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Abstract

Several induction theorem provers have been developed which support mechanized
verification of functional programs. Unfortunately, a major problem is that they often fail
in verifying tail recursive functions (which correspond to imperative programs). However,
in practice imperative programs are used almost exclusively.

We present an automatic transformation to tackle this problem. It transforms func-
tions which are hard to verify into functions whose correctness can be shown by the exist-
ing provers. In contrast to classical program transformations, the aim of our technique is
not to increase efficiency, but to increase verifiability. Therefore, this paper introduces a
novel application area for program transformations and it shows that such techniques can
in fact solve some of the most urgent current challenge problems in automated verification
and induction theorem proving.

1 Introduction

To guarantee the correctness of programs, a formal verification is required. However, mathe-
matical correctness proofs are usually very expensive and time-consuming. Therefore, program
verification should be automated as far as possible.

As induction® is the essential proof method needed for such verifications, several systems
have been developed for automated induction theorem proving. These systems are successfully
used for verification of functional programs in many areas, but a major problem for their
practical application is that they are often not suitable for handling imperative programs.
The reason is that the translation of imperative programs into the functional input language
of these systems always yields tail recursive functions which are particularly hard to verify.
Thus, developing techniques for proofs about tail recursive functions is currently one of the
most important research topics in this area.

In Section 2 we present our functional programming language. We also give a brief intro-
duction to induction theorem proving and we illustrate that the reason for the difficulties in
verifying tail recursive functions is that they usually have an accumulator parameter which is
initialized with some fixed value, but this value is changed in the recursive calls.

This paper introduces a new framework for mechanized verification of such functions by first
transforming them into functions which are better suitable for verification and by afterwards
applying the existing induction provers for their verification. To solve the verification problems
with tail recursive functions, the context around recursive accumulator arguments has to be
shifted away, such that the accumulator parameter is no longer changed in recursive calls. For
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that purpose, in Section 3 - 5 we introduce two automatic transformation techniques which
transform tail recursion into non-tail recursion. Our transformations proved successful on a
representative collection of tail recursive functions, cf. Appendix B. In this way, correctness of
many imperative programs can be proved automatically without the need for inventing loop
invariants or generalizations.

2 Functional Programs and their Verification

We consider a first order functional language with eager semantics and (non-parameterized and
free) algebraic data types. As an example, regard the data type nat for natural numbers whose
objects are built with the constructors 0 and s : nat — nat (for the successor function). Thus,
the constructor ground terms represent the data objects of the respective data type. In the
following, we often write “1” instead of “s(0)”, etc. For every n-ary constructor ¢ there are n
selector functions dy, ..., d, which serve as inverse functions to ¢ (i.e., d;(c(z1,...,Zn)) = x;).
For example, for the unary constructor s we have the selector function p such that p(s(m)) =m
(i.e., p is the predecessor function).

In particular, every program F' contains the type bool whose objects are built with the
(nullary) constructors true and false. Moreover, there is a built-in equality function = : 7x7 —
bool for every data type 7. To distinguish the function symbol = from the equality predicate
symbol, we denote the latter by “=”. The functions of a functional program F have the
following form.

function f(zy:7,...,2n 7)) T <
if b; then r;

if b,,, then r,

Here, “if b; then r;” is called the i-th case of f with condition b; and result r;. For functions
with just one case of the form “if true then r” we write “function f(zy :7,...,2, : ™) :
T <« r”. To ease readability, if b,, is true, then we often denote the last case by “else
rm”. As an example, consider the following function (which calls an auxiliary algorithm + for
addition).

function times (z,y : nat) : nat <«
if z # 0 then y + times(p(z),y)
else 0

If a function f is called with a tuple of ground terms t* as arguments, then ¢* is evaluated
first (to constructor ground terms ¢*). Now the condition by [z*/¢*] of the first case is checked.
If it evaluates to true, then r{[z*/¢*] is evaluated. Otherwise, the condition of the second case
is checked, etc. So the conditions of a functional program as above are tested from top to
bottom.

Now our aim is to verify statements about the algorithms of a functional program F. In
this paper we only consider universally quantified equations of the form V... s = ¢ and we often
omit the quantifiers to ease readability. Let s,t contain the tuple of variables *. Then s = ¢
is inductively true for the program F, denoted F |=ing s = t, if for all those data objects ¢*
where evaluation of s[z*/q¢*] or evaluation of t[z*/q*] is defined, evaluation of the other term
t[z*/q*] resp. s[z*/q*] is defined as well, and if both evaluations yield the same result. For
example, let “x” be an abbreviation for times. Then the conjecture

(zxy)xz=xx*(y*2) (1)

is inductively true, since (zxy)*z and z* (y*z) evaluate to the same result for all instantiations
with data objects.



