u!

R

1

v and v� !

�

R

u� hold for a ground substitution � : Var(u)! T (F

1

[F

2

),

then there is also a ground substitution � : Var(u) ! T (F

1

) su
h that u� !

R

1

v� !

�

R

1

[Emb(F

1

)

u� .
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Proof: Clearly, all terms in the 
y
li
 derivation

D : u� !

R

1

v� !

�

R

u�

have the same rank. Sin
e the root symbol of u is in F

1

, the root symbol of

every term in the redu
tion sequen
e D is also in F

1

(redu
tion steps whi
h are

destru
tive at level 1 would de
rease the rank).

Suppose �rst that every fun
tion symbol in F

1

has arity � 1. Then every

redu
tion step in D whi
h is destru
tive at level 2 stri
tly de
reases the rank.

Consequently, there is no redu
tion step of this kind in D. Hen
e

top

1

(u�)!

R

1

top

1

(v�)!

�

R

1

top

1

(u�)

is an R

1

-redu
tion sequen
e of ground terms over F

1

[ f2g. Let Var(u) =

fx

1

; : : : ; x

n

g and re
all Var(v) � Var(u). In this 
ase, we de�ne the substitution

� by � = fx

i

7! top

1

(x

i

�)

0

j 1 � i � ng, where top

1

(t)

0

results from top

1

(t) by

repla
ing all holes 2 by an arbitrary 
onstant from F

1

(note that we restri
ted

ourselves to signatures 
ontaining at least one 
onstant). Then

u� = top

1

(u�)

0

!

R

1

top

1

(v�)

0

= v� !

�

R

1

top

1

(u�)

0

= u�

is the redu
tion sequen
e we are looking for.

Suppose otherwise that there is a fun
tion symbol f in F

1

with arity m > 1.

Let Cons be a binary fun
tion symbol whi
h neither o

urs in F

1

nor in F

2

and

let C

E

= fCons(x

1

; x

2

) ! x

1

;Cons(x

1

; x

2

) ! x

2

g. By [Gramli
h, 1994, Lemma

3.8℄ or [Ohlebus
h, 1994b, Theorem 3.13℄, the redu
tion sequen
e D 
an be

transformed by a transformation fun
tion

z

� into a redu
tion sequen
e

�(u�)!

R

1

�(v�)!

�

R

1

[C

E

�(u�)

of terms over F

1

[ fConsg. The transformation fun
tion � satis�es �(t) =

C[�(t

1

); : : : ;�(t

n

)℄ for every term t with root(t) 2 F

1

and t = C[[t

1

; : : : ; t

n

℄℄,


f. [Ohlebus
h, 1994b℄. In this 
ase, we �rst de�ne �

0

= fx

i

7! �(x

i

�) j 1 � i �

ng and obtain

u�

0

= �(u�)!

R

1

�(v�) = v�

0

!

�

R

1

[C

E

�(u�) = u�

0

:

Let u�

0

= u

0

; u

1

; : : : ; u

k

= u�

0

be the sequen
e of terms o

urring in the

above redu
tion sequen
e. Now in ea
h term u

i

repla
e every Cons(t

1

; t

2

) with

f(t

1

; t

2

; z; : : : ; z), where z is a variable or a 
onstant from F

1

, and denote the

resulting term by 	(u

i

). The de�nition � = fx

i

7! 	(x

i

�

0

) j 1 � i � ng yields

the desired redu
tion sequen
e

u� = 	(u�

0

) = 	(u

0

)!

R

1

	(u

1

) = 	(v�

0

) = v� !

�

R

1

[Emb(F

1

)

	(u

k

) = u�

in whi
h 	(u

i

)!

R

1

[Emb(F

1

)

	(u

i+1

) by the rule f(x

1

; : : : ; x

m

)! x

j

, j 2 f1; 2g,

if u

i

!

R

1

[C

E

u

i+1

by the rule Cons(x

1

; x

2

)! x

j

. 2

z

More pre
isely, � is the transformation �

u�

1

de�ned in [Ohlebus
h, 1994b, De�nition 3.10℄.



Giesl, Arts, Ohlebus
h: Modular Termination Proofs Using Dependen
y Pairs 22

Now we are in a position to prove our modularity theorem for DP quasi-simple

termination.

Theorem 4.7 (Modularity of DP quasi-simple termination): Let R

1

and R

2

be two TRSs over disjoint signatures F

1

and F

2

, respe
tively. Then their

union R = R

1

[ R

2

is DP quasi-simply terminating if and only if both R

1

and

R

2

are DP quasi-simply terminating.

Proof: The only-if dire
tion is trivial. For the if dire
tion, let P be a 
y
le in the

estimated dependen
y graph of R. Sin
e R

1

and R

2

are disjoint, P is a 
y
le in

the estimated dependen
y graph of R

1

or of R

2

. Without loss of generality, let

P be a 
y
le in the estimated dependen
y graph of R

1

.

As R

1

is DP quasi-simply terminating, there is an argument �ltering � for F

℄

1

su
h that the 
onstraints (a) and (b) of De�nition 4.1 are satis�ed for R

1

, P,

and some redu
tion pair (%;�), where % is a QSO. Now let

S

1

= �(R

1

[ P) [ Emb(F

℄

1

�

)

S

2

= R

2

[ Emb(F

2

):

Due to our minor restri
tion on the argument �lterings, S

1

is a TRS over the

signature F

℄

1

�

. Hen
e R

0

= S

1

[S

2

is a TRS over F

℄

1

�

[F

2

. It is 
lear that!

�

R

0

is

a QSO.

x

Note however, that the stri
t part of!

�

R

0

is not ne
essarily 
losed under

substitutions. Instead we prove that the redu
tion pair 
onsisting of!

�

R

0

and its

stable-stri
t relation satis�es the 
onstraints of De�nition 4.1, if � is extended

to F

℄

1

[F

2

by not �ltering any arguments for fun
tion symbols from F

2

. As the


y
le P was 
hosen arbitrarily, to prove DP quasi-simple termination of R, we

only have to show

(a) �(R[ P) � !

�

R

0

and

(b) there exists a dependen
y pair s! t from P su
h that

�(t)� 6!

�

R

0

�(s)� holds for all ground substitutions �.

Condition (a) is obviously satis�ed, sin
e for all l ! r 2 R

2

we have �(l) = l

and �(r) = r and for all l ! r in R

1

[ P either �(l) = �(r) or �(l) ! �(r)

is a rule of S

1

. Hen
e, we only have to show 
onje
ture (b). Sin
e % is the

QSO used for the DP quasi-simple termination proof of R

1

, we have !

�

S

1

� %.

Let s! t be a dependen
y pair from P su
h that �(s) � �(t). Suppose that

there exists a ground substitution � : Var(�(s)) ! T (F

℄

1

�

[ F

2

) su
h that

�(t)� !

�

R

0

�(s)�. By Lemma 4.6, this implies the existen
e of a ground substi-

tution � : Var(�(s)) ! T (F

℄

1

�

) su
h that �(t)� !

�

S

1

�(s)� , sin
e Emb(F

℄

1

�

) �

S

1

. (Here, F

℄

1

�


orresponds to F

1

in Lemma 4.6, �(s) and �(t) 
orrespond to u

and v, respe
tively, and S

1

and S

2


orrespond to R

1

and R

2

in Lemma 4.6.) This

would imply �(t)� % �(s)� . Sin
e � is 
losed under substitutions, we therefore

x

If R is a TRS over the signature F then !

�

R[Emb(F)

is the smallest QSO 
ontaining !

R

(that is, if % is a QSO with !

R

� %, then !

�

R[Emb(F)

� %).
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would have �(s)� � �(t)� % �(s)� � : : : whi
h 
ontradi
ts the well-foundedness

of �. Thus, �(t)� 6!

