
To appear in the Journal of Symboli Computation

Modular Termination Proofs for Rewriting

Using Dependeny Pairs

J

�

urgen Giesl

1

, Thomas Arts

2

and Enno Ohlebush

3

1

LuFG Informatik II, RWTH Aahen, Ahornstr. 55, 52074 Aahen, Germany,

giesl�informatik.rwth-aahen.de

2

Computer Siene Laboratory, Erisson, P.O. Box 1505, 125 25 Stokholm,

Sweden, thomas�slab.erisson.se

3

Faulty of Tehnology, University of Bielefeld, P.O. Box 10 01 31,

33501 Bielefeld, Germany, enno�TehFak.Uni-Bielefeld.DE

Abstrat

Reently, Arts and Giesl developed the dependeny pair approah whih

allows automated termination and innermost termination proofs for many

term rewriting systems for whih suh proofs were not possible before. The

motivation for this approah was that virtually all previous tehniques for

automated termination proofs of term rewriting systems were based on

simpli�ation orderings. In pratie, however, many rewrite systems are

not simply terminating, i.e., their termination annot be veri�ed by any

simpli�ation ordering.

In this artile we introdue a re�nement of the dependeny pair frame-

work whih further extends the lass of term rewriting systems for whih

termination or innermost termination an be shown automatially. By

means of this re�nement, one an now prove termination in a modular

way. Thus, this re�nement is inevitable in order to verify the termination

of large rewrite systems ourring in pratie. To be more preise, one

may use several di�erent orderings in one termination proof.

Subsequently, we present several new modularity results based on de-

pendeny pairs. First, we show that the well-known modularity of simple

termination for disjoint unions an be extended to DP quasi-simple ter-

mination, i.e., to the lass of rewrite systems where termination an be

shown automatially by the dependeny pair tehnique in ombination

with quasi-simpli�ation orderings. Under ertain additional onditions,

this new result also holds for onstrutor-sharing and omposable sys-

tems. Seond, the above-mentioned re�nement of the dependeny pair

method yields new modularity riteria for innermost termination whih

extend previous results in this area onsiderably. In partiular, existing

results for modularity of innermost termination an easily be shown to be

diret onsequenes of our new riteria.

1

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 2

1. Introdution

In many appliations of term rewriting systems (TRSs), termination is an im-

portant property. A TRS is said to be terminating if it does not allow in�nite re-

dutions. Sine termination is in general undeidable [Huet and Lankford, 1978℄,

several methods for proving this property have been developed; for surveys see

e.g. [Dershowitz, 1987, Steinbah, 1995, Dershowitz and Hoot, 1995℄. Pratially

all known methods that are amenable to automation use simpli�ation orderings

[Dershowitz, 1979, 1987, Steinbah, 1995, Middeldorp and Zantema, 1997℄ and in

fat, even total orderings [Ferreira and Zantema, 1994℄. However, there exist nu-

merous important TRSs for whih termination annot be proved by this kind of

orderings. For that reason, Arts and Giesl [2000℄ developed the so-alled depen-

deny pair approah. Given a TRS, the dependeny pair tehnique automatially

generates a set of onstraints and the existene of a well-founded (quasi-)ordering

satisfying these onstraints is suÆient for termination. The advantage is that

standard (automati) tehniques an often synthesize suh a well-founded order-

ing even if a diret termination proof with the same tehniques fails. In this way,

simpli�ation orderings an now be used to prove termination of non-simply ter-

minating TRSs. Several suh systems from di�erent areas of omputer siene

(inluding many hallenging problems from the literature) an for instane be

found in [Arts and Giesl, 2001℄ and appliations of dependeny pairs for realisti

industrial problems in the area of distributed teleommuniation proesses are

disussed in [Giesl and Arts, 2001℄. For an implementation of the dependeny

pair approah see [Arts, 2000℄ or [CiME 2, 1999℄. Dependeny pairs have also

been suessfully applied in automati termination proofs of logi programs, see

[Ohlebush et al., 2000, Ohlebush, 2001℄.

After introduing required preliminaries on orderings in Setion 2, in Setion 3

a re�nement of the dependeny pair tehnique is presented that allows modular

termination proofs using dependeny pairs. In other words, now several well-

founded relations may be used in the termination proof of one TRS. Applying the

dependeny pair approah in the proposed modular way annot ompliate the

proof, whereas it may allow a suessful appliation where the original tehnique

failed. Hene, it is always advantageous, and often more powerful, to take this

modular approah into aount.

The above-mentioned notion of modularity is expressed in terms of depen-

deny pairs. Therefore, it di�ers slightly from the onventional notion, where a

property ' of TRSs (like termination) is alled modular if whenever R

1

and R

2

are TRSs both satisfying ', then their ombined system R

1

[R

2

also satis�es '.

The knowledge that (perhaps under ertain onditions) a property ' is modular

provides a divide and onquer approah to establish properties of TRSs. If one

wants to know whether a large TRS has a ertain modular property ', then this

system an be deomposed into small subsystems and one merely has to hek

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 3

whether eah of these subsystems has property '. This onventional notion of

modularity is inspired by a well-known paradigm in omputer siene; programs

are developed in small modules that together form the whole program. In pra-

tie it is an enormous bene�t if it suÆes to prove a property of a module just

one, independent of the ontext in whih the module is used afterwards.

Clearly, this onventional notion of modularity an also be applied suessfully

in ombination with the original dependeny pair approah. However, termina-

tion and innermost termination are not modular properties for arbitrary TRSs.

The modular re�nement of the dependeny pair approah introdued in Setion

3 is appliable to numerous TRSs that do not belong to one of the restrited

lasses where onventional modularity results are appliable.

Toyama [1987℄ showed that termination is not even modular for disjoint unions,

i.e., ombinations of TRSs without ommon funtion symbols. So the question

is what restritions have to be imposed on the onstituent TRSs so that their

disjoint union is again terminating. The �rst results were obtained by inves-

tigating the distribution of ollapsing rules and dupliating rules among the

TRSs; see [Rusinowith, 1987, Middeldorp, 1989℄. In [Toyama et al., 1995℄ it is

shown that termination is modular for onuent and left-linear TRSs. Ever sine

an abundane of modularity results for disjoint unions, onstrutor-sharing sys-

tems, omposable systems, and hierarhial ombinations has been published;

see [Middeldorp, 1990, Ohlebush, 1994a, Gramlih, 1996b℄ for an overview.

Most of the modularity results are often not appliable in pratie. For exam-

ple, ollapsing and dupliating rules our naturally in most TRSs. In ontrast

to this, sine most standard methods for automated termination proofs are based

on synthesizing simpli�ation orderings, the result of Kurihara and Ohuhi [1992℄

for onstrutor-sharing systems is of pratial relevane. They showed that the

onstrutor-sharing ombination of �nite simply terminating TRSs is again sim-

ply terminating. Their result was extended to omposable systems [Ohlebush,

1995℄ and to ertain hierarhial ombinations [Krishna Rao, 1994℄. Moreover,

all these results also hold for in�nite TRSs; see [Middeldorp and Zantema, 1997℄.

Thus, if one has a method to prove simple termination of a TRS, then one

an use this method in a modular way for the above-mentioned lasses of TRSs,

whereas an arbitrary method for proving termination annot be used in this way.

However, simple termination is a onsiderably restrited form of termination. As

indiated above, the reason for the development of the dependeny pair approah

was that there are numerous relevant TRSs for whih simpli�ation orderings

fail in proving termination. Thus, now TRSs for whih automated termination

proofs are (potentially) feasible are no longer just simply terminating systems,

but DP (quasi-)simply terminating systems, i.e., systems whose termination an

be veri�ed by using (quasi-)simpli�ation orderings in ombination with depen-

deny pairs. Hene, a natural question is whether the urrent state of the art

of modularity an be re�ned as well by extending the onventional modularity

results from simple to DP (quasi-)simple termination. In Setion 4 we show that

this is indeed possible. Thus, the number of TRSs for whih termination an be

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 4

proved in a modular way is extended signi�antly. The pratial onsequene of

this result is that if one has proved termination of a TRS using the dependeny

pair approah, then adding a TRS and proving termination of the new ombi-

nation redues to no more than proving termination of the added TRS with the

dependeny pair tehnique.

Subsequently, we onsider innermost termination, i.e., the requirement that

all redutions where only innermost redexes are rewritten are �nite. We develop

a modular tehnique for innermost termination proofs using dependeny pairs

in Setion 5.

The known modularity results for innermost termination are less restritive

than those for termination. Innermost termination is modular for disjoint unions

and for TRSs with shared onstrutors [Gramlih, 1995℄, for omposable on-

strutor systems [Middeldorp and Toyama, 1993℄, for omposable TRSs [Ohle-

bush, 1995℄, and for proper extensions [Krishna Rao, 1995℄, whih are speial

hierarhial ombinations. As innermost termination implies termination for sev-

eral lasses of TRSs [Gramlih, 1995, 1996a℄, these results an also be used for

termination proofs of suh systems. For example, this holds for loally onuent

overlay systems (and in partiular for non-overlapping TRSs).

In Setion 6 we show that the modular dependeny pair approah leads to

new modularity riteria for innermost termination (whih an also be used in-

dependently of the dependeny pair tehnique). Moreover, we demonstrate that

in our framework the known modularity results for innermost termination of

omposable TRSs and proper extensions are obtained as easy onsequenes.

Preliminary versions of parts of this artile appeared in [Arts and Giesl, 1998℄

and [Giesl and Ohlebush, 2000℄.

2. Preliminaries on Orderings

We assume the reader to be familiar with the basi notions of term rewriting.

For an introdution to term rewriting see e.g. [Dershowitz and Jouannaud, 1990,

Klop, 1992, Baader and Nipkow, 1998℄. We restrit ourselves to �nite signatures

ontaining at least one onstant (i.e., we assume that there exist ground terms)

and to TRSs with �nitely many rules. In the following we introdue the bak-

ground material on orderings whih is relevant to this artile. A rewrite ordering

� over a set of terms T (F ;V) is an ordering (i.e., an irreexive and transitive

relation) that is (strongly) monotoni (i.e., s � t implies f(: : : s : : :) � f(: : : t : : :)

for all funtion symbols f 2 F) and losed under substitutions (i.e., s � t implies

s� � t� for all substitutions �). A simpli�ation ordering is a rewrite ordering

having the subterm property (i.e., f(: : : x : : :) � x for all f 2 F). It is a well-

known onsequene of Kruskal's theorem that every simpli�ation ordering over

T (F ;V) is well founded provided that F is �nite.

�

It is also well known that

simpli�ation orderings satisfy the following property.

�

For details on in�nite signatures see [Middeldorp and Zantema, 1997℄.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 5

Lemma 2.1 (Variables and Simplifiation Orderings): Let � be a sim-

pli�ation ordering. If s � t, then Var(t) � Var(s) and s 62 V.

A TRS R over a �nite signature F is alled simply terminating if its ter-

mination an be proven by a simpli�ation ordering. This is equivalent to the

statement that the TRS R[Emb(F) is terminating, where

Emb(F) = ff(x

1

; : : : ; x

n

)! x

i

j f 2 F , f is n-ary, and 1 � i � ng

is the set of embedding rules.

A quasi-rewrite ordering % over a set of terms T (F ;V) is a quasi-ordering

(i.e., a reexive and transitive relation) that is (weakly) monotoni (i.e., s % t

implies f(: : : s : : :) % f(: : : t : : :) for all f 2 F) and losed under substitutions.

In the dependeny pair method a set of inequalities is generated from a TRSR.

To prove termination of R, one has to show that these inequalities are satis�ed

by some pair (%;�) onsisting of a quasi-rewrite ordering % and an ordering �

with the properties

� � is losed under substitutions and well founded

� % Æ � � � or � Æ % � �.

(Note that � need not be monotoni.) Suh a pair is alled a redution pair

[Kusakari et al., 1999℄. Given a quasi-rewrite ordering %, a natural andidate

for the orresponding ordering � is the strit relation �

s

de�ned by t �

s

u

if and only if t % u and u 6% t. Unfortunately, �

s

is in general not losed

under substitutions (see below). Therefore, to determine suitable redution pairs

automatially, one usually hooses � to be the so-alled stable-strit relation �

ss

orresponding to the quasi-rewrite ordering %. We have t �

ss

u if and only if

t� �

s

u� holds for all ground substitutions �, where a ground substitution is a

substitution mapping all variables to ground terms. In other words, for all those

substitutions � we must have t� % u� and u� 6% t�.

For instane, many useful quasi-orderings are onstruted by using mappings

j:j from the set of ground terms to a well-founded set like the natural numbers

IN, f. e.g. [Lankford, 1979, \polynomial orderings"℄. Then % is de�ned as t % u

if and only if jt�j �

IN

ju�j holds for all ground substitutions �. A natural way

to de�ne a orresponding irreexive ordering � is to let t � u hold if and

only if jt�j >

IN

ju�j for all ground substitutions �. However, now � is not the

orresponding strit relation, but the stable-strit relation orresponding to %.

Thus, the irreexive relation intuitively assoiated with a quasi-ordering is often

the stable-strit one instead of the strit one. In partiular, if the quasi-ordering

% is stable (i.e., losed under substitutions), then the orresponding stable-strit

relation �

ss

is losed under substitutions too, whereas this is not neessarily true

for the strit relation �

s

.

For example, if j0j = 0, js(t)j = jtj+1, and jf(t)j = 2jtj for all ground terms t,

then we have f(x) % x and x 6% f(x). Hene, this implies f(x) �

s

x. However, �

s

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 6

is not losed under substitutions beause f(0) �

s

0 does not hold. This example

also demonstrates that in general �

s

� �

ss

is not true beause for the stable-

strit relation �

ss

we have f(x) 6�

ss

x.

Moreover, in general �

ss

� % does not hold either (hene, �

ss

� �

s

is false,

too). If R is the TRS ontaining only the rule f(0)! 0 and % is de�ned as!

�

R

,

then we have f(x) �

ss

x, but f(x) 6% x.

The following lemma states some straightforward properties of stable-strit

relations.

Lemma 2.2 (Properties of Stable-Strit Relations):

Let % be a quasi-ordering that is losed under substitutions. Then we have

(i) �

ss

is irreexive

(ii) �

ss

is transitive

(iii) �

ss

is losed under substitutions

(iv) if % is total, then �

ss

� �

s

(v) if �

s

is losed under substitutions, then �

s

� �

ss

(vi) if �

s

is well founded, then �

ss

is well founded, too

(vii) s % t �

ss

u implies s �

ss

u

(viii)s �

ss

t % u implies s �

ss

u

(ix) if % is a quasi-rewrite ordering and �

s

is well founded,

then (%;�

ss

) is a redution pair

Proof: The statements (i) and (ii) follow from the reexivity and the transitivity

of %. Statements (iii), (iv), and (v) are diret onsequenes of the de�nition. For

(vi), every potential in�nite desending sequene t

0

�

ss

t

1

�

ss

: : : would result

in an in�nite desending sequene t

0

� �

s

t

1

� �

s

: : : Statements (vii) and (viii)

follow from the transitivity and stability of %. Statement (ix) follows from (i),

(ii), (iii), (vi) and (vii) (or (viii)). 2

In this artile, � always denotes an arbitrary ordering suh that (%;�) forms

a redution pair. As shown in Lemma 2.2 (ix), one possibility is to hoose � to be

the stable-strit relation orresponding to the quasi-rewrite relation % (provided

that it is well founded). Lemma 2.2 (v) indiates that this hoie is at least as

powerful as hoosing � to be the strit relation orresponding to %.

A quasi-simpli�ation ordering (QSO) is a quasi-rewrite ordering % whih has

the (weak) subterm property (i.e., f(: : : x : : :) % x for all f 2 F). Kruskal's theo-

rem implies that every quasi-simpli�ation ordering over T (F ;V) is well founded

(more preisely, the orresponding (stable-)strit relation is well founded) pro-

vided that F is �nite. Redution pairs with quasi-simpli�ation orderings satisfy

a property analogous to Lemma 2.1.

Lemma 2.3 (Variables in Strit Inequalities): Let % be a QSO and

let (%;�) be a redution pair. If s � t, then Var(t) � Var(s) and s 62 V.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 7

Proof: Assume that there is a variable x 2 Var(t) n Var(s). Then t = C[x℄ for

some ontext C. With � = fx 7! sg it follows that s = s� � t� = C[s℄. Sine

C[s℄ % s aording to the subterm property, we obtain s � C[s℄ % s. This is a

ontradition to the well-foundedness of �. Thus Var(t) � Var(s) holds. The

proof of s 62 V is just as straightforward. 2

A similar property even holds for non-strit inequalities.

Lemma 2.4 (Variables in Non-Strit Inequalities): Let % be a QSO

and let (%;�) be a redution pair suh that s

0

� t

0

for some terms s

0

; t

0

where

Var(t

0

) 6= ;. If s % t, then Var(t) � Var(s).

Proof: First of all, s

0

� t

0

implies Var(t

0

) � Var(s

0

) aording to Lemma 2.3.

Without loss of generality, we assume that s and t are renamed suh that they

have no variables in ommon with s

0

or t

0

. We show Var(t) � Var(s) indiretly.

Suppose that there is a variable y 2 Var(t) n Var(s). Sine Var(t

0

) 6= ;, there is

a variable x 2 Var(t

0

) � Var(s

0

). Let � = fx 7! sg and �

0

= fx 7! tfy 7! s

0

�gg.

We have (a) s

0

� � t

0

� beause s

0

� t

0

and � is losed under substitutions, (b)

t

0

� % t

0

�

0

beause s % t and % is weakly monotoni, and () t

0

�

0

% x�

0

% s

0

�

beause % has the weak subterm property and % is losed under substitutions.

In summary, s

0

� � t

0

� % t

0

�

0

% s

0

� is a ontradition to the well-foundedness of

�. 2

Examples of simpli�ation orderings and QSOs inlude path orderings like the

lexiographi path ordering (LPO) [Kamin and L�evy, 1980℄, the reursive path

ordering (RPO) [Dershowitz, 1987, Steinbah, 1995, Ferreira, 1995℄, the Knuth-

Bendix ordering (KBO) [Knuth and Bendix, 1970, Dik et al., 1990, Korovin and

Voronkov, 2001℄, et. Polynomial orderings, however, are not QSOs in general.

For instane, if the onstant 0 is assoiated with the number 0, s(x) is assoiated

with x + 1, and f(x; y) is assoiated with the multipliation of x and y, then

this polynomial ordering does not satisfy the subterm property (for example,

f(s(0); 0) % s(0) does not hold). However, the following lemma shows that if the

polynomial ordering respets some restritions, then it is indeed a QSO.

Lemma 2.5 (Polynomial Orderings as QSOs): Let % be a polynomial or-

dering where every funtion symbol is assoiated with a polynomial ontaining

only non-negative oeÆients.

� If every funtion symbol f(x

1

; : : : ; x

n

) is assoiated with a polynomial whih

ontains a (non-mixed) monomial of the form m

i

x

k

i

i

(with m

i

; k

i

� 1) for

every i = 1; : : : ; n, then % is a QSO.

� If every funtion symbol f(x

1

; : : : ; x

n

) is assoiated with a polynomial on-

taining all variables x

1

; : : : ; x

n

and if every onstant is assoiated with a

number > 0, then % is a QSO.

Proof: Straightforward. 2

In fat, the onditions in Lemma 2.5 also entail (strong) monotoniity of the

strit and stable-strit relations orresponding to the polynomial ordering.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 8

3. Modular Termination Proofs With Dependeny Pairs

Arts and Giesl [2000℄ introdued the dependeny pair tehnique to prove the

termination of term rewriting systems automatially. In this setion we briey

reapitulate its basi onepts and present a new modular approah for auto-

mated termination proofs. We �rst introdue a modular termination riterion

in Setion 3.1 and develop an approah to hek this riterion automatially in

Setion 3.2.

3.1. A Modular Termination Criterion

In the following we desribe the notions relevant to the dependeny pair method.

For motivations and further re�nements see [Arts and Giesl, 2000℄. We adopt the

notation of [Giesl and Middeldorp, 2000℄ and [Kusakari et al., 1999℄. The root of

a term f(: : :) is the leading funtion symbol f . For a TRS R over a signature F ,

D = froot(l)jl ! r 2 Rg is the set of the de�ned symbols and C = F n D is the

set of onstrutors of R. Let F

℄

denote the union of the signature F and ff

℄

j f

is a de�ned symbol of Rg, where f

℄

has the same arity as f . The funtions f

℄

are

alled tuple symbols. Given a term t = f(t

1

; : : : ; t

n

) 2 T (F ;V) with f de�ned,

we write t

℄

for the term t = f

℄

(t

1

; : : : ; t

n

). If l ! r 2 R and t is a subterm of

r with de�ned root symbol, then the rewrite rule l

℄

! t

℄

is alled a dependeny

pair of R. The set of all dependeny pairs of R is denoted by DP(R). We often

write F for f

℄

, et.

For example, onsider the following TRS with the onstrutors s and and

the de�ned symbol f:

f(x; (y)) ! f(x; s(f(y; y)))

f(s(x); y) ! f(x; s((y)))

Note that this TRS is not simply terminating as f(x; (s(x))) an be redued

to the term f(x; s(f(x; s((s(x)))))) in whih it is embedded. The TRS has the

following dependeny pairs:

F(x; (y)) ! F(x; s(f(y; y))) (1)

F(x; (y)) ! F(y; y) (2)

F(s(x); y) ! F(x; s((y))) (3)

A sequene of dependeny pairs s

1

! t

1

, s

2

! t

2

; : : : is an R-hain if there

exists a substitution � suh that t

j

�!

�

R

s

j+1

� holds for every two onseutive

pairs s

j

! t

j

and s

j+1

! t

j+1

in the sequene. We always assume that di�erent

(ourrenes of) dependeny pairs have disjoint sets of variables and we always

onsider substitutions whose domains may be in�nite. In ase R is lear from

the ontext we often write hain instead of R-hain. Hene, in our example we

have the hain

F(x

1

; (y

1

))! F(y

1

; y

1

); F(x

2

; (y

2

))! F(y

2

; y

2

); F(x

3

; (y

3

))! F(y

3

; y

3

);

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 9

as F(y

1

; y

1

)�!

�

R

F(x

2

; (y

2

))� and F(y

2

; y

2

)�!

�

R

F(x

3

; (y

3

))� hold for the sub-

stitution � = fy

1

7! ((y

3

)); x

2

7! ((y

3

)); y

2

7! (y

3

); x

3

7! (y

3

)g. In fat any

�nite sequene of the dependeny pair (2) is a hain. As proved by Arts and

Giesl [2000℄, the absene of in�nite hains is a suÆient and neessary riterion

for termination.

Theorem 3.1 (Termination Criterion): A TRS R is terminating if and

only if there exists no in�nite R-hain.

Some dependeny pairs an never our twie in any hain and hene they

need not be onsidered when proving that no in�nite hain exists. For identifying

these insigni�ant dependeny pairs, the notion of dependeny graph has been

introdued by Arts and Giesl [2000℄.

Definition 3.2 (Dependeny graph): The dependeny graph of a TRS R

is the direted graph whose nodes are the dependeny pairs and there is an ar

from s! t to v ! w i� s! t, v ! w is a hain.

The dependeny graph for our example is given in Figure 1.

?

��

?

��

�

�

�

�*

H

H

H

Hj

-

F(x; (y))! F(y; y) F(s(x); y)! F(x; s((y)))

F(x; (y))! F(x; s(f(y; y)))

Figure 1: Dependeny graph.

A non-empty set P of dependeny pairs is alled a yle if for any two pairs

s! t and v ! w in P there is a non-empty path from s! t to v ! w whih

only traverses pairs from P. Thus, in the example above there are two yles,

viz. f(2)g and f(3)g. Sine we restrit ourselves to �nite TRSs, obviously any

in�nite hain orresponds to a yle. Hene, the dependeny pairs that are not

on a yle in the dependeny graph are insigni�ant for the termination proof.

In other words, in our example we may disregard the dependeny pair (1).

Now we ome to our �rst modularity result, stating that one an prove ter-

mination of a TRS in a modular way, beause absene of in�nite hains an be

proved separately for every yle.

Theorem 3.3 (Modular Termination Criterion): A TRS R is termi-

nating if and only if for eah yle P in the dependeny graph there exists no

in�nite R-hain of dependeny pairs from P.

Proof: The only-if diretion is a diret onsequene of Theorem 3.1. For the other

diretion, suppose that R is not terminating. Then by Theorem 3.1 there exists

an in�nite R-hain. As we only regard �nite TRSs R, there are only �nitely

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 10

many dependeny pairs and hene, one dependeny pair ours in�nitely many

times in the hain (up to renaming of the variables). Thus, the in�nite hain has

the form

: : : ; s�

1

! t�

1

; : : : ; s�

2

! t�

2

; : : : ; s�

3

! t�

3

; : : : ;

where �

1

; �

2

; �

3

; : : : are renamings. Hene, the tail s�

1

! t�

1

; : : : ; s�

2

! t�

2

; : : :

is an in�nite R-hain whih onsists of dependeny pairs from one yle in the

dependeny graph only. 2

Aording to the above theorem, in our example we an separate the proof

that there is no in�nite hain onsisting of the dependeny pair f(2)g from the

orresponding proof for the dependeny pair f(3)g.

One should remark that for the soundness of this theorem one indeed has to

regard all yles, not just the minimal ones (i.e., not just those yles whih

ontain no other yles as proper subsets). For a ounterexample to illustrate

this fat see [Giesl and Arts, 2001, p. 50℄.

Note that in standard graph terminology, a path v

0

) v

1

) : : :) v

k

in a

direted graph forms a yle if v

0

= v

k

and k � 1. In our ontext we identify

yles with the set of elements that our in it, i.e., we all fv

0

; v

1

; : : : ; v

k�1

g a

yle. Sine a set never ontains multiple ourrenes of an element, this results

in several yling paths being identi�ed with the same set. Moreover, for a �nite

TRS we only have �nitely many yles, sine the number of dependeny pairs is

�nite, too.

3.2. Cheking the Modular Termination Criterion Automatially

For an automati approah the de�nition of a dependeny graph is impratial,

sine it is in general undeidable whether two dependeny pairs form a hain.

However, in order to obtain a sound tehnique for termination proofs, we an

safely use any approximation of the dependeny graph that preserves all its

yles. To estimate whih dependeny pairs may our onseutive, the estimated

dependeny graph has been introdued, f. [Arts and Giesl, 2000℄. Let ap(t)

result from replaing all subterms of t that have a de�ned root symbol by di�erent

fresh variables and let ren(t) result from replaing all variables in t by di�erent

fresh variables. Then, to determine whether v ! w an follow s! t in a hain,

we hek whether ren(ap(t)) uni�es with v. So we have ren(ap(F(y; y))) =

ren(F(y; y)) = F(y

1

; y

2

) and ren(ap(F(x; s(f(y; y))))) = ren(F(x; s(z))) =

F(x

1

; s(z

1

)). Hene, (1) an never follow itself in a hain, beause F(x

1

; s(z

1

))

does not unify with F(x; (y)).

Definition 3.4 (Estimated Dependeny Graph): The estimated depen-

deny graph of a TRS R is the direted graph whose nodes are the dependeny

pairs and there is an ar from s! t to v ! w i� ren(ap(t)) and v are uni�-

able.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 11

In our example, the estimated dependeny graph is the same as the depen-

deny graph given in Figure 1. For an automation of the modular riterion of

Theorem 3.3, we use this estimated dependeny graph. Indeed, Theorem 3.3 also

holds for the estimated dependeny graph instead of the dependeny graph, be-

ause all dependeny pairs on a yle in the dependeny graph are also on a yle

in its estimation. The only-if diretion of Theorem 3.3 holds anyway regardless

of the estimation used, sine whenever a TRS is terminating, then there is no

in�nite hain (Theorem 3.1).

To hek the riterion of Theorem 3.3 automatially, for eah yle P, we

generate a set of inequalities suh that the existene of redution pairs (%

P

;�

P

)

satisfying these inequalities is suÆient for the absene of in�nite hains. For

that purpose we have to ensure that the dependeny pairs from P are dereasing

w.r.t. %

P

. More preisely, for any sequene of dependeny pairs s

1

! t

1

; s

2

! t

2

;

s

3

! t

3

; : : : from P and for any substitution � with t

j

�!

�

R

s

j+1

� (for all j) we

demand

s

1

� %

P

t

1

� %

P

s

2

� %

P

t

2

� %

P

s

3

� %

P

t

3

� %

P

: : : ;

and for at least one s! t in P we demand the strit inequality s� �

P

t�. Then

there exists no hain of dependeny pairs from P whih traverses all dependeny

pairs in P in�nitely many times.

Sine %

P

is losed under substitutions and weakly monotoni, to guarantee

t

j

� %

P

s

j+1

� whenever t

j

�!

�

R

s

j+1

� holds, it is suÆient to demand l %

P

r for

all rules l! r of the TRS. Moreover, s

j

%

P

t

j

and s

j

�

P

t

j

ensure s

j

� %

P

t

j

�

and s

j

� �

P

t

j

�, respetively, for all substitutions �.

Beause rewrite rules and dependeny pairs are just pairs of terms, we write

R[P � %

P

as a shorthand for l %

P

r for every rewrite rule l! r in R and

every dependeny pair l ! r from P. Moreover, P \ �

P

6= ; denotes that l �

P

r

holds for at least one dependeny pair l ! r from P.

Theorem 3.5 (Modular Termination Proofs): A TRS R is terminating

if and only if for eah yle P in the (estimated) dependeny graph there is a

redution pair (%

P

;�

P

) suh that

(a) R[P � %

P

and

(b) P \ �

P

6= ;.

Proof: For the if diretion, suppose that there exists an in�nite R-hain of de-

pendeny pairs from a yle P. Without loss of generality let P be suh that for

all proper subyles P

0

of P, there is no in�nite hain of dependeny pairs from

P

0

.

For one dependeny pair s! t in P we have the strit inequality s �

P

t. Due

to the minimality of P, s! t ours in�nitely many times in the hain (up to

variable renaming), i.e., the hain has the form

v

1;1

! w

1;1

; :::; v

1;n

1

! w

1;n

1

; s�

1

! t�

1

; v

2;1

! w

2;1

; :::; v

2;n

2

! w

2;n

2

; s�

2

! t�

2

; :::;

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 12

where �

1

; �

2

; : : : are renamings. Hene, there exists a substitution � suh that

w

i;j

�!

�

R

v

i;j+1

�, w

i;n

i

�!

�

R

s�

i

�, and t�

i

�!

�

R

v

i+1;1

�. As l %

P

r holds for all

rules of R and as %

P

is weakly monotoni and losed under substitutions, we

have !

�

R

� %

P

. Moreover, all dependeny pairs from P are weakly dereasing.

Thus, we obtain

v

1;1

� %

P

w

1;1

� %

P

: : : v

1;n

1

� %

P

w

1;n

1

� %

P

s�

1

� �

P

t�

1

� %

P

v

2;1

� %

P

w

2;1

� %

P

: : : v

2;n

2

� %

P

w

2;n

2

� %

P

s�

2

� �

P

t�

2

� %

P

: : :

But this is a ontradition to the well-foundedness of �

P

. Hene, no in�nite

hain of dependeny pairs from P exists and by Theorem 3.3, R is terminating.

For the only-if diretion we refer to [Arts and Giesl, 2000, Theorem 7℄, where it

is shown that termination ofR even implies termination ofR[DP(R). A simple

alternative proof for this statement using typing an be found in [Middeldorp

and Ohsaki, 2000℄. 2

We already mentioned that for Theorem 3.3 (and hene, also for the above

theorem) onsidering just the minimal yles would be unsound. In fat, for

Theorem 3.5 it would also be unsound just to onsider maximal yles (i.e.,

those yles whih are not ontained in any other yle). The problem is that

it is not suÆient if just one dependeny pair of eah maximal yle is stritly

dereasing. For a ounterexample to illustrate this fat see [Giesl and Arts, 2001,

p. 51℄. Thus, it is ruial to onsider all yles P for Theorem 3.5.

With the above theorem, termination of our example an easily be proved au-

tomatially (where for an automation of Theorem 3.5 we again use the estimated

dependeny graph instead of the (real) dependeny graph). After omputing the

graph in Figure 1, two redution pairs (%

1

;�

1

), (%

2

;�

2

) have to be generated

whih satisfy

f(x; (y)) %

1

f(x; s(f(y; y))) (4)

f(s(x); y) %

1

f(x; s((y))) (5)

F(x; (y)) �

1

F(y; y) (6)

f(x; (y)) %

2

f(x; s(f(y; y))) (7)

f(s(x); y) %

2

f(x; s((y))) (8)

F(s(x); y) �

2

F(x; s((y))): (9)

Of ourse, our aim is to use standard tehniques to obtain suitable redution

pairs satisfying the onstraints of Theorem 3.5. However, most existing methods

generate orderings whih are strongly monotoni, whereas for the dependeny

pair approah we only need a weakly monotoni quasi-ordering. For that reason,

before synthesizing a suitable ordering, some of the arguments of the funtion

symbols an be eliminated, f. [Arts and Giesl, 2000℄. For instane, in the in-

equalities (4) - (6) one may eliminate the seond argument of the funtion symbol

f. Then every term f(s; t) in the inequalities is replaed by f(s) (where f is a new

unary funtion symbol). So instead of (4) we obtain the inequality f(x) %

1

f(x).

By omparing the terms resulting from this replaement (instead of the original

terms) we an take advantage of the fat that f does not have to be strongly

monotoni in its seond argument. Now the inequalities resulting from (4) - (6)

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 13

are satis�ed by the lexiographi path ordering (LPO) where subterms are om-

pared right-to-left (i.e., %

1

is hosen to be %

LPO

and �

1

is hosen to be the

(stable-)strit relation �

LPO

). For the inequalities (7) - (9) we again delete the

seond argument of f. Then these inequalities are also satis�ed by LPO (with

the preedene F > s; F >), but this time subterms are ompared left-to-right.

Hene, termination of the TRS under onsideration is proved. Note that this

TRS is not simply terminating. So in the dependeny pair approah, simpli�-

ation orderings like LPO an be used to prove termination of TRSs for whih

their diret appliation would fail.

Apart from eliminating arguments of funtion symbols, another possibility is

to replae funtions by one of their arguments. So instead of deleting the seond

argument of f, one ould also replae all terms f(s; t) by f's �rst argument s. Then

the resulting inequalities are again satis�ed by LPO. To perform this elimination

of arguments resp. of funtion symbols the onept of argument �ltering was

introdued by Arts and Giesl [2000℄ (here we use the notation of [Kusakari et al.,

1999℄).

Definition 3.6 (Argument filtering): An argument �ltering for a signa-

ture F is a mapping � that assoiates with every n-ary funtion symbol an ar-

gument position i 2 f1; : : : ; ng or a (possibly empty) list [i

1

; : : : ; i

m

℄ of argument

positions with 1 � i

1

< : : : < i

m

� n. The signature F

�

onsists of all funtion

symbols f suh that �(f) = [i

1

; : : : ; i

m

℄, where in F

�

the arity of f is m. Every

argument �ltering � indues a mapping from T (F ;V) to T (F

�

;V), also denoted

by �, whih is de�ned as:

�(t) =

8

<

:

t if t is a variable,

�(t

i

) if t = f(t

1

; : : : ; t

n

) and �(f) = i,

f(�(t

i

1

); : : : ; �(t

i

m

)) if t = f(t

1

; : : : ; t

n

) and �(f) = [i

1

; : : : ; i

m

℄.

As proved by Arts and Giesl [2000℄, in order to �nd a redution pair satisfying

a partiular set of inequalities, one may �rst apply an argument �ltering for the

signature F

℄

to the terms in the inequalities. Subsequently, one only has to �nd

a redution pair that satis�es these modi�ed inequalities. In the following, for

any set of rules or pairs R and any argument �ltering � let

�(R) = f�(l)! �(r)jl ! r 2 R and �(l) 6= �(r)g:

Criterion 3.7 (Modular Automated Termination Criterion):

A TRS R over a signature F is terminating if and only if for eah yle P in

the (estimated) dependeny graph there is an argument �ltering �

P

for F

℄

and

a redution pair (%

P

;�

P

) suh that

(a) �

P

(R[P) � %

P

and

(b) �

P

(P)\ �

P

6= ;.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 14

Note that there exist only �nitely many possibilities for the hoie of suh

argument �lterings. Therefore in priniple, all these possibilities an be heked

automatially. Hene, by ombining the generation of a suitable argument �lter-

ing with well-known automati tehniques for the synthesis of (strongly mono-

toni) simpli�ation orderings, now the searh for a weakly monotoni ordering

satisfying the onstraints an be automated. As mentioned before, in a redution

pair (%;�) one usually hooses � to be the stable-strit relation orresponding

to the quasi-ordering %. By using the estimated dependeny graph, this results

in a fully automati termination proof of our TRS, whereas a diret termination

proof with simpli�ation orderings was not possible. So Criterion 3.7 allows us

to use di�erent quasi-orderings resp. redution pairs to prove the absene of

hains for di�erent yles. In our example this is essential, beause there exists

no redution pair with a quasi-simpli�ation ordering satisfying all inequalities

(4) - (9) (not even after elimination of arguments). The reason is that (9) and

(6) entail

F(s(x); s(x)) �

2

F(x; s((s(x))))!

Emb(F

℄

)

F(x; (s(x))) �

1

F(s(x); s(x)):

Hene, without our modularity result, an automated termination proof with the

dependeny pair approah fails.

In order to synthesize suitable redution pairs, the argument �lterings should

be hosen in a way suh that for all resulting inequalities the variables in the

right-hand side also our in the left-hand side. Then the resulting inequalities

ould be transformed into a TRS as well and for proving termination of the

original TRS it would be suÆient to prove termination of the transformed

TRSs for all yles.

Criterion 3.8 (Termination Criterion by Transformation): A TRS

R over a signature F is terminating if and only if for eah yle P in the

(estimated) dependeny graph there is an argument �ltering �

P

for F

℄

suh that

�

P

(R[P) is a terminating TRS and suh that �

P

(P) 6= ;.

This riterion is suÆient for termination, sine one may hoose (!

�

�

P

(R[P)

;

!

+

�

P

(P)

) as the redution pairs in Criterion 3.7. It is also neessary for termina-

tion, beause due to [Arts and Giesl, 2000, Theorem 7℄, termination of R implies

termination of all R[P (and hene, of �

P

(R[P), if �

P

(f) = [1; : : : ; n℄ for every

f 2 F with arity n, i.e., if �

P

does not �lter any arguments).

4. Modularity Results for DP (Quasi-)Simple Termination

The modularity as proposed in Criteria 3.7 and 3.8 ould be seen as rather

method-spei�. The more onventional approah of dividing the termination

proof into parts is to split the TRS into subsystems and to prove termination

of the subsystems separately. This, however, only works for very spei� lasses

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 15

of TRSs. The two-rule TRS of our example an only be split in one way and no

onventional modularity result exists that justi�es this partitioning.

The advantage of this onventional notion of modularity is that TRSs that

have been proved terminating do not have to be reonsidered after ombining

them with other TRSs of this kind. Thus, termination proofs never have to be re-

done for these ombinations. Therefore, results whih guarantee that termination

of subsystems suÆes for termination of the whole TRS are of pratial interest.

Based on the approah of the previous setion, in this setion we develop suh

results for the ase where we use the dependeny pair approah for proving

termination.

More preisely, we extend the existing modularity results for simple termina-

tion to DP (quasi-)simple termination. The latter notion is formally de�ned in

Setion 4.2. Basially, a TRS is DP (quasi-)simply terminating if the onstraints

of Criterion 3.7 are satis�ed by a suitable (quasi-)simpli�ation ordering or if

simple termination an be proved for all TRSs onstruted by the transforma-

tion of Criterion 3.8, respetively.

First we briey reall the basi notions and notations for the ombination

of TRSs in Setion 4.1. In Setion 4.3 we show that DP quasi-simple termina-

tion is modular for disjoint unions. Setion 4.4 ontains similar results about

onstrutor-sharing and omposable TRSs.

4.1. Basi Notions of the Union of Term Rewriting Systems

Let R

1

and R

2

be TRSs over the signatures F

1

and F

2

, respetively. Their

ombined system is the union R = R

1

[R

2

over the signature F = F

1

[F

2

. Its

set of de�ned symbols is D = D

1

[D

2

and its set of onstrutors is C = F n D,

where D

i

(C

i

) denotes the de�ned symbols (onstrutors) in R

i

.

(1) R

1

and R

2

are disjoint if F

1

\ F

2

= ;.

(2) R

1

and R

2

are onstrutor-sharing if F

1

\ F

2

= C

1

\ C

2

(� C).

(3) R

1

and R

2

are omposable if C

1

\ D

2

= D

1

\ C

2

= ; and both systems

ontain all rewrite rules that de�ne a de�ned symbol whenever that symbol

is shared: fl ! r 2 R j root(l) 2 D

1

\ D

2

g � R

1

\R

2

.

(4) R

1

and R

2

form a hierarhial ombination if D

1

\ D

2

= C

1

\ D

2

= ;. So

de�ned symbols of R

1

may our as onstrutors in R

2

, but not vie versa.

We introdue some basi notions that are helpful when reasoning about dis-

joint unions. Let 2 62 F

1

[F

2

be a speial onstant. A ontext C is a term

in T (F

1

[F

2

[f2g;V) and C[t

1

; : : : ; t

n

℄ is the result of replaing from left to

right the n � 0 ourrenes of 2 with t

1

; : : : ; t

n

. We write t = C[[t

1

; : : : ; t

n

℄℄ if

C 2 T (F

i

[f2g;V), C 6= 2, and root(t

1

); : : : root(t

n

) 2 F

3�i

for some i 2 f1; 2g.

In this ase, the t

j

are the aliens of t and C is the topmost F

i

-homogeneous part

of t, denoted by top

i

(t) (whereas top

3�i

(t) is 2). This de�nition is similar to the

de�nition of ap where the roles of the de�ned symbols and the onstrutors

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 16

are replaed by F

1

and F

2

. Note, however, that we now use the more standard

2 symbol instead of a fresh variable to replae the subterms. So for example, if

R

1

onsists of the following two rules

f(0; 1; x) ! f(s(x); x; x) (10)

f(x; y; s(z)) ! s(f(0; 1; z)); (11)

and R

2

ontains the rules

g(x; y) ! x (12)

g(x; y) ! y; (13)

then R

1

and R

2

are disjoint and a term like f(g(0; 0); x; g(y; y)) an be written

as C[[g(0; 0); g(y; y)℄℄, where C is f(2; x;2). Thus top

1

(f(g(0; 0); x; g(y; y))) =

f(2; x;2) and top

2

(f(g(0; 0); x; g(y; y))) = 2.

Moreover, for any term t its rank is the maximal number of alternating fun-

tion symbols (from F

1

and F

2

, respetively) in any path through the term, i.e.,

rank(t) = 1 + maxf rank(t

j

) j 1 � j � ng where t = C[[t

1

; : : : ; t

n

℄℄

and max ; = 0. So for example we have rank(f(g(0; 0); x; g(y; y))) = 3. Our

modularity results ruially depend on the well-known fat that s !

R

1

[R

2

t

implies rank(s) � rank(t).

A rewrite step s!

R

1

[R

2

t is destrutive at level 1 if root(s) 2 F

i

and root(t) 2

F

3�i

for some i 2 f1; 2g. A redution step s!

R

1

[R

2

t is destrutive at level m+1

(for some m � 1) if s = C[[s

1

; : : : ; s

j

; : : : ; s

n

℄℄ !

R

1

[R

2

C[s

1

; : : : ; t

j

; : : : ; s

n

℄ = t

with s

j

!

R

1

[R

2

t

j

destrutive at level m. Obviously, if a rewrite step is destru-

tive, then the rewrite rule applied is ollapsing, i.e., the right-hand side of the rule

is a variable. For example, the rewrite step f(g(0; 0); x; g(y; y))! f(0; x; g(y; y))

is destrutive at level 2.

4.2. DP (Quasi-)Simple Termination

Most methods for �nding well-founded orderings searh for total orderings. How-

ever, we onentrate on simpli�ation orderings or quasi-simpli�ation orderings

[Dershowitz, 1987, Steinbah, 1995, Middeldorp and Zantema, 1997℄ beause all

TRSs that are totally terminating have been shown to be simply terminating

[Zantema, 1994℄ and beause simple termination has a nie modular behaviour,

whereas modularity of total termination is still an open problem.

Now we formally de�ne the notion of DP quasi-simple termination whih re-

sults from restriting ourselves to QSOs when using the dependeny pair ap-

proah (i.e., when using Criterion 3.7). The motivation for this notion is that it

ontains all TRSs where termination an be proved automatially in the follow-

ing way: First, the onstraints desribed in Theorem 3.5 are generated using the

estimated dependeny graph, whih an be determined mehanially. Then an

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 17

argument �ltering is applied to eliminate arguments of funtion symbols (or to

replae funtions by their arguments) as in Criterion 3.7, and �nally a standard

tehnique is used to generate a QSO % suh that a redution pair (%;�) satis�es

the resulting onstraints. For example, � an be hosen to be the stable-strit

relation orresponding to %.

Definition 4.1 (DP quasi-simple termination): A TRS R over a signa-

ture F is alled DP quasi-simply terminating if and only if for eah yle P in

the estimated dependeny graph there exists an argument �ltering �

P

for F

℄

and

a redution pair (%

P

;�

P

) with a QSO %

P

suh that

(a) �

P

(R[P) � %

P

and

(b) �

P

(P)\ �

P

6= ;.

De�nition 4.1 aptures the TRSs for whih an automated termination proof

using dependeny pairs with the estimated dependeny graph

y

is potentially

feasible (sine virtually all quasi-orderings that an be generated are QSOs). In

fat, there are numerous DP quasi-simply terminating TRSs whih are not simply

terminating; f. e.g. the olletion by Arts and Giesl [2001℄. This observation mo-

tivated the development of the dependeny pair approah and it also motivated

the work of the present setion, as our aim is to extend well-known modular-

ity results for simple termination to DP quasi-simple termination. For instane,

the TRS from Setion 3 is obviously DP quasi-simply terminating, beause the

resulting onstraints are satis�ed by LPO (whih is a quasi-simpli�ation order-

ing). Similarly, for the TRS R

1

= f(10); (11)g from Setion 4.1 we obtain the

following dependeny pairs

F(0; 1; x) ! F(s(x); x; x) (14)

F(x; y; s(z)) ! F(0; 1; z): (15)

Our estimation tehnique determines that the �rst dependeny pair (14) an

never follow itself in a hain, beause F(s(x

1

); x

2

; x

3

)� !

�

R

1

F(0; 1; x

4

)� does not

hold for any substitution �. So in our example, the estimated dependeny graph

ontains an ar from (14) to (15) and ars from (15) to (14) and to itself. Thus,

the only yles in our example are f(15)g and f(14); (15)g. Hene, aording to

Theorem 3.5, to prove the absene of in�nite hains from the yle f(15)g we

have to �nd a redution pair satisfying

f(0; 1; x) % f(s(x); x; x)

f(x; y; s(z)) % s(f(0; 1; z))

F(x; y; s(z)) � F(0; 1; z):

y

Note that the notion of DP quasi-simple termination and therefore also our modularity

results depend on the estimation of the dependeny graph. Thus, for other approximation

tehniques one would have to investigate the resulting modularity properties separately.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 18

By using the argument �ltering that maps f to its third argument, these on-

straints are satis�ed by RPO with the preedene s > 0 and s > 1. Similarly,

(by eliminating the �rst two arguments of F) one an also prove the absene of

in�nite hains from the yle f(14); (15)g. Hene, termination of the TRS on-

sisting of the rules (10) and (11) is proved and (as RPO is a quasi-simpli�ation

ordering), it is DP quasi-simply terminating.

In this artile, we impose a minor restrition on the argument �lterings used,

viz. for all yles P we restrit ourselves to argument �lterings �

P

suh that for

all rules s ! t in �

P

(R [P) both Var(t) � Var(s) and s 62 V. This restrition

ensures that the rules �

P

(R[P) from Criterion 3.8 indeed form a term rewrit-

ing system. Aording to Lemma 2.4, if there is a quasi-simpli�ation ordering

satisfying the onstraints in Criterion 3.7 (i.e., in De�nition 4.1) and if these

onstraints inlude at least one strit inequality with variables in its right-hand

side, then Var(�(r)) � Var(�(l)) is always satis�ed for all l ! r in R [P. In

other words, the restrition is not very severe.

In fat, in the proof of modularity of DP quasi-simple termination it is suÆ-

ient to know that for every yle of a DP quasi-simply terminating TRS there

is at least one argument �ltering satisfying the minor restrition and a suitable

QSO that prove termination. However, it is an open problem whether for ev-

ery DP quasi-simply terminating TRS suh an argument �ltering and a suitable

QSO always exist. Nevertheless, even if there were a ounterexample, then the

QSO satisfying the onstraints must ful�ll s % C[y℄ % y for some term s with

y 62 Var(s) or x % t for a term t 6= x. Clearly, this is impossible for path or-

derings like LPO or RPO. Hene, whenever the onstraints of De�nition 4.1 are

satis�ed by suh a path ordering, then the restrition on the argument �lterings

is ful�lled anyway. A onstraint of the form s % y with y 62 Var(s) annot be

satis�ed by polynomial orderings either unless terms are only mapped to �nitely

many di�erent numbers. Thus, the question whether DP quasi-simple termina-

tion would also be modular without the above restrition is not so important for

pratial termination proofs.

A straightforward way to generate a QSO � from a simpli�ation ordering �

is to de�ne t � u if and only if t � u or t = u, where = is syntati equality. In

the following, we denote the reexive losure of a relation by underlining, i.e., �

denotes the reexive losure of �. By restriting ourselves to this lass of QSOs,

we obtain the notion of DP simple termination.

Definition 4.2 (DP simple termination): A TRS R over a signature F is

alled DP simply terminating if and only if for eah yle P in the estimated

dependeny graph there is an argument �ltering �

P

for F

℄

and a simpli�ation

ordering �

P

suh that

(a) �

P

(R[P) � �

P

and

(b) �

P

(P)\ �

P

6= ;.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 19

Note that whenever there exist argument �lterings and simpli�ation order-

ings satisfying the onstraints (a) and (b) of De�nition 4.2, then the minor

restrition on the argument �lterings is satis�ed aording to Lemma 2.1. Due

to that lemma, there is the following alternative haraterization for DP simple

termination (whih uses Criterion 3.8 instead of Criterion 3.7).

Corollary 4.3 (Alternative Charat. of DP simple termination):

A TRS R over a signature F is DP simply terminating if and only if for eah

yle P in the estimated dependeny graph there is an argument �ltering �

P

for

F

℄

suh that �

P

(R[P) is a simply terminating TRS.

For instane, both the TRS from Setion 3 and R

1

= f(10); (11)g from Setion

4.1 are already DP simply terminating, beause for their termination proofs

we may use quasi-simpli�ation orderings in whih only syntatially idential

terms are onsidered to be equivalent. Moreover, it also turns out that most of

the examples in [Arts and Giesl, 2001℄ are not only DP quasi-simply terminating

but even DP simply terminating. The following lemma illustrates the onnetions

between the di�erent notions.

Lemma 4.4 (Charaterizing DP (quasi-)simple termination): The fol-

lowing impliations hold: simple termination) DP simple termination) DP

quasi-simple termination) termination.

Proof: The seond impliation holds as� is losed under substitutions and there-

fore (�;�) is a redution pair. The last impliation follows from Criterion 3.7.

It remains to show the �rst impliation. Let R be a simply terminating TRS

over the signature F . IfR is simply terminating, then there exists a simpli�ation

ordering � suh that l � r holds for all rules l ! r of R.

Let
 be the funtion whih replaes every tuple symbol f

℄

in a term s 2

T (F

℄

;V) by its orresponding funtion symbol f 2 F . Then � an be extended

to a simpli�ation ordering �

0

on T (F

℄

;V) by de�ning t �

0

u if and only if

(t) �
(u) holds. We laim that the simpli�ation ordering �

0

satis�es the

onstraints (a) and (b) of De�nition 4.2 without applying an argument �ltering.

Obviously, l �

0

r holds for all rules l ! r of R. Moreover, for every de-

pendeny pair s! t we have s �

0

t. The reason is that eah dependeny pair

f

℄

(s

1

; : : : ; s

n

)! g

℄

(t

1

; : : : ; t

m

) originates from a rule f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ;

t

m

)℄ in R. Thus, f(: : :) � C[g(: : :)℄ implies f(: : :) � g(: : :) by the subterm prop-

erty whih in turn implies f

℄

(: : :) �

0

g

℄

(: : :). Hene, �

0

satis�es both onstraints

(a) and (b) of De�nition 4.2. 2

The following examples show that none of the onverse impliations of Lemma

4.4 holds.

Example 4.5: The system ff(f(x)) ! f((f(x)))g is DP simply terminating

as the only dependeny pair on a yle is F(f(x))! F(x). Hene, the resulting

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 20

onstraints are satis�ed by RPO if one uses the argument �ltering that maps

(x) to its argument. However, this TRS is not simply terminating. The TRS

f(f(x)) ! f((f(x))) g((x)) ! x g((0)) ! g(d(1))

f(f(x)) ! f(d(f(x))) g(d(x)) ! x g((1)) ! g(d(0))

is DP quasi-simply terminating as an be proved in a similar way using the

argument �ltering whih maps and d to their arguments, and RPO where 0 and

1 are equal in the preedene. However, it is not DP simply terminating, beause

due to the �rst four rules, the argument �ltering must redue (x) and d(x) to

their arguments. But then g(0) � g(1) and g(1) � g(0) lead to a ontradition.

Finally, the system ff(0; 1; x) ! f(x; x; x)g is terminating but not DP quasi-

simply terminating. The reason is that fF(0; 1; x) ! F(x; x; x)g is a yle in

the estimated dependeny graph, but there is no argument �ltering � and no

redution pair (%;�) with a QSO % that satis�es �(F(0; 1; x)) � �(F(x; x; x)).

One might remark that the de�nition of argument �ltering ould be modi�ed

by not only eliminating arguments but by also identifying di�erent funtion

symbols. This would hange the notion of DP simple termination, but DP simple

termination and DP quasi-simple termination would still not oinide. To see

this, one an replae the last two rules in the seond system of Example 4.5.

f(f(x)) ! f((f(x))) g((x)) ! x g((h(0))) ! g(d(1))

f(f(x)) ! f(d(f(x))) g(d(x)) ! x g((1)) ! g(d(h(0)))

g(h(x)) ! g(x)

The system is still DP quasi-simply terminating as an be shown by a polyno-

mial ordering with jh(t)j = jtj + 1, j0j = 0, j1j = 1, jf(t)j = jtj + 1, where all

other funtion symbols are mapped to the identity. However, even with the new

de�nition of argument �ltering, the system is still not DP simply terminating.

The reason is that again, the argument �ltering � must map and d to their

arguments. Then the third and fourth g-rule imply �(g(h(0))) = �(g(1)). Sine

�(g) 6= [℄ due to the �rst g-rule, this implies �(h(0)) = �(1). Due to the depen-

deny pair G(h(x)) ! G(x), � may neither map h to its argument nor to any

onstant like 1. Hene, even with this alternative de�nition of argument �ltering,

these onstraints are not satis�able.

4.3. Combining Disjoint Systems

In this setion we show that DP quasi-simple termination is modular for disjoint

TRSs. For the proof, we need the following lemma.

Lemma 4.6 (Transforming Redution Sequenes): Let R

1

and R

2

be

two TRSs over disjoint signatures F

1

and F

2

, respetively. Furthermore, let

R = R

1

[R

2

be their union. If u; v are terms over the signature F

1

suh that

u!

R

1

v and v� !

�

R

u� hold for a ground substitution � : Var(u)! T (F

1

[F

2

),

then there is also a ground substitution � : Var(u) ! T (F

1

) suh that u� !

R

1

v� !

�

R

1

[Emb(F

1

)

u� .

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 21

Proof: Clearly, all terms in the yli derivation

D : u� !

R

1

v� !

�

R

u�

have the same rank. Sine the root symbol of u is in F

1

, the root symbol of

every term in the redution sequene D is also in F

1

(redution steps whih are

destrutive at level 1 would derease the rank).

Suppose �rst that every funtion symbol in F

1

has arity � 1. Then every

redution step in D whih is destrutive at level 2 stritly dereases the rank.

Consequently, there is no redution step of this kind in D. Hene

top

1

(u�)!

R

1

top

1

(v�)!

�

R

1

top

1

(u�)

is an R

1

-redution sequene of ground terms over F

1

[f2g. Let Var(u) =

fx

1

; : : : ; x

n

g and reall Var(v) � Var(u). In this ase, we de�ne the substitution

� by � = fx

i

7! top

1

(x

i

�)

0

j 1 � i � ng, where top

1

(t)

0

results from top

1

(t) by

replaing all holes 2 by an arbitrary onstant from F

1

(note that we restrited

ourselves to signatures ontaining at least one onstant). Then

u� = top

1

(u�)

0

!

R

1

top

1

(v�)

0

= v� !

�

R

1

top

1

(u�)

0

= u�

is the redution sequene we are looking for.

Suppose otherwise that there is a funtion symbol f in F

1

with arity m > 1.

Let Cons be a binary funtion symbol whih neither ours in F

1

nor in F

2

and

let C

E

= fCons(x

1

; x

2

) ! x

1

;Cons(x

1

; x

2

) ! x

2

g. By [Gramlih, 1994, Lemma

3.8℄ or [Ohlebush, 1994b, Theorem 3.13℄, the redution sequene D an be

transformed by a transformation funtion

z

� into a redution sequene

�(u�)!

R

1

�(v�)!

�

R

1

[C

E

�(u�)

of terms over F

1

[fConsg. The transformation funtion � satis�es �(t) =

C[�(t

1

); : : : ;�(t

n

)℄ for every term t with root(t) 2 F

1

and t = C[[t

1

; : : : ; t

n

℄℄,

f. [Ohlebush, 1994b℄. In this ase, we �rst de�ne �

0

= fx

i

7! �(x

i

�) j 1 � i �

ng and obtain

u�

0

= �(u�)!

R

1

�(v�) = v�

0

!

�

R

1

[C

E

�(u�) = u�

0

:

Let u�

0

= u

0

; u

1

; : : : ; u

k

= u�

0

be the sequene of terms ourring in the

above redution sequene. Now in eah term u

i

replae every Cons(t

1

; t

2

) with

f(t

1

; t

2

; z; : : : ; z), where z is a variable or a onstant from F

1

, and denote the

resulting term by 	(u

i

). The de�nition � = fx

i

7! 	(x

i

�

0

) j 1 � i � ng yields

the desired redution sequene

u� = 	(u�

0

) = 	(u

0

)!

R

1

	(u

1

) = 	(v�

0

) = v� !

�

R

1

[Emb(F

1

)

	(u

k

) = u�

in whih 	(u

i

)!

R

1

[Emb(F

1

)

	(u

i+1

) by the rule f(x

1

; : : : ; x

m

)! x

j

, j 2 f1; 2g,

if u

i

!

R

1

[C

E

u

i+1

by the rule Cons(x

1

; x

2

)! x

j

. 2

z

More preisely, � is the transformation �

u�

1

de�ned in [Ohlebush, 1994b, De�nition 3.10℄.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 22

Now we are in a position to prove our modularity theorem for DP quasi-simple

termination.

Theorem 4.7 (Modularity of DP quasi-simple termination): Let R

1

and R

2

be two TRSs over disjoint signatures F

1

and F

2

, respetively. Then their

union R = R

1

[R

2

is DP quasi-simply terminating if and only if both R

1

and

R

2

are DP quasi-simply terminating.

Proof: The only-if diretion is trivial. For the if diretion, let P be a yle in the

estimated dependeny graph of R. Sine R

1

and R

2

are disjoint, P is a yle in

the estimated dependeny graph of R

1

or of R

2

. Without loss of generality, let

P be a yle in the estimated dependeny graph of R

1

.

As R

1

is DP quasi-simply terminating, there is an argument �ltering � for F

℄

1

suh that the onstraints (a) and (b) of De�nition 4.1 are satis�ed for R

1

, P,

and some redution pair (%;�), where % is a QSO. Now let

S

1

= �(R

1

[P) [Emb(F

℄

1

�

)

S

2

= R

2

[Emb(F

2

):

Due to our minor restrition on the argument �lterings, S

1

is a TRS over the

signature F

℄

1

�

. Hene R

0

= S

1

[S

2

is a TRS over F

℄

1

�

[F

2

. It is lear that!

�

R

0

is

a QSO.

x

Note however, that the strit part of!

�

R

0

is not neessarily losed under

substitutions. Instead we prove that the redution pair onsisting of!

�

R

0

and its

stable-strit relation satis�es the onstraints of De�nition 4.1, if � is extended

to F

℄

1

[F

2

by not �ltering any arguments for funtion symbols from F

2

. As the

yle P was hosen arbitrarily, to prove DP quasi-simple termination of R, we

only have to show

(a) �(R[P) � !

�

R

0

and

(b) there exists a dependeny pair s! t from P suh that

�(t)� 6!

�

R

0

�(s)� holds for all ground substitutions �.

Condition (a) is obviously satis�ed, sine for all l ! r 2 R

2

we have �(l) = l

and �(r) = r and for all l ! r in R

1

[P either �(l) = �(r) or �(l) ! �(r)

is a rule of S

1

. Hene, we only have to show onjeture (b). Sine % is the

QSO used for the DP quasi-simple termination proof of R

1

, we have !

�

S

1

� %.

Let s! t be a dependeny pair from P suh that �(s) � �(t). Suppose that

there exists a ground substitution � : Var(�(s)) ! T (F

℄

1

�

[F

2

) suh that

�(t)� !

�

R

0

�(s)�. By Lemma 4.6, this implies the existene of a ground substi-

tution � : Var(�(s)) ! T (F

℄

1

�

) suh that �(t)� !

�

S

1

�(s)� , sine Emb(F

℄

1

�

) �

S

1

. (Here, F

℄

1

�

orresponds to F

1

in Lemma 4.6, �(s) and �(t) orrespond to u

and v, respetively, and S

1

and S

2

orrespond to R

1

and R

2

in Lemma 4.6.) This

would imply �(t)� % �(s)� . Sine � is losed under substitutions, we therefore

x

If R is a TRS over the signature F then !

�

R[Emb(F)

is the smallest QSO ontaining !

R

(that is, if % is a QSO with !

R

� %, then !

�

R[Emb(F)

� %).

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 23

would have �(s)� � �(t)� % �(s)� � : : : whih ontradits the well-foundedness

of �. Thus, �(t)� 6!

�

R

0

�(s)� holds for all ground substitutions �. This proves

onjeture (b). Finally, note that, sine �(R[P) is a TRS, the minor restrition

on the argument �lterings holds for this �. 2

Thus, if R

1

is the TRS onsisting of the rules (10) and (11) and R

2

ontains

the rules (12) and (13), then this theorem allows us to onlude termination of

their ombination beause both systems are DP quasi-simply terminating. This

example annot be handled by any of the previous modularity results. Note

also that in this example, modularity of termination is far from being trivial

beause if R

1

's rule f(0; 1; x) ! f(s(x); x; x) would be just slightly hanged to

f(0; 1; x) ! f(x; x; x), then R

1

would still be terminating, but the union with

R

2

would not terminate any more, f. [Toyama, 1987℄. It is interesting to note

that Theorem 4.7 provides an elegant proof of the fat that f(0; 1; x)! f(x; x; x)

is not DP quasi-simply terminating beause R

2

is DP quasi-simply terminating

but its union with f(0; 1; x)! f(x; x; x) is non-terminating.

From the proof it is lear that the modularity result of Theorem 4.7 also holds

if in the de�nition of DP quasi-simple termination we �x the ordering �

P

to

be the stable-strit relation orresponding to the QSO %

P

. In other words, the

termination proof of R

1

[R

2

also sueeds with redution pairs onsisting of a

QSO and its assoiated stable-strit relation.

One should remark that a further extension of the modularity result in Theo-

rem 4.7 beyond the lass of DP quasi-simply terminating systems is not straight-

forward. For example, if one would de�ne DP quasi-simple termination by using

the real dependeny graph instead of the estimated graph, then this notion of

termination would no longer be modular for disjoint systems. The previous sys-

tem would serve as a ounterexample, sine in the real dependeny graph of

f(0; 1; x) ! f(x; x; x) there is no yle. Hene, it would depend on the rules of

R

2

whether dependeny pairs of R

1

form a yle. The same problem ours

with the reent tehnique of [Middeldorp, 2001℄ where dependeny graphs are

approximated using tree automata tehniques.

DP quasi-simply terminating systems our frequently in pratie. Consider

the following two TRSs where nil denotes the empty list and x : l represents

the insertion of a number x into a list l. Here sum(l) omputes a singleton list

ontaining the sum of all elements in the list l.

R

1

: x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x� y; s(y)))

R

2

: app(nil; k) ! k

app(l; nil) ! l

app(x : l; k) ! x : app(l; k)

sum(x : nil) ! x : nil

sum(x : (y : l)) ! sum((x+ y) : l)

sum(app(l; x : (y : k))) ! sum(app(l; sum(x : (y : k))))

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 24

Both TRSs above are not simply terminating, but they are both DP quasi-simply

terminating, f. [Arts and Giesl, 2000℄. Hene, Theorem 4.7 now also allows to

onlude DP quasi-simple termination of their union.

4.4. Combining Construtor-Sharing and Composable Systems

It may be a bit surprising that Theorem 4.7 annot be diretly extended to

onstrutor-sharing TRSs; even if we disallow the use of argument �lterings. In

other words, there are onstrutor-sharing TRSs R

1

and R

2

whih are both DP

quasi-simply terminating, but their union R = R

1

[R

2

is not DP quasi-simply

terminating.

Example 4.8: Consider the following TRSs:

R

1

: f((x)) ! f(x)

f(b(x)) ! x

R

2

: g(d(x)) ! g(x)

g((x)) ! (g(b((x))))

R

1

and R

2

are DP quasi-simply terminating. (R

1

is even simply terminating

and R

2

is already DP simply terminating as an be shown using the argument

�ltering �(b) = [℄ and RPO. Alternatively, DP quasi-simple termination of R

2

an even be shown without any argument �ltering by using a polynomial ordering

whih maps , b, g, and G to the identity and whih maps d(x) to x+1.) However,

the union of R

1

and R

2

is not DP quasi-simply terminating. As F((x))! F(x)

represents a yle in the estimated dependeny graph one would have to �nd a

QSO satisfying

f((x)) % f(x) (16)

f(b(x)) % x (17)

g(d(x)) % g(x) (18)

g((x)) % (g(b((x)))) (19)

F((x)) � F(x): (20)

Without argument �ltering, no QSO satis�es (16) - (20), sine otherwise we

would have

F((g((x)))) � F(g((x))) due to (20)

% F((g(b((x))))) due to (19)

% F((g((x)))) due to the subterm property.

By (20), the argument �ltering an only map to [1℄, i.e., �((x)) = (x). If

�(b) = [℄ then (17) would be transformed into f(b) % x. But as there exists the

strit inequality (20) with a variable in its right-hand side, this results in the

ontradition F((f(b))) � F(f(b)) % F(x). Similarly, the argument of g annot

be eliminated either, sine g % (g) would be a ontradition to (20).

Thus, the only possible argument �ltering maps b or g to its argument. But then

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 25

we would again obtain F((g((x)))) � Æ % F((g((x)))) or F(((x))) � Æ %

F(((x))) as above. Hene, the TRS indeed is not DP quasi-simply terminating.

Thus, in order to obtain a modularity result for onstrutor-sharing ombina-

tions we have to exlude TRSs like R

2

. Note that without applying an argument

�ltering, DP simple termination of the TRS R

2

annot be proved (while DP

quasi-simple termination an be shown without using any argument �ltering at

all). Thus, we will impose two restritions: (a) In the remainder of the setion

we will restrit ourselves to DP simple termination instead of DP quasi-simple

termination and (b) we have to restrit ourselves to systems where the argument

�ltering does not eliminate arguments for shared symbols like b.

But we need another requirement to ensure modularity. For example, let us

remove the �rst rule g(d(x)) ! g(x) from R

2

. Now there is no yle in the

estimated dependeny graph of R

2

any more and hene we obtain no onstraints

at all forR

2

. Thus, DP simple termination ofR

2

an now even be proved without

using argument �lterings, but the ombined systemR

1

[R

2

is still not DP simply

terminating. Here, the problem is due to the fat that TRSs without yles are

DP simply terminating, even if there is no simpli�ation ordering � suh that

l � r holds for their rules. To exlude suh TRSs we will demand that the

onstraint (a) of De�nition 4.2 (i.e., �(l) � �(r) for all rules) should also be

satis�ed even if there does not exist any yle P. Thus, in the following we also

take the empty yle P into aount.

With this additional requirement, DP simple termination is at least modu-

lar for disjoint ombinations

{

, whereas without this requirement, Theorem 4.7

would not hold for DP simple termination instead of DP quasi-simple termina-

tion. As a ounterexample onsider the TRS R

1

with the rule f(s(x)) ! f(x)

and the TRS R

2

with the rules

g(0) ! g((0)) g((x)) ! x g((0)) ! g(d(1))

g(0) ! g(d(0)) g(d(x)) ! x g((1)) ! g(d(0)):

R

1

is even simply terminating. R

2

is DP simply terminating, but the reason

is just that there does not exist any yle in its estimated dependeny graph.

However, when ombiningR

1

andR

2

, their union has a yle and hene, one now

also has to demand �(l) � �(r) for the rules of R

2

. However, for all argument

�lterings �, this is not ful�lled by any QSO whose equivalene relation is just

syntati equality. So their union is not DP simply terminating, but of ourse

due to Theorem 4.7 it is DP quasi-simply terminating.

Nonetheless, the following example shows that this restrition is not yet suÆ-

ient for obtaining a modularity result for DP simple termination of onstrutor-

sharing systems.

{

This an be proved similar to Theorem 4.7 using the simpli�ation ordering !

+

R

0

where

instead of ondition (b) in this proof one only has to show that �(s) 6= �(t) holds for some

dependeny pair s! t from P (this follows immediately from DP simple termination of R

1

).

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 26

Example 4.9: Let R

1

onsist of the rules

g(s(x)) ! g(x)

g(s(x)) ! x

g(0) ! g(1)

f(0) ! g(f(s(0)))

and let R

2

onsist of the rule h(1) ! h(0). To prove DP simple termination

of R

1

we have to use an argument �ltering mapping f to [℄ and g to 1. This,

however, would imply 0 � 1 whih is a ontradition to h(1) � h(0). Thus, the

ombination of both systems is not DP simply terminating.

So we also have to ensure that an appliation of the argument �ltering to

the resulting inequalities does not transform left-hand sides whih had a non-

shared root symbol like g into terms with a shared root symbol (like the former

onstrutor 0).

k

For that reason we have to demand the following ompatibility

requirement for all argument �lterings used, where G must ontain all shared

funtion symbols.

Definition 4.10 (G-Compatibility): Let R be a TRS over the signature F

and let G be a signature. An argument �ltering � for F is G-ompatible for R

if and only if

(a) �(f) = [1; : : : ; n℄ for every f 2 F \ G, where n is the arity of f

(i.e., � does not �lter arguments for funtion symbols from G).

(b) For every rule l ! r 2 R: if root(l) 62 G, then root(�(l)) 62 G.

The restrition to G-ompatible argument �lterings ensures that symbols from

F \ G are not hanged and furthermore onstrutors from F \ G are not turned

into de�ned symbols after appliation of the argument �ltering. In the following,

for any TRS R over the signature F let C

�

be the set of onstrutors of �(R),

and let D

�

be the set of de�ned symbols in �(R).

Lemma 4.11 (Properties of G-Compatible Argument Filterings):

Let R be a TRS over the signature F = C [D and let � be an argument �ltering

for F that is G-ompatible for R. Then the following statements hold:

(i) For every rule l ! r 2 R: if root(l) 2 G, then root(�(l)) = root(l).

(ii) For every rule l ! r 2 R: if root(�(l)) 2 G, then root(�(l)) = root(l).

(iii) G \ D

�

� G \ D.

Proof:

(i) Immediate onsequene of De�nition 4.10 (a).

(ii) It follows from De�nition 4.10 (b) that root(l) 2 G. Hene (ii) is a onse-

quene of (i).

k

If the argument �ltering is non-ollapsing (i.e., �(f) 6= i for all de�ned symbols f), then

this requirement is always ful�lled.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 27

(iii) Follows diretly from (ii).

2

The following lemma is ruial to our modularity result, beause it states that

if R

1

and R

2

are onstrutor-sharing, then applying an argument �ltering �

will also result in onstrutor-sharing TRSs �(R

1

) and �(R

2

) provided that �

is ompatible with the set of all shared symbols. In fat, this result even holds

for omposable TRSs instead of onstrutor-sharing ones.

Lemma 4.12 (G-ompat. Arg. Filterings Maintain Composability):

Let R

1

and R

2

be omposable TRSs over the signatures F

1

and F

2

, respetively.

If F

1

\ F

2

� G and if � is an argument �ltering for F

1

[F

2

that is G-ompatible

for R

1

and for R

2

, then �(R

1

) and �(R

2

) are also omposable.

Proof: We prove the following laims (where (B) and (C) imply that �(R

1

) and

�(R

2

) are omposable):

(A) fl ! r 2 �(R

1

) [�(R

2

) j root(l) 2 D

1

\ D

2

g � �(R

1

) \ �(R

2

)

(B) fl ! r 2 �(R

1

) [�(R

2

) j root(l) 2 D

1

�

\ D

2

�

g � �(R

1

) \ �(R

2

)

(C) C

1

�

\ D

2

�

= D

1

�

\ C

2

�

= ;

(A) If l ! r 2 �(R

1

) [�(R

2

), then we have l = �(u) and r = �(v) for some

u ! v 2 R

1

[R

2

. Note that root(�(u)) 2 D

1

\ D

2

� G implies root(�(u)) =

root(u) by Lemma 4.11 (ii). As root(u) 2 D

1

\ D

2

and as R

1

and R

2

are

omposable, this implies u ! v 2 R

1

\ R

2

. It follows that �(u) ! �(v) 2

�(R

1

) \ �(R

2

) beause �(u)! �(v) 2 �(R

1

) [�(R

2

) implies �(u) 6= �(v).

(B) If f = root(l) 2 D

1

�

\ D

2

�

, then a funtion symbol f (with possibly

di�erent arity) ours in F

1

\ F

2

� G by the de�nition of argument �lterings.

But then due to De�nition 4.10 (a), f 2 F

1

\ F

2

� G has the same arity as

f 2 D

1

�

\ D

2

�

. Hene, f 2 D

1

\ D

2

follows from Lemma 4.11 (iii). Now the

laim is implied by (A).

(C) If there were an f 2 C

1

�

\ D

2

�

, then similar to the argumentation in (B),

we would have f 2 F

1

\ F

2

� G by the de�nition of argument �lterings and

sine � is G-ompatible. This implies f 2 F

1

\ D

2

aording to Lemma 4.11

(iii). We know C

1

\ D

2

= ; beause R

1

and R

2

are omposable. Thus, we have

f 2 D

1

\ D

2

. But sine there is a rule l ! r 2 �(R

2

) with root(l) = f , (A)

implies l ! r 2 �(R

1

) and thus, root(l) = f 2 D

1

�

, whih is a ontradition to

f 2 C

1

�

. The proof of D

1

�

\ C

2

�

= ; is exatly the same. 2

The restritions needed for the desired modularity result are aptured by the

notion of G-restrited DP simple termination.

Definition 4.13 (G-restrited DP simple termination): A TRS R

over a signature F is alled G-restrited DP simply terminating if and only

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 28

if for eah yle P in the estimated dependeny graph of R (inluding the empty

one) there is an argument �ltering �

P

for F

℄

that is G-ompatible for R[P suh

that

� �

P

(R[P) is a simply terminating TRS and

� �

P

(P) 6= ; whenever P 6= ;.

So obviously, G-restrited DP simple termination implies DP simple termina-

tion, f. Corollary 4.3. The following theorem shows that under this G-restrition,

DP simple termination is modular for onstrutor-sharing and even for ompos-

able TRSs.

Theorem 4.14 (Modularity of G-restrited DP simple terminat.):

Let R

1

and R

2

be omposable TRSs over the signatures F

1

and F

2

, respetively.

If F

1

\ F

2

� G, then their ombined system R = R

1

[R

2

is G-restrited DP

simply terminating if and only if both R

1

and R

2

are G-restrited DP simply

terminating.

Proof: The only-if diretion is trivial. For the if diretion, let P be a yle in the

estimated dependeny graph of R (where P may also be empty). Then P is also

a yle in the estimated dependeny graph of R

1

or in the estimated dependeny

graph of R

2

beause R

1

and R

2

are omposable. The reason is that dependeny

pairs of the form f

℄

(: : :) ! g

℄

(: : :) where g 2 F

1

\ F

2

and f 62 F

1

\ F

2

are

not on yles. Thus, the only dependeny pairs f

℄

(: : :)! g

℄

(: : :) on yles have

f; g 2 F

i

n F

3�i

or f; g 2 F

1

\ F

2

. Without loss of generality let P be a yle in

the estimated dependeny graph of R

1

. Let S

1

= R

1

[P and let S

2

= R

2

. Note

that S

1

and S

2

are omposable, sine the root symbols in the new rules P are

tuple symbols whih therefore do not our in R

2

. We have to show that there

is an argument �ltering � for F

℄

1

[F

2

that is G-ompatible for S = S

1

[S

2

suh

that �(S) is simply terminating and suh that �(P) 6= ; if P 6= ;.

Sine R

1

and R

2

are G-restrited DP simply terminating, there are argument

�lterings �

1

and �

2

suh that �

i

is G-ompatible with S

i

and suh that �

i

(S

i

)

is simply terminating (for both i 2 f1; 2g). For i = 2 this is beause we also

regard the empty yle in De�nition 4.13. Moreover, �

1

(P) 6= ; if P 6= ;. Let

� operate like �

1

on F

1

and like �

2

on F

2

. (This is well de�ned, sine �

1

and

�

2

do not modify funtion symbols from F

1

\ F

2

� G.) Clearly, �(P) = �

1

(P)

and thus, �(P) 6= ; if P 6= ;. Moreover, obviously � is G-ompatible for both

S

1

and S

2

and hene, also for S. Then by Lemma 4.12, �(S

1

) and �(S

2

) are

omposable, sine S

1

and S

2

are omposable as well. Thus, by [Ohlebush, 1995,

Theorem 5.16℄, the ombined system �(S

1

) [�(S

2

) = �(S

1

[S

2

) is also simply

terminating. This implies G-restrited DP simple termination of R

1

[R

2

. 2

For example, let us extend both TRSs R

1

and R

2

from the end of Setion 4.3

by the additional rules

0+ y ! y

s(x) + y ! s(x+ y)

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 29

and moreover, we also add the rule (x � y) � z ! x � (y + z) to R

1

. Now the

resulting TRSs are omposable, sine they both ontain the same onstrutors

0 and s and they also share the de�ned symbol +, but both TRSs ontain the

same +-rules. As both TRSs are f0; s;+g-restrited DP simply terminating,

Theorem 4.14 allows us to onlude f0; s;+g-restrited DP simple termination

of the ombined system.

There are even TRSs R

1

[R

2

where DP simple termination of both R

1

and

R

2

an be proved with a standard tehnique like LPO, whereas suh standard

orderings fail if one wants to prove DP simple termination of their union diretly.

Hene, for suh examples our result enables automati termination proofs whih

were not possible before.

Example 4.15: Let R

1

be the TRS

f((s(x); y)) ! f((x; s(y)))

f(f(x)) ! f(d(f(x)))

f(x) ! x

and let R

2

onsist of the rule g((x; s(y)))! g((s(x); y)).

R

1

is DP simply terminating (using the argument �ltering �(d) = [℄ and LPO

omparing subterms left-to-right), but it is not simply terminating. R

2

is even

simply terminating as an be shown with LPO omparing subterms right-to-left.

Thus, DP simple termination of both systems an be veri�ed by LPO.

By Theorem 4.14 their union is also DP simply terminating. However, the

onstraints for the yle fG((x; s(y)))! G((s(x); y))g are not satis�ed by LPO

(nor by RPO nor by any polynomial ordering). Thus, there are indeed TRSs

where termination of the subsystems an be shown with dependeny pairs and

LPO, but (without our modularity result) termination of their union annot be

proved with dependeny pairs and LPO.

5. Modular Innermost Termination Proofs With Depen-

deny Pairs

Arts and Giesl [2000℄ showed that the dependeny pair approah an be mod-

i�ed in order to verify innermost termination. Unlike previous methods, this

tehnique an even prove innermost termination of non-terminating systems au-

tomatially. Similar to the modular approah for termination in Setion 3, this

tehnique for innermost termination proofs an also be used in a modular way.

As an example onsider the following TRS:

f(x; (x); (y)) ! f(y; y; f(y; x; y))

f(s(x); y; z) ! f(x; s((y)); (z))

f((x); x; y) ! (y)

g(x; y) ! x

g(x; y) ! y

By applying the �rst f-rule to f(x; (x); (g(x; (x)))), we obtain an in�nite (y-

ling) redution. However, it is not an innermost redution, beause this term

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 30

ontains a redex g(: : :) as a proper subterm. It turns out that the TRS is not

terminating, but it is innermost terminating.

To develop a riterion for innermost termination similar to the termination

riterion of Setion 3, the notion of hains has to be restrited. A sequene of

dependeny pairs s

1

! t

1

, s

2

! t

2

, : : : is an innermost R-hain if there exists a

substitution � suh that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for

every two onseutive pairs s

j

! t

j

and s

j+1

! t

j+1

in the sequene. Here, `

i

!'

denotes innermost redutions.

Of ourse, every innermost hain is also a hain, but not vie versa. In our

example, we have the following dependeny pairs.

F(x; (x); (y)) ! F(y; y; f(y; x; y)) (21)

F(x; (x); (y)) ! F(y; x; y) (22)

F(s(x); y; z) ! F(x; s((y)); (z)) (23)

The in�nite sequene onsisting of the dependeny pair (21) is an in�nite

hain, but no innermost hain, beause F(y

1

; y

1

; f(y

1

; x

1

; y

1

))� an only redue

to F(x

2

; (x

2

); (y

2

))� for substitutions � where y

1

� is not a normal form. Arts

and Giesl [2000℄ proved that the absene of in�nite innermost hains is a suÆient

and neessary riterion for innermost termination.

Theorem 5.1 (Innermost Termination Criterion): A TRS R is inner-

most terminating if and only if there exists no in�nite innermost R-hain.

Analogous to Setion 3, the notion of a graph is de�ned for innermost hains.

Definition 5.2 (Innermost dependeny graph): The innermost depen-

deny graph of a TRS R is the direted graph whose nodes are the dependeny

pairs and there is an ar from s! t to v ! w i� s! t, v ! w is an innermost

hain.

For the purpose of automation we again need an estimation, sine in general it

is undeidable whether two dependeny pairs form an innermost hain. To this

end, we again replae subterms in t with de�ned root symbols by new variables

and hek whether this modi�ation of t uni�es with v, but in ontrast to Setion

3 we do not rename multiple ourrenes of the same variable.

Definition 5.3 (Estimated Innermost Dependeny Graph): The esti-

mated innermost dependeny graph of a TRS R is the direted graph whose

nodes are the dependeny pairs and there is an ar from s! t to v ! w i�

ap(t) and v are uni�able by a most general uni�er � suh that s� and v� are

normal forms.

In the estimated innermost dependeny graph of our example, there are ars

from (22) to eah dependeny pair, from (21) to (23), and from (23) to itself.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 31

However, there is no ar from (21) to itself, beause ap(F(y

1

; y

1

; f(y

1

; x

1

; y

1

))) =

F(y

1

; y

1

; z) does not unify with F(x

2

; (x

2

); (y

2

)). Hene, the only yles are

f(22)g and f(23)g. In fat, in this example the estimated innermost dependeny

graph oinides with the (real) innermost dependeny graph. Similar to Theorem

3.3 one an show that it suÆes to prove the absene of in�nite innermost hains

separately for every yle.

Theorem 5.4 (Modular Innermost Termination Criterion): A TRS

R is innermost terminating if and only if for eah yle P in the innermost

dependeny graph there is no in�nite innermost R-hain of dependeny pairs

from P.

Proof: The proof is absolutely analogous to the proof of Theorem 3.3: If R is not

innermost terminating, then by Theorem 5.1 there exists an in�nite innermost

hain and its tail orresponds to a yle in the innermost dependeny graph. 2

To prove innermost termination in a modular way, we again generate a set of

inequalities for every yle P and searh for a redution pair (%

P

;�

P

) satisfying

them. However, to ensure t� %

P

v� whenever t� redues to v�, now it is suÆient

to require l %

P

r only for those rules that are usable in a redution of t� (for

normal substitutions �).

Definition 5.5 (Usable Rules): Let R be a TRS. For any symbol f let

Rules

R

(f) = fl! r 2 R j root(l) = fg. For any term we de�ne the usable

rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rules

R

(f) [

S

l!r2Rules

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

where R

0

= R n Rules

R

(f). Moreover, for any set P of dependeny pairs we

de�ne U

R

(P) =

S

s!t2P

U

R

(t).

So we have U

R

(F(y; y; f(y; x; y))) = Rules

R

(f) and U

R

(f(22)g) = U

R

(f(23)g) =

;, i.e., there are no usable rules for the yles. Note that Rules

R

(f) = ; for

any onstrutor f . Now our theorem for automati

��

modular veri�ation of

innermost termination an be proved analogously to Theorem 3.5.

Theorem 5.6 (Modular Innermost Termination Proofs): A TRS R

is innermost terminating if for eah yle P in the (estimated) innermost de-

pendeny graph there is a redution pair (%

P

;�

P

) suh that

(a) U

R

(P) [P � %

P

and

(b) P \ �

P

6= ;.

��

Detailed explanations and additional re�nements for the automated heking of the inner-

most termination riterion an be found in [Arts and Giesl, 2000, Giesl and Arts, 2001℄.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 32

Proof: An in�nite innermost hain of dependeny pairs from some yle P gives

rise to an in�nite sequene of inequalities in ontradition to the well-foundedness

of �

P

(similar to the proof of Theorem 3.5). The only di�erene is that now � is

a substitution with normal forms and therefore the redutions w

i;j

�

i

!

�

R

v

i;j+1

�,

w

i;n

i

�

i

!

�

R

s�

i

�, and t�

i

�

i

!

�

R

v

i+1;1

� only require usable rules from U

R

(P). 2

In this way, we obtain the following onstraints for our example:

F(x; (x); (y)) �

1

F(y; x; y) F(s(x); y; z) �

2

F(x; s((y)); (z)):

For �

1

we may use LPO omparing subterms right-to-left and for �

2

we may

use LPO omparing subterms left-to-right. Hene, innermost termination of this

example an easily be proved automatially. Without our modularity result, the

above innermost termination proof would not be possible, beause there exists

no simpli�ation ordering satisfying both inequalities (not even after argument

�ltering).

Note that unlike Theorem 3.5, the reverse diretion of Theorem 5.6 does not

hold, i.e., this riterion is only suÆient, but not neessary for innermost termi-

nation. As an example regard the TRS R with the rules

f(a(x); y) ! g(x; y) (24)

g(x; y) ! h(x; y) (25)

h(0; y) ! f(y; y) (26)

a(0) ! 0: (27)

The only yle of its innermost dependeny graph is fF(a(x); y)! G(x; y);G(x; y)

! H(x; y);H(0; y)! F(y; y)g. In fat, this TRS is innermost terminating. How-

ever, the onstraints of Theorem 5.6 imply

F(a(0); a(0)) % G(0; a(0)) % H(0; a(0)) % F(a(0); a(0));

where one of these inequalities must also hold for the strit ordering �. Thus,

they are not satis�ed by any redution pair.

Of ourse, Criteria 3.7 and 3.8 an also be modi�ed into suÆient riteria for

innermost termination proofs as follows.

Criterion 5.7 (Modular Automated Innermost Termination Crit.):

A TRS R over a signature F is innermost terminating if for eah yle P in

the (estimated) innermost dependeny graph there is an argument �ltering �

P

for F

℄

and a redution pair (%

P

;�

P

) suh that

(a) �

P

(U

R

(P) [P) � %

P

and

(b) �

P

(P)\ �

P

6= ;.

Criterion 5.8 (Innermost Termination Crit. by Transformation):

A TRS R over a signature F is innermost terminating if for eah yle P in

the (estimated) innermost dependeny graph there is an argument �ltering �

P

for F

℄

suh that �

P

(U

R

(P)[P) is a terminating TRS and suh that �

P

(P) 6= ;.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 33

6. Modularity Results for Innermost Termination

In Setion 6.1 we introdue modularity riteria whih an be derived from the

results of the previous setion. Setion 6.2 ompares these riteria with related

work.

6.1. Modularity Criteria

In this setion we present two orollaries of our results from Setion 5 whih are

partiularly useful in pratie.

6.1.1. Hierarhial Combinations

A straightforward orollary of Theorems 5.4 and 5.6 an be obtained for hierar-

hial ombinations. As an example onsider the following TRS. Here, `n : m : x'

abbreviates `n : (m : x)'. The funtion add(x; y) adds all elements of the

list x to the �rst element of the list y, i.e., add(n

0

: n

1

: : : : : n

k

: nil;m :

y) = (m +

P

k

i=0

n

i

) : y. The funtion weight omputes the weighted sum, i.e.,

weight(n

0

: n

1

: : : : : n

k

: nil) = n

0

+

P

k

i=1

i � n

i

.

add(s(n) : x;m : y) ! add(n : x; s(m) : y)

add(0 : x; y) ! add(x; y)

add(nil; y) ! y

weight(n : m : x) ! weight(add(n : m : x; 0 : x))

weight(n : nil) ! n

Let R

1

onsist of the three add-rules and let R

2

be the system onsisting of

the two weight-rules. Then these two systems form a hierarhial ombination,

where add is a de�ned symbol of R

1

and a onstrutor of R

2

.

Note that tuple symbols from dependeny pairs ofR

1

do not our in left-hand

sides of R

2

-dependeny pairs. Hene, a yle in the innermost dependeny graph

either onsists of R

1

-dependeny pairs or of R

2

-dependeny pairs only. So in

our example, every yle either ontains just ADD- or just WEIGHT-dependeny

pairs. Thus, we obtain the following orollary.

yy

Corollary 6.1 (Innermost Term. for Hierarhial Combinations):

Let R be the hierarhial ombination of R

1

and R

2

.

(a) R is innermost terminating if and only if R

1

is innermost terminating and

there exists no in�nite innermost R-hain of R

2

-dependeny pairs.

(b) R is innermost terminating if R

1

is innermost terminating and if there

exists an argument �ltering � and a redution pair (%;�) suh that for all

dependeny pairs s! t of R

2

yy

Of ourse, an obvious re�nement of Corollary 6.1 (b) is to regard the di�erent yles of

R

2

-dependeny pairs in R's (estimated) innermost dependeny graph separately. Moreover, a

variant of Corollary 6.1 also holds for C

E

-termination instead of innermost termination [Urbain,

2001℄.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 34

� �(l) % �(r) for all rules l! r in U

R

(t) and

� �(s) � �(t).

Proof: The orollary is a diret onsequene of Theorems 5.4 and 5.6, sine

every yle onsists of R

1

- or of R

2

-dependeny pairs only and sine for any

dependeny pair s! t of R

1

the only rules that an be used to redue a normal

instantiation of t are the rules from R

1

(i.e., U

R

(t) � R

1

). 2

(Innermost) termination of the add-system (R

1

) is easily proved (e.g., by LPO

with the preedene add > : and add > s). For the weight-subsystem (R

2

) we

obtain the following onstraints. (Note that WEIGHT(: : :)! ADD(: : :) is no de-

pendeny pair of R

2

, sine add 62 D

2

.)

�(add(s(n) : x;m : y)) % �(add(n : x; s(m) : y))

�(add(0 : x; y)) % �(add(x; y))

�(add(nil; y)) % �(y)

�(WEIGHT(n : m : x)) � �(WEIGHT(add(n : m : x; 0 : x)))

By hoosing the argument �ltering �(add) = �(:) = [2℄, the inequalities are also

satis�ed by LPO, but now we have to use the preedene :> add.

In this way, innermost termination of this non-simply terminating example an

be proved automatially. Moreover, as the system is non-overlapping, this also

proves its termination. A riterion like Corollary 6.1 an also be formulated for

termination instead of innermost termination, beause in the termination ase

there annot be a yle onsisting of dependeny pairs from both R

1

and R

2

either. But in ontrast to the innermost termination ase, rules ofR

2

an be used

to redue instantiated right-hand sides of R

1

-dependeny pairs (as we annot

restrit ourselves to normal substitutions then). Hene, to prove the absene of

in�nite R

1

-hains we have to use a quasi-ordering where the rules of R

2

are also

weakly dereasing. Therefore, the onstraints for the termination proof of the add

and weight-example (aording to Setion 3) are not satis�ed by any redution

pair with a quasi-simpli�ation ordering amenable to automation [Arts and Giesl,

2001℄, whereas the onstraints for innermost termination are ful�lled by suh an

ordering. Hene, for non-overlapping systems, it is always advantageous to verify

termination by proving innermost termination only.

6.1.2. Splitting into Subsystems

The modularity results for innermost termination presented so far were all used

in the ontext of dependeny pairs. However as already mentioned, the lassial

approah to modularity is to split a TRS into subsystems and to prove their (in-

nermost) termination separately. The following orollary of Theorem 5.4 shows

that the onsideration of yles in the innermost dependeny graph an also be

used to deompose a TRS into modular subsystems. (Similarly, the yles of the

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 35

estimated innermost dependeny graph may be used as well for this deomposi-

tion.)

In the following, let O(P) denote the origin of the dependeny pairs in P, i.e.,

O(P) is a set of those rules where the dependeny pairs of P stem from. If a

dependeny pair of P may stem from several rules, then it is suÆient if O(P)

just ontains one of them. So for the example of Setion 5 we have O(f(22)g) =

ff(x; (x); (y))! f(y; y; f(y; x; y))g andO(f(23)g) = ff(s(x); y; z)! f(x; s((y));

(z))g.

Corollary 6.2 (Modularity for Subsystems): Let R be a TRS, let P

1

;

: : : ;P

n

be the yles in its (estimated) innermost dependeny graph, and let R

j

be subsystems of R suh that U

R

(P

j

) [O(P

j

) � R

j

(for all j 2 f1; : : :; ng).

If R

1

; : : : ;R

n

are innermost terminating, then R is also innermost terminating.

Proof: As P

j

is a yle, every dependeny pair from P

j

is anR

j

-dependeny pair.

(In order to see this, let f

℄

(~s)! g

℄

(

~

t) be an R-dependeny pair in P

j

. Here, ~s

and

~

t denote tuples of terms s

1

; : : : ; s

n

and t

1

; : : : ; t

m

, respetively. Clearly, g is

a de�ned symbol of R

j

beause there is also a dependeny pair g

℄

(~v)! h

℄

(~w)

in P

j

. Hene, sine g is a de�ned symbol of R

j

, f

℄

(~s)! g

℄

(

~

t) is also an R

j

-

dependeny pair.) Thus, every innermost R-hain of dependeny pairs from P

j

is also an innermost R

j

-hain. Now the orollary is a diret onsequene of

Theorem 5.4. 2

For instane, in the example of Setion 5 we only have two yles, viz. f(22)g

and f(23)g. As these dependeny pairs have no de�ned symbols in their right-

hand sides, their sets of usable rules are empty. Hene, to prove innermost ter-

mination of the whole system, by Corollary 6.2 it suÆes to prove innermost ter-

mination of the two one-rule subsystems f(x; (x); (y))! f(y; y; f(y; x; y)) and

f(s(x); y; z)! f(x; s((y)); (z)).

In fat, both subsystems are even terminating as an easily be proved auto-

matially. For the �rst system one an use a polynomial interpretation mapping

f(x; y; z) to x + y + z and (x) to 5x+ 1 [Lankford, 1979℄. Methods for the au-

tomated generation of polynomial orderings have for instane been developed in

[Steinbah, 1994, Giesl, 1995℄. For the seond system one an use LPO with the

preedene f > s and f > .

Hene, the modularity riterion of Corollary 6.2 allows the use of well-known

simpli�ation orderings for innermost termination proofs of non-terminating sys-

tems, beause it guarantees that innermost termination of the two simply ter-

minating subsystems is suÆient for innermost termination of the original TRS.

A similar splitting is also possible for the example in Setion 3. Even better,

if we modify the TRS into a non-overlapping one

f(x; (y)) ! f(x; s(f(y; y)))

f(s(x); s(y)) ! f(x; s((s(y))));

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 36

then Corollary 6.2 allows to onlude termination of the whole system from ter-

mination of the two one-rule subsystems. Innermost termination of the original

example resp. termination of the above modi�ed example an be proved by LPO,

but for the �rst rule one needs the preedene > s and > f, whereas for the

seond rule the preedene f > s and f > is required.

Note that the reverse diretion of the orollary does not hold. Consider the

TRS (24) - (27) from the end of Setion 5 again. The only yle of its innermost

dependeny graph is fF(a(x); y)! G(x; y);G(x; y)! H(x; y);H(0; y)! F(y; y)g.

Sine this yle does not have any usable rules, Corollary 6.2 states that inner-

most termination of the subsystem onsisting of the �rst three rules is suÆient

for innermost termination of the whole TRS. However, the onverse does not

hold, sine the whole system is innermost terminating, whereas the subsystem

onsisting of the �rst three rules is not. (The term f(a(0); a(0)) starts an in�nite

innermost redution.)

6.2. Comparison with Related Work

Now we show that in the ase of �nite TRSs, existing modularity results for in-

nermost termination are obtained as easy onsequenes of our riteria and that

our riteria extend previously developed results. Setion 6.2.1 fouses on om-

posable TRSs and Setion 6.2.2 gives a omparison with results on hierarhial

ombinations.

6.2.1. Shared Construtors and Composable Rewrite Systems

By the framework of the previous setions we an easily prove that innermost

termination is modular for omposable TRSs [Ohlebush, 1995℄ and hene also

for TRSs with disjoint sets of de�ned symbols and shared onstrutors [Gram-

lih, 1995℄. In fat, Corollary 6.2 immediately implies

zz

the following result of

Ohlebush [1995℄.

Theorem 6.3 (Modularity for Composable TRSs): Let R

1

and R

2

be

omposable TRSs. If R

1

and R

2

are innermost terminating, then R

1

[R

2

is also

innermost terminating.

Proof: Let f

℄

(~s)! g

℄

(

~

t) be a dependeny pair of R

1

[R

2

. If f 2 D

1

, then there

exists a rule f(~s)!C[g(

~

t)℄ in R

1

. (This rule annot be from R

2

n R

1

, beause

R

1

and R

2

are omposable.) Hene, g 2 D

1

, beause onstrutors of R

1

are not

de�ned symbols of R

2

. Similarly, f 2 D

2

implies g 2 D

2

. So any dependeny

pair of R

1

[R

2

is an R

1

-dependeny pair or an R

2

-dependeny pair.

Moreover, there an only be an ar from f

℄

(~s)! g

℄

(

~

t) to a dependeny pair

of the form g

℄

(~v)! h

℄

(~w). Hene, if f

℄

(~s)! g

℄

(

~

t) is an R

j

-dependeny pair,

then g 2 D

j

and therefore, g

℄

(~v)! h

℄

(~w) is also an R

j

-dependeny pair (for

zz

A diret proof of Theorem 6.3 is not too diÆult either, but our alternative proof serves

to illustrate the onnetions between our riteria and existing modularity results.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 37

j 2 f1; 2g). So every yle P in the innermost dependeny graph of R

1

[R

2

either onsists of R

1

-dependeny pairs or of R

2

-dependeny pairs only.

If a yle P only ontains R

1

-dependeny pairs, then R

1

is a superset of

U

R

1

[R

2

(P)[O(P), as the de�ned symbols ofR

2

nR

1

do not our as onstrutors

in R

1

. Similarly, for a yle P of R

2

-dependeny pairs, we have U

R

1

[R

2

(P) [

O(P) � R

2

. Hene by Corollary 6.2, R

1

[R

2

is innermost terminating if R

1

and R

2

are innermost terminating. 2

Note that our results extend modularity to a muh larger lass of TRSs, e.g.,

they also allow a splitting into non-omposable subsystems whih share de�ned

symbols as demonstrated in Setion 6.1.2.

6.2.2. Proper Extensions

Krishna Rao [1995℄ proved that innermost termination is modular for (general-

ized) proper extensions whih are a ertain kind of hierarhial ombinations. In

this setion we show that for �nite TRSs this is also a diret onsequene of our

results.

For a TRS R, the dependeny relation �

d

is the smallest quasi-ordering satis-

fying the ondition f �

d

g whenever there is a rewrite rule f(: : :)!C[g(: : :)℄ 2 R

with g 2 D. So f �

d

g holds if the funtion f depends on the de�nition of g.

LetR

1

andR

2

form a hierarhial ombination. Now the de�ned symbolsD

2

of

R

2

are split in two sets D

1

2

and D

2

2

, where D

1

2

ontains all de�ned symbols whih

depend on a de�ned symbol ofR

1

, i.e.,D

1

2

= ff jf 2 D

2

; f �

d

g for some g 2 D

1

g

andD

2

2

= D

2

nD

1

2

.R

2

is a proper extension ofR

1

if every rule l ! r 2 R

2

satis�es

the following ondition: Whenever t is a subterm of r suh that root(t) 2 D

1

2

and root(t) �

d

root(l), then t ontains no funtion symbol depending on D

1

(i.e.,

from D

1

[D

1

2

) exept at its root.

For instane, in the add and weight-example from Setion 6.1.1 we have D

1

=

faddg, D

1

2

= fweightg (beause weight depends on the de�nition of add), and

D

2

2

= ;. This example is not a proper extension, beause there is a weight-rule in

whih the D

1

-symbol add ours below the D

1

2

-symbol weight. Thus, in a proper

extension funtions depending on R

1

are never alled within a reursive all of

R

2

-funtions. As an example for a proper extension onsider the TRSs R

1

and

R

2

from the end of Setion 4.3 again, where R

2

is extended by the rule

avg(l) ! quot(hd(sum(l)); length(l)):

Here, avg(l) omputes the average of all elements in the list l. We have D

1

2

=

favgg, whereas all other symbols of D

2

belong to D

2

2

. Sine avg does not our

in a right-hand side, this modi�ed TRS R

2

is a proper extension of R

1

. The

modi�ed TRS R

2

is still DP simply terminating (sine the avg-rule does not

give rise to additional dependeny pairs). In fat, its innermost termination also

follows diretly from Corollary 6.1 (b), sine the original TRS R

2

and the avg-

rule form a hierarhial ombination. Corollaries 6.1 and 6.2 imply the following

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 38

result of [Krishna Rao, 1995℄ whih in turn ensures that the union of R

1

and the

extended system R

2

in our example is innermost terminating.

Theorem 6.4 (Modularity for Proper Extensions): LetR

2

be a proper

extension of R

1

. The TRS R

1

[R

2

is innermost terminating if R

1

and R

2

are

innermost terminating.

Proof: As in the proof of Corollary 6.1, sine R

1

and R

2

form a hierarhial

ombination, every yle in the innermost dependeny graph of R

1

[R

2

onsists

solely of R

1

-dependeny pairs or of R

2

-dependeny pairs. If a yle P onsists of

dependeny pairs of R

1

, we have U

R

1

[R

2

(P)[O(P) � R

1

, beause dependeny

pairs of R

1

do not ontain any de�ned symbols of R

2

.

Otherwise, the yle P onsists of R

2

-dependeny pairs. If f

℄

(~s)! g

℄

(

~

t) is

an R

2

-dependeny pair in P, then there exists a rule f(~s)!C[g(

~

t)℄ in R

2

and

f; g 2 D

2

. In addition, we have f �

d

g and g �

d

f (as P is a yle).

If g 2 D

2

2

, then f also belongs to D

2

2

, hene no de�ned symbol of D

1

[D

1

2

ours in

~

t. Otherwise, if g 2 D

1

2

, then by de�nition of a proper extension again

all de�ned symbols in

~

t are from D

2

2

. Thus, in both ases, all de�ned symbols of

U

R

1

[R

2

(g

℄

(

~

t)) belong to D

2

2

. Hene, U

R

1

[R

2

(g

℄

(

~

t)) is a subsystem of R

2

.

So for any yle P of R

2

-dependeny pairs, we have U

R

1

[R

2

(P)[O(P) � R

2

.

Hene, by Corollary 6.2 innermost termination of R

1

and R

2

implies innermost

termination of R

1

[R

2

. 2

As another example regard the system R

0

onsisting of the following three

rules.

hd(x : l) ! x

length(nil) ! 0

length(x : l) ! s(length(l))

The TRS R

1

[R

2

(inluding the avg-rule) is a proper extension of R

0

and

therefore, Theorem 6.4 also implies innermost termination of R

0

[R

1

[R

2

.

The notions of \omposability" and \proper extension" an be ombined as

follows. Suppose we are given two TRSs R

1

and R

2

suh that D

1

= D

0

1

℄ D

0

,

D

2

= D

0

2

℄D

0

, R

1

\R

2

= fl ! r 2 R j root(l) 2 D

0

g, and D

0

1

\D

0

2

= C

1

\D

0

2

= ;.

Now D

2

is split in two sets D

1

2

and D

2

2

, where D

1

2

= ff jf 2 D

2

; f �

d

g for some g 2 D

0

1

g and D

2

2

= D

2

n D

1

2

. R

2

is a generalized proper extension

[Krishna Rao, 1995℄ of R

1

if every rewrite rule l ! r 2 R

2

satis�es the follow-

ing ondition: Whenever t is a subterm of r suh that root(t) 2 D

1

2

n D

0

and

root(t) �

d

root(l), then t ontains no funtion symbol depending on D

0

1

(i.e.,

from D

0

1

[D

1

2

) exept at its root.

As an example, we again regard the TRSs R

1

and R

2

from the end of Setion

4.3, whereR

2

also ontains the rule for avg,R

1

also ontains the rule (x�y)�z !

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 39

x�(y+z), and both R

1

and R

2

are augmented by the additional rules 0+y ! y

and s(x) + y ! s(x+ y), f. Setion 4.4.

R

1

: x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x� y; s(y)))

0+ y ! y

s(x) + y ! s(x+ y)

(x� y)� z ! x� (y + z)

R

2

: app(nil; k) ! k

app(l; nil) ! l

app(x : l; k) ! x : app(l; k)

sum(x : nil) ! x : nil

sum(x : (y : l)) ! sum((x+ y) : l)

sum(app(l; x : (y : k))) ! sum(app(l; sum(x : (y : k))))

avg(l) ! quot(hd(sum(l)); length(l))

0+ y ! y

s(x) + y ! s(x+ y)

Now we have D

0

= f+g, D

0

1

= f�; quotg, D

0

2

= fapp; sum; avgg, where D

1

2

=

favgg andD

2

2

= f+; app; sumg. Thus,R

2

is indeed a generalized proper extension

of R

1

and as both systems are innermost terminating (and even DP simply

terminating), the following theorem allows us to onlude innermost termination

of their union. Moreover, the union of this system with R

0

is again innermost

terminating by Theorem 6.4.

Theorem 6.5 (Modularity for Generalized Proper Extensions):

Let R

2

be a generalized proper extension of R

1

. The TRS R

1

[R

2

is innermost

terminating if R

1

and R

2

are innermost terminating.

Proof: At �rst, we observe the following fat: If f

℄

(~s)! g

℄

(

~

t) is a dependeny

pair with f 2 D

1

, then g 2 D

1

beause the rewrite rule f(~s)! C[g(

~

t)℄ ours in

R

1

and D

0

2

-symbols are not allowed in R

1

. Moreover, U

R

1

[R

2

(g

℄

(

~

t)) � R

1

, sine

all rules for the de�ned symbols in

~

t are (also) ontained in R

1

. So for any yle

P of R

1

[R

2

ontaining a dependeny pair f

℄

(: : :)! g

℄

(: : :) with f 2 D

1

, we

obtain U

R

1

[R

2

(P) [O(P) � R

1

.

For all other dependeny pairs f

℄

(~s)! g

℄

(

~

t) on some yle P we have f 2 D

0

2

.

Hene, there is a rule f(~s)! C[g(

~

t)℄ in R

2

. Note that g 2 D

0

2

as well, otherwise

the dependeny pair f

℄

(: : :)! g

℄

(: : :) would not be on a yle. As in the proof

of Theorem 6.4 we have f �

d

g �

d

f .

If g 2 D

2

2

, then we also have f 2 D

2

2

and thus, no symbol of D

0

1

[D

1

2

ours in

~

t.

Similarly, if g 2 D

1

2

then this implies g 2 D

1

2

nD

0

(sine g 2 D

0

2

). By the de�nition

of generalized proper extensions,

~

t again ontains no symbols of D

0

1

[D

1

2

, i.e., all

de�ned symbols in

~

t are from D

2

2

. Hene, we obtain U

R

1

[R

2

(P) [O(P) � R

2

.

Therefore, innermost termination of R

1

and R

2

implies innermost termination

of R

1

[R

2

by Corollary 6.2. 2

To summarize, we have shown that our results (in partiular, Corollary 6.2)

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 40

diretly imply several modularity results for innermost termination from the

literature. On the other hand, our modularity results signi�antly extend the

lass of TRSs where innermost termination an be proved in a modular way. In

other words, they an handle many systems where all previously known riteria

for modularity of innermost termination fail.

For example, we an deal with ombinations whih are neither omposable

nor hierarhial ombinations (nor generalized proper extensions) as shown in

Setion 6.1.2. This is not possible with any of the previous modularity results.

Moreover, in ontrast to [Krishna Rao, 1995℄, our results are also appliable for

hierarhial ombinations in whih R

2

ontains de�ned symbols of R

1

in the

arguments of its reursive alls, f. the add and weight-example. Suh systems

our frequently in pratie.

Another modularity riterion for hierarhial ombinations is due to Der-

showitz [1994℄. There, ourrenes of D

1

-symbols in reursive alls of D

2

-symbols

are allowed, but only if R

2

is oblivious of the R

1

-rules, i.e., termination of R

2

must not depend on the R

1

-rules. However, this riterion is not appliable to

systems like the add and weight-example, beause termination of the weight-rules

of ourse depends on the result of add(n : m : x; 0 : x).

An alternative modularity result for hierarhial ombinations was presented

by Fern�andez and Jouannaud [1995℄. However, their result is restrited to sys-

tems where the arguments of reursive alls in R

2

derease w.r.t. the subterm

relation (ompared as multisets or lexiographially). Hene, their result is not

appliable to the add and weight-example either (and also not to most other

systems where R

2

is not simply terminating), whereas our modularity results

are often suessful in these examples.

7. Conlusion

In this artile we introdued a re�nement of the dependeny pair approah in

order to perform termination and innermost termination proofs in a modular

way. This re�nement allows automated termination and innermost termination

proofs for many TRSs for whih suh proofs were not possible before. For a

olletion of suh examples see [Arts and Giesl, 2001℄.

Using our modular re�nement of the dependeny pair framework, we developed

several new modularity riteria whih extend previous results for modularity of

innermost termination. Within this framework, we also obtain easy proofs for

existing modularity theorems.

However, riteria for innermost termination are only appliable for termina-

tion proofs of ertain restrited TRSs (e.g., loally onuent overlay systems and

in partiular, non-overlapping systems [Gramlih, 1995℄). But in pratie there

are many ases in whih innermost termination is not suÆient for termination.

Thus, to fully exploit the advantages of dependeny pairs for these systems as

well, we showed that the well-known modularity result for simple termination of

disjoint unions an be extended to DP quasi-simple termination. Furthermore,

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 41

G-restrited DP simple termination is even modular for onstrutor-sharing and

omposable systems.

To onlude, [Arts and Giesl, 2000℄ presented the dependeny pair tehnique to

perform automated termination and innermost termination proofs. However, in

that artile dependeny pairs were not used in a modular way and thus one had

to prove termination of a TRS at one (i.e., without being able to deompose it

into subsystems and to use several di�erent orderings for its termination proof).

In partiular, whenever a TRS was onstruted by ombining several systems

whose termination had been proved before, then the whole termination proof

had to be re-done.

Therefore, the present artile develops the ideas of [Arts and Giesl, 2000℄

further in a signi�ant way. The progress in automated termination proving

whih was made possible by the development of dependeny pairs now also has

a ounterpart in the area of modularity. With dependeny pairs one an obtain

automated termination proofs of non-simply terminating TRSs and with the

results of the present artile one an perform them in a modular way. In fat, it

is this modularity whih makes an appliation of dependeny pairs to large and

realisti systems possible; see [Giesl and Arts, 2001℄ for an industrial ase study.

Compared to previous work on modularity, the modularity riteria developed in

this artile represent a substantial extension.

Aknowledgements.We thank Aart Middeldorp for many helpful remarks and

hints. J�urgen Giesl was supported by the DFG under grant GI 274/4-1.

Referenes

T. Arts. System desription: The dependeny pair method. In Proeedings of

the 11th International Conferene on Rewriting Tehniques and Appliations,

RTA-00, volume 1833 of Leture Notes in Computer Siene, pages 261{264,

Norwih, England, 2000. Springer Verlag, Berlin.

T. Arts and J. Giesl. Modularity of termination using dependeny pairs. In

Proeedings of the 9th International Conferene on Rewriting Tehniques and

Appliations, RTA-98, volume 1379 of Leture Notes in Computer Siene,

pages 226{240, Tsukuba, Japan, 1998. Springer Verlag, Berlin.

T. Arts and J. Giesl. Termination of term rewriting using dependeny pairs.

Theoretial Computer Siene, 236:133{178, 2000.

T. Arts and J. Giesl. A olletion of examples for termination of term rewrit-

ing using dependeny pairs. Tehnial Report AIB 2001-09, RWTH Aahen,

Germany, 2001. http://aib.informatik.rwth-aahen.de.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 42

CiME 2, 1999. Available at http://ime.lri.fr.

N. Dershowitz. A note on simpli�ation orderings. Information Proessing Let-

ters, 9(5):212{215, 1979.

N. Dershowitz. Termination of rewriting. Journal of Symboli Computation, 3

(1-2):69{116, 1987.

N. Dershowitz. Hierarhial termination. In Proeedings of the 4th International

Workshop on Conditional and Typed Rewriting Systems, CTRS-94, volume

968 of Leture Notes in Computer Siene, pages 89{105, Jerusalem, Israel,

1994. Springer Verlag, Berlin.

N. Dershowitz and C. Hoot. Natural termination. Theoretial Computer Siene,

142(2):179{207, 1995.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Formal Models and

Semantis, volume B of Handbook of Theoretial Computer Siene, pages

243{320. North-Holland, 1990.

J. Dik, J. Kalmus, and U. Martin. Automating the Knuth-Bendix ordering.

Ata Informatia, 28:95{119, 1990.

M. Fern�andez and J.-P. Jouannaud. Modular termination of term rewriting

systems revisited. In Proeedings of the 10th Workshop on Spei�ation of

Abstrat Data Types, volume 906 of Leture Notes in Computer Siene, pages

255{273, S. Margherita, Italy, 1995. Springer Verlag, Berlin.

M. Ferreira. Termination of Term Rewriting { Well-Foundedness, Totality, and

Transformations. PhD thesis, University of Utreht, The Netherlands, 1995.

M. Ferreira and H. Zantema. Syntatial analysis of total termination. In Pro-

eedings of the 4th International Conferene on Algebrai and Logi Program-

ming, ALP-94, volume 850 of Leture Notes in Computer Siene, pages 204{

222, Madrid, Spain, 1994. Springer Verlag, Berlin.

J. Giesl. Generating polynomial orderings for termination proofs. In Proeedings

of the 6th International Conferene on Rewriting Tehniques and Appliations,

RTA-95, volume 914 of Leture Notes in Computer Siene, pages 426{431,

Kaiserslautern, Germany, 1995. Springer Verlag, Berlin.

J. Giesl and T. Arts. Veri�ation of Erlang proesses by dependeny pairs.

Appliable Algebra in Engineering, Communiation, and Computing, 12(1-2):

39{72, 2001.

J. Giesl and A. Middeldorp. Eliminating dummy elimination. In Proeedings of

the 17th International Conferene on Automated Dedution, CADE-17, vol-

ume 1831 of Leture Notes in Arti�ial Intelligene, pages 309{323, Pittsburgh,

PA, USA, 2000. Springer Verlag, Berlin.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 43

J. Giesl and E. Ohlebush. Pushing the frontiers of ombining rewrite systems

farther outwards. In Proeedings of the Seond International Workshop on

Frontiers of Combining Systems, FroCoS-98, volume 7 of Studies in Logi and

Computation, pages 141{160, Amsterdam, The Netherlands, 2000. Researh

Studies Press, John Wiley & Sons.

B. Gramlih. Generalized suÆient onditions for modular termination of rewrit-

ing. Appliable Algebra in Engineering, Communiation, and Computing, 5:

131{158, 1994.

B. Gramlih. Abstrat relations between restrited termination and onuene

properties of rewrite systems. Fundamenta Informatiae, 24:3{23, 1995.

B. Gramlih. On proving termination by innermost termination. In Proeedings

of the 7th International Conferene on Rewriting Tehniques and Appliations,

RTA-96, volume 1103 of Leture Notes in Computer Siene, pages 93{107,

New Brunswik, NJ, USA, 1996a. Springer Verlag, Berlin.

B. Gramlih. Termination and Conuene Properties of Strutured Rewrite Sys-

tems. PhD thesis, Universit�at Kaiserslautern, Germany, 1996b.

G. Huet and D. Lankford. On the uniform halting problem for term rewriting

systems. Tehnial Report 283, INRIA, Le Chesnay, Frane, 1978.

S. Kamin and J.-J. L�evy. Two generalizations of the reursive path ordering.

Department of Computer Siene, University of Illinois, IL, USA, 1980.

J. W. Klop. Term rewriting systems. In Bakground: Computational Strutures,

volume 2 of Handbook of Logi in Computer Siene, pages 1{116. Oxford

University Press, New York, 1992.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In

Computational Problems in Abstrat Algebra, pages 263{297. Pergamon Press,

1970.

K. Korovin and A. Voronkov. Verifying orientability of rewrite rules using the

Knuth-Bendix order. In Proeedings of the 5th International Conferene on

Rewriting Tehniques and Appliations, RTA-01, volume 2051 of Leture Notes

in Computer Siene, pages 137{153, Utreht, The Netherlands, 2001. Springer

Verlag, Berlin.

M. R. K. Krishna Rao. Simple termination of hierarhial ombinations of term

rewriting systems. In Proeedings of the Symposium on Theoretial Aspets

of Computer Software, TACS-94, volume 789 of Leture Notes in Computer

Siene, pages 203{223, Sendai, Japan, 1994. Springer Verlag, Berlin.

M. R. K. Krishna Rao. Modular proofs for ompleteness of hierarhial term

rewriting systems. Theoretial Computer Siene, 151:487{512, 1995.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 44

M. Kurihara and A. Ohuhi. Modularity of simple termination of term rewriting

systems with shared onstrutors. Theoretial Computer Siene, 103:273{282,

1992.

K. Kusakari, M. Nakamura, and Y. Toyama. Argument �ltering transformation.

In Proeedings of the First International Conferene on Priniples and Pra-

tie of Delarative Programming, PPDP-99, volume 1702 of Leture Notes in

Computer Siene, pages 48{62, Paris, Frane, 1999. Springer Verlag, Berlin.

D. S. Lankford. On proving term rewriting systems are Noetherian. Tehni-

al Report Memo MTP-3, Louisiana Tehnial University, Ruston, LA, USA,

1979.

A. Middeldorp. A suÆient ondition for the termination of the diret sum of

term rewriting systems. In Proeedings of the 4th Annual Symposium on Logi

in Computer Siene, LICS-89, pages 396{401, Pai� Grove, CA, USA, 1989.

A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis,

Vrije Universiteit te Amsterdam, The Netherlands, 1990.

A. Middeldorp. Approximating dependeny graphs using tree automata teh-

niques. In Proeedings of the First International Joint Conferene on Au-

tomated Reasoning, IJCAR 2001, volume 2083 of Leture Notes in Arti�ial

Intelligene, pages 593{610, Siena, Italy, 2001. Springer Verlag, Berlin.

A. Middeldorp and H. Ohsaki. Type introdution for equational rewriting. Ata

Informatia, 36(12):1007{1029, 2000.

A. Middeldorp and Y. Toyama. Completeness of ombinations of onstrutor

systems. Journal of Symboli Computation, 15:331{348, 1993.

A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theo-

retial Computer Siene, 175:127{158, 1997.

E. Ohlebush. Modular Properties of Composable Term Rewriting Systems. PhD

thesis, Universit�at Bielefeld, Germany, 1994a.

E. Ohlebush. On the modularity of termination of term rewriting systems.

Theoretial Computer Siene, 136:333{360, 1994b.

E. Ohlebush. Modular properties of omposable term rewriting systems. Jour-

nal of Symboli Computation, 20:1{41, 1995.

E. Ohlebush. Termination of logi programs: transformational methods revis-

ited. Appliable Algebra in Engineering, Communiation, and Computing, 12

(1-2):73{116, 2001.

Giesl, Arts, Ohlebush: Modular Termination Proofs Using Dependeny Pairs 45

E. Ohlebush, C. Claves, and C. Marh�e. TALP: A tool for the termination

analysis of logi programs. In Proeedings of the 11th International Conferene

on Rewriting Tehniques and Appliations, RTA-00, volume 1833 of Leture

Notes in Computer Siene, pages 270{273, Norwih, England, 2000. Springer

Verlag, Berlin.

M. Rusinowith. On termination of the diret sum of term rewriting systems.

Information Proessing Letters, 26:65{70, 1987.

J. Steinbah. Generating polynomial orderings. Information Proessing Letters,

49:85{93, 1994.

J. Steinbah. Simpli�ation orderings: History of results. Fundamenta Informat-

iae, 24:47{87, 1995.

Y. Toyama. Counterexamples to the termination for the diret sum of term

rewriting systems. Information Proessing Letters, 25:141{143, 1987.

Y. Toyama, J. W. Klop, and H. Barendregt. Termination for the diret sum of

left-linear term rewriting systems. Journal of the ACM, 42:1275{1304, 1995.

X. Urbain. Automated inremental termination proofs for hierarhially de�ned

term rewriting systems. In Proeedings of the First International Joint Con-

ferene on Automated Reasoning, IJCAR 2001, volume 2083 of Leture Notes

in Arti�ial Intelligene, pages 485{498, Siena, Italy, 2001. Springer Verlag,

Berlin.

H. Zantema. Termination of term rewriting: Interpretation and type elimination.

Journal of Symboli Computation, 17:23{50, 1994.