Similar notions of inductive truth are widely used in program verification and induction
theorem proving. For an extension of inductive truth to more general formulas and for a model
theoretic characterization (using initial algebras) see e.g. [ZKK88, Wal94, BR95, Gie99b].

To prove inductive truth automatically, several induction theorem provers have been de-
veloped, e.g. [BM79, KM87, ZKK88, BSHT93, Wal94, BR95]. For instance, these systems
can prove conjecture (1) using a structural induction with z as the induction variable. If we
abbreviate (1) by ¢(z,y, 2), then in the induction base case they would prove ¢(0,y, z) and
in the step case (where x # 0), they would show that the induction hypothesis ¢(p(z),y, z)
implies the induction conclusion p(z,y, 2).

However, one of the main problems for the application of these induction theorem provers
in practice is that most of them can only handle functional algorithms with recursion, but
they are not designed to verify imperative algorithms containing loops.

The classical techniques for the verification of imperative programs (like the so-called
Hoare-calculus [Hoa69]) allow the proof of partial correctness statements of the form

{‘Ppre} P {‘Ppost}-

The semantics of this expression is that in case of termination, the program P transforms all
program states which satisfy the precondition ¢p,e into program states satisfying the postcon-
dition ¢post- As an example, regard the following imperative program for multiplication.

procedure multiply (z,y,z : nat) <
z :=0;
while 2 #0 do =z := p(z);
z:=y+z od

To verify that this imperative program is equivalent to the functional program times, one
has to prove the statement

{t=20ANy=yoAz=0} whilez #0do z:=p(z);z:=y+2z0d {z=z0*yo}.

Here, 2y and yo are additional variables which represent the initial values of the variables z
and y. However, in the Hoare-calculus, for that purpose one needs a loop invariant which
is a consequence of the precondition and which (together with the exit condition z = 0 of
the loop) implies the postcondition z = g * yo. In our example, the proof succeeds with the
following loop invariant.

24T xYy =20 * Yo (2)

The search for loop invariants is the main difficulty when verifying imperative programs.
Of course, it would be desirable that programmers develop suitable loop invariants while
writing their programs, but in reality this is still often not the case. Thus, for an automation
of program verification, suitable loop invariants would have to be discovered mechanically.
However, while there exist some heuristics and techniques for the choice of loop invariants
[SI198], in general this task seems difficult to mechanize [Dij85].

Therefore, in the following we present an alternative approach for automated verification
of imperative programs. For that purpose our aim was to use the existing powerful induction
theorem provers. As the input language of these systems is restricted to functional programs,
one first has to translate imperative programs into functional ones. Such a translation can
easily be done automatically, cf. [McC60, Gie99a].

In this translation, every while-loop is transformed into a separate function. For the loop
of the procedure multiply we obtain the following algorithm mult which takes the input values
of z, y, and z as arguments. If the loop-condition is satisfied (i.e., if z # 0), then mult is called
recursively with the new values of z, y, and z. Otherwise, mult returns the value of z. The



whole imperative procedure multiply corresponds to the following functional algorithm with
the same name which calls the auxiliary function mult with the initial value z = 0.

function multiply (z,y : nat) : nat < function mult (z,y, 2z : nat) : nat <
mult(z, y, 0) if x # 0 then mult(p(z),y,y + 2)
else z

Now induction provers may be used to verify conjectures about the functions multiply and
mult. However, it turns out that the functional algorithms resulting from this translation
have a certain characteristic form which makes them unsuitable for verification tasks. In fact,
this difficulty corresponds to the problem of finding loop invariants for the original imperative
program.

To verify the equivalence between multiply and times using the transformed functions
multiply and mult, one now has to prove multiply(z,y) = z * y or, in other words,

mult(z,y,0) =z * y. (3)

Using structural induction on z, the base formula mult(0,y,0) = 0%y can easily be proved,
but there is a problem with the induction step. In the case z # 0 we have to show that the
induction hypothesis

mult(p(z),y,0) = p(z) *xy (IH)

implies the induction conclusion mult(z,y,0) = z * y. Using the algorithms of mult and times,
the induction conclusion can be transformed into

mult(p(z),y,y) =y +p(x) *y. (IC)

However, the desired proof fails, since the induction hypothesis (IH) cannot be successfully
used for the proof of (IC).

The reason for this failure is due to the tail recursive form of mult (i.e., there is no context
around mult’s recursive call). Instead, its result is computed in the accumulator parameter z.
In the beginning, the accumulator z is initialized with 0. For that reason, we also have this
instantiation in our conjecture (3) and in the corresponding induction hypothesis (IH). But
as the value of z is changed in each recursive call of while, in the induction conclusion (IC) we
have the new value y instead of 0. Thus, the induction conclusion does not correspond to the
original conjecture (3) any more and hence, the induction hypothesis (where z = 0) cannot
be used to prove (IC) (where z = y). Hence, tail recursive algorithms like mult are much less
suitable for verification tasks than algorithms like times.

The classical solution for this problem is to generalize the conjecture (3) to a stronger
conjecture which is easier to prove. For instance, in our example one needs the following
generalization which can be proved by a suitable induction.

mult(z,y,2) =z 4+ z*xy (4)

Thus, developing generalization techniques is one of the main challenges in induction the-
orem proving [Aub79, BM79, HBS92, Wal94, IS97, IB99]. Note that the generalization (4)
corresponds to the loop invariant (2) that one would need for a direct verification of the im-
perative program multiply in the Hoare-calculus. So in fact, finding suitable generalizations is
closely related to the search for loop invariants.?

2 A difference between verifying functional programs by induction and verifying imperative programs by loop
invariants and inductive assertions is that for imperative programs one uses a “forward” induction starting
with the initial values of the program variables and for functional programs a “reversed” induction is used
which goes back from their final values to the initial ones. However, the required loop invariants resp. the
corresponding generalizations are easily interchangeable, cf. [RY76].



In this paper we propose a new approach to avoid the need for generalizations or loop
invariants. The idea is to transform functions like mult, which are difficult to verify, into algo-
rithms like times which are much better amenable to automated induction proofs. For example,
the well-known induction theorem proving system NQTHM [BM79, BM98] fails in proving (3),
whereas after a transformation of multiply and mult into times this conjecture becomes trivial.
This approach of verifying imperative programs via a translation into functional programs is
based on the observation that in functional languages there often exists a formulation of the
algorithms which is easy to verify (whereas this formulation cannot be expressed in iterative
form). The aim of our technique is to find such a formulation automatically.

Our approach has the advantage that the transformation solves the verification problems
resulting from a tail recursive algorithm once and for all. On the other hand, when using
generalizations or loop invariants one has to find a new generalization (or a new loop invariant,
respectively) for every new conjecture about such an algorithm. Moreover, most techniques
for finding generalizations or loop invariants have to be guided by the system user, since they
rely on the presence of suitable lemmata. By these lemmata the user often has to provide
the main idea for the generalization resp. the loop invariant. In contrast, our transformation
works automatically.

In particular, automatic generalization techniques fail for many conjectures which contain
several occurrences of a tail recursive function. As an example, regard the associativity of
multiply or, in other words,

mult(mult(z, y,0), z,0) = mult(z, mult(y, z,0), 0). (5)

Similar to (3), a direct proof by structural induction on x does not succeed. So again, the
standard solution would be to generalize the conjecture (5) by replacing the fixed value 0 by
suitable terms. For example, one may generalize (5) to

mult(mult(z,y,v), z,0) = mult(z, mult(y, z,0), mult(v, z,0)).

To ease readability, we have underlined those terms where the generalization took place. While
the proof of this conjecture is not too hard (using the distributivity of + over multiply), we are
not aware of any technique which would find this generalization (or the corresponding loop
invariant) automatically, because it is difficult to synthesize the correct replacement of the
third argument in the right-hand side (by mult(v, z,0)). The problem is that the disturbing
0’s occurring in (5) cannot just be generalized to new variables, since this would yield a
flawed conjecture. Thus, finding generalizations for conjectures with several occurrences of a
tail recursive function is often particularly hard, as different occurrences of an instantiated
accumulator may have to be generalized to different new terms.> On the other hand, our
transformation allows us to prove such conjectures without user interaction. Essentially, the
reason is that while generalizations and loop invariants depend on both the algorithms and
the conjectures to be proved, the transformation only depends on the algorithms.

The area of program transformation is a well examined field which has found many ap-
plications in software engineering, program synthesis, and compiler construction. For sur-
veys see e.g. [BW82, Par90, MPS93, PP96]. However, the transformations developed for
these applications had a goal which is fundamentally different from ours. Our aim is to
transform programs into new programs which are easier to verify. In contrast to that, the
classical transformation methods aim to increase efficiency. Such transformations are un-
suitable for our purpose, since a more efficient algorithm is often harder to verify than a
less efficient easier algorithm. Moreover, we want to transform tail recursive algorithms

3 An alternative generalization of (5) is mult(mult(z,y,0), z,v) = mult(z, mult(y, 2,0), v). This generalization
is easier to find (as we just replaced both third arguments of the left- and right-hand side by the same new
variable v). However, it is not easy to verify (its proof is essentially as hard as the proof of the original
conjecture (5)).



into non-tail recursive ones, but in the usual applications of program transformation, non-
tail recursive programs are transformed into tail recursive ones (“recursion removal”, cf. e.g.
[Coo66, DB76, BD77, Wan80, BW82, AK82, HK92]).