�

R

0

�(s)� holds for all ground substitutions �. This proves


onje
ture (b). Finally, note that, sin
e �(R[P) is a TRS, the minor restri
tion

on the argument �lterings holds for this �. 2

Thus, if R

1

is the TRS 
onsisting of the rules (10) and (11) and R

2


ontains

the rules (12) and (13), then this theorem allows us to 
on
lude termination of

their 
ombination be
ause both systems are DP quasi-simply terminating. This

example 
annot be handled by any of the previous modularity results. Note

also that in this example, modularity of termination is far from being trivial

be
ause if R

1

's rule f(0; 1; x) ! f(s(x); x; x) would be just slightly 
hanged to

f(0; 1; x) ! f(x; x; x), then R

1

would still be terminating, but the union with

R

2

would not terminate any more, 
f. [Toyama, 1987℄. It is interesting to note

that Theorem 4.7 provides an elegant proof of the fa
t that f(0; 1; x)! f(x; x; x)

is not DP quasi-simply terminating be
ause R

2

is DP quasi-simply terminating

but its union with f(0; 1; x)! f(x; x; x) is non-terminating.

From the proof it is 
lear that the modularity result of Theorem 4.7 also holds

if in the de�nition of DP quasi-simple termination we �x the ordering �

P

to

be the stable-stri
t relation 
orresponding to the QSO %

P

. In other words, the

termination proof of R

1

[R

2

also su

eeds with redu
tion pairs 
onsisting of a

QSO and its asso
iated stable-stri
t relation.

One should remark that a further extension of the modularity result in Theo-

rem 4.7 beyond the 
lass of DP quasi-simply terminating systems is not straight-

forward. For example, if one would de�ne DP quasi-simple termination by using

the real dependen
y graph instead of the estimated graph, then this notion of

termination would no longer be modular for disjoint systems. The previous sys-

tem would serve as a 
ounterexample, sin
e in the real dependen
y graph of

f(0; 1; x) ! f(x; x; x) there is no 
y
le. Hen
e, it would depend on the rules of

R

2

whether dependen
y pairs of R

1

form a 
y
le. The same problem o

urs

with the re
ent te
hnique of [Middeldorp, 2001℄ where dependen
y graphs are

approximated using tree automata te
hniques.

DP quasi-simply terminating systems o

ur frequently in pra
ti
e. Consider

the following two TRSs where nil denotes the empty list and x : l represents

the insertion of a number x into a list l. Here sum(l) 
omputes a singleton list


ontaining the sum of all elements in the list l.

R

1

: x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x� y; s(y)))

R

2

: app(nil; k) ! k

app(l; nil) ! l

app(x : l; k) ! x : app(l; k)

sum(x : nil) ! x : nil

sum(x : (y : l)) ! sum((x+ y) : l)

sum(app(l; x : (y : k))) ! sum(app(l; sum(x : (y : k))))
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Both TRSs above are not simply terminating, but they are both DP quasi-simply

terminating, 
f. [Arts and Giesl, 2000℄. Hen
e, Theorem 4.7 now also allows to


on
lude DP quasi-simple termination of their union.

4.4. Combining Constru
tor-Sharing and Composable Systems

It may be a bit surprising that Theorem 4.7 
annot be dire
tly extended to


onstru
tor-sharing TRSs; even if we disallow the use of argument �lterings. In

other words, there are 
onstru
tor-sharing TRSs R

1

and R

2

whi
h are both DP

quasi-simply terminating, but their union R = R

1

[R

2

is not DP quasi-simply

terminating.

Example 4.8: Consider the following TRSs:

R

1

: f(
(x)) ! f(x)

f(b(x)) ! x

R

2

: g(d(x)) ! g(x)

g(
(x)) ! 
(g(b(
(x))))

R

1

and R

2

are DP quasi-simply terminating. (R

1

is even simply terminating

and R

2

is already DP simply terminating as 
an be shown using the argument

�ltering �(b) = [ ℄ and RPO. Alternatively, DP quasi-simple termination of R

2


an even be shown without any argument �ltering by using a polynomial ordering

whi
h maps 
, b, g, and G to the identity and whi
h maps d(x) to x+1.) However,

the union of R

1

and R

2

is not DP quasi-simply terminating. As F(
(x))! F(x)

represents a 
y
le in the estimated dependen
y graph one would have to �nd a

QSO satisfying

f(
(x)) % f(x) (16)

f(b(x)) % x (17)

g(d(x)) % g(x) (18)

g(
(x)) % 
(g(b(
(x)))) (19)

F(
(x)) � F(x): (20)

Without argument �ltering, no QSO satis�es (16) - (20), sin
e otherwise we

would have

F(
(g(
(x)))) � F(g(
(x))) due to (20)

% F(
(g(b(
(x))))) due to (19)

% F(
(g(
(x)))) due to the subterm property.

By (20), the argument �ltering 
an only map 
 to [1℄, i.e., �(
(x)) = 
(x). If

�(b) = [ ℄ then (17) would be transformed into f(b) % x. But as there exists the

stri
t inequality (20) with a variable in its right-hand side, this results in the


ontradi
tion F(
(f(b))) � F(f(b)) % F(x). Similarly, the argument of g 
annot

be eliminated either, sin
e g % 
(g) would be a 
ontradi
tion to (20).

Thus, the only possible argument �ltering maps b or g to its argument. But then
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we would again obtain F(
(g(
(x)))) � Æ % F(
(g(
(x)))) or F(
(
(x))) � Æ %

F(
(
(x))) as above. Hen
e, the TRS indeed is not DP quasi-simply terminating.

Thus, in order to obtain a modularity result for 
onstru
tor-sharing 
ombina-

tions we have to ex
lude TRSs like R

2

. Note that without applying an argument

�ltering, DP simple termination of the TRS R

2


annot be proved (while DP

quasi-simple termination 
an be shown without using any argument �ltering at

all). Thus, we will impose two restri
tions: (a) In the remainder of the se
tion

we will restri
t ourselves to DP simple termination instead of DP quasi-simple

termination and (b) we have to restri
t ourselves to systems where the argument

�ltering does not eliminate arguments for shared symbols like b.

But we need another requirement to ensure modularity. For example, let us

remove the �rst rule g(d(x)) ! g(x) from R

2

. Now there is no 
y
le in the

estimated dependen
y graph of R

2

any more and hen
e we obtain no 
onstraints

at all forR

2

. Thus, DP simple termination ofR

2


an now even be proved without

using argument �lterings, but the 
ombined systemR

1

[R

2

is still not DP simply

terminating. Here, the problem is due to the fa
t that TRSs without 
y
les are

DP simply terminating, even if there is no simpli�
ation ordering � su
h that

l � r holds for their rules. To ex
lude su
h TRSs we will demand that the


onstraint (a) of De�nition 4.2 (i.e., �(l) � �(r) for all rules) should also be

satis�ed even if there does not exist any 
y
le P. Thus, in the following we also

take the empty 
y
le P into a

ount.

With this additional requirement, DP simple termination is at least modu-

lar for disjoint 
ombinations

{

, whereas without this requirement, Theorem 4.7

would not hold for DP simple termination instead of DP quasi-simple termina-

tion. As a 
ounterexample 
onsider the TRS R

1

with the rule f(s(x)) ! f(x)

and the TRS R

2

with the rules

g(0) ! g(
(0)) g(
(x)) ! x g(
(0)) ! g(d(1))

g(0) ! g(d(0)) g(d(x)) ! x g(
(1)) ! g(d(0)):

R

1

is even simply terminating. R

2

is DP simply terminating, but the reason

is just that there does not exist any 
y
le in its estimated dependen
y graph.

However, when 
ombiningR

1

andR

2

, their union has a 
y
le and hen
e, one now

also has to demand �(l) � �(r) for the rules of R

2

. However, for all argument

�lterings �, this is not ful�lled by any QSO whose equivalen
e relation is just

synta
ti
 equality. So their union is not DP simply terminating, but of 
ourse

due to Theorem 4.7 it is DP quasi-simply terminating.

Nonetheless, the following example shows that this restri
tion is not yet suÆ-


ient for obtaining a modularity result for DP simple termination of 
onstru
tor-

sharing systems.

{

This 
an be proved similar to Theorem 4.7 using the simpli�
ation ordering !

+

R

0

where

instead of 
ondition (b) in this proof one only has to show that �(s) 6= �(t) holds for some

dependen
y pair s! t from P (this follows immediately from DP simple termination of R

1

).
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Example 4.9: Let R

1


onsist of the rules

g(s(x)) ! g(x)

g(s(x)) ! x

g(0) ! g(1)

f(0) ! g(f(s(0)))

and let R

2


onsist of the rule h(1) ! h(0). To prove DP simple termination

of R

1

we have to use an argument �ltering mapping f to [ ℄ and g to 1. This,

however, would imply 0 � 1 whi
h is a 
ontradi
tion to h(1) � h(0). Thus, the


ombination of both systems is not DP simply terminating.

So we also have to ensure that an appli
ation of the argument �ltering to

the resulting inequalities does not transform left-hand sides whi
h had a non-

shared root symbol like g into terms with a shared root symbol (like the former


onstru
tor 0).

k

For that reason we have to demand the following 
ompatibility

requirement for all argument �lterings used, where G must 
ontain all shared

fun
tion symbols.

Definition 4.10 (G-Compatibility): Let R be a TRS over the signature F

and let G be a signature. An argument �ltering � for F is G-
ompatible for R

if and only if

(a) �(f) = [1; : : : ; n℄ for every f 2 F \ G, where n is the arity of f

(i.e., � does not �lter arguments for fun
tion symbols from G).

(b) For every rule l ! r 2 R: if root(l) 62 G, then root(�(l)) 62 G.

The restri
tion to G-
ompatible argument �lterings ensures that symbols from

F \ G are not 
hanged and furthermore 
onstru
tors from F \ G are not turned

into de�ned symbols after appli
ation of the argument �ltering. In the following,

for any TRS R over the signature F let C

�

be the set of 
onstru
tors of �(R),

and let D

�

be the set of de�ned symbols in �(R).

Lemma 4.11 (Properties of G-Compatible Argument Filterings):

Let R be a TRS over the signature F = C [D and let � be an argument �ltering

for F that is G-
ompatible for R. Then the following statements hold:

(i) For every rule l ! r 2 R: if root(l) 2 G, then root(�(l)) = root(l).

(ii) For every rule l ! r 2 R: if root(�(l)) 2 G, then root(�(l)) = root(l).

(iii) G \ D

�

� G \ D.

Proof:

(i) Immediate 
onsequen
e of De�nition 4.10 (a).

(ii) It follows from De�nition 4.10 (b) that root(l) 2 G. Hen
e (ii) is a 
onse-

quen
e of (i).

k

If the argument �ltering is non-
ollapsing (i.e., �(f) 6= i for all de�ned symbols f), then

this requirement is always ful�lled.
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(iii) Follows dire
tly from (ii).

2

The following lemma is 
ru
ial to our modularity result, be
ause it states that

if R

1

and R

2

are 
onstru
tor-sharing, then applying an argument �ltering �

will also result in 
onstru
tor-sharing TRSs �(R

1

) and �(R

2

) provided that �

is 
ompatible with the set of all shared symbols. In fa
t, this result even holds

for 
omposable TRSs instead of 
onstru
tor-sharing ones.

Lemma 4.12 (G-
ompat. Arg. Filterings Maintain Composability):

Let R

1

and R

2

be 
omposable TRSs over the signatures F

1

and F

2

, respe
tively.

If F

1

\ F

2

� G and if � is an argument �ltering for F

1

[F

2

that is G-
ompatible

for R

1

and for R

2

, then �(R

1

) and �(R

2

) are also 
omposable.

Proof: We prove the following 
laims (where (B) and (C) imply that �(R

1

) and

�(R

2

) are 
omposable):

(A) fl ! r 2 �(R

1

) [ �(R

2

) j root(l) 2 D

1

\ D

2

g � �(R

1

) \ �(R

2

)

(B) fl ! r 2 �(R

1

) [ �(R

2

) j root(l) 2 D

1

�

\ D

2

�

g � �(R

1

) \ �(R

2

)

(C) C

1

�

\ D

2

�

= D

1

�

\ C

2

�

= ;

(A) If l ! r 2 �(R

1

) [ �(R

2

), then we have l = �(u) and r = �(v) for some

u ! v 2 R

1

[ R

2

. Note that root(�(u)) 2 D

1

\ D

2

� G implies root(�(u)) =

root(u) by Lemma 4.11 (ii). As root(u) 2 D

1

\ D

2

and as R

1

and R

2

are


omposable, this implies u ! v 2 R

1

\ R

2

. It follows that �(u) ! �(v) 2

�(R

1

) \ �(R

2

) be
ause �(u)! �(v) 2 �(R

1

) [ �(R

2

) implies �(u) 6= �(v).

(B) If f = root(l) 2 D

1

�

\ D

2

�

, then a fun
tion symbol f (with possibly

di�erent arity) o

urs in F

1

\ F

2

� G by the de�nition of argument �lterings.

But then due to De�nition 4.10 (a), f 2 F

1

\ F

2

� G has the same arity as

f 2 D

1

�

\ D

2

�

. Hen
e, f 2 D

1

\ D

2

follows from Lemma 4.11 (iii). Now the


laim is implied by (A).

(C) If there were an f 2 C

1

�

\ D

2

�

, then similar to the argumentation in (B),

we would have f 2 F

1

\ F

2

� G by the de�nition of argument �lterings and

sin
e � is G-
ompatible. This implies f 2 F

1

\ D

2

a

ording to Lemma 4.11

(iii). We know C

1

\ D

2

= ; be
ause R

1

and R

2

are 
omposable. Thus, we have

f 2 D

1

\ D

2

. But sin
e there is a rule l ! r 2 �(R

2

) with root(l) = f , (A)

implies l ! r 2 �(R

1

) and thus, root(l) = f 2 D

1

�

, whi
h is a 
ontradi
tion to

f 2 C

1

�

. The proof of D

1

�

\ C

2

�

= ; is exa
tly the same. 2

The restri
tions needed for the desired modularity result are 
aptured by the

notion of G-restri
ted DP simple termination.

Definition 4.13 (G-restri
ted DP simple termination): A TRS R

over a signature F is 
alled G-restri
ted DP simply terminating if and only
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if for ea
h 
y
le P in the estimated dependen
y graph of R (in
luding the empty

one) there is an argument �ltering �

P

for F

℄

that is G-
ompatible for R[P su
h

that

� �

P

(R[ P) is a simply terminating TRS and

� �

P

(P) 6= ; whenever P 6= ;.

So obviously, G-restri
ted DP simple termination implies DP simple termina-

tion, 
f. Corollary 4.3. The following theorem shows that under this G-restri
tion,

DP simple termination is modular for 
onstru
tor-sharing and even for 
ompos-

able TRSs.

Theorem 4.14 (Modularity of G-restri
ted DP simple terminat.):

Let R

1

and R

2

be 
omposable TRSs over the signatures F

1

and F

2

, respe
tively.

If F

1

\ F

2

� G, then their 
ombined system R = R

1

[ R

2

is G-restri
ted DP

simply terminating if and only if both R

1

and R

2

are G-restri
ted DP simply

terminating.

Proof: The only-if dire
tion is trivial. For the if dire
tion, let P be a 
y
le in the

estimated dependen
y graph of R (where P may also be empty). Then P is also

a 
y
le in the estimated dependen
y graph of R

1

or in the estimated dependen
y

graph of R

2

be
ause R

1

and R

2

are 
omposable. The reason is that dependen
y

pairs of the form f

℄

(: : :) ! g

℄

(: : :) where g 2 F

1

\ F

2

and f 62 F

1

\ F

2

are

not on 
y
les. Thus, the only dependen
y pairs f

℄

(: : :)! g

℄

(: : :) on 
y
les have

f; g 2 F

i

n F

3�i

or f; g 2 F

1

\ F

2

. Without loss of generality let P be a 
y
le in

the estimated dependen
y graph of R

1

. Let S

1

= R

1

[P and let S

2

= R

2

. Note

that S

1

and S

2

are 
omposable, sin
e the root symbols in the new rules P are

tuple symbols whi
h therefore do not o

ur in R

2

. We have to show that there

is an argument �ltering � for F

℄

1

[F

2

that is G-
ompatible for S = S

1

[S

2

su
h

that �(S) is simply terminating and su
h that �(P) 6= ; if P 6= ;.

Sin
e R

1

and R

2

are G-restri
ted DP simply terminating, there are argument

�lterings �

1

and �

2

su
h that �

i

is G-
ompatible with S

i

and su
h that �

i

(S

i

)

is simply terminating (for both i 2 f1; 2g). For i = 2 this is be
ause we also

regard the empty 
y
le in De�nition 4.13. Moreover, �

1

(P) 6= ; if P 6= ;. Let

� operate like �

1

on F

1

and like �

2

on F

2

. (This is well de�ned, sin
e �

1

and

�

2

do not modify fun
tion symbols from F

1

\ F

2

� G.) Clearly, �(P) = �

1

(P)

and thus, �(P) 6= ; if P 6= ;. Moreover, obviously � is G-
ompatible for both

S

1

and S

2

and hen
e, also for S. Then by Lemma 4.12, �(S

1

) and �(S

2

) are


omposable, sin
e S

1

and S

2

are 
omposable as well. Thus, by [Ohlebus
h, 1995,

Theorem 5.16℄, the 
ombined system �(S

1

) [ �(S

2

) = �(S

1

[ S

2

) is also simply

terminating. This implies G-restri
ted DP simple termination of R

1

[R

2

. 2

For example, let us extend both TRSs R

1

and R

2

from the end of Se
tion 4.3

by the additional rules

0+ y ! y

s(x) + y ! s(x+ y)
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and moreover, we also add the rule (x � y) � z ! x � (y + z) to R

1

. Now the

resulting TRSs are 
omposable, sin
e they both 
ontain the same 
onstru
tors

0 and s and they also share the de�ned symbol +, but both TRSs 
ontain the

same +-rules. As both TRSs are f0; s;+g-restri
ted DP simply terminating,

Theorem 4.14 allows us to 
on
lude f0; s;+g-restri
ted DP simple termination

of the 
ombined system.

There are even TRSs R

1

[ R

2

where DP simple termination of both R

1

and

R

2


an be proved with a standard te
hnique like LPO, whereas su
h standard

orderings fail if one wants to prove DP simple termination of their union dire
tly.

Hen
e, for su
h examples our result enables automati
 termination proofs whi
h

were not possible before.

Example 4.15: Let R

1

be the TRS

f(
(s(x); y)) ! f(
(x; s(y)))

f(f(x)) ! f(d(f(x)))

f(x) ! x

and let R

2


onsist of the rule g(
(x; s(y)))! g(
(s(x); y)).

R

1

is DP simply terminating (using the argument �ltering �(d) = [ ℄ and LPO


omparing subterms left-to-right), but it is not simply terminating. R

2

is even

simply terminating as 
an be shown with LPO 
omparing subterms right-to-left.

Thus, DP simple termination of both systems 
an be veri�ed by LPO.

By Theorem 4.14 their union is also DP simply terminating. However, the


onstraints for the 
y
le fG(
(x; s(y)))! G(
(s(x); y))g are not satis�ed by LPO

(nor by RPO nor by any polynomial ordering). Thus, there are indeed TRSs

where termination of the subsystems 
an be shown with dependen
y pairs and

LPO, but (without our modularity result) termination of their union 
annot be

proved with dependen
y pairs and LPO.

5. Modular Innermost Termination Proofs With Depen-

den
y Pairs

Arts and Giesl [2000℄ showed that the dependen
y pair approa
h 
an be mod-

i�ed in order to verify innermost termination. Unlike previous methods, this

te
hnique 
an even prove innermost termination of non-terminating systems au-

tomati
ally. Similar to the modular approa
h for termination in Se
tion 3, this

te
hnique for innermost termination proofs 
an also be used in a modular way.

As an example 
onsider the following TRS:

f(x; 
(x); 
(y)) ! f(y; y; f(y; x; y))

f(s(x); y; z) ! f(x; s(
(y)); 
(z))

f(
(x); x; y) ! 
(y)

g(x; y) ! x

g(x; y) ! y

By applying the �rst f-rule to f(x; 
(x); 
(g(x; 
(x)))), we obtain an in�nite (
y-


ling) redu
tion. However, it is not an innermost redu
tion, be
ause this term
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ontains a redex g(: : :) as a proper subterm. It turns out that the TRS is not

terminating, but it is innermost terminating.

To develop a 
riterion for innermost termination similar to the termination


riterion of Se
tion 3, the notion of 
hains has to be restri
ted. A sequen
e of

dependen
y pairs s

1

! t

1

, s

2

! t

2

, : : : is an innermost R-
hain if there exists a

substitution � su
h that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for

every two 
onse
utive pairs s

j

! t

j

and s

j+1

! t

j+1

in the sequen
e. Here, `

i

!'

denotes innermost redu
tions.

Of 
ourse, every innermost 
hain is also a 
hain, but not vi
e versa. In our

example, we have the following dependen
y pairs.

F(x; 
(x); 
(y)) ! F(y; y; f(y; x; y)) (21)

F(x; 
(x); 
(y)) ! F(y; x; y) (22)

F(s(x); y; z) ! F(x; s(
(y)); 
(z)) (23)

The in�nite sequen
e 
onsisting of the dependen
y pair (21) is an in�nite


hain, but no innermost 
hain, be
ause F(y

1

; y

1

; f(y

1

; x

1

; y

1

))� 
an only redu
e

to F(x

2

; 
(x

2

); 
(y

2

))� for substitutions � where y

1

� is not a normal form. Arts

and Giesl [2000℄ proved that the absen
e of in�nite innermost 
hains is a suÆ
ient

and ne
essary 
riterion for innermost termination.

Theorem 5.1 (Innermost Termination Criterion): A TRS R is inner-

most terminating if and only if there exists no in�nite innermost R-
hain.

Analogous to Se
tion 3, the notion of a graph is de�ned for innermost 
hains.

Definition 5.2 (Innermost dependen
y graph): The innermost depen-

den
y graph of a TRS R is the dire
ted graph whose nodes are the dependen
y

pairs and there is an ar
 from s! t to v ! w i� s! t, v ! w is an innermost


hain.

For the purpose of automation we again need an estimation, sin
e in general it

is unde
idable whether two dependen
y pairs form an innermost 
hain. To this

end, we again repla
e subterms in t with de�ned root symbols by new variables

and 
he
k whether this modi�
ation of t uni�es with v, but in 
ontrast to Se
tion

3 we do not rename multiple o

urren
es of the same variable.

Definition 5.3 (Estimated Innermost Dependen
y Graph): The esti-

mated innermost dependen
y graph of a TRS R is the dire
ted graph whose

nodes are the dependen
y pairs and there is an ar
 from s! t to v ! w i�


ap(t) and v are uni�able by a most general uni�er � su
h that s� and v� are

normal forms.

In the estimated innermost dependen
y graph of our example, there are ar
s

from (22) to ea
h dependen
y pair, from (21) to (23), and from (23) to itself.
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However, there is no ar
 from (21) to itself, be
ause 
ap(F(y

1

; y

1

; f(y

1

; x

1

; y

1

))) =

F(y

1

; y

1

; z) does not unify with F(x

2

; 
(x

2

); 
(y

2

)). Hen
e, the only 
y
les are

f(22)g and f(23)g. In fa
t, in this example the estimated innermost dependen
y

graph 
oin
ides with the (real) innermost dependen
y graph. Similar to Theorem

3.3 one 
an show that it suÆ
es to prove the absen
e of in�nite innermost 
hains

separately for every 
y
le.

Theorem 5.4 (Modular Innermost Termination Criterion): A TRS

R is innermost terminating if and only if for ea
h 
y
le P in the innermost

dependen
y graph there is no in�nite innermost R-
hain of dependen
y pairs

from P.

Proof: The proof is absolutely analogous to the proof of Theorem 3.3: If R is not

innermost terminating, then by Theorem 5.1 there exists an in�nite innermost


hain and its tail 
orresponds to a 
y
le in the innermost dependen
y graph. 2

To prove innermost termination in a modular way, we again generate a set of

inequalities for every 
y
le P and sear
h for a redu
tion pair (%

P

;�

P

) satisfying

them. However, to ensure t� %

P

v� whenever t� redu
es to v�, now it is suÆ
ient

to require l %

P

r only for those rules that are usable in a redu
tion of t� (for

normal substitutions �).

Definition 5.5 (Usable Rules): Let R be a TRS. For any symbol f let

Rules

R

(f) = fl! r 2 R j root(l) = fg. For any term we de�ne the usable

rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rules

R

(f) [

S

l!r2Rules

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

where R

0

= R n Rules

R

(f). Moreover, for any set P of dependen
y pairs we

de�ne U

R

(P) =

S

s!t2P

U

R

(t).

So we have U

R

(F(y; y; f(y; x; y))) = Rules

R

(f) and U

R

(f(22)g) = U

R

(f(23)g) =

;, i.e., there are no usable rules for the 
y
les. Note that Rules

R

(f) = ; for

any 
onstru
tor f . Now our theorem for automati


��

modular veri�
ation of

innermost termination 
an be proved analogously to Theorem 3.5.

Theorem 5.6 (Modular Innermost Termination Proofs): A TRS R

is innermost terminating if for ea
h 
y
le P in the (estimated) innermost de-

penden
y graph there is a redu
tion pair (%

P

;�

P

) su
h that

(a) U

R

(P) [ P � %

P

and

(b) P \ �

P

6= ;.

��

Detailed explanations and additional re�nements for the automated 
he
king of the inner-

most termination 
riterion 
an be found in [Arts and Giesl, 2000, Giesl and Arts, 2001℄.
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Proof: An in�nite innermost 
hain of dependen
y pairs from some 
y
le P gives

rise to an in�nite sequen
e of inequalities in 
ontradi
tion to the well-foundedness

of �

P

(similar to the proof of Theorem 3.5). The only di�eren
e is that now � is

a substitution with normal forms and therefore the redu
tions w

i;j

�

i

!

�

R

v

i;j+1

�,

w

i;n

i

�

i

!

�

R

s�

i

�, and t�

i

�

i

!

�

R

v

i+1;1

� only require usable rules from U

R

(P). 2

In this way, we obtain the following 
onstraints for our example:

F(x; 
(x); 
(y)) �

1

F(y; x; y) F(s(x); y; z) �

2

F(x; s(
(y)); 
(z)):

For �

1

we may use LPO 
omparing subterms right-to-left and for �

2

we may

use LPO 
omparing subterms left-to-right. Hen
e, innermost termination of this

example 
an easily be proved automati
ally. Without our modularity result, the

above innermost termination proof would not be possible, be
ause there exists

no simpli�
ation ordering satisfying both inequalities (not even after argument

�ltering).

Note that unlike Theorem 3.5, the reverse dire
tion of Theorem 5.6 does not

hold, i.e., this 
riterion is only suÆ
ient, but not ne
essary for innermost termi-

nation. As an example regard the TRS R with the rules

f(a(x); y) ! g(x; y) (24)

g(x; y) ! h(x; y) (25)

h(0; y) ! f(y; y) (26)

a(0) ! 0: (27)

The only 
y
le of its innermost dependen
y graph is fF(a(x); y)! G(x; y);G(x; y)

! H(x; y);H(0; y)! F(y; y)g. In fa
t, this TRS is innermost terminating. How-

ever, the 
onstraints of Theorem 5.6 imply

F(a(0); a(0)) % G(0; a(0)) % H(0; a(0)) % F(a(0); a(0));

where one of these inequalities must also hold for the stri
t ordering �. Thus,

they are not satis�ed by any redu
tion pair.

Of 
ourse, Criteria 3.7 and 3.8 
an also be modi�ed into suÆ
ient 
riteria for

innermost termination proofs as follows.

Criterion 5.7 (Modular Automated Innermost Termination Crit.):

A TRS R over a signature F is innermost terminating if for ea
h 
y
le P in

the (estimated) innermost dependen
y graph there is an argument �ltering �

P

for F

℄

and a redu
tion pair (%

P

;�

P

) su
h that

(a) �

P

(U

R

(P) [ P) � %

P

and

(b) �

P

(P)\ �

P

6= ;.

Criterion 5.8 (Innermost Termination Crit. by Transformation):

A TRS R over a signature F is innermost terminating if for ea
h 
y
le P in

the (estimated) innermost dependen
y graph there is an argument �ltering �

P

for F

℄

su
h that �

P

(U

R

(P)[P) is a terminating TRS and su
h that �

P

(P) 6= ;.



Giesl, Arts, Ohlebus
h: Modular Termination Proofs Using Dependen
y Pairs 33

6. Modularity Results for Innermost Termination

In Se
tion 6.1 we introdu
e modularity 
riteria whi
h 
an be derived from the

results of the previous se
tion. Se
tion 6.2 
ompares these 
riteria with related

work.

6.1. Modularity Criteria

In this se
tion we present two 
orollaries of our results from Se
tion 5 whi
h are

parti
ularly useful in pra
ti
e.

6.1.1. Hierar
hi
al Combinations

A straightforward 
orollary of Theorems 5.4 and 5.6 
an be obtained for hierar-


hi
al 
ombinations. As an example 
onsider the following TRS. Here, `n : m : x'

abbreviates `n : (m : x)'. The fun
tion add(x; y) adds all elements of the

list x to the �rst element of the list y, i.e., add(n

0

: n

1

: : : : : n

k

: nil;m :

y) = (m +

P

k

i=0

n

i

) : y. The fun
tion weight 
omputes the weighted sum, i.e.,

weight(n

0

: n

1

: : : : : n

k

: nil) = n

0

+

P

k

i=1

i � n

i

.

add(s(n) : x;m : y) ! add(n : x; s(m) : y)

add(0 : x; y) ! add(x; y)

add(nil; y) ! y

weight(n : m : x) ! weight(add(n : m : x; 0 : x))

weight(n : nil) ! n

Let R

1


onsist of the three add-rules and let R

2

be the system 
onsisting of

the two weight-rules. Then these two systems form a hierar
hi
al 
ombination,

where add is a de�ned symbol of R

1

and a 
onstru
tor of R

2

.

Note that tuple symbols from dependen
y pairs ofR

1

do not o

ur in left-hand

sides of R

2

-dependen
y pairs. Hen
e, a 
y
le in the innermost dependen
y graph

either 
onsists of R

1

-dependen
y pairs or of R

2

-dependen
y pairs only. So in

our example, every 
y
le either 
ontains just ADD- or just WEIGHT-dependen
y

pairs. Thus, we obtain the following 
orollary.

yy

Corollary 6.1 (Innermost Term. for Hierar
hi
al Combinations):

Let R be the hierar
hi
al 
ombination of R

1

and R

2

.

(a) R is innermost terminating if and only if R

1

is innermost terminating and

there exists no in�nite innermost R-
hain of R

2

-dependen
y pairs.

(b) R is innermost terminating if R

1

is innermost terminating and if there

exists an argument �ltering � and a redu
tion pair (%;�) su
h that for all

dependen
y pairs s! t of R

2

yy

Of 
ourse, an obvious re�nement of Corollary 6.1 (b) is to regard the di�erent 
y
les of

R

2

-dependen
y pairs in R's (estimated) innermost dependen
y graph separately. Moreover, a

variant of Corollary 6.1 also holds for C

E

-termination instead of innermost termination [Urbain,

2001℄.
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� �(l) % �(r) for all rules l! r in U

R

(t) and

� �(s) � �(t).

Proof: The 
orollary is a dire
t 
onsequen
e of Theorems 5.4 and 5.6, sin
e

every 
y
le 
onsists of R

1

- or of R

2

-dependen
y pairs only and sin
e for any

dependen
y pair s! t of R

1

the only rules that 
an be used to redu
e a normal

instantiation of t are the rules from R

1

(i.e., U

R

(t) � R

1

). 2

(Innermost) termination of the add-system (R

1

) is easily proved (e.g., by LPO

with the pre
eden
e add > : and add > s). For the weight-subsystem (R

2

) we

obtain the following 
onstraints. (Note that WEIGHT(: : :)! ADD(: : :) is no de-

penden
y pair of R

2

, sin
e add 62 D

2

.)

�(add(s(n) : x;m : y)) % �(add(n : x; s(m) : y))

�(add(0 : x; y)) % �(add(x; y))

�(add(nil; y)) % �(y)

�(WEIGHT(n : m : x)) � �(WEIGHT(add(n : m : x; 0 : x)))

By 
hoosing the argument �ltering �(add) = �(:) = [2℄, the inequalities are also

satis�ed by LPO, but now we have to use the pre
eden
e :> add.

In this way, innermost termination of this non-simply terminating example 
an

be proved automati
ally. Moreover, as the system is non-overlapping, this also

proves its termination. A 
riterion like Corollary 6.1 
an also be formulated for

termination instead of innermost termination, be
ause in the termination 
ase

there 
annot be a 
y
le 
onsisting of dependen
y pairs from both R

1

and R

2

either. But in 
ontrast to the innermost termination 
ase, rules ofR

2


an be used

to redu
e instantiated right-hand sides of R

1

-dependen
y pairs (as we 
annot

restri
t ourselves to normal substitutions then). Hen
e, to prove the absen
e of

in�nite R

1

-
hains we have to use a quasi-ordering where the rules of R

2

are also

weakly de
reasing. Therefore, the 
onstraints for the termination proof of the add

and weight-example (a

ording to Se
tion 3) are not satis�ed by any redu
tion

pair with a quasi-simpli�
ation ordering amenable to automation [Arts and Giesl,

2001℄, whereas the 
onstraints for innermost termination are ful�lled by su
h an

ordering. Hen
e, for non-overlapping systems, it is always advantageous to verify

termination by proving innermost termination only.

6.1.2. Splitting into Subsystems

The modularity results for innermost termination presented so far were all used

in the 
ontext of dependen
y pairs. However as already mentioned, the 
lassi
al

approa
h to modularity is to split a TRS into subsystems and to prove their (in-

nermost) termination separately. The following 
orollary of Theorem 5.4 shows

that the 
onsideration of 
y
les in the innermost dependen
y graph 
an also be

used to de
ompose a TRS into modular subsystems. (Similarly, the 
y
les of the
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estimated innermost dependen
y graph may be used as well for this de
omposi-

tion.)

In the following, let O(P) denote the origin of the dependen
y pairs in P, i.e.,

O(P) is a set of those rules where the dependen
y pairs of P stem from. If a

dependen
y pair of P may stem from several rules, then it is suÆ
ient if O(P)

just 
ontains one of them. So for the example of Se
tion 5 we have O(f(22)g) =

ff(x; 
(x); 
(y))! f(y; y; f(y; x; y))g andO(f(23)g) = ff(s(x); y; z)! f(x; s(
(y));


(z))g.

Corollary 6.2 (Modularity for Subsystems): Let R be a TRS, let P

1

;

: : : ;P

n

be the 
y
les in its (estimated) innermost dependen
y graph, and let R

j

be subsystems of R su
h that U

R

(P

j

) [ O(P

j

) � R

j

(for all j 2 f1; : : :; ng).

If R

1

; : : : ;R

n

are innermost terminating, then R is also innermost terminating.

Proof: As P

j

is a 
y
le, every dependen
y pair from P

j

is anR

j

-dependen
y pair.

(In order to see this, let f

℄

(~s)! g

℄

(

~

t) be an R-dependen
y pair in P

j

. Here, ~s

and

~

t denote tuples of terms s

1

; : : : ; s

n

and t

1

; : : : ; t

m

, respe
tively. Clearly, g is

a de�ned symbol of R

j

be
ause there is also a dependen
y pair g

℄

(~v)! h

℄

(~w)

in P

j

. Hen
e, sin
e g is a de�ned symbol of R

j

, f

℄

(~s)! g

℄

(

~

t) is also an R

j

-

dependen
y pair.) Thus, every innermost R-
hain of dependen
y pairs from P

j

is also an innermost R

j

-
hain. Now the 
orollary is a dire
t 
onsequen
e of

Theorem 5.4. 2

For instan
e, in the example of Se
tion 5 we only have two 
y
les, viz. f(22)g

and f(23)g. As these dependen
y pairs have no de�ned symbols in their right-

hand sides, their sets of usable rules are empty. Hen
e, to prove innermost ter-

mination of the whole system, by Corollary 6.2 it suÆ
es to prove innermost ter-

mination of the two one-rule subsystems f(x; 
(x); 
(y))! f(y; y; f(y; x; y)) and

f(s(x); y; z)! f(x; s(
(y)); 
(z)).

In fa
t, both subsystems are even terminating as 
an easily be proved auto-

mati
ally. For the �rst system one 
an use a polynomial interpretation mapping

f(x; y; z) to x + y + z and 
(x) to 5x+ 1 [Lankford, 1979℄. Methods for the au-

tomated generation of polynomial orderings have for instan
e been developed in

[Steinba
h, 1994, Giesl, 1995℄. For the se
ond system one 
an use LPO with the

pre
eden
e f > s and f > 
.

Hen
e, the modularity 
riterion of Corollary 6.2 allows the use of well-known

simpli�
ation orderings for innermost termination proofs of non-terminating sys-

tems, be
ause it guarantees that innermost termination of the two simply ter-

minating subsystems is suÆ
ient for innermost termination of the original TRS.

A similar splitting is also possible for the example in Se
tion 3. Even better,

if we modify the TRS into a non-overlapping one

f(x; 
(y)) ! f(x; s(f(y; y)))

f(s(x); s(y)) ! f(x; s(
(s(y))));
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then Corollary 6.2 allows to 
on
lude termination of the whole system from ter-

mination of the two one-rule subsystems. Innermost termination of the original

example resp. termination of the above modi�ed example 
an be proved by LPO,

but for the �rst rule one needs the pre
eden
e 
 > s and 
 > f, whereas for the

se
ond rule the pre
eden
e f > s and f > 
 is required.

Note that the reverse dire
tion of the 
orollary does not hold. Consider the

TRS (24) - (27) from the end of Se
tion 5 again. The only 
y
le of its innermost

dependen
y graph is fF(a(x); y)! G(x; y);G(x; y)! H(x; y);H(0; y)! F(y; y)g.

Sin
e this 
y
le does not have any usable rules, Corollary 6.2 states that inner-

most termination of the subsystem 
onsisting of the �rst three rules is suÆ
ient

for innermost termination of the whole TRS. However, the 
onverse does not

hold, sin
e the whole system is innermost terminating, whereas the subsystem


onsisting of the �rst three rules is not. (The term f(a(0); a(0)) starts an in�nite

innermost redu
tion.)

6.2. Comparison with Related Work

Now we show that in the 
ase of �nite TRSs, existing modularity results for in-

nermost termination are obtained as easy 
onsequen
es of our 
riteria and that

our 
riteria extend previously developed results. Se
tion 6.2.1 fo
uses on 
om-

posable TRSs and Se
tion 6.2.2 gives a 
omparison with results on hierar
hi
al


ombinations.

6.2.1. Shared Constru
tors and Composable Rewrite Systems

By the framework of the previous se
tions we 
an easily prove that innermost

termination is modular for 
omposable TRSs [Ohlebus
h, 1995℄ and hen
e also

for TRSs with disjoint sets of de�ned symbols and shared 
onstru
tors [Gram-

li
h, 1995℄. In fa
t, Corollary 6.2 immediately implies

zz

the following result of

Ohlebus
h [1995℄.

Theorem 6.3 (Modularity for Composable TRSs): Let R

1

and R

2

be


omposable TRSs. If R

1

and R

2

are innermost terminating, then R

1

[R

2

is also

innermost terminating.

Proof: Let f

℄

(~s)! g

℄

(

~

t) be a dependen
y pair of R

1

[R

2

. If f 2 D

1

, then there

exists a rule f(~s)!C[g(

~

t)℄ in R

1

. (This rule 
annot be from R

2

n R

1

, be
ause

R

1

and R

2

are 
omposable.) Hen
e, g 2 D

1

, be
ause 
onstru
tors of R

1

are not

de�ned symbols of R

2

. Similarly, f 2 D

2

implies g 2 D

2

. So any dependen
y

pair of R

1

[R

2

is an R

1

-dependen
y pair or an R

2

-dependen
y pair.

Moreover, there 
an only be an ar
 from f

℄

(~s)! g

℄

(

~

t) to a dependen
y pair

of the form g

℄

(~v)! h

℄

(~w). Hen
e, if f

℄

(~s)! g

℄

(

~

t) is an R

j

-dependen
y pair,

then g 2 D

j

and therefore, g

℄

(~v)! h

℄

(~w) is also an R

j

-dependen
y pair (for

zz

A dire
t proof of Theorem 6.3 is not too diÆ
ult either, but our alternative proof serves

to illustrate the 
onne
tions between our 
riteria and existing modularity results.
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j 2 f1; 2g). So every 
y
le P in the innermost dependen
y graph of R

1

[ R

2

either 
onsists of R

1

-dependen
y pairs or of R

2

-dependen
y pairs only.

If a 
y
le P only 
ontains R

1

-dependen
y pairs, then R

1

is a superset of

U

R

1

[R

2

(P)[O(P), as the de�ned symbols ofR

2

nR

1

do not o

ur as 
onstru
tors

in R

1

. Similarly, for a 
y
le P of R

2

-dependen
y pairs, we have U

R

1

[R

2

(P) [

O(P) � R

2

. Hen
e by Corollary 6.2, R

1

[ R

2

is innermost terminating if R

1

and R

2

are innermost terminating. 2

Note that our results extend modularity to a mu
h larger 
lass of TRSs, e.g.,

they also allow a splitting into non-
omposable subsystems whi
h share de�ned

symbols as demonstrated in Se
tion 6.1.2.

6.2.2. Proper Extensions

Krishna Rao [1995℄ proved that innermost termination is modular for (general-

ized) proper extensions whi
h are a 
ertain kind of hierar
hi
al 
ombinations. In

this se
tion we show that for �nite TRSs this is also a dire
t 
onsequen
e of our

results.

For a TRS R, the dependen
y relation �

d

is the smallest quasi-ordering satis-

fying the 
ondition f �

d

g whenever there is a rewrite rule f(: : :)!C[g(: : :)℄ 2 R

with g 2 D. So f �

d

g holds if the fun
tion f depends on the de�nition of g.

LetR

1

andR

2

form a hierar
hi
al 
ombination. Now the de�ned symbolsD

2

of

R

2

are split in two sets D

1

2

and D

2

2

, where D

1

2


ontains all de�ned symbols whi
h

depend on a de�ned symbol ofR

1

, i.e.,D

1

2

= ff jf 2 D

2

; f �

d

g for some g 2 D

1

g

andD

2

2

= D

2

nD

1

2

.R

2

is a proper extension ofR

1

if every rule l ! r 2 R

2

satis�es

the following 
ondition: Whenever t is a subterm of r su
h that root(t) 2 D

1

2

and root(t) �

d

root(l), then t 
ontains no fun
tion symbol depending on D

1

(i.e.,

from D

1

[ D

1

2

) ex
ept at its root.

For instan
e, in the add and weight-example from Se
tion 6.1.1 we have D

1

=

faddg, D

1

2

= fweightg (be
ause weight depends on the de�nition of add), and

D

2

2

= ;. This example is not a proper extension, be
ause there is a weight-rule in

whi
h the D

1

-symbol add o

urs below the D

1

2

-symbol weight. Thus, in a proper

extension fun
tions depending on R

1

are never 
alled within a re
ursive 
all of

R

2

-fun
tions. As an example for a proper extension 
onsider the TRSs R

1

and

R

2

from the end of Se
tion 4.3 again, where R

2

is extended by the rule

avg(l) ! quot(hd(sum(l)); length(l)):

Here, avg(l) 
omputes the average of all elements in the list l. We have D

1

2

=

favgg, whereas all other symbols of D

2

belong to D

2

2

. Sin
e avg does not o

ur

in a right-hand side, this modi�ed TRS R

2

is a proper extension of R

1

. The

modi�ed TRS R

2

is still DP simply terminating (sin
e the avg-rule does not

give rise to additional dependen
y pairs). In fa
t, its innermost termination also

follows dire
tly from Corollary 6.1 (b), sin
e the original TRS R

2

and the avg-

rule form a hierar
hi
al 
ombination. Corollaries 6.1 and 6.2 imply the following
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result of [Krishna Rao, 1995℄ whi
h in turn ensures that the union of R

1

and the

extended system R

2

in our example is innermost terminating.

Theorem 6.4 (Modularity for Proper Extensions): LetR

2

be a proper

extension of R

1

. The TRS R

1

[R

2

is innermost terminating if R

1

and R

2

are

innermost terminating.

Proof: As in the proof of Corollary 6.1, sin
e R

1

and R

2

form a hierar
hi
al


ombination, every 
y
le in the innermost dependen
y graph of R

1

[R

2


onsists

solely of R

1

-dependen
y pairs or of R

2

-dependen
y pairs. If a 
y
le P 
onsists of

dependen
y pairs of R

1

, we have U

R

1

[R

2

(P)[O(P) � R

1

, be
ause dependen
y

pairs of R

1

do not 
ontain any de�ned symbols of R

2

.

Otherwise, the 
y
le P 
onsists of R

2

-dependen
y pairs. If f

℄

(~s)! g

℄

(

~

t) is

an R

2

-dependen
y pair in P, then there exists a rule f(~s)!C[g(

~

t)℄ in R

2

and

f; g 2 D

2

. In addition, we have f �

d

g and g �

d

f (as P is a 
y
le).

If g 2 D

2

2

, then f also belongs to D

2

2

, hen
e no de�ned symbol of D

1

[ D

1

2

o

urs in

~

t. Otherwise, if g 2 D

1

2

, then by de�nition of a proper extension again

all de�ned symbols in

~

t are from D

2

2

. Thus, in both 
ases, all de�ned symbols of

U

R

1

[R

2

(g

℄

(

~

t)) belong to D

2

2

. Hen
e, U

R

1

[R

2

(g

℄

(

~

t)) is a subsystem of R

2

.

So for any 
y
le P of R

2

-dependen
y pairs, we have U

R

1

[R

2

(P)[O(P) � R

2

.

Hen
e, by Corollary 6.2 innermost termination of R

1

and R

2

implies innermost

termination of R

1

[R

2

. 2

As another example regard the system R

0


onsisting of the following three

rules.

hd(x : l) ! x

length(nil) ! 0

length(x : l) ! s(length(l))

The TRS R

1

[ R

2

(in
luding the avg-rule) is a proper extension of R

0

and

therefore, Theorem 6.4 also implies innermost termination of R

0

[R

1

[R

2

.

The notions of \
omposability" and \proper extension" 
an be 
ombined as

follows. Suppose we are given two TRSs R

1

and R

2

su
h that D

1

= D

0

1

℄ D

0

,

D

2

= D

0

2

℄D

0

, R

1

\R

2

= fl ! r 2 R j root(l) 2 D

0

g, and D

0

1

\D

0

2

= C

1

\D

0

2

= ;.

Now D

2

is split in two sets D

1

2

and D

2

2

, where D

1

2

= ff jf 2 D

2

; f �

d

g for some g 2 D

0

1

g and D

2

2

= D

2

n D

1

2

. R

2

is a generalized proper extension

[Krishna Rao, 1995℄ of R

1

if every rewrite rule l ! r 2 R

2

satis�es the follow-

ing 
ondition: Whenever t is a subterm of r su
h that root(t) 2 D

1

2

n D

0

and

root(t) �

d

root(l), then t 
ontains no fun
tion symbol depending on D

0

1

(i.e.,

from D

0

1

[ D

1

2

) ex
ept at its root.

As an example, we again regard the TRSs R

1

and R

2

from the end of Se
tion

4.3, whereR

2

also 
ontains the rule for avg,R

1

also 
ontains the rule (x�y)�z !
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x�(y+z), and both R

1

and R

2

are augmented by the additional rules 0+y ! y

and s(x) + y ! s(x+ y), 
f. Se
tion 4.4.

R

1

: x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x� y; s(y)))

0+ y ! y

s(x) + y ! s(x+ y)

(x� y)� z ! x� (y + z)

R

2

: app(nil; k) ! k

app(l; nil) ! l

app(x : l; k) ! x : app(l; k)

sum(x : nil) ! x : nil

sum(x : (y : l)) ! sum((x+ y) : l)

sum(app(l; x : (y : k))) ! sum(app(l; sum(x : (y : k))))

avg(l) ! quot(hd(sum(l)); length(l))

0+ y ! y

s(x) + y ! s(x+ y)

Now we have D

0

= f+g, D

0

1

= f�; quotg, D

0

2

= fapp; sum; avgg, where D

1

2

=

favgg andD

2

2

= f+; app; sumg. Thus,R

2

is indeed a generalized proper extension

of R

1

and as both systems are innermost terminating (and even DP simply

terminating), the following theorem allows us to 
on
lude innermost termination

of their union. Moreover, the union of this system with R

0

is again innermost

terminating by Theorem 6.4.

Theorem 6.5 (Modularity for Generalized Proper Extensions):

Let R

2

be a generalized proper extension of R

1

. The TRS R

1

[R

2

is innermost

terminating if R

1

and R

2

are innermost terminating.

Proof: At �rst, we observe the following fa
t: If f

℄

(~s)! g

℄

(

~

t) is a dependen
y

pair with f 2 D

1

, then g 2 D

1

be
ause the rewrite rule f(~s)! C[g(

~

t)℄ o

urs in

R

1

and D

0

2

-symbols are not allowed in R

1

. Moreover, U

R

1

[R

2

(g

℄

(

~

t)) � R

1

, sin
e

all rules for the de�ned symbols in

~

t are (also) 
ontained in R

1

. So for any 
y
le

P of R

1

[ R

2


ontaining a dependen
y pair f

℄

(: : :)! g

℄

(: : :) with f 2 D

1

, we

obtain U

R

1

[R

2

(P) [ O(P) � R

1

.

For all other dependen
y pairs f

℄

(~s)! g

℄

(

~

t) on some 
y
le P we have f 2 D

0

2

.

Hen
e, there is a rule f(~s)! C[g(

~

t)℄ in R

2

. Note that g 2 D

0

2

as well, otherwise

the dependen
y pair f

℄

(: : :)! g

℄

(: : :) would not be on a 
y
le. As in the proof

of Theorem 6.4 we have f �

d

g �

d

f .

If g 2 D

2

2

, then we also have f 2 D

2

2

and thus, no symbol of D

0

1

[D

1

2

o

urs in

~

t.

Similarly, if g 2 D

1

2

then this implies g 2 D

1

2

nD

0

(sin
e g 2 D

0

2

). By the de�nition

of generalized proper extensions,

~

t again 
ontains no symbols of D

0

1

[D

1

2

, i.e., all

de�ned symbols in

~

t are from D

2

2

. Hen
e, we obtain U

R

1

[R

2

(P) [ O(P) � R

2

.

Therefore, innermost termination of R

1

and R

2

implies innermost termination

of R

1

[R

2

by Corollary 6.2. 2

To summarize, we have shown that our results (in parti
ular, Corollary 6.2)
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dire
tly imply several modularity results for innermost termination from the

literature. On the other hand, our modularity results signi�
antly extend the


lass of TRSs where innermost termination 
an be proved in a modular way. In

other words, they 
an handle many systems where all previously known 
riteria

for modularity of innermost termination fail.

For example, we 
an deal with 
ombinations whi
h are neither 
omposable

nor hierar
hi
al 
ombinations (nor generalized proper extensions) as shown in

Se
tion 6.1.2. This is not possible with any of the previous modularity results.

Moreover, in 
ontrast to [Krishna Rao, 1995℄, our results are also appli
able for

hierar
hi
al 
ombinations in whi
h R

2


ontains de�ned symbols of R

1

in the

arguments of its re
ursive 
alls, 
f. the add and weight-example. Su
h systems

o

ur frequently in pra
ti
e.

Another modularity 
riterion for hierar
hi
al 
ombinations is due to Der-

showitz [1994℄. There, o

urren
es of D

1

-symbols in re
ursive 
alls of D

2

-symbols

are allowed, but only if R

2

is oblivious of the R

1

-rules, i.e., termination of R

2

must not depend on the R

1

-rules. However, this 
riterion is not appli
able to

systems like the add and weight-example, be
ause termination of the weight-rules

of 
ourse depends on the result of add(n : m : x; 0 : x).

An alternative modularity result for hierar
hi
al 
ombinations was presented

by Fern�andez and Jouannaud [1995℄. However, their result is restri
ted to sys-

tems where the arguments of re
ursive 
alls in R

2

de
rease w.r.t. the subterm

relation (
ompared as multisets or lexi
ographi
ally). Hen
e, their result is not

appli
able to the add and weight-example either (and also not to most other

systems where R

2

is not simply terminating), whereas our modularity results

are often su

essful in these examples.

7. Con
lusion

In this arti
le we introdu
ed a re�nement of the dependen
y pair approa
h in

order to perform termination and innermost termination proofs in a modular

way. This re�nement allows automated termination and innermost termination

proofs for many TRSs for whi
h su
h proofs were not possible before. For a


olle
tion of su
h examples see [Arts and Giesl, 2001℄.

Using our modular re�nement of the dependen
y pair framework, we developed

several new modularity 
riteria whi
h extend previous results for modularity of

innermost termination. Within this framework, we also obtain easy proofs for

existing modularity theorems.

However, 
riteria for innermost termination are only appli
able for termina-

tion proofs of 
ertain restri
ted TRSs (e.g., lo
ally 
on
uent overlay systems and

in parti
ular, non-overlapping systems [Gramli
h, 1995℄). But in pra
ti
e there

are many 
ases in whi
h innermost termination is not suÆ
ient for termination.

Thus, to fully exploit the advantages of dependen
y pairs for these systems as

well, we showed that the well-known modularity result for simple termination of

disjoint unions 
an be extended to DP quasi-simple termination. Furthermore,



Giesl, Arts, Ohlebus
h: Modular Termination Proofs Using Dependen
y Pairs 41

G-restri
ted DP simple termination is even modular for 
onstru
tor-sharing and


omposable systems.

To 
on
lude, [Arts and Giesl, 2000℄ presented the dependen
y pair te
hnique to

perform automated termination and innermost termination proofs. However, in

that arti
le dependen
y pairs were not used in a modular way and thus one had

to prove termination of a TRS at on
e (i.e., without being able to de
ompose it

into subsystems and to use several di�erent orderings for its termination proof).

In parti
ular, whenever a TRS was 
onstru
ted by 
ombining several systems

whose termination had been proved before, then the whole termination proof

had to be re-done.

Therefore, the present arti
le develops the ideas of [Arts and Giesl, 2000℄

further in a signi�
ant way. The progress in automated termination proving

whi
h was made possible by the development of dependen
y pairs now also has

a 
ounterpart in the area of modularity. With dependen
y pairs one 
an obtain

automated termination proofs of non-simply terminating TRSs and with the

results of the present arti
le one 
an perform them in a modular way. In fa
t, it

is this modularity whi
h makes an appli
ation of dependen
y pairs to large and

realisti
 systems possible; see [Giesl and Arts, 2001℄ for an industrial 
ase study.

Compared to previous work on modularity, the modularity 
riteria developed in

this arti
le represent a substantial extension.
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