To appear in the Journal of Symbolic Computation

Modular Termination Proofs for Rewriting
Using Dependency Pairs

JURGEN GIESL!, THOMAS ARTS? AND ENNO OHLEBUSCH?

LLuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany,

giesl@informatik.rwth-aachen.de
2 Computer Science Laboratory, Ericsson, P.O. Box 1505, 125 25 Stockholm,
Sweden, thomas@cslab.ericsson.se

3 Faculty of Technology, University of Bielefeld, P.O. Box 10 01 31,
33501 Bielefeld, Germany, enno@TechFak.Uni-Bielefeld.DE

Abstract

Recently, Arts and Giesl developed the dependency pair approach which
allows automated termination and innermost termination proofs for many
term rewriting systems for which such proofs were not possible before. The
motivation for this approach was that virtually all previous techniques for
automated termination proofs of term rewriting systems were based on
simplification orderings. In practice, however, many rewrite systems are
not simply terminating, i.e., their termination cannot be verified by any
simplification ordering.

In this article we introduce a refinement of the dependency pair frame-
work which further extends the class of term rewriting systems for which
termination or innermost termination can be shown automatically. By
means of this refinement, one can now prove termination in a modular
way. Thus, this refinement is inevitable in order to verify the termination
of large rewrite systems occurring in practice. To be more precise, one
may use several different orderings in one termination proof.

Subsequently, we present several new modularity results based on de-
pendency pairs. First, we show that the well-known modularity of simple
termination for disjoint unions can be extended to DP quasi-simple ter-
mination, i.e., to the class of rewrite systems where termination can be
shown automatically by the dependency pair technique in combination
with quasi-simplification orderings. Under certain additional conditions,
this new result also holds for constructor-sharing and composable sys-
tems. Second, the above-mentioned refinement of the dependency pair
method yields new modularity criteria for innermost termination which
extend previous results in this area considerably. In particular, existing
results for modularity of innermost termination can easily be shown to be
direct consequences of our new criteria.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 2

1. Introduction

In many applications of term rewriting systems (TRSs), termination is an im-
portant property. A TRS is said to be terminating if it does not allow infinite re-
ductions. Since termination is in general undecidable [Huet and Lankford, 1978],
several methods for proving this property have been developed; for surveys see
e.g. [Dershowitz, 1987, Steinbach, 1995, Dershowitz and Hoot, 1995]. Practically
all known methods that are amenable to automation use simplification orderings
[Dershowitz, 1979, 1987, Steinbach, 1995, Middeldorp and Zantema, 1997] and in
fact, even total orderings [Ferreira and Zantema, 1994]. However, there exist nu-
merous important TRSs for which termination cannot be proved by this kind of
orderings. For that reason, Arts and Giesl [2000] developed the so-called depen-
dency pair approach. Given a TRS, the dependency pair technique automatically
generates a set of constraints and the existence of a well-founded (quasi-)ordering
satisfying these constraints is sufficient for termination. The advantage is that
standard (automatic) techniques can often synthesize such a well-founded order-
ing even if a direct termination proof with the same techniques fails. In this way,
simplification orderings can now be used to prove termination of non-simply ter-
minating TRSs. Several such systems from different areas of computer science
(including many challenging problems from the literature) can for instance be
found in [Arts and Giesl, 2001] and applications of dependency pairs for realistic
industrial problems in the area of distributed telecommunication processes are
discussed in [Giesl and Arts, 2001]. For an implementation of the dependency
pair approach see [Arts, 2000] or [CIME 2, 1999]. Dependency pairs have also
been successfully applied in automatic termination proofs of logic programs, see
[Ohlebusch et al., 2000, Ohlebusch, 2001].

After introducing required preliminaries on orderings in Section 2, in Section 3
a refinement of the dependency pair technique is presented that allows modular
termination proofs using dependency pairs. In other words, now several well-
founded relations may be used in the termination proof of one TRS. Applying the
dependency pair approach in the proposed modular way cannot complicate the
proof, whereas it may allow a successful application where the original technique
failed. Hence, it is always advantageous, and often more powerful, to take this
modular approach into account.

The above-mentioned notion of modularity is expressed in terms of depen-
dency pairs. Therefore, it differs slightly from the conventional notion, where a
property ¢ of TRSs (like termination) is called modular if whenever R, and R,
are TRSs both satisfying ¢, then their combined system R UR, also satisfies ¢.
The knowledge that (perhaps under certain conditions) a property ¢ is modular
provides a divide and conquer approach to establish properties of TRSs. If one
wants to know whether a large TRS has a certain modular property ¢, then this
system can be decomposed into small subsystems and one merely has to check

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 3

whether each of these subsystems has property ¢. This conventional notion of
modularity is inspired by a well-known paradigm in computer science; programs
are developed in small modules that together form the whole program. In prac-
tice it is an enormous benefit if it suffices to prove a property of a module just
once, independent of the context in which the module is used afterwards.

Clearly, this conventional notion of modularity can also be applied successfully
in combination with the original dependency pair approach. However, termina-
tion and innermost termination are not modular properties for arbitrary TRSs.
The modular refinement of the dependency pair approach introduced in Section
3 is applicable to numerous TRSs that do not belong to one of the restricted
classes where conventional modularity results are applicable.

Toyama [1987] showed that termination is not even modular for disjoint unions,
i.e., combinations of TRSs without common function symbols. So the question
is what restrictions have to be imposed on the constituent TRSs so that their
disjoint union is again terminating. The first results were obtained by inves-
tigating the distribution of collapsing rules and duplicating rules among the
TRSs; see [Rusinowitch, 1987, Middeldorp, 1989]. In [Toyama et al., 1995] it is
shown that termination is modular for confluent and left-linear TRSs. Ever since
an abundance of modularity results for disjoint unions, constructor-sharing sys-
tems, composable systems, and hierarchical combinations has been published;
see [Middeldorp, 1990, Ohlebusch, 1994a, Gramlich, 1996b] for an overview.

Most of the modularity results are often not applicable in practice. For exam-
ple, collapsing and duplicating rules occur naturally in most TRSs. In contrast
to this, since most standard methods for automated termination proofs are based
on synthesizing simplification orderings, the result of Kurihara and Ohuchi [1992]
for constructor-sharing systems is of practical relevance. They showed that the
constructor-sharing combination of finite simply terminating TRSs is again sim-
ply terminating. Their result was extended to composable systems [Ohlebusch,
1995] and to certain hierarchical combinations [Krishna Rao, 1994]. Moreover,
all these results also hold for infinite TRSs; see [Middeldorp and Zantema, 1997].

Thus, if one has a method to prove simple termination of a TRS, then one
can use this method in a modular way for the above-mentioned classes of TRSs,
whereas an arbitrary method for proving termination cannot be used in this way.
However, simple termination is a considerably restricted form of termination. As
indicated above, the reason for the development of the dependency pair approach
was that there are numerous relevant TRSs for which simplification orderings
fail in proving termination. Thus, now TRSs for which automated termination
proofs are (potentially) feasible are no longer just simply terminating systems,
but DP (quasi-)simply terminating systems, i.e., systems whose termination can
be verified by using (quasi-)simplification orderings in combination with depen-
dency pairs. Hence, a natural question is whether the current state of the art
of modularity can be refined as well by extending the conventional modularity
results from simple to DP (quasi-)simple termination. In Section 4 we show that
this is indeed possible. Thus, the number of TRSs for which termination can be

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 4

proved in a modular way is extended significantly. The practical consequence of
this result is that if one has proved termination of a TRS using the dependency
pair approach, then adding a TRS and proving termination of the new combi-
nation reduces to no more than proving termination of the added TRS with the
dependency pair technique.

Subsequently, we consider innermost termination, i.e., the requirement that
all reductions where only innermost redexes are rewritten are finite. We develop
a modular technique for innermost termination proofs using dependency pairs
in Section 5.

The known modularity results for innermost termination are less restrictive
than those for termination. Innermost termination is modular for disjoint unions
and for TRSs with shared constructors [Gramlich, 1995], for composable con-
structor systems [Middeldorp and Toyama, 1993|, for composable TRSs [Ohle-
busch, 1995], and for proper extensions [Krishna Rao, 1995], which are special
hierarchical combinations. As innermost termination implies termination for sev-
eral classes of TRSs [Gramlich, 1995, 1996a], these results can also be used for
termination proofs of such systems. For example, this holds for locally confluent
overlay systems (and in particular for non-overlapping TRSs).

In Section 6 we show that the modular dependency pair approach leads to
new modularity criteria for innermost termination (which can also be used in-
dependently of the dependency pair technique). Moreover, we demonstrate that
in our framework the known modularity results for innermost termination of
composable TRSs and proper extensions are obtained as easy consequences.

Preliminary versions of parts of this article appeared in [Arts and Giesl, 1998]
and [Giesl and Ohlebusch, 2000].

2. Preliminaries on Orderings

We assume the reader to be familiar with the basic notions of term rewriting.
For an introduction to term rewriting see e.g. [Dershowitz and Jouannaud, 1990,
Klop, 1992, Baader and Nipkow, 1998]. We restrict ourselves to finite signatures
containing at least one constant (i.e., we assume that there exist ground terms)
and to TRSs with finitely many rules. In the following we introduce the back-
ground material on orderings which is relevant to this article. A rewrite ordering
>~ over a set of terms 7 (F,V) is an ordering (i.e., an irreflexive and transitive
relation) that is (strongly) monotonic (i.e., s > ¢ implies f(...s...) = f(...¢...)
for all function symbols f € F) and closed under substitutions (i.e., s > ¢ implies
so > to for all substitutions o). A simplification ordering is a rewrite ordering
having the subterm property (i.e., f(...z...) = z for all f € F). It is a well-
known consequence of Kruskal’s theorem that every simplification ordering over
T(F,V) is well founded provided that F is finite.* It is also well known that
simplification orderings satisfy the following property.

*For details on infinite signatures see [Middeldorp and Zantema, 1997].

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 5

LEMMA 2.1 (VARIABLES AND SIMPLIFICATION ORDERINGS): Let > be a sim-
plification ordering. If s > t, then Var(t) C Var(s) and s ¢ V.

A TRS R over a finite signature F is called simply terminating if its ter-
mination can be proven by a simplification ordering. This is equivalent to the
statement that the TRS R U Emb(F) is terminating, where

Emb(F) ={f(z1,...,2n) = z;| fEF, fisn-ary,and 1 <i<n}

is the set of embedding rules.

A quasi-rewrite ordering 7, over a set of terms T (F,V) is a quasi-ordering
(i.e., a reflexive and transitive relation) that is (weakly) monotonic (i.e., s = ¢
implies f(...s...) 2 f(...t...) for all f € F) and closed under substitutions.

In the dependency pair method a set of inequalities is generated from a TRS R.
To prove termination of R, one has to show that these inequalities are satisfied
by some pair (-,) consisting of a quasi-rewrite ordering - and an ordering >
with the properties

e > is closed under substitutions and well founded
e —o>=C >or>=o0ox C ».

(Note that > need not be monotonic.) Such a pair is called a reduction pair
[Kusakari et al., 1999]. Given a quasi-rewrite ordering -, a natural candidate
for the corresponding ordering > is the strict relation >° defined by ¢t >° u
if and only if ¢ = w and u 7 t. Unfortunately, >° is in general not closed
under substitutions (see below). Therefore, to determine suitable reduction pairs
automatically, one usually chooses > to be the so-called stable-strict relation >*°
corresponding to the quasi-rewrite ordering ~~. We have ¢ >=°° u if and only if
to >° uo holds for all ground substitutions o, where a ground substitution is a
substitution mapping all variables to ground terms. In other words, for all those
substitutions ¢ we must have to >~ uo and uo 7 to.

For instance, many useful quasi-orderings are constructed by using mappings
|.| from the set of ground terms to a well-founded set like the natural numbers
IN, cf. e.g. [Lankford, 1979, “polynomial orderings”]. Then 7~ is defined as t - u
if and only if |to| >N |uo| holds for all ground substitutions o. A natural way
to define a corresponding irreflexive ordering > is to let ¢ > wu hold if and
only if |to| > |uo| for all ground substitutions o. However, now > is not the
corresponding strict relation, but the stable-strict relation corresponding to 7.
Thus, the irreflexive relation intuitively associated with a quasi-ordering is often
the stable-strict one instead of the strict one. In particular, if the quasi-ordering
= is stable (i.e., closed under substitutions), then the corresponding stable-strict
relation >*° is closed under substitutions too, whereas this is not necessarily true
for the strict relation >°.

For example, if [0] = 0, |s(¢)| = |t| + 1, and |f(¢)| = 2|¢| for all ground terms ¢,
then we have f(z) - « and x Z f(z). Hence, this implies f(z) >=* z. However, -*

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 6

is not closed under substitutions because f(0) >=* 0 does not hold. This example
also demonstrates that in general >° C >°° is not true because for the stable-
strict relation >-°° we have f(z) #*° x.

Moreover, in general >=*° C >~ does not hold either (hence, > C »* is false,
too). If R is the TRS containing only the rule f(0) — 0 and 77 is defined as —%,
then we have f(z) >=* z, but f(z) 7 «.

The following lemma states some straightforward properties of stable-strict
relations.

LEMMA 2.2 (PROPERTIES OF STABLE-STRICT RELATIONS):
Let = be a quasi-ordering that is closed under substitutions. Then we have

(i) >=** is irreflexive

(i1) =*° is transitive

(1ii) =°° is closed under substitutions

(iv) if = is total, then =% C »=°

(v) if =* is closed under substitutions, then »=° C =*°

(vi) if »=* is well founded, then =*° is well founded, too

(vii) s 77t =°° u implies s =*° u

(viii)s =°° t 7~ u implies s =*° u

(iz) if 7= is a quasi-rewrite ordering and »° is well founded,
then (=, >*%) is a reduction pair

Proof: The statements (i) and (ii) follow from the reflexivity and the transitivity
of 7. Statements (iii), (iv), and (v) are direct consequences of the definition. For
(vi), every potential infinite descending sequence to =5 t; =** ... would result
in an infinite descending sequence too >° t;0 >=° ... Statements (vii) and (viii)
follow from the transitivity and stability of >~. Statement (ix) follows from (i),
(i), (iii), (vi) and (vii) (or (viii)). O

In this article, > always denotes an arbitrary ordering such that (7, >) forms
a reduction pair. As shown in Lemma 2.2 (ix), one possibility is to choose > to be
the stable-strict relation corresponding to the quasi-rewrite relation 2~ (provided
that it is well founded). Lemma 2.2 (v) indicates that this choice is at least as
powerful as choosing > to be the strict relation corresponding to -.

A quasi-simplification ordering (QSO) is a quasi-rewrite ordering ~ which has
the (weak) subterm property (i.e., f(...z...) 7 z for all f € F). Kruskal’s theo-
rem implies that every quasi-simplification ordering over T (F, V) is well founded
(more precisely, the corresponding (stable-)strict relation is well founded) pro-
vided that F is finite. Reduction pairs with quasi-simplification orderings satisfy
a property analogous to Lemma 2.1.

LEMMA 2.3 (VARIABLES IN STRICT INEQUALITIES): Let =~ be a QSO and
let (7, >) be a reduction pair. If s = t, then Var(t) C Var(s) and s ¢ V.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 7

Proof: Assume that there is a variable z € Var(t) \ Var(s). Then t = C|x] for
some context C. With ¢ = {z — s} it follows that s = so = to = C[s]. Since
Cls] 7 s according to the subterm property, we obtain s = C[s] =~ s. This is a
contradiction to the well-foundedness of >. Thus Var(t) C Var(s) holds. The
proof of s € V is just as straightforward. O

A similar property even holds for non-strict inequalities.

LEMMA 2.4 (VARIABLES IN NON-STRICT INEQUALITIES): Let =~ be a QSO

and let (7,>) be a reduction pair such that s’ > t' for some terms s',t' where
Var(t') # 0. If s = t, then Var(t) C Var(s).

Proof: First of all, s’ > t' implies Var(t') C Var(s') according to Lemma 2.3.
Without loss of generality, we assume that s and ¢ are renamed such that they
have no variables in common with s’ or t'. We show Var(t) C Var(s) indirectly.
Suppose that there is a variable y € Var(t) \ Var(s). Since Var(t') # 0, there is
a variable z € Var(t') C Var(s'). Let 0 = {z — s} and o' = {z — t{y — s'o}}.
We have (a) s'o > t'o because s’ > t' and > is closed under substitutions, (b)
t'oc 7 t'o’ because s 77 t and 7 is weakly monotonic, and (c) t'o’ = xo’ 7 s'o
because 7~ has the weak subterm property and 7~ is closed under substitutions.
In summary, s'c > t'o 77 t'o’ 77 s'o is a contradiction to the well-foundedness of
- (]

Examples of simplification orderings and QSOs include path orderings like the
lexicographic path ordering (LPO) [Kamin and Lévy, 1980], the recursive path
ordering (RPO) [Dershowitz, 1987, Steinbach, 1995, Ferreira, 1995], the Knuth-
Bendix ordering (KBO) [Knuth and Bendix, 1970, Dick et al., 1990, Korovin and
Voronkov, 2001], etc. Polynomial orderings, however, are not QSOs in general.
For instance, if the constant 0 is associated with the number 0, s(z) is associated
with = + 1, and f(z,y) is associated with the multiplication of z and y, then
this polynomial ordering does not satisfy the subterm property (for example,
f(s(0),0) = s(0) does not hold). However, the following lemma shows that if the
polynomial ordering respects some restrictions, then it is indeed a QSO.

LEMMA 2.5 (POLYNOMIAL ORDERINGS AS QSOSs): Let = be a polynomial or-
dering where every function symbol is associated with a polynomial containing
only non-negative coefficients.

o [f every function symbol f(xy,...,x,) is associated with a polynomial which
contains a (non-mized) monomial of the form m;x¥ (with m;, ki > 1) for
everyi=1,...,n, then 77 is a QSO.

o If every function symbol f(z1,...,x,) is associated with a polynomial con-
taining all variables x4, ...,x, and if every constant is associated with a
number > 0, then =~ is a QSO.

Proof: Straightforward. O

In fact, the conditions in Lemma 2.5 also entail (strong) monotonicity of the
strict and stable-strict relations corresponding to the polynomial ordering.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 8

3. Modular Termination Proofs With Dependency Pairs

Arts and Giesl [2000] introduced the dependency pair technique to prove the
termination of term rewriting systems automatically. In this section we briefly
recapitulate its basic concepts and present a new modular approach for auto-
mated termination proofs. We first introduce a modular termination criterion
in Section 3.1 and develop an approach to check this criterion automatically in
Section 3.2.

3.1. A Modular Termination Criterion

In the following we describe the notions relevant to the dependency pair method.
For motivations and further refinements see [Arts and Giesl, 2000]. We adopt the
notation of [Giesl and Middeldorp, 2000] and [Kusakari et al., 1999]. The root of
a term f(...) is the leading function symbol f. For a TRS R over a signature F,
D = {root(l)|l — r € R} is the set of the defined symbols and C = F \ D is the
set of constructors of R. Let F* denote the union of the signature F and {f4] f
is a defined symbol of R}, where f* has the same arity as f. The functions f* are
called tuple symbols. Given a term t = f(t1,...,t,) € T(F,V) with f defined,
we write ¢ for the term t = f¥(t;,...,t,). If | = r € R and t is a subterm of
r with defined root symbol, then the rewrite rule I* — t* is called a dependency
pair of R. The set of all dependency pairs of R is denoted by DP(R). We often
write F for f*, etc.

For example, consider the following TRS with the constructors s and ¢ and
the defined symbol f:

f(z,c(y)) — flz,s(f(y,9))
f(s(z),y) — f(z,s(c(y)))
Note that this TRS is not simply terminating as f(z,c(s(z))) can be reduced

to the term f(xz,s(f(x,s(c(s(x)))))) in which it is embedded. The TRS has the
following dependency pairs:

F(z,c(y)) — F(z,s(f(y,9))) (1)
F(z,c(y)) — F(y,v) (2)
F(s(z),y) — F(z,s(c(y))) (3)
A sequence of dependency pairs s; — t1, so — ta,... is an R-chain if there

exists a substitution o such that ¢;o —% s;110 holds for every two consecutive
pairs s; — t; and sj;1 — t;41 in the sequence. We always assume that different
(occurrences of) dependency pairs have disjoint sets of variables and we always
consider substitutions whose domains may be infinite. In case R is clear from
the context we often write chain instead of R-chain. Hence, in our example we
have the chain

F(z1,¢(y1)) = Fyr,91), F(22,¢(y2)) = F(ya,92), Fas, clys)) = Flys, ys),

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 9

as F(y1,y1)o =% F(z2,c(y2))o and F(yq, y2)o —% F(x3,c(ys))o hold for the sub-
stitution o = {y; — c(c(y3)), z2 — c(c(y3)), y2 — c(y3), z3 — c(y3)}. In fact any
finite sequence of the dependency pair (2) is a chain. As proved by Arts and
Giesl [2000], the absence of infinite chains is a sufficient and necessary criterion
for termination.

THEOREM 3.1 (TERMINATION CRITERION): A TRS R is terminating if and
only if there exists no infinite R-chain.

Some dependency pairs can never occur twice in any chain and hence they
need not be considered when proving that no infinite chain exists. For identifying
these insignificant dependency pairs, the notion of dependency graph has been
introduced by Arts and Giesl [2000].

DEFINITION 3.2 (DEPENDENCY GRAPH): The dependency graph of a TRS R
1s the directed graph whose nodes are the dependency pairs and there is an arc
froms —ttov— wiffs —t, v— wis a chain.

The dependency graph for our example is given in Figure 1.

F(z,c(y)) — F(z,s(f(y,v)))

(e, (o) > F(y.p) — ™~ F(s(x),) = F(z5(c(1)))

Figure 1: Dependency graph.

A non-empty set P of dependency pairs is called a cycle if for any two pairs
s —t and v — w in P there is a non-empty path from s — ¢ to v — w which
only traverses pairs from P. Thus, in the example above there are two cycles,
viz. {(2)} and {(3)}. Since we restrict ourselves to finite TRSs, obviously any
infinite chain corresponds to a cycle. Hence, the dependency pairs that are not
on a cycle in the dependency graph are insignificant for the termination proof.
In other words, in our example we may disregard the dependency pair (1).

Now we come to our first modularity result, stating that one can prove ter-
mination of a TRS in a modular way, because absence of infinite chains can be
proved separately for every cycle.

THEOREM 3.3 (MODULAR TERMINATION CRITERION): A TRS R is termi-
nating if and only if for each cycle P in the dependency graph there exists no
infinite R-chain of dependency pairs from P.

Proof: The only-if direction is a direct consequence of Theorem 3.1. For the other
direction, suppose that R is not terminating. Then by Theorem 3.1 there exists
an infinite R-chain. As we only regard finite TRSs R, there are only finitely

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 10

many dependency pairs and hence, one dependency pair occurs infinitely many
times in the chain (up to renaming of the variables). Thus, the infinite chain has
the form

.oy 8p1 = tP1, ..., 8p2 —> tP2, ..., 8p3 —> tps3, ...,
where p1, po, p3, . .. are renamings. Hence, the tail sp; — tp1,...,sp2 — tpa, ...
is an infinite R-chain which consists of dependency pairs from one cycle in the
dependency graph only. O

According to the above theorem, in our example we can separate the proof
that there is no infinite chain consisting of the dependency pair {(2)} from the
corresponding proof for the dependency pair {(3)}.

One should remark that for the soundness of this theorem one indeed has to
regard all cycles, not just the minimal ones (i.e., not just those cycles which
contain no other cycles as proper subsets). For a counterexample to illustrate
this fact see [Giesl and Arts, 2001, p. 50].

Note that in standard graph terminology, a path v9 = vy = ... = v, in a
directed graph forms a cycle if vg = v and k > 1. In our context we identify
cycles with the set of elements that occur in it, i.e., we call {vg,v1,..., v 1} a
cycle. Since a set never contains multiple occurrences of an element, this results
in several cycling paths being identified with the same set. Moreover, for a finite
TRS we only have finitely many cycles, since the number of dependency pairs is
finite, too.

3.2. Checking the Modular Termination Criterion Automatically

For an automatic approach the definition of a dependency graph is impractical,
since it is in general undecidable whether two dependency pairs form a chain.
However, in order to obtain a sound technique for termination proofs, we can
safely use any approximation of the dependency graph that preserves all its
cycles. To estimate which dependency pairs may occur consecutive, the estimated
dependency graph has been introduced, cf. [Arts and Giesl, 2000]. Let CAP(t)
result from replacing all subterms of ¢ that have a defined root symbol by different
fresh variables and let REN(?) result from replacing all variables in ¢ by different
fresh variables. Then, to determine whether v — w can follow s — ¢ in a chain,
we check whether REN(CAP(t)) unifies with v. So we have REN(CAP(F(y,y))) =
REN(F(y,y)) = F(y1,92) and REN(CAP(F(z,s(f(y,9))))) = REN(F(z,s(2))) =
F(z1,s(21)). Hence, (1) can never follow itself in a chain, because F(z1,s(21))
does not unify with F(z,c(y)).

DEFINITION 3.4 (ESTIMATED DEPENDENCY GRAPH): The estimated depen-
dency graph of a TRS R is the directed graph whose nodes are the dependency
pairs and there is an arc from s — t to v — w iff REN(CAP(t)) and v are unifi-
able.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 11

In our example, the estimated dependency graph is the same as the depen-
dency graph given in Figure 1. For an automation of the modular criterion of
Theorem 3.3, we use this estimated dependency graph. Indeed, Theorem 3.3 also
holds for the estimated dependency graph instead of the dependency graph, be-
cause all dependency pairs on a cycle in the dependency graph are also on a cycle
in its estimation. The only-if direction of Theorem 3.3 holds anyway regardless
of the estimation used, since whenever a TRS is terminating, then there is no
infinite chain (Theorem 3.1).

To check the criterion of Theorem 3.3 automatically, for each cycle P, we
generate a set of inequalities such that the existence of reduction pairs (ZZp,>p)
satisfying these inequalities is sufficient for the absence of infinite chains. For
that purpose we have to ensure that the dependency pairs from P are decreasing
w.r.t. 2~p. More precisely, for any sequence of dependency pairs s; — t, so — to,
s3 —> t3,... from P and for any substitution o with t;o =% s;10 (for all j) we
demand

$10 ?\'jp t10' i:'p So0 ?\'jp tQO' i:'p S30 i:'p t30’ ?\'/73 ce ey

and for at least one s — t in P we demand the strict inequality so >=p to. Then
there exists no chain of dependency pairs from P which traverses all dependency
pairs in P infinitely many times.

Since ~p is closed under substitutions and weakly monotonic, to guarantee
tjo Zp 8410 whenever t;0 —% s;110 holds, it is sufficient to demand [7Zp r for
all rules [—r of the TRS. Moreover, s; Zp t; and s; >p t; ensure s;o Zp t;o
and sjo =p tjo, respectively, for all substitutions o.

Because rewrite rules and dependency pairs are just pairs of terms, we write
RUP C =p as a shorthand for [7—p r for every rewrite rule [—r in R and
every dependency pair [— r from P. Moreover, PN =p # () denotes that [=p r
holds for at least one dependency pair [— r from P.

THEOREM 3.5 (MODULAR TERMINATION PROOFS): A TRS R is terminating
if and only if for each cycle P in the (estimated) dependency graph there is a
reduction pair (Zp, >=p) such that

~J

(a) RUP C Zp and
(b) PN >=p #0.

Proof: For the if direction, suppose that there exists an infinite R-chain of de-
pendency pairs from a cycle P. Without loss of generality let P be such that for
all proper subcycles P’ of P, there is no infinite chain of dependency pairs from
P

For one dependency pair s — t in P we have the strict inequality s >=p ¢. Due
to the minimality of P, s — t occurs infinitely many times in the chain (up to
variable renaming), i.e., the chain has the form

V1,1 — W11y, V1ng; — Wing, SPL — tpl, V2,1 — W21y V2 ng —> W2 ny,SP2 — tpg, ceny

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 12

where pi, po,... are renamings. Hence, there exists a substitution o such that
W; jO =} Vi j410, Win, 0 —5 Spio, and tp,0 —5 vit110. As | ZZp r holds for all
rules of R and as 7Zp is weakly monotonic and closed under substitutions, we
have —% C 7p. Moreover, all dependency pairs from P are weakly decreasing.
Thus, we obtain

V1,10 i’,P W1,10 ,>\]7> <UL 0 ,>\]7> W1,n, O ?QP $p10 =p tp10 i’ﬂ)

V2,10 tp W2,10 ?:/73 ce V20,0 ?\:7) W2 ny O zp SP20 —p thO' tp .

But this is a contradiction to the well-foundedness of =p. Hence, no infinite
chain of dependency pairs from P exists and by Theorem 3.3, R is terminating.

For the only-if direction we refer to [Arts and Giesl, 2000, Theorem 7], where it
is shown that termination of R even implies termination of RUDP(R). A simple

alternative proof for this statement using typing can be found in [Middeldorp
and Ohsaki, 2000]. O

We already mentioned that for Theorem 3.3 (and hence, also for the above
theorem) considering just the minimal cycles would be unsound. In fact, for
Theorem 3.5 it would also be unsound just to consider mazimal cycles (i.e.,
those cycles which are not contained in any other cycle). The problem is that
it is not sufficient if just one dependency pair of each maximal cycle is strictly
decreasing. For a counterexample to illustrate this fact see [Giesl and Arts, 2001,
p. 51]. Thus, it is crucial to consider all cycles P for Theorem 3.5.

With the above theorem, termination of our example can easily be proved au-
tomatically (where for an automation of Theorem 3.5 we again use the estimated
dependency graph instead of the (real) dependency graph). After computing the
graph in Figure 1, two reduction pairs (221, >1), (:J2, >2) have to be generated
which satisfy

fz,c(y) zZ1 f(z,s(f(y,9)) (4) f(z,c(y) Z2 f(z,s(f(y,y)) (7)
f(s(z),y) Z1 f(z,s(c(y) (5) f(s(z),y) Z2 f(z,s(c(y)) (8)
F(z,c(y)) =1 F(y,v) (6) F(s(z),y) >2 F(z,s(c(y))). (9)

Of course, our aim is to use standard techniques to obtain suitable reduction
pairs satisfying the constraints of Theorem 3.5. However, most existing methods
generate orderings which are strongly monotonic, whereas for the dependency
pair approach we only need a weakly monotonic quasi-ordering. For that reason,
before synthesizing a suitable ordering, some of the arguments of the function
symbols can be eliminated, cf. [Arts and Giesl, 2000]. For instance, in the in-
equalities (4) - (6) one may eliminate the second argument of the function symbol
f. Then every term f(s,¢) in the inequalities is replaced by f(s) (where f is a new
unary function symbol). So instead of (4) we obtain the inequality f(z) 771 f(z).
By comparing the terms resulting from this replacement (instead of the original
terms) we can take advantage of the fact that f does not have to be strongly
monotonic in its second argument. Now the inequalities resulting from (4) - (6)

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 13

are satisfied by the lexicographic path ordering (LPO) where subterms are com-
pared right-to-left (i.e., 77 is chosen to be ~po and >; is chosen to be the
(stable-)strict relation > pp). For the inequalities (7) - (9) we again delete the
second argument of f. Then these inequalities are also satisfied by LPO (with
the precedence F > s, F > c), but this time subterms are compared left-to-right.
Hence, termination of the TRS under consideration is proved. Note that this
TRS is not simply terminating. So in the dependency pair approach, simplifi-
cation orderings like LPO can be used to prove termination of TRSs for which
their direct application would fail.

Apart from eliminating arguments of function symbols, another possibility is
to replace functions by one of their arguments. So instead of deleting the second
argument of f, one could also replace all terms f(s, ¢) by f’s first argument s. Then
the resulting inequalities are again satisfied by LPO. To perform this elimination
of arguments resp. of function symbols the concept of argument filtering was
introduced by Arts and Giesl [2000] (here we use the notation of [Kusakari et al.,
1999]).

DEFINITION 3.6 (ARGUMENT FILTERING): An argument filtering for a signa-
ture F is a mapping m that associates with every n-ary function symbol an ar-
gument position i € {1,...,n} or a (possibly empty) list [iy, ..., i,] of argument
positions with 1 < i1 < ... < i, < n. The signature F, consists of all function
symbols f such that w(f) = [i1,...,im], where in F, the arity of f is m. Fvery
argument filtering ™ induces a mapping from T (F,V) to T (Fr,V), also denoted
by m, which is defined as:

t if t is a variable,
m(t) = ¢ w(t;) ift=f(t1,...,t,) and w(f) =1,
flm(tsy)y ..., m(ts,)) ift= f(t1,...,tn) and w(f) = [i1,- .., im].

As proved by Arts and Giesl [2000], in order to find a reduction pair satisfying
a particular set of inequalities, one may first apply an argument filtering for the
signature F* to the terms in the inequalities. Subsequently, one only has to find
a reduction pair that satisfies these modified inequalities. In the following, for
any set of rules or pairs R and any argument filtering 7 let

7(R) = {n(l) = n(r)|l = r € R and 7(l) £ 7(r)}.

CRITERION 3.7 (MODULAR AUTOMATED TERMINATION CRITERION):

A TRS R over a signature F is terminating if and only if for each cycle P in
the (estimated) dependency graph there is an argument filtering mp for F* and
a reduction pair (Zp, =p) such that

[l

(a) Tp(RUP) C Zp and
(b) 7p(P) N >=p # 0.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 14

Note that there exist only finitely many possibilities for the choice of such
argument filterings. Therefore in principle, all these possibilities can be checked
automatically. Hence, by combining the generation of a suitable argument filter-
ing with well-known automatic techniques for the synthesis of (strongly mono-
tonic) simplification orderings, now the search for a weakly monotonic ordering
satisfying the constraints can be automated. As mentioned before, in a reduction
pair (77, >) one usually chooses > to be the stable-strict relation corresponding
to the quasi-ordering . By using the estimated dependency graph, this results
in a fully automatic termination proof of our TRS, whereas a direct termination
proof with simplification orderings was not possible. So Criterion 3.7 allows us
to use different quasi-orderings resp. reduction pairs to prove the absence of
chains for different cycles. In our example this is essential, because there exists
no reduction pair with a quasi-simplification ordering satisfying all inequalities
(4) - (9) (not even after elimination of arguments). The reason is that (9) and
(6) entail

F(s(x),s(z)) =2 F(x,s(c(s(x)))) —empirs) Fz,c(s(x))) =1 F(s(z),s(x)).

Hence, without our modularity result, an automated termination proof with the
dependency pair approach fails.

In order to synthesize suitable reduction pairs, the argument filterings should
be chosen in a way such that for all resulting inequalities the variables in the
right-hand side also occur in the left-hand side. Then the resulting inequalities
could be transformed into a TRS as well and for proving termination of the
original TRS it would be sufficient to prove termination of the transformed
TRSs for all cycles.

CRITERION 3.8 (TERMINATION CRITERION BY TRANSFORMATION): A TRS
R over a signature F s terminating if and only if for each cycle P in the
(estimated) dependency graph there is an argument filtering np for F* such that
mp(R UP) is a terminating TRS and such that wp(P) # (.

This criterion is sufficient for termination, since one may choose (—*
) Wp(RUP)’
—7 (73)) as the reduction pairs in Criterion 3.7. It is also necessary for termina-

Tp
tion, because due to [Arts and Giesl, 2000, Theorem 7], termination of R implies
termination of all RUP (and hence, of mp(RUP), if mp(f) = [1,...,n] for every

f € F with arity n, i.e., if 7p does not filter any arguments).

4. Modularity Results for DP (Quasi-)Simple Termination

The modularity as proposed in Criteria 3.7 and 3.8 could be seen as rather
method-specific. The more conventional approach of dividing the termination
proof into parts is to split the TRS into subsystems and to prove termination
of the subsystems separately. This, however, only works for very specific classes

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 15

of TRSs. The two-rule TRS of our example can only be split in one way and no
conventional modularity result exists that justifies this partitioning.

The advantage of this conventional notion of modularity is that TRSs that
have been proved terminating do not have to be reconsidered after combining
them with other TRSs of this kind. Thus, termination proofs never have to be re-
done for these combinations. Therefore, results which guarantee that termination
of subsystems suffices for termination of the whole TRS are of practical interest.
Based on the approach of the previous section, in this section we develop such
results for the case where we use the dependency pair approach for proving
termination.

More precisely, we extend the existing modularity results for simple termina-
tion to DP (quasi-)simple termination. The latter notion is formally defined in
Section 4.2. Basically, a TRS is DP (quasi-)simply terminating if the constraints
of Criterion 3.7 are satisfied by a suitable (quasi-)simplification ordering or if
simple termination can be proved for all TRSs constructed by the transforma-
tion of Criterion 3.8, respectively.

First we briefly recall the basic notions and notations for the combination
of TRSs in Section 4.1. In Section 4.3 we show that DP quasi-simple termina-
tion is modular for disjoint unions. Section 4.4 contains similar results about
constructor-sharing and composable TRSs.

4.1. Basic Notions of the Union of Term Rewriting Systems

Let R, and Ry be TRSs over the signatures F; and F3, respectively. Their
combined system is the union R = R, U Ry over the signature F = F; U Fy. Its
set of defined symbols is D = Dy U D, and its set of constructors is C = F \ D,
where D; (C;) denotes the defined symbols (constructors) in R;.

(1) Ry and Ry are disjoint if Fy N Fy = 0.
(2) Ry and Ry are constructor-sharing if F1 N Fy=C1 NCy (CC).

(3) Ry and Ry are composable if C; N Dy = Dy NCy = () and both systems
contain all rewrite rules that define a defined symbol whenever that symbol
is shared: {{ = r € R | root(l) € D; N Dy} C R1 N Rs.

(4) Ry and R, form a hierarchical combination if D; N Dy = C; N Dy = 0. So
defined symbols of Ry may occur as constructors in R, but not vice versa.

We introduce some basic notions that are helpful when reasoning about dis-
joint unions. Let O ¢ F; U F, be a special constant. A context C is a term
in 7(F UF,U{0O},V) and Cty,...,t,) is the result of replacing from left to
right the n > 0 occurrences of O with ¢y,...,t,. We write t = C[ty,...,t,] if
C e T(Fu{O},V), C # 0, and root(ty), . . . root(t,) € Fs_; for some i € {1,2}.
In this case, the ¢; are the aliens of ¢ and C' is the topmost F;-homogeneous part
of ¢, denoted by top;(t) (whereas tops_;(t) is O). This definition is similar to the
definition of CAP where the roles of the defined symbols and the constructors

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 16

are replaced by F; and F,. Note, however, that we now use the more standard
O symbol instead of a fresh variable to replace the subterms. So for example, if
R consists of the following two rules

f0,1,z) — f(s(z),z,z) (10)
f(z,y,s(z)) — s(f(0,1,2)), (11)
and R, contains the rules
glz,y) — = (12)
glz,y) — v, (13)

then R; and R, are disjoint and a term like f(g(0,0), z,g(y,y)) can be written
as C[g(0,0),g(y,y)], where C is f(O,z,0). Thus top,(f(g(0,0),z,g(y,y))) =
f(Dv L, D) and topZ(f(g(O, 0)? z, g(y, y))) = 0.

Moreover, for any term t its rank is the maximal number of alternating func-
tion symbols (from F; and F3, respectively) in any path through the term, i.e.,

rank(t) = 1 4+ max{rank(¢;) | 1 <j <n} where t = C[ty,...,1,]

and max() = 0. So for example we have rank(f(g(0,0),z,g(y,y))) = 3. Our
modularity results crucially depend on the well-known fact that s —z,ur, t
implies rank(s) > rank(t).

A rewrite step s —g,ur, t is destructive at level 1 if root(s) € F; and root(t) €
Fs_i for some i € {1,2}. A reduction step s —x,ur, t is destructive at level m+1
(for some m > 1) if s = C[s1,...,85,...,52] = rRur, Cls1,---,tj, ..., 8n] =1
with s; —%,ur, t; destructive at level m. Obviously, if a rewrite step is destruc-
tive, then the rewrite rule applied is collapsing, i.e., the right-hand side of the rule
is a variable. For example, the rewrite step f(g(0,0),z,g(y,y)) — f(0,z,g(y,y))
is destructive at level 2.

4.2. DP (Quasi-)Simple Termination

Most methods for finding well-founded orderings search for total orderings. How-
ever, we concentrate on simplification orderings or quasi-simplification orderings
[Dershowitz, 1987, Steinbach, 1995, Middeldorp and Zantema, 1997] because all
TRSs that are totally terminating have been shown to be simply terminating
[Zantema, 1994] and because simple termination has a nice modular behaviour,
whereas modularity of total termination is still an open problem.

Now we formally define the notion of DP quasi-simple termination which re-
sults from restricting ourselves to QSOs when using the dependency pair ap-
proach (i.e., when using Criterion 3.7). The motivation for this notion is that it
contains all TRSs where termination can be proved automatically in the follow-
ing way: First, the constraints described in Theorem 3.5 are generated using the
estimated dependency graph, which can be determined mechanically. Then an

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 17

argument filtering is applied to eliminate arguments of function symbols (or to
replace functions by their arguments) as in Criterion 3.7, and finally a standard
technique is used to generate a QSO 7~ such that a reduction pair (=, >) satisfies
the resulting constraints. For example, > can be chosen to be the stable-strict
relation corresponding to 7.

DEFINITION 4.1 (DP QUASI-SIMPLE TERMINATION): A TRS R over a signa-
ture F is called DP quasi-simply terminating ¢f and only if for each cycle P in
the estimated dependency graph there exists an argument filtering Tp for F* and
a reduction pair (Zp, =p) with a QSO Zp such that

[l

(a) Tp(RUP) C Zp and
(b) mp(P) N =p # 0.

Definition 4.1 captures the TRSs for which an automated termination proof
using dependency pairs with the estimated dependency graph' is potentially
feasible (since virtually all quasi-orderings that can be generated are QSOs). In
fact, there are numerous DP quasi-simply terminating TRSs which are not simply
terminating; cf. e.g. the collection by Arts and Giesl [2001]. This observation mo-
tivated the development of the dependency pair approach and it also motivated
the work of the present section, as our aim is to extend well-known modular-
ity results for simple termination to DP quasi-simple termination. For instance,
the TRS from Section 3 is obviously DP quasi-simply terminating, because the
resulting constraints are satisfied by LPO (which is a quasi-simplification order-
ing). Similarly, for the TRS R; = {(10),(11)} from Section 4.1 we obtain the
following dependency pairs

F(0,1,z) — F(s(z),z,z) (14)
F(z,y,s(z)) — F(0,1,2). (15)

Our estimation technique determines that the first dependency pair (14) can
never follow itself in a chain, because F(s(z1), 2, 23)0 =%, F(0,1,z4)0 does not
hold for any substitution ¢. So in our example, the estimated dependency graph
contains an arc from (14) to (15) and arcs from (15) to (14) and to itself. Thus,
the only cycles in our example are {(15)} and {(14), (15)}. Hence, according to
Theorem 3.5, to prove the absence of infinite chains from the cycle {(15)} we
have to find a reduction pair satisfying

(0,1,) f(s(x),z,)
f(z,y,s(2)) s(f(0,1,2))
F(xz,y,s(z)) = F(0,1,2).

tNote that the notion of DP quasi-simple termination and therefore also our modularity
results depend on the estimation of the dependency graph. Thus, for other approximation
techniques one would have to investigate the resulting modularity properties separately.

z
z

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 18

By using the argument filtering that maps f to its third argument, these con-
straints are satisfied by RPO with the precedence s > 0 and s > 1. Similarly,
(by eliminating the first two arguments of F) one can also prove the absence of
infinite chains from the cycle {(14), (15)}. Hence, termination of the TRS con-
sisting of the rules (10) and (11) is proved and (as RPO is a quasi-simplification
ordering), it is DP quasi-simply terminating,.

In this article, we impose a minor restriction on the argument filterings used,
viz. for all cycles P we restrict ourselves to argument filterings mp such that for
all rules s — ¢ in 7p(R U P) both Var(t) C Var(s) and s ¢ V. This restriction
ensures that the rules 7p(R U P) from Criterion 3.8 indeed form a term rewrit-
ing system. According to Lemma 2.4, if there is a quasi-simplification ordering
satisfying the constraints in Criterion 3.7 (i.e., in Definition 4.1) and if these
constraints include at least one strict inequality with variables in its right-hand
side, then Var(n(r)) C Var(n(l)) is always satisfied for all | — r in R UP. In
other words, the restriction is not very severe.

In fact, in the proof of modularity of DP quasi-simple termination it is suffi-
cient to know that for every cycle of a DP quasi-simply terminating TRS there
is at least one argument filtering satisfying the minor restriction and a suitable
QSO that prove termination. However, it is an open problem whether for ev-
ery DP quasi-simply terminating TRS such an argument filtering and a suitable
QSO always exist. Nevertheless, even if there were a counterexample, then the
QSO satisfying the constraints must fulfill s 2 C[y| = y for some term s with
y & Var(s) or x 7~ t for a term t # x. Clearly, this is impossible for path or-
derings like LPO or RPO. Hence, whenever the constraints of Definition 4.1 are
satisfied by such a path ordering, then the restriction on the argument filterings
is fulfilled anyway. A constraint of the form s - y with y & Var(s) cannot be
satisfied by polynomial orderings either unless terms are only mapped to finitely
many different numbers. Thus, the question whether DP quasi-simple termina-
tion would also be modular without the above restriction is not so important for
practical termination proofs.

A straightforward way to generate a QSO > from a simplification ordering >
is to define ¢t > wu if and only if ¢ > u or ¢t = u, where = is syntactic equality. In
the following, we denote the reflexive closure of a relation by underlining, i.e., >~
denotes the reflexive closure of . By restricting ourselves to this class of QSOs,
we obtain the notion of DP simple termination.

DEFINITION 4.2 (DP SIMPLE TERMINATION): A TRS R over a signature F is
called DP simply terminating if and only if for each cycle P in the estimated
dependency graph there is an argument filtering ©p for F* and a simplification
ordering >p such that

(a) Tp(RUP) C =p and
(b) mp(P)N =p # 0.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 19

Note that whenever there exist argument filterings and simplification order-
ings satisfying the constraints (a) and (b) of Definition 4.2, then the minor
restriction on the argument filterings is satisfied according to Lemma 2.1. Due
to that lemma, there is the following alternative characterization for DP simple
termination (which uses Criterion 3.8 instead of Criterion 3.7).

COROLLARY 4.3 (ALTERNATIVE CHARACT. OF DP SIMPLE TERMINATION):
A TRS R over a signature F is DP simply terminating if and only if for each
cycle P in the estimated dependency graph there is an argument filtering mp for
F* such that np(R UP) is a simply terminating TRS.

For instance, both the TRS from Section 3 and Ry = {(10), (11)} from Section
4.1 are already DP simply terminating, because for their termination proofs
we may use quasi-simplification orderings in which only syntactically identical
terms are considered to be equivalent. Moreover, it also turns out that most of
the examples in [Arts and Giesl, 2001] are not only DP quasi-simply terminating
but even DP simply terminating. The following lemma illustrates the connections
between the different notions.

LEMMA 4.4 (CHARACTERIZING DP (QUASI-)SIMPLE TERMINATION): The fol-
lowing implications hold: simple termination = DP simple termination = DP
quasi-simple termination = termination.

Proof: The second implication holds as > is closed under substitutions and there-
fore (=, >) is a reduction pair. The last implication follows from Criterion 3.7.

It remains to show the first implication. Let R be a simply terminating TRS
over the signature F. If R is simply terminating, then there exists a simplification
ordering > such that [> r holds for all rules [— r of R.

Let Q be the function which replaces every tuple symbol f* in a term s €
T (F* V) by its corresponding function symbol f € F. Then >~ can be extended
to a simplification ordering =’ on 7 (F* V) by defining ¢t =’ u if and only if
Q(t) > Q(u) holds. We claim that the simplification ordering >’ satisfies the
constraints (a) and (b) of Definition 4.2 without applying an argument filtering,.

Obviously, [>" r holds for all rules [— r of R. Moreover, for every de-
pendency pair s — t we have s >’ t. The reason is that each dependency pair
f¥(s1,...,8,) = g*(t1, . . ., tm) originates from a rule f(sy,...,s,) — Clg(t1,. ..,
tm)] in R. Thus, f(...) = C[g(...)] implies f(...) > g(...) by the subterm prop-
erty which in turn implies f#(...) =’ g*(...). Hence, =’ satisfies both constraints
(a) and (b) of Definition 4.2. O

The following examples show that none of the converse implications of Lemma
4.4 holds.

EXAMPLE 4.5: The system {f(f(z)) — f(c(f(z)))} is DP simply terminating
as the only dependency pair on a cycle is F(f(x)) — F(z). Hence, the resulting

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 20

constraints are satisfied by RPO if one uses the argument filtering that maps
c(z) to its argument. However, this TRS is not simply terminating. The TRS

f(f(z)) — f(c(f(z))) gle(z)) — = g(c(0)) — g(d(1))
f(f(z)) — f(d(f(z))) gd(z)) — = g(c(1)) — g(d(0))
18 DP quasi-simply terminating as can be proved in a similar way using the
argument filtering which maps c and d to their arguments, and RPO where 0 and
1 are equal in the precedence. However, it is not DP simply terminating, because
due to the first four rules, the argument filtering must reduce c(z) and d(x) to
their arguments. But then g(0) = g(1) and g(1) > g(0) lead to a contradiction.
Finally, the system {f(0,1,x) — f(z,z,x)} is terminating but not DP quasi-
simply terminating. The reason is that {F(0,1,2) — F(x,z,z)} is a cycle in
the estimated dependency graph, but there is no argument filtering © and no
reduction pair (27, =) with a QSO - that satisfies 7(F(0,1,z)) > n(F(z,z,x)).

One might remark that the definition of argument filtering could be modified
by not only eliminating arguments but by also identifying different function
symbols. This would change the notion of DP simple termination, but DP simple
termination and DP quasi-simple termination would still not coincide. To see
this, one can replace the last two rules in the second system of Example 4.5.

f(f(z) — f(c(f(x))) glc(z)) — = g(c(h(0))) — g(d(1))
f(f(z)) — f(d(f(z))) gd(z)) — = g(c(1)) — g(d(h(0)))
g(h(z)) — sglz)

The system is still DP quasi-simply terminating as can be shown by a polyno-
mial ordering with |h(¢)| = [¢| + 1, |0| = 0, |1| = 1, |f(¢)] = |¢| + 1, where all
other function symbols are mapped to the identity. However, even with the new
definition of argument filtering, the system is still not DP simply terminating.
The reason is that again, the argument filtering 7 must map ¢ and d to their
arguments. Then the third and fourth g-rule imply 7(g(h(0))) = m(g(1)). Since
7(g) # []| due to the first g-rule, this implies 7(h(0)) = 7(1). Due to the depen-
dency pair G(h(z)) — G(x), 7 may neither map h to its argument nor to any
constant like 1. Hence, even with this alternative definition of argument filtering,
these constraints are not satisfiable.

4.3. Combining Disjoint Systems

In this section we show that DP quasi-simple termination is modular for disjoint
TRSs. For the proof, we need the following lemma.

LEMMA 4.6 (TRANSFORMING REDUCTION SEQUENCES): Let Ry and Rs be
two TRSs over disjoint signatures Fy and Fo, respectively. Furthermore, let
R = R1 U Ry be their union. If u,v are terms over the signature Fy such that
u —g, U and vo —% uo hold for a ground substitution o : Var(u) — T (F1UF,),
then there is also a ground substitution T : Var(u) — T (F1) such that ut —g,

*
VT =R, uemb(F) UT-

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 21
Proof: Clearly, all terms in the cyclic derivation
D: wuoc —g, vo =% uo

have the same rank. Since the root symbol of u is in Fi, the root symbol of
every term in the reduction sequence D is also in F; (reduction steps which are
destructive at level 1 would decrease the rank).

Suppose first that every function symbol in F; has arity < 1. Then every
reduction step in D which is destructive at level 2 strictly decreases the rank.
Consequently, there is no reduction step of this kind in D. Hence

top, (uo) =g, top;(vo) =%, top,(uo)

is an Rj-reduction sequence of ground terms over F; U {O}. Let Var(u) =
{z1,...,2,} and recall Var(v) C Var(u). In this case, we define the substitution
T by 7 = {z; — top;(z;0) | 1 <i < n}, where top,(t)" results from top,(t) by
replacing all holes O by an arbitrary constant from F; (note that we restricted
ourselves to signatures containing at least one constant). Then

ut = top, (uo)’" =g, top,(vo) = vr =%, top,(uo) = ur

is the reduction sequence we are looking for.

Suppose otherwise that there is a function symbol f in F; with arity m > 1.
Let Cons be a binary function symbol which neither occurs in F; nor in F, and
let C¢ = {Cons(z1,x2) — x1,Cons(z1,22) — x2}. By [Gramlich, 1994, Lemma
3.8] or [Ohlebusch, 1994b, Theorem 3.13], the reduction sequence D can be
transformed by a transformation function* ® into a reduction sequence

®(uo) =g, ®(vo) — RaUCe O (uo)

of terms over F; U {Cons}. The transformation function & satisfies ®(t) =
Cl®(t1),...,P(t,)] for every term t with root(t) € F, and t = C[ty,...,t,],
cf. [Ohlebusch, 1994b]. In this case, we first define o' = {z; — ®(z;0) | 1 <i <
n} and obtain

uo' = ®(uo) =g, ®(vo) =vo' =5, e, P(uo) =us’ .

Let uo’ = wg,uy,...,ur, = uo’ be the sequence of terms occurring in the
above reduction sequence. Now in each term wu; replace every Cons(tq,t2) with
f(t1,ta,2,...,2), where z is a variable or a constant from F;, and denote the

resulting term by ¥(u;). The definition 7 = {z; — ¥(x;0’) | 1 < i < n} yields
the desired reduction sequence

ur = V(uo') = U(ug) =g, ¥(u1) = ¥(vo') = v7 =%, Lempr) Plur) = ur

in which W(u;) =g uems) ¥(uip1) by the rule f(zq,...,2m) = z;, j € {1,2},
if w; —®,uce Uit1 by the rule Cons(zq, z2) — ;. O
¥More precisely, ® is the transformation ®%° defined in [Ohlebusch, 1994b, Definition 3.10].

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 22

Now we are in a position to prove our modularity theorem for DP quasi-simple
termination.

THEOREM 4.7 (MODULARITY OF DP QUASI-SIMPLE TERMINATION): Let Ry
and Ro be two TRSs over disjoint signatures Fy and JFo, respectively. Then their
union R = R1 U Ry is DP quasi-simply terminating if and only if both R1 and
Ro are DP quasi-simply terminating.

Proof: The only-if direction is trivial. For the if direction, let P be a cycle in the
estimated dependency graph of R. Since R, and R, are disjoint, P is a cycle in
the estimated dependency graph of Ry or of Ry. Without loss of generality, let
P be a cycle in the estimated dependency graph of R;.

As R, is DP quasi-simply terminating, there is an argument filtering 7 for .7-"{1
such that the constraints (a) and (b) of Definition 4.1 are satisfied for Rq, P,
and some reduction pair (7, =), where 7~ is a QSO. Now let

S = m(RyUP)UEMB(FL)
52 = RQ U Smb(}"g)

Due to our minor restriction on the argument filterings, S; is a TRS over the
signature]:fw. Hence R' = S; US, is a TRS over]—"fwu}"g. It is clear that —7%, is
a QSO.5 Note however, that the strict part of — % 1s not necessarily closed under
substitutions. Instead we prove that the reduction pair consisting of —7%, and its
stable-strict relation satisfies the constraints of Definition 4.1, if 7 is extended
to .7-"{1 U JF5 by not filtering any arguments for function symbols from F;. As the
cycle P was chosen arbitrarily, to prove DP quasi-simple termination of R, we
only have to show

(a) M(RUP) C —%, and
(b) there exists a dependency pair s — ¢ from P such that
n(t)o 4% m(s)o holds for all ground substitutions o.

Condition (a) is obviously satisfied, since for all [— r € Ry we have 7(l) =1
and m(r) = r and for all [— r in Ry U P either n(l) = w(r) or n(l) — =(r)
is a rule of S;. Hence, we only have to show conjecture (b). Since 7 is the
QSO used for the DP quasi-simple termination proof of R, we have —% C .
Let s — t be a dependency pair from P such that 7(s) > 7(¢). Suppose that
there exists a ground substitution o : Var(n(s)) — T(Fi_ U F,) such that
n(t)o —% m(s)o. By Lemma 4.6, this implies the existence of a ground substi-
tution 7 : Var(n(s)) — T(F%) such that =(t)7 —%, m(s)T, since Emb(FL) C
Si. (Here, F%_ corresponds to F; in Lemma 4.6, 7(s) and 7(t) correspond to u
and v, respectively, and S; and S, correspond to R; and R, in Lemma 4.6.) This
would imply 7(¢)7 - 7(s)7. Since > is closed under substitutions, we therefore

SIf R is a TRS over the signature F then _>;2U8mb(f) is the smallest QSO containing —%
(that is, if 77 is a QSO with —» C Z, then =% 0,7 € Z).

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 23

would have 7(s)7 > m(¢t)T 2Z w(s)T > ... which contradicts the well-foundedness
of . Thus, n(t)o 4% 7(s)o holds for all ground substitutions . This proves
conjecture (b). Finally, note that, since 7(RUP) is a TRS, the minor restriction
on the argument filterings holds for this . O

Thus, if R4 is the TRS consisting of the rules (10) and (11) and R, contains
the rules (12) and (13), then this theorem allows us to conclude termination of
their combination because both systems are DP quasi-simply terminating. This
example cannot be handled by any of the previous modularity results. Note
also that in this example, modularity of termination is far from being trivial
because if Ry’s rule f(0,1,2) — f(s(z),z,x) would be just slightly changed to
f(0,1,z) — f(x,z,z), then Ry would still be terminating, but the union with
R would not terminate any more, cf. [Toyama, 1987]. It is interesting to note
that Theorem 4.7 provides an elegant proof of the fact that (0,1, z) — f(z,z, x)
is not DP quasi-simply terminating because R, is DP quasi-simply terminating
but its union with f(0,1,z) — f(x, z, x) is non-terminating.

From the proof it is clear that the modularity result of Theorem 4.7 also holds
if in the definition of DP quasi-simple termination we fix the ordering >p to
be the stable-strict relation corresponding to the QSO >~ p. In other words, the
termination proof of Ry U Ry also succeeds with reduction pairs consisting of a
QSO and its associated stable-strict relation.

One should remark that a further extension of the modularity result in Theo-
rem 4.7 beyond the class of DP quasi-simply terminating systems is not straight-
forward. For example, if one would define DP quasi-simple termination by using
the real dependency graph instead of the estimated graph, then this notion of
termination would no longer be modular for disjoint systems. The previous sys-
tem would serve as a counterexample, since in the real dependency graph of
f(0,1,z) — f(x,z,z) there is no cycle. Hence, it would depend on the rules of
R whether dependency pairs of Ry form a cycle. The same problem occurs
with the recent technique of [Middeldorp, 2001] where dependency graphs are
approximated using tree automata techniques.

DP quasi-simply terminating systems occur frequently in practice. Consider
the following two TRSs where nil denotes the empty list and x : [represents
the insertion of a number z into a list [. Here sum(l) computes a singleton list
containing the sum of all elements in the list [.

Ri: z—0 — =z Ro: app(nilk) — k
s(z)—s(y) — z-—y app(l,nil) — I
quot(0,s(y)) — O app(z: L,k) — x:app(l,k)
quot(s(z),s(y)) — s(quot(z —y,s(y))) sum(z :nil) — z:nil
sum(z: (y:1)) — sum((z+y):1)
sum(app(l,z: (y: k))) — sum(app(l,sum(z: (y: k))))

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 24

Both TRSs above are not simply terminating, but they are both DP quasi-simply
terminating, cf. [Arts and Giesl, 2000]. Hence, Theorem 4.7 now also allows to
conclude DP quasi-simple termination of their union.

4.4. Combining Constructor-Sharing and Composable Systems

It may be a bit surprising that Theorem 4.7 cannot be directly extended to
constructor-sharing TRSs; even if we disallow the use of argument filterings. In
other words, there are constructor-sharing TRSs R; and Ry which are both DP
quasi-simply terminating, but their union R = R; U R is not DP quasi-simply
terminating.

ExaMPLE 4.8: Consider the following TRSs:

Ri: f(c(z)) — f(x) Ro: g(d(z)) — glx)
f(b(z)) — = glc(z)) — c(g(b(c(x))))

R1 and Rs are DP quasi-simply terminating. (Rq is even simply terminating
and Rs is already DP simply terminating as can be shown using the argument
filtering w(b) = [| and RPO. Alternatively, DP quasi-simple termination of R
can even be shown without any argument filtering by using a polynomial ordering
which maps ¢, b, g, and G to the identity and which maps d(x) to x+1.) However,
the union of Ry and Re is not DP quasi-simply terminating. As F(c(z)) — F(x)
represents a cycle in the estimated dependency graph one would have to find a

QSO satisfying

flc(z)) = f(z) (16)
fb(z)) = = (17)
gld(z)) = &) (18)
g(c(z)) z c(gblc()))) (19)
F(c(z)) = F(z) (20)
Without argument filtering, no QSO satisfies (16) - (20), since otherwise we

would have

F(c(g(c(x)))) > Flglc(z))) due to (20)
% Flc(g(b(c(x))))) due to (19)
=~ F(c(g(c(x)))) due to the subterm property.

By (20), the argument filtering can only map c to [1], i.e., m(c(z)) = c(x). If
m(b) =[] then (17) would be transformed into f(b) = x. But as there exists the
strict inequality (20) with a variable in its right-hand side, this results in the
contradiction F(c(f(b))) = F(f(b)) = F(z). Similarly, the argument of g cannot
be eliminated either, since g 7, c(g) would be a contradiction to (20).

Thus, the only possible argument filtering maps b or g to its argument. But then

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 25

we would again obtain F(c(g(c(z)))) = o = F(c(g(c(x)))) or F(c(c(x))) = o =
F(c(c(x))) as above. Hence, the TRS indeed is not DP quasi-simply terminating.

Thus, in order to obtain a modularity result for constructor-sharing combina-
tions we have to exclude TRSs like R5. Note that without applying an argument
filtering, DP simple termination of the TRS R, cannot be proved (while DP
quasi-simple termination can be shown without using any argument filtering at
all). Thus, we will impose two restrictions: (a) In the remainder of the section
we will restrict ourselves to DP simple termination instead of DP quasi-simple
termination and (b) we have to restrict ourselves to systems where the argument
filtering does not eliminate arguments for shared symbols like b.

But we need another requirement to ensure modularity. For example, let us
remove the first rule g(d(z)) — g(z) from R,. Now there is no cycle in the
estimated dependency graph of R, any more and hence we obtain no constraints
at all for R,. Thus, DP simple termination of Ry can now even be proved without
using argument filterings, but the combined system R;UR5 is still not DP simply
terminating. Here, the problem is due to the fact that TRSs without cycles are
DP simply terminating, even if there is no simplification ordering > such that
[> r holds for their rules. To exclude such TRSs we will demand that the
constraint (a) of Definition 4.2 (i.e., w(l) > =(r) for all rules) should also be
satisfied even if there does not exist any cycle P. Thus, in the following we also
take the empty cycle P into account.

With this additional requirement, DP simple termination is at least modu-
lar for disjoint combinations¥, whereas without this requirement, Theorem 4.7
would not hold for DP simple termination instead of DP quasi-simple termina-
tion. As a counterexample consider the TRS R, with the rule f(s(z)) — f(x)
and the TRS Ry with the rules

g(0) — g(c(0)) glce(z)) — = g(c(0)) — g(d(1))
g(0) — g(d(0)) gd(z)) — = g(c(1)) — g(d(0)).

R: is even simply terminating. R, is DP simply terminating, but the reason
is just that there does not exist any cycle in its estimated dependency graph.
However, when combining R, and R,, their union has a cycle and hence, one now
also has to demand 7(l) > m(r) for the rules of Ro. However, for all argument
filterings m, this is not fulfilled by any QSO whose equivalence relation is just
syntactic equality. So their union is not DP simply terminating, but of course
due to Theorem 4.7 it is DP quasi-simply terminating.

Nonetheless, the following example shows that this restriction is not yet suffi-
cient for obtaining a modularity result for DP simple termination of constructor-
sharing systems.

9This can be proved similar to Theorem 4.7 using the simplification ordering —>£, where

instead of condition (b) in this proof one only has to show that m(s) # m(¢) holds for some
dependency pair s — ¢ from P (this follows immediately from DP simple termination of Ry).

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 26

EXAMPLE 4.9: Let Ry consist of the rules

g(s(z)) — glx) g(0) — g(1)
g(s(z)) — = f(0) — &l(f(s(0)))

and let Ro consist of the rule h(1) — h(0). To prove DP simple termination
of R1 we have to use an argument filtering mapping f to [| and g to 1. This,
however, would imply 0 = 1 which is a contradiction to h(1) > h(0). Thus, the
combination of both systems is not DP simply terminating.

So we also have to ensure that an application of the argument filtering to
the resulting inequalities does not transform left-hand sides which had a non-
shared root symbol like g into terms with a shared root symbol (like the former
constructor 0).I For that reason we have to demand the following compatibility
requirement for all argument filterings used, where G must contain all shared
function symbols.

DEFINITION 4.10 (G-COMPATIBILITY): Let R be a TRS over the signature F

and let G be a signature. An argument filtering © for F is G-compatible for R
if and only if
(a) w(f)=11,...,n] for every f € F NG, where n is the arity of f
(i.e., ™ does not filter arguments for function symbols from G).

(b) For every rule | — r € R: if root(l) € G, then root(n(l)) € G.

The restriction to G-compatible argument filterings ensures that symbols from
F N G are not changed and furthermore constructors from F N G are not turned
into defined symbols after application of the argument filtering. In the following,
for any TRS R over the signature F let C, be the set of constructors of 7(R),
and let D, be the set of defined symbols in 7(R).

LEMMA 4.11 (PROPERTIES OF G-COMPATIBLE ARGUMENT FILTERINGS):
Let R be a TRS over the signature F = CUD and let w be an arqument filtering
for F that is G-compatible for R. Then the following statements hold:

(i) For every rule |l — r € R: if root(l) € G, then root(w(l)) = root(l).
(ii) For every rule | — r € R: if root(w(l)) € G, then root(mw(l)) = root(l).
(i) GND, CGND.

Proof:
(i) Immediate consequence of Definition 4.10 (a).

(ii) It follows from Definition 4.10 (b) that root(l) € G. Hence (ii) is a conse-
quence of (i).

I1f the argument filtering is non-collapsing (i.e., w(f) # i for all defined symbols f), then
this requirement is always fulfilled.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 27

(iii) Follows directly from (ii).

O

The following lemma is crucial to our modularity result, because it states that
if R1 and R, are constructor-sharing, then applying an argument filtering 7
will also result in constructor-sharing TRSs 7(R1) and 7(R2) provided that 7
is compatible with the set of all shared symbols. In fact, this result even holds
for composable TRSs instead of constructor-sharing ones.

LEMMA 4.12 (G-COMPAT. ARG. FILTERINGS MAINTAIN COMPOSABILITY):
Let Ry and Ro be composable TRSs over the signatures F, and Fs, respectively.
If FiNFy C G and if m is an argument filtering for F1 U Fy that is G-compatible
for Ry and for Ry, then m(R1) and m(Ra) are also composable.

Proof: We prove the following claims (where (B) and (C) imply that 7(R;) and
m(R2) are composable):

(A) {l =5 renm(R1)Un(Ry) | root(l) € D1 NDy} C 7(R1) N7(Re)
(B) {l = r e n(R1) Un(Rz) | root(l) € D1, N D} C 7w(Ry) N7(R2)
(C) C1xNDyy =D1,NCor =10

(A)Ifl —» r € 71(R1) Un(Ry2), then we have [= 7(u) and r = 7(v) for some
u — v € Ry URsy. Note that root(w(u)) € D; N Dy C G implies root(m(u)) =
root(u) by Lemma 4.11 (ii). As root(u) € D; N Dy and as R; and R, are
composable, this implies v — v € Ry N Rq. It follows that 7(u) — 7(v) €
m(R1) N m(R2) because m(u) — m(v) € m(Rq) Um(R2) implies 7(u) # 7(v).

(B) If f = root(l) € Dy, N Dy, then a function symbol f (with possibly
different arity) occurs in F; N Fy C G by the definition of argument filterings.
But then due to Definition 4.10 (a), f € F; N Fy C G has the same arity as
f € D1, N Ds,.. Hence, f € D; N D, follows from Lemma 4.11 (iii). Now the
claim is implied by (A).

(C) If there were an f € Cy, N Dsy,, then similar to the argumentation in (B),
we would have f € F; N Fy C G by the definition of argument filterings and
since 7 is G-compatible. This implies f € F; N D, according to Lemma 4.11
(iii). We know C; N Dy = () because Ry and R, are composable. Thus, we have
f € D1 N Dy. But since there is a rule | — r € 7(Ry) with root(l) = f, (A)
implies | — r € 7(Ry) and thus, root(l) = f € D1,, which is a contradiction to
f € Ci,. The proof of Dy, N Cy,, = D is exactly the same. O

The restrictions needed for the desired modularity result are captured by the
notion of G-restricted DP simple termination.

DEFINITION 4.13 (G-RESTRICTED DP SIMPLE TERMINATION): A TRS R
over a signature F s called G-restricted DP simply terminating if and only

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 28

if for each cycle P in the estimated dependency graph of R (including the empty
one) there is an argument filtering mp for F* that is G-compatible for RUP such
that

o Tp(RUP) is a simply terminating TRS and
e p(P) # 0 whenever P # (.

So obviously, G-restricted DP simple termination implies DP simple termina-
tion, cf. Corollary 4.3. The following theorem shows that under this G-restriction,
DP simple termination is modular for constructor-sharing and even for compos-

able TRSs.

THEOREM 4.14 (MODULARITY OF G-RESTRICTED DP SIMPLE TERMINAT.):
Let Ry and Ro be composable TRSs over the signatures Fy and F», respectively.
If F1 N Fy C G, then their combined system R = Ri U Ry is G-restricted DP
simply terminating if and only if both Ry and Ry are G-restricted DP simply
terminating.

Proof: The only-if direction is trivial. For the if direction, let P be a cycle in the
estimated dependency graph of R (where P may also be empty). Then P is also
a cycle in the estimated dependency graph of R; or in the estimated dependency
graph of R, because R, and Rs are composable. The reason is that dependency
pairs of the form f#(...) — ¢*(...) where g € FiNF and f & F, N F, are
not on cycles. Thus, the only dependency pairs f#(...) — ¢*(...) on cycles have
fyg € Fi:\ Fs_;or f,g € FiNFy. Without loss of generality let P be a cycle in
the estimated dependency graph of R;. Let S; = R; UP and let S = R,. Note
that S§; and Sy are composable, since the root symbols in the new rules P are
tuple symbols which therefore do not occur in R,. We have to show that there
is an argument filtering 7 for .7-"{1 U JF> that is G-compatible for S = & U S, such
that 7(S) is simply terminating and such that m(P) # 0 if P # (.

Since R, and R, are G-restricted DP simply terminating, there are argument
filterings m; and 7y such that m; is G-compatible with S; and such that m;(S;)
is simply terminating (for both i € {1,2}). For ¢ = 2 this is because we also
regard the empty cycle in Definition 4.13. Moreover, m(P) # 0 if P # (). Let
7 operate like m; on F; and like my on Fy. (This is well defined, since 7; and
7o do not modify function symbols from F; N F, C G.) Clearly, 7(P) = m1(P)
and thus, 7(P) # 0 if P # (. Moreover, obviously 7 is G-compatible for both
S; and Sy and hence, also for S. Then by Lemma 4.12) 7(S;) and 7(Ss) are
composable, since S§; and S, are composable as well. Thus, by [Ohlebusch, 1995,
Theorem 5.16], the combined system 7(S;) U w(Ss) = 7(S; U Sy) is also simply
terminating. This implies G-restricted DP simple termination of R; UR,. O

For example, let us extend both TRSs Ry and R, from the end of Section 4.3
by the additional rules
O+y — vy
s(z) +y — s(zx+y)

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 29

and moreover, we also add the rule (zr —y) — 2 — z — (y + z) to R;. Now the
resulting TRSs are composable, since they both contain the same constructors
0 and s and they also share the defined symbol +, but both TRSs contain the
same +-rules. As both TRSs are {0,s,+}-restricted DP simply terminating,
Theorem 4.14 allows us to conclude {0,s, +}-restricted DP simple termination
of the combined system.

There are even TRSs R1 U R, where DP simple termination of both R; and
Ry can be proved with a standard technique like LPO, whereas such standard
orderings fail if one wants to prove DP simple termination of their union directly.
Hence, for such examples our result enables automatic termination proofs which
were not possible before.

EXAMPLE 4.15: Let Ry be the TRS

flc(s(z),) — flc(z,s(y)))
f(f(z)) — f(d(f(z)))

flz) — =

and let Ro consist of the rule g(c(z,s(y))) — glc(s(z),y)).

R1 is DP simply terminating (using the argument filtering w(d) = [] and LPO
comparing subterms left-to-right), but it is not simply terminating. Ro is even
simply terminating as can be shown with LPO comparing subterms right-to-left.
Thus, DP simple termination of both systems can be verified by LPO.

By Theorem /.14 their union s also DP simply terminating. However, the
constraints for the cycle {G(c(z,s(y))) — G(c(s(x),y))} are not satisfied by LPO
(nor by RPO nor by any polynomial ordering). Thus, there are indeed TRSs
where termination of the subsystems can be shown with dependency pairs and
LPO, but (without our modularity result) termination of their union cannot be
proved with dependency pairs and LPO.

5. Modular Innermost Termination Proofs With Depen-
dency Pairs

Arts and Giesl [2000] showed that the dependency pair approach can be mod-
ified in order to verify innermost termination. Unlike previous methods, this
technique can even prove innermost termination of non-terminating systems au-
tomatically. Similar to the modular approach for termination in Section 3, this
technique for innermost termination proofs can also be used in a modular way.
As an example consider the following TRS:

fz,c(z),cly)) — fy,y,f(y,2,9)) glr,y) — =
f(s(x),y,2) — flz,s(c(y)),c(2)) slz,y) — v
flc(z),z,y) — c(y)
By applying the first f-rule to f(z, c(z), c(g(z,c(x)))), we obtain an infinite (cy-
cling) reduction. However, it is not an innermost reduction, because this term

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 30

contains a redex g(...) as a proper subterm. It turns out that the TRS is not
terminating, but it is innermost terminating.

To develop a criterion for innermost termination similar to the termination
criterion of Section 3, the notion of chains has to be restricted. A sequence of
dependency pairs s; — t1, So — ta, ... is an innermost R-chain if there exists a
substitution o such that all s;o are in normal form and ;o % s;4;0 holds for
every two consecutive pairs s; — ¢; and s;;; — t;41 in the sequence. Here, ‘5
denotes innermost reductions.

Of course, every innermost chain is also a chain, but not vice versa. In our
example, we have the following dependency pairs.

F(z,c(z),cly) — F,y.f(y,2,9)) (21)
F(z,c(z),c(y)) — Fly,z,y) (22)
F(s(z),y,2) — F(=,s(c(y)),c(2)) (23)

The infinite sequence consisting of the dependency pair (21) is an infinite
chain, but no innermost chain, because F(y1,y1,f(y1,x1,y1))o can only reduce
to F(za,c(x2),c(y2))o for substitutions o where y;0 is not a normal form. Arts
and Giesl [2000] proved that the absence of infinite innermost chains is a sufficient
and necessary criterion for innermost termination.

THEOREM 5.1 (INNERMOST TERMINATION CRITERION): A TRS R is inner-
most terminating if and only if there exists no infinite innermost R-chain.

Analogous to Section 3, the notion of a graph is defined for innermost chains.

DEFINITION 5.2 (INNERMOST DEPENDENCY GRAPH): The innermost depen-
dency graph of a TRS R is the directed graph whose nodes are the dependency
pairs and there is an arc from s — t to v — w iff s — t, v — w is an innermost
chain.

For the purpose of automation we again need an estimation, since in general it
is undecidable whether two dependency pairs form an innermost chain. To this
end, we again replace subterms in ¢ with defined root symbols by new variables
and check whether this modification of ¢ unifies with v, but in contrast to Section
3 we do not rename multiple occurrences of the same variable.

DEFINITION 5.3 (ESTIMATED INNERMOST DEPENDENCY GRAPH): The esti-
mated innermost dependency graph of a TRS R is the directed graph whose
nodes are the dependency pairs and there is an arc from s —t to v — w iff
CAP(t) and v are unifiable by a most general unifier p such that su and vu are
normal forms.

In the estimated innermost dependency graph of our example, there are arcs
from (22) to each dependency pair, from (21) to (23), and from (23) to itself.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 31

However, there is no arc from (21) to itself, because CAP(F(y1, y1,f(y1,21,¥1))) =
F(y1,y1,2) does not unify with F(xs,c(z2),c(y2)). Hence, the only cycles are
{(22)} and {(23)}. In fact, in this example the estimated innermost dependency
graph coincides with the (real) innermost dependency graph. Similar to Theorem
3.3 one can show that it suffices to prove the absence of infinite innermost chains
separately for every cycle.

THEOREM 5.4 (MODULAR INNERMOST TERMINATION CRITERION): A TRS
R is innermost terminating if and only if for each cycle P in the innermost
dependency graph there is no infinite innermost R-chain of dependency pairs

from P.

Proof: The proof is absolutely analogous to the proof of Theorem 3.3: If R is not
innermost terminating, then by Theorem 5.1 there exists an infinite innermost
chain and its tail corresponds to a cycle in the innermost dependency graph. O

To prove innermost termination in a modular way, we again generate a set of
inequalities for every cycle P and search for a reduction pair (Z-p, >p) satisfying
them. However, to ensure to 7~p vo whenever to reduces to vo, now it is sufficient
to require [7p r only for those rules that are usable in a reduction of to (for

normal substitutions o).

DEFINITION 5.5 (USABLE RULES): Let R be a TRS. For any symbol f let
Rulesg(f) = {l—r € R|root(l) = f}. For any term we define the usable
rules:

L UR(QT) = @,
(] UR(f(tl, P ,tn)) = RUZBSR(f) U Ul%reRulesR(f) URI(T) U U?:l URI(tj),

where R' = R \ Rulesg(f). Moreover, for any set P of dependency pairs we
define Ur(P) = U, yep Ur(E)-

So we have Ur (F(y,y, f(y, z,y))) = Rulesg (f) and Ur ({(22)}) = Ur({(23)}) =
0, i.e., there are no usable rules for the cycles. Note that Rulesg(f) = 0 for
any constructor f. Now our theorem for automatic** modular verification of
innermost termination can be proved analogously to Theorem 3.5.

THEOREM 5.6 (MODULAR INNERMOST TERMINATION PROOFS): A TRS R
is innermost terminating if for each cycle P in the (estimated) innermost de-
pendency graph there is a reduction pair (Zp, =p) such that

Y

(a) Ur(P)UP C Zp and
(b) PN =p # 0.

“*Detailed explanations and additional refinements for the automated checking of the inner-
most termination criterion can be found in [Arts and Giesl, 2000, Giesl and Arts, 2001].

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 32

Proof: An infinite innermost chain of dependency pairs from some cycle P gives
rise to an infinite sequence of inequalities in contradiction to the well-foundedness
of >=p (similar to the proof of Theorem 3.5). The only difference is that now o is

. . . . 1
a substitution with normal forms and therefore the reductions w; jo —% v; 110,

Wi p,0 ¥ 8pi0, and tp;0 —% v; 1110 only require usable rules from Up(P). O
In this way, we obtain the following constraints for our example:

Flz,c(2),c(y)) =1 Fly,z,y) F(s(2),9,2) =2 F(z,5(c(y)), c(2)).

For »; we may use LPO comparing subterms right-to-left and for >, we may
use LPO comparing subterms left-to-right. Hence, innermost termination of this
example can easily be proved automatically. Without our modularity result, the
above innermost termination proof would not be possible, because there exists
no simplification ordering satisfying both inequalities (not even after argument
filtering).

Note that unlike Theorem 3.5, the reverse direction of Theorem 5.6 does not
hold, i.e., this criterion is only sufficient, but not necessary for innermost termi-
nation. As an example regard the TRS R with the rules

f(a(z),y) — glz,y) (24)
g(z,y) — h(z,y) (25)
h(0,y) — f(y,v) (26)

a(0) — 0. (27)

The only cycle of its innermost dependency graph is {F(a(z),y) — G(z,v), G(z,y)
— H(z,y),H(0,y) — F(y,y)}. In fact, this TRS is innermost terminating. How-
ever, the constraints of Theorem 5.6 imply

F(a(0),a(0)) Z 6(0,a(0)) Z H(0,a(0)) Z F(a(0),a(0)),

where one of these inequalities must also hold for the strict ordering >. Thus,
they are not satisfied by any reduction pair.

Of course, Criteria 3.7 and 3.8 can also be modified into sufficient criteria for
innermost termination proofs as follows.

CRITERION 5.7 (MODULAR AUTOMATED INNERMOST TERMINATION CRIT.):
A TRS R over a signature F is innermost terminating if for each cycle P in
the (estimated) innermost dependency graph there is an arqument filtering mp
for F* and a reduction pair (=p, =p) such that

(a) Tp(Ur(P)UP) C Zp and
(b) mp(P) N =p # 0.

CRITERION 5.8 (INNERMOST TERMINATION CRIT. BY TRANSFORMATION):
A TRS R over a signature F is innermost terminating if for each cycle P in

the (estimated) innermost dependency graph there is an argument filtering np
for F* such that p(Ug (P) UP) is a terminating TRS and such that wp(P) # 0.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 33

6. Modularity Results for Innermost Termination

In Section 6.1 we introduce modularity criteria which can be derived from the
results of the previous section. Section 6.2 compares these criteria with related
work.

6.1. Modularity Criteria

In this section we present two corollaries of our results from Section 5 which are
particularly useful in practice.

6.1.1. Hierarchical Combinations

A straightforward corollary of Theorems 5.4 and 5.6 can be obtained for hierar-
chical combinations. As an example consider the following TRS. Here, ‘n : m : 2’
abbreviates ‘n : (m : z)’. The function add(z,y) adds all elements of the

list = to the first element of the list y, i.e., add(ng : ny : ... : ng : nilbm :
y) = (m + Ef:o n;) : y. The function weight computes the weighted sum, i.e.,
weight(ng : ny 1 ... :ng o nil) = ng + Elez' - M.
add(s(n) :x,m:y) — add(n:z,s(m):y)
add(0:z,y) — add(z,y)
add(nil,y) — vy
weight(n : m:z) — weight(add(n:m:z,0: z))
weight(n : nil) — n

Let Ry consist of the three add-rules and let R, be the system consisting of
the two weight-rules. Then these two systems form a hierarchical combination,
where add is a defined symbol of R; and a constructor of R.

Note that tuple symbols from dependency pairs of R do not occur in left-hand
sides of Ro-dependency pairs. Hence, a cycle in the innermost dependency graph
either consists of R;-dependency pairs or of Ro-dependency pairs only. So in
our example, every cycle either contains just ADD- or just WEIGHT-dependency
pairs. Thus, we obtain the following corollary.

COROLLARY 6.1 (INNERMOST TERM. FOR HIERARCHICAL COMBINATIONS):
Let R be the hierarchical combination of Ry and R.

(a) R is innermost terminating if and only if Ry is innermost terminating and
there exists no infinite innermost R-chain of Ro-dependency pairs.

(b) R is innermost terminating if Ry is innermost terminating and if there
exists an argument filtering ™ and a reduction pair (-, =) such that for all
dependency pairs s — t of Ro

TTOf course, an obvious refinement of Corollary 6.1 (b) is to regard the different cycles of
R2-dependency pairs in R’s (estimated) innermost dependency graph separately. Moreover, a

variant of Corollary 6.1 also holds for C¢-termination instead of innermost termination [Urbain,
2001].

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 34

o () 77, w(r) for all rules l —r in Ur(t) and
o 7(s) = m(t).

Proof: The corollary is a direct consequence of Theorems 5.4 and 5.6, since
every cycle consists of R;- or of Ro-dependency pairs only and since for any
dependency pair s — ¢ of R, the only rules that can be used to reduce a normal
instantiation of ¢ are the rules from R, (i.e., Ur(t) C Ry). O

(Innermost) termination of the add-system (R4) is easily proved (e.g., by LPO
with the precedence add >: and add > s). For the weight-subsystem (Rs) we
obtain the following constraints. (Note that WEIGHT(...) — ADD(...) is no de-
pendency pair of R, since add & Ds.)

m(add(s(n) : z,m :y)) Z w(add(n :z,s(m): y))
m(add(0: 2,)) 7 m(add(z,))
m(add(nil,y)) = 7(y)
) =

7(WEIGHT(n:m : z 7(WEIGHT (add(n : m : 2,0 : z)))

By choosing the argument filtering 7(add) = 7 (:) = [2], the inequalities are also
satisfied by LPO, but now we have to use the precedence : > add.

In this way, innermost termination of this non-simply terminating example can
be proved automatically. Moreover, as the system is non-overlapping, this also
proves its termination. A criterion like Corollary 6.1 can also be formulated for
termination instead of innermost termination, because in the termination case
there cannot be a cycle consisting of dependency pairs from both R; and R,
either. But in contrast to the innermost termination case, rules of R, can be used
to reduce instantiated right-hand sides of R;-dependency pairs (as we cannot
restrict ourselves to normal substitutions then). Hence, to prove the absence of
infinite R-chains we have to use a quasi-ordering where the rules of R, are also
weakly decreasing. Therefore, the constraints for the termination proof of the add
and weight-example (according to Section 3) are not satisfied by any reduction
pair with a quasi-simplification ordering amenable to automation [Arts and Giesl,
2001], whereas the constraints for innermost termination are fulfilled by such an
ordering. Hence, for non-overlapping systems, it is always advantageous to verify
termination by proving innermost termination only.

6.1.2. Splitting into Subsystems

The modularity results for innermost termination presented so far were all used
in the context of dependency pairs. However as already mentioned, the classical
approach to modularity is to split a TRS into subsystems and to prove their (in-
nermost) termination separately. The following corollary of Theorem 5.4 shows
that the consideration of cycles in the innermost dependency graph can also be
used to decompose a TRS into modular subsystems. (Similarly, the cycles of the

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 35

estimated innermost dependency graph may be used as well for this decomposi-
tion.)

In the following, let O(P) denote the origin of the dependency pairs in P, i.e.,
O(P) is a set of those rules where the dependency pairs of P stem from. If a
dependency pair of P may stem from several rules, then it is sufficient if O(P)
just contains one of them. So for the example of Section 5 we have O({(22)}) =
{1(‘(9)6),;(%), c(y)) = f(y,y, f(y, ,y))} and O({(23)}) = {f(s(2), y, 2) = f(,s(c(y)),
c(2))}.

COROLLARY 6.2 (MODULARITY FOR SUBSYSTEMS): Let R be a TRS, let P,
..., Py be the cycles in its (estimated) innermost dependency graph, and let R;
be subsystems of R such that Ur(P;) U O(P;) C R, (for all j € {1,..,n}).

If Ry, ..., R, are innermost terminating, then R is also innermost terminating.

Proof: As P; is a cycle, every dependency pair from P; is an R j-dependency pair.
(In order to see this, let f#(5) — g*(f) be an R-dependency pair in P;. Here, 5
and ¢ denote tuples of terms sy, ..., s, and t1,. .., tm, respectively. Clearly, g is
a defined symbol of R; because there is also a dependency pair ¢*(7) — h*(i)
in P;. Hence, since g is a defined symbol of R;, f#(5) — g*(f) is also an R;-
dependency pair.) Thus, every innermost R-chain of dependency pairs from P;
is also an innermost R;-chain. Now the corollary is a direct consequence of
Theorem 5.4. O

For instance, in the example of Section 5 we only have two cycles, viz. {(22)}
and {(23)}. As these dependency pairs have no defined symbols in their right-
hand sides, their sets of usable rules are empty. Hence, to prove innermost ter-
mination of the whole system, by Corollary 6.2 it suffices to prove innermost ter-
mination of the two one-rule subsystems f(z,c(x),c(y)) = f(y,y,f(y,z,y)) and
f(s(z),y,2) = f(x,s(c(y)), c(2)).

In fact, both subsystems are even terminating as can easily be proved auto-
matically. For the first system one can use a polynomial interpretation mapping
f(z,y,2) to x +y + z and c(z) to 5z + 1 [Lankford, 1979]. Methods for the au-
tomated generation of polynomial orderings have for instance been developed in
[Steinbach, 1994, Giesl, 1995]. For the second system one can use LPO with the
precedence f > s and f > c.

Hence, the modularity criterion of Corollary 6.2 allows the use of well-known
simplification orderings for innermost termination proofs of non-terminating sys-
tems, because it guarantees that innermost termination of the two simply ter-
minating subsystems is sufficient for innermost termination of the original TRS.

A similar splitting is also possible for the example in Section 3. Even better,
if we modify the TRS into a non-overlapping one

flz,c(y)) — f(z,s(f(y,9)))
f(s(x),s(y)) — f(z,s(c(s(y)))),

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 36

then Corollary 6.2 allows to conclude termination of the whole system from ter-
mination of the two one-rule subsystems. Innermost termination of the original
example resp. termination of the above modified example can be proved by LPO,
but for the first rule one needs the precedence ¢ > s and ¢ > f, whereas for the
second rule the precedence f > s and f > ¢ is required.

Note that the reverse direction of the corollary does not hold. Consider the
TRS (24) - (27) from the end of Section 5 again. The only cycle of its innermost
dependency graph is {F(a(z),y) — G(z,v), G(z,y) — H(z,y),H(0,y) — F(y,y)}.
Since this cycle does not have any usable rules, Corollary 6.2 states that inner-
most termination of the subsystem consisting of the first three rules is sufficient
for innermost termination of the whole TRS. However, the converse does not
hold, since the whole system is innermost terminating, whereas the subsystem
consisting of the first three rules is not. (The term f(a(0),a(0)) starts an infinite
innermost reduction.)

6.2. Comparison with Related Work

Now we show that in the case of finite TRSs, existing modularity results for in-
nermost termination are obtained as easy consequences of our criteria and that
our criteria extend previously developed results. Section 6.2.1 focuses on com-
posable TRSs and Section 6.2.2 gives a comparison with results on hierarchical
combinations.

6.2.1. Shared Constructors and Composable Rewrite Systems

By the framework of the previous sections we can easily prove that innermost
termination is modular for composable TRSs [Ohlebusch, 1995] and hence also
for TRSs with disjoint sets of defined symbols and shared constructors [Gram-
lich, 1995]. In fact, Corollary 6.2 immediately implies** the following result of
Ohlebusch [1995].

THEOREM 6.3 (MODULARITY FOR COMPOSABLE TRSS): Let Ry and R» be
composable TRSs. If Ry and Ry are innermost terminating, then R1URy is also
mnermost terminating.

Proof: Let f4(5) — ¢*() be a dependency pair of Ry UR,. If f € Dy, then there
exists a rule f() — C[g(f)] in Ry. (This rule cannot be from Ry \ R, because
R and R, are composable.) Hence, g € D1, because constructors of R are not
defined symbols of R,. Similarly, f € D,y implies ¢ € D,. So any dependency
pair of Ry U R, is an R;-dependency pair or an Ro-dependency pair.
Moreover, there can only be an arc from f#(5) — ¢*() to a dependency pair
of the form g#(#) — h*(w). Hence, if f4(5) — ¢*(f) is an Rj-dependency pair,
then g € D; and therefore, g*(7) — h*(i7) is also an R;-dependency pair (for

YA direct proof of Theorem 6.3 is not too difficult either, but our alternative proof serves
to illustrate the connections between our criteria and existing modularity results.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 37

j € {1,2}). So every cycle P in the innermost dependency graph of R; U R,
either consists of Ri-dependency pairs or of Ry-dependency pairs only.

If a cycle P only contains Ri-dependency pairs, then R; is a superset of
Ur,ur, (P)UO(P), as the defined symbols of R\ R do not occur as constructors
in R;. Similarly, for a cycle P of Re-dependency pairs, we have Ur, r,(P) U
O(P) C R,. Hence by Corollary 6.2, R; U R, is innermost terminating if R4
and R, are innermost terminating. O

Note that our results extend modularity to a much larger class of TRSs, e.g.,
they also allow a splitting into non-composable subsystems which share defined
symbols as demonstrated in Section 6.1.2.

6.2.2. Proper Extensions

Krishna Rao [1995] proved that innermost termination is modular for (general-
ized) proper extensions which are a certain kind of hierarchical combinations. In
this section we show that for finite TRSs this is also a direct consequence of our
results.

For a TRS R, the dependency relation >, is the smallest quasi-ordering satis-
fying the condition f >, g whenever there is a rewrite rule f(...) = Clg(...)] € R
with g € D. So f >4 g holds if the function f depends on the definition of g.

Let Ry and R5 form a hierarchical combination. Now the defined symbols D, of
R, are split in two sets Dy and D3, where D} contains all defined symbols which
depend on a defined symbol of Ry, i.e., D} = {f|f € Da, f 04 g for some g € Dy}
and Dg = DQ\D;. R is a proper extension of R4 if every rule | — r € R4 satisfies
the following condition: Whenever ¢ is a subterm of r such that root(t) € D,
and root(t) =4 root(l), then ¢ contains no function symbol depending on D; (i.e.,
from D; U Dj) except at its root.

For instance, in the add and weight-example from Section 6.1.1 we have D; =
{add}, D3 = {weight} (because weight depends on the definition of add), and
D; = (). This example is not a proper extension, because there is a weight-rule in
which the D;-symbol add occurs below the Dj-symbol weight. Thus, in a proper
extension functions depending on R, are never called within a recursive call of
Ro-functions. As an example for a proper extension consider the TRSs R; and
Ry from the end of Section 4.3 again, where R is extended by the rule

avg(l) — quot(hd(sum(l)),length(l)).

Here, avg(l) computes the average of all elements in the list I. We have D) =
{avg}, whereas all other symbols of D, belong to Dj. Since avg does not occur
in a right-hand side, this modified TRS R, is a proper extension of R;. The
modified TRS R, is still DP simply terminating (since the avg-rule does not
give rise to additional dependency pairs). In fact, its innermost termination also
follows directly from Corollary 6.1 (b), since the original TRS R, and the avg-
rule form a hierarchical combination. Corollaries 6.1 and 6.2 imply the following

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 38

result of [Krishna Rao, 1995] which in turn ensures that the union of R, and the
extended system R, in our example is innermost terminating.

THEOREM 6.4 (MODULARITY FOR PROPER EXTENSIONS): Let R» be a proper
extension of R1. The TRS R1 U Ry is innermost terminating if R1 and Ry are
mnermost terminating.

Proof: As in the proof of Corollary 6.1, since R; and Rs form a hierarchical
combination, every cycle in the innermost dependency graph of R; URs consists
solely of R1-dependency pairs or of Ro-dependency pairs. If a cycle P consists of
dependency pairs of Ry, we have Ur,ur,(P)UO(P) C R4, because dependency
pairs of Rq do not contain any defined symbols of R.,.

Otherwise, the cycle P consists of Ro-dependency pairs. If f#(5) — ¢#(f) is
an R,-dependency pair in P, then there exists a rule f(3) — C[g(f)] in R, and
f,g € Ds. In addition, we have f >4 g and g >4 f (as P is a cycle).

If g € D3, then f also belongs to D3, hence no defined symbol of D; U D;
occurs in t. Otherwise, if ¢ € D}, then by definition of a proper extension again
all defined symbols in ¢ are from D3. Thus, in both cases, all defined symbols of
Ur,ur, (g (f)) belong to D3. Hence, Ug, r,(g*(f)) is a subsystem of R,.

So for any cycle P of Re-dependency pairs, we have Ug, r, (P) UO(P) C Ra.
Hence, by Corollary 6.2 innermost termination of R and R, implies innermost
termination of Ry U R,. O

As another example regard the system R, consisting of the following three
rules.

hd(z:1) — =
length(nil) — 0
length(z : 1) — s(length(l))

The TRS R; U Ry (including the avg-rule) is a proper extension of R, and
therefore, Theorem 6.4 also implies innermost termination of Ry U R1 U Rs.

The notions of “composability” and “proper extension” can be combined as
follows. Suppose we are given two TRSs R; and R, such that Dy = D} W D',
Dy = DyWD', RiNRy = {l = r € R | root(l) € D'}, and DyND, = C;ND; = (.

Now D, is split in two sets Dj and D3I, where D = {f|f € Dy, f vq
g for some g € D)} and D5 = D, \ D;. R, is a generalized proper extension
[Krishna Rao, 1995] of R if every rewrite rule [— r € R, satisfies the follow-
ing condition: Whenever ¢ is a subterm of r such that root(t) € D) \ D’ and
root(t) >4 root(l), then ¢ contains no function symbol depending on D} (i.e.,
from D’ U D}) except at its root.

As an example, we again regard the TRSs Ry and R, from the end of Section
4.3, where R also contains the rule for avg, R also contains the rule (z—y)—2z —

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 39

—(y+2), and both Ry and R, are augmented by the additional rules 0+y — y
and s(z) +y — s(z + y), cf. Section 4.4.

Ri: z—0 — =z 0O+y — vy
s(z) —s(y) — z-y s(z)+y — s(z+y)
quot(0,s(y)) — O (x—y)—2z — xz—(y+2)
quot(s(z),s(y)) — s(quot(z —y,s(y)))
Ry : app(nil,k) — k avg(l) — quot(hd(sum(l)),length(l))
app(l,nil) — 1 O+y — y
app(z: k) — z:app(l,k) s(z)+y — s(z+vy)
sum(z :nil) — z:nil
sum(z: (y:1)) — sum((z+y):1)
sum(app(l,z: (y: k))) — sum(app(l,sum(z: (y: k))))

Now we have D' = {+}, D} = {—,quot}, D, = {app,sum,avg}, where D; =
{avg} and D3 = {+, app, sum}. Thus, R, is indeed a generalized proper extension
of Ry and as both systems are innermost terminating (and even DP simply
terminating), the following theorem allows us to conclude innermost termination
of their union. Moreover, the union of this system with R is again innermost
terminating by Theorem 6.4.

THEOREM 6.5 (MODULARITY FOR GENERALIZED PROPER EXTENSIONS):
Let Ry be a generalized proper extension of Ri. The TRS R URy is innermost
terminating if R1 and Ro are innermost terminating.

Proof: At first, we observe the following fact: If f#(5) — ¢(£) is a dependency
pair with f € Dy, then g € D; because the rewrite rule f(5) — C’ f) | occurs in
R1 and Dj-symbols are not allowed in Ry. Moreover, U, %, (g t—)) € Ry, since
all rules for the defined symbols in £ are (also) contained in R;. So for any cycle
P of Ry U R, containing a dependency pair f#(...) — ¢*(...) with f € Dy, we
obtain uRlun2 (P) U O(P) Q Rl.

For all other dependency pairs f#(5) — g*(f) on some cycle P we have f € D).
Hence, there is a rule f(5) — C[g(Z)] in R,. Note that g € D}, as well, otherwise
the dependency pair f#(...) — g*(...) would not be on a cycle. As in the proof
of Theorem 6.4 we have f g9 >4 f.

If g € D3, then we also have f € D32 and thus, no symbol of D} UD} occurs in £.
Similarly, if g € Dj then this 1mp11es gE D2\D’ (since g € Dy). By the definition
of generalized proper extensions, ¢ again contains no symbols of D\ UD;, ie., all
defined symbols in ¢ are from D2. Hence, we obtain Ur,ur,(P) U (’)(73) C R,.
Therefore, innermost termination of Ry and R, implies innermost termination
of R1 URs by Corollary 6.2. O

To summarize, we have shown that our results (in particular, Corollary 6.2)

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 40

directly imply several modularity results for innermost termination from the
literature. On the other hand, our modularity results significantly extend the
class of TRSs where innermost termination can be proved in a modular way. In
other words, they can handle many systems where all previously known criteria
for modularity of innermost termination fail.

For example, we can deal with combinations which are neither composable
nor hierarchical combinations (nor generalized proper extensions) as shown in
Section 6.1.2. This is not possible with any of the previous modularity results.
Moreover, in contrast to [Krishna Rao, 1995], our results are also applicable for
hierarchical combinations in which Ry contains defined symbols of R; in the
arguments of its recursive calls, cf. the add and weight-example. Such systems
occur frequently in practice.

Another modularity criterion for hierarchical combinations is due to Der-
showitz [1994]. There, occurrences of D;-symbols in recursive calls of Dy-symbols
are allowed, but only if Ry is oblivious of the R;-rules, i.e., termination of R,
must not depend on the R;-rules. However, this criterion is not applicable to
systems like the add and weight-example, because termination of the weight-rules
of course depends on the result of add(n : m : 2,0 : x).

An alternative modularity result for hierarchical combinations was presented
by Fernandez and Jouannaud [1995]. However, their result is restricted to sys-
tems where the arguments of recursive calls in Ry decrease w.r.t. the subterm
relation (compared as multisets or lexicographically). Hence, their result is not
applicable to the add and weight-example either (and also not to most other
systems where R, is not simply terminating), whereas our modularity results
are often successful in these examples.

7. Conclusion

In this article we introduced a refinement of the dependency pair approach in
order to perform termination and innermost termination proofs in a modular
way. This refinement allows automated termination and innermost termination
proofs for many TRSs for which such proofs were not possible before. For a
collection of such examples see [Arts and Giesl, 2001].

Using our modular refinement of the dependency pair framework, we developed
several new modularity criteria which extend previous results for modularity of
innermost termination. Within this framework, we also obtain easy proofs for
existing modularity theorems.

However, criteria for innermost termination are only applicable for termina-
tion proofs of certain restricted TRSs (e.g., locally confluent overlay systems and
in particular, non-overlapping systems [Gramlich, 1995]). But in practice there
are many cases in which innermost termination is not sufficient for termination.

Thus, to fully exploit the advantages of dependency pairs for these systems as
well, we showed that the well-known modularity result for simple termination of
disjoint unions can be extended to DP quasi-simple termination. Furthermore,

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 41

G-restricted DP simple termination is even modular for constructor-sharing and
composable systems.

To conclude, [Arts and Giesl, 2000] presented the dependency pair technique to
perform automated termination and innermost termination proofs. However, in
that article dependency pairs were not used in a modular way and thus one had
to prove termination of a TRS at once (i.e., without being able to decompose it
into subsystems and to use several different orderings for its termination proof).
In particular, whenever a TRS was constructed by combining several systems
whose termination had been proved before, then the whole termination proof
had to be re-done.

Therefore, the present article develops the ideas of [Arts and Giesl, 2000]
further in a significant way. The progress in automated termination proving
which was made possible by the development of dependency pairs now also has
a counterpart in the area of modularity. With dependency pairs one can obtain
automated termination proofs of non-simply terminating TRSs and with the
results of the present article one can perform them in a modular way. In fact, it
is this modularity which makes an application of dependency pairs to large and
realistic systems possible; see [Giesl and Arts, 2001] for an industrial case study.
Compared to previous work on modularity, the modularity criteria developed in
this article represent a substantial extension.

Acknowledgements. We thank Aart Middeldorp for many helpful remarks and
hints. Jiirgen Giesl was supported by the DFG under grant GI 274/4-1.

References

T. Arts. System description: The dependency pair method. In Proceedings of
the 11th International Conference on Rewriting Techniques and Applications,
RTA-00, volume 1833 of Lecture Notes in Computer Science, pages 261264,
Norwich, England, 2000. Springer Verlag, Berlin.

T. Arts and J. Giesl. Modularity of termination using dependency pairs. In
Proceedings of the 9th International Conference on Rewriting Techniques and
Applications, RTA-98, volume 1379 of Lecture Notes in Computer Science,
pages 226-240, Tsukuba, Japan, 1998. Springer Verlag, Berlin.

T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236:133—-178, 2000.

T. Arts and J. Giesl. A collection of examples for termination of term rewrit-
ing using dependency pairs. Technical Report AIB 2001-09, RWTH Aachen,
Germany, 2001. http://aib.informatik.rwth-aachen.de.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 42
CiME 2, 1999. Available at http://cime.lri.fr.

N. Dershowitz. A note on simplification orderings. Information Processing Let-
ters, 9(5):212-215, 1979.

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3
(1-2):69-116, 1987.

N. Dershowitz. Hierarchical termination. In Proceedings of the 4th International
Workshop on Conditional and Typed Rewriting Systems, CTRS-94, volume
968 of Lecture Notes in Computer Science, pages 89-105, Jerusalem, Israel,
1994. Springer Verlag, Berlin.

N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer Science,
142(2):179-207, 1995.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Formal Models and
Semantics, volume B of Handbook of Theoretical Computer Science, pages
243-320. North-Holland, 1990.

J. Dick, J. Kalmus, and U. Martin. Automating the Knuth-Bendix ordering.
Acta Informatica, 28:95-119, 1990.

M. Fernandez and J.-P. Jouannaud. Modular termination of term rewriting
systems revisited. In Proceedings of the 10th Workshop on Specification of
Abstract Data Types, volume 906 of Lecture Notes in Computer Science, pages
255-273, S. Margherita, Italy, 1995. Springer Verlag, Berlin.

M. Ferreira. Termination of Term Rewriting — Well-Foundedness, Totality, and
Transformations. PhD thesis, University of Utrecht, The Netherlands, 1995.

M. Ferreira and H. Zantema. Syntactical analysis of total termination. In Pro-
ceedings of the 4th International Conference on Algebraic and Logic Program-
ming, ALP-94, volume 850 of Lecture Notes in Computer Science, pages 204
222, Madrid, Spain, 1994. Springer Verlag, Berlin.

J. Giesl. Generating polynomial orderings for termination proofs. In Proceedings
of the 6th International Conference on Rewriting Techniques and Applications,
RTA-95, volume 914 of Lecture Notes in Computer Science, pages 426431,
Kaiserslautern, Germany, 1995. Springer Verlag, Berlin.

J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs.
Applicable Algebra in Engineering, Communication, and Computing, 12(1-2):
39-72, 2001.

J. Giesl and A. Middeldorp. Eliminating dummy elimination. In Proceedings of
the 17th International Conference on Automated Deduction, CADE-17, vol-
ume 1831 of Lecture Notes in Artificial Intelligence, pages 309-323, Pittsburgh,
PA, USA, 2000. Springer Verlag, Berlin.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 43

J. Giesl and E. Ohlebusch. Pushing the frontiers of combining rewrite systems
farther outwards. In Proceedings of the Second International Workshop on
Frontiers of Combining Systems, FroCoS-98, volume 7 of Studies in Logic and
Computation, pages 141-160, Amsterdam, The Netherlands, 2000. Research
Studies Press, John Wiley & Sons.

B. Gramlich. Generalized sufficient conditions for modular termination of rewrit-

ing. Applicable Algebra in Engineering, Communication, and Computing, 5:
131-158, 1994.

B. Gramlich. Abstract relations between restricted termination and confluence
properties of rewrite systems. Fundamenta Informaticae, 24:3-23, 1995.

B. Gramlich. On proving termination by innermost termination. In Proceedings
of the 7Tth International Conference on Rewriting Techniques and Applications,
RTA-96, volume 1103 of Lecture Notes in Computer Science, pages 93-107,
New Brunswick, NJ, USA, 1996a. Springer Verlag, Berlin.

B. Gramlich. Termination and Confluence Properties of Structured Rewrite Sys-
tems. PhD thesis, Universitat Kaiserslautern, Germany, 1996b.

G. Huet and D. Lankford. On the uniform halting problem for term rewriting
systems. Technical Report 283, INRIA, Le Chesnay, France, 1978.

S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering.
Department of Computer Science, University of Illinois, IL, USA, 1980.

J. W. Klop. Term rewriting systems. In Background: Computational Structures,
volume 2 of Handbook of Logic in Computer Science, pages 1-116. Oxford
University Press, New York, 1992.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
Computational Problems in Abstract Algebra, pages 263—-297. Pergamon Press,
1970.

K. Korovin and A. Voronkov. Verifying orientability of rewrite rules using the
Knuth-Bendix order. In Proceedings of the 5th International Conference on
Rewriting Techniques and Applications, RTA-01, volume 2051 of Lecture Notes
in Computer Science, pages 137-153, Utrecht, The Netherlands, 2001. Springer
Verlag, Berlin.

M. R. K. Krishna Rao. Simple termination of hierarchical combinations of term
rewriting systems. In Proceedings of the Symposium on Theoretical Aspects
of Computer Software, TACS-9/, volume 789 of Lecture Notes in Computer
Science, pages 203223, Sendai, Japan, 1994. Springer Verlag, Berlin.

M. R. K. Krishna Rao. Modular proofs for completeness of hierarchical term
rewriting systems. Theoretical Computer Science, 151:487-512, 1995.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 44

M. Kurihara and A. Ohuchi. Modularity of simple termination of term rewriting
systems with shared constructors. Theoretical Computer Science, 103:273-282,
1992.

K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.
In Proceedings of the First International Conference on Principles and Prac-
tice of Declarative Programming, PPDP-99, volume 1702 of Lecture Notes in
Computer Science, pages 4862, Paris, France, 1999. Springer Verlag, Berlin.

D. S. Lankford. On proving term rewriting systems are Noetherian. Techni-
cal Report Memo MTP-3, Louisiana Technical University, Ruston, LA, USA,
1979.

A. Middeldorp. A sufficient condition for the termination of the direct sum of
term rewriting systems. In Proceedings of the 4th Annual Symposium on Logic
in Computer Science, LICS-89, pages 396—401, Pacific Grove, CA, USA, 1989.

A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis,
Vrije Universiteit te Amsterdam, The Netherlands, 1990.

A. Middeldorp. Approximating dependency graphs using tree automata tech-
niques. In Proceedings of the First International Joint Conference on Au-
tomated Reasoning, IJCAR 2001, volume 2083 of Lecture Notes in Artificial
Intelligence, pages 593-610, Siena, Italy, 2001. Springer Verlag, Berlin.

A. Middeldorp and H. Ohsaki. Type introduction for equational rewriting. Acta
Informatica, 36(12):1007-1029, 2000.

A. Middeldorp and Y. Toyama. Completeness of combinations of constructor
systems. Journal of Symbolic Computation, 15:331-348, 1993.

A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theo-
retical Computer Science, 175:127-158, 1997.

E. Ohlebusch. Modular Properties of Composable Term Rewriting Systems. PhD
thesis, Universitat Bielefeld, Germany, 1994a.

E. Ohlebusch. On the modularity of termination of term rewriting systems.
Theoretical Computer Science, 136:333-360, 1994b.

E. Ohlebusch. Modular properties of composable term rewriting systems. Jour-
nal of Symbolic Computation, 20:1-41, 1995.

E. Ohlebusch. Termination of logic programs: transformational methods revis-
ited. Applicable Algebra in Engineering, Communication, and Computing, 12
(1-2):73-116, 2001.

Giesl, Arts, Ohlebusch: Modular Termination Proofs Using Dependency Pairs 45

E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination
analysis of logic programs. In Proceedings of the 11th International Conference
on Rewriting Techniques and Applications, RTA-00, volume 1833 of Lecture
Notes in Computer Science, pages 270-273, Norwich, England, 2000. Springer
Verlag, Berlin.

M. Rusinowitch. On termination of the direct sum of term rewriting systems.
Information Processing Letters, 26:65—-70, 1987.

J. Steinbach. Generating polynomial orderings. Information Processing Letters,
49:85-93, 1994.

J. Steinbach. Simplification orderings: History of results. Fundamenta Informat-
icae, 24:47-87, 1995.

Y. Toyama. Counterexamples to the termination for the direct sum of term
rewriting systems. Information Processing Letters, 25:141-143, 1987.

Y. Toyama, J. W. Klop, and H. Barendregt. Termination for the direct sum of
left-linear term rewriting systems. Journal of the ACM, 42:1275-1304, 1995.

X. Urbain. Automated incremental termination proofs for hierarchically defined
term rewriting systems. In Proceedings of the First International Joint Con-
ference on Automated Reasoning, IJCAR 2001, volume 2083 of Lecture Notes
in Artificial Intelligence, pages 485498, Siena, Italy, 2001. Springer Verlag,
Berlin.

H. Zantema. Termination of term rewriting: Interpretation and type elimination.
Journal of Symbolic Computation, 17:23-50, 1994.