As the goals of the existing program transformations are often opposite to ours, a promising
approach is to use these classical transformations in the reverse direction. To our knowledge,
such an application of these transformations for the purpose of verification has rarely been
investigated before. In this way, we indeed obtained valuable inspirations for the development
of our transformation rules in Section 3 - 5. However, our rules go far beyond the reversed
standard program transformation methods, because these methods had to be modified sub-
stantially to be applicable for the programs resulting in our context.

3 Context Moving

The only difference between the algorithms mult and times is that the context y+ ... to
compute the result of times is outside of the recursive call, whereas in mult the context y + ...
is in the recursive argument for the accumulator variable z. This change of the accumulator
in recursive calls is responsible for the verification problems with mult.

For that reason, we now introduce a transformation rule which allows to move the context
away from recursive accumulator arguments to a position outside of the recursive call. In
this way, the former result mult(p(z),y,y + z) can be replaced by y + mult(p(z),y, z). So the
algorithm mult is transformed into o -

function mult (z,y, z : nat) : nat <
if x # 0 then y + mult(p(z),y, 2)
else =z.

To develop a rule for context moving, we have to find sufficient criteria which ensure that
such a transformation is equivalence preserving. For our rule, we regard algorithms of the form
(6) where the last argument z is used as an accumulator. Our aim is to move the contexts
r1,...,Tg of the recursive accumulator arguments to the top, i.e., to transform the algorithm
(6) into (7).

function f(z*:7*,z:7):7 « function f(z*:7*,z:7):7 «
if by then f(rf,r) if by then r[z/f(r],2)]
if by then f(rf,ry) (6) if by  then ri[z/f(r}, 2)] (7)
if by41 then riyq if by41 then riyq
if b,, then r,, if b,, thenr,,.

We demand m > k£ > 1, but the order of the f-cases is irrelevant and the transformation may
also be applied if the accumulator z is not the last parameter of f (we just use the above
formulation to ease readability).

First of all, note that the intermediate values of the parameter z are not the same in the
two versions of f. Thus, in order to guarantee that evaluation of both versions of f leads to
the same cases in the same order, we must demand that the accumulator z does not occur in
the conditions b1, ..., by, or in the recursive arguments r{, ..., r; for the other parameters z*.

Let u*,w be constructor ground terms. Now for both versions of f, evaluation of f(u*, w)
leads to the same f-cases i1,...,iq where i1,...,ig—1 € {1,...,k} and iz € {k+1,...,m}
(provided that the evaluation is defined). Let t[r*, s] abbreviate ¢[z* /r*, z/s] (where for terms
t containing at most the variables z*, we also write t[r*]) and let aj = r} [r}, [ [} [u*]]- ]],

in_
where afy = u*. Then with the old definition of f we obtain the result (8) and with the new



definition we obtain (9).

Tig [asflv Tig_y [0'2727 - Tig [G,I, Tiy [asv w]] i ]] (8)

Tiy [ag, Tiy [U’Ia s Tig_y [az*i—27 Tig [az*i—la w]] . ]] (9)

For example, the original algorithm mult computes a result of the form

Yo+ Wer + (- (2 + (11 +2)) )

where y; denotes the number which is added in the i-th execution of the algorithm. On the
other hand, the new version of mult computes the result

i+ (2 + (o Yoo + (Yo +2)).20)).

Therefore, the crucial condition for the soundness of this transformation is the left-commutati-
vity of the contexts r1,...,r; moved, cf. [BW82]. In other words, for all i € {1,...,m} and
all i € {1,...,k} we demand

T [CU*, Ty [Z/*, Z]] =Ty [y*a ri [CU*, Z]]

Then (8) and (9) are indeed equal as can be proved by subsequently moving the inner
ri;[af_y,...] contexts of (8) to the top. So for mult, we only have to prove z+(y+2) = y+(v+2)
and y + z = y + z (which can easily be verified by the existing induction theorem provers).

Note also that since in the schema (6), r1,...,r, denote arbitrary terms, such a context
moving would also be possible if one would exchange the arguments of + in mult’s recursive
call. Then ry would be z + y and the required left-commutativity conditions would read
(z4+y)+z=(z+2z)+yandz+y=2z+y.

However, context moving may only be done, if all terms ry, ..., 7, contain the accumulator
z. Otherwise f’s new definition could be total although the original definition was partial.
For example, if f has the (first) case

if z # 0 then f(z,0)

then f(z,z) does not terminate for x # 0. However, if we would not demand that z occurred
in the recursive accumulator argument, then context moving could transform this case into “if
xz # 0 then 0”. The resulting function is clearly not equivalent to the original one, because
now the result of f(z,z) is 0 for z # 0.

Similarly, z must also occur in the results of non-recursive cases as can be demonstrated
with the following example.

function f (z,z : nat) : nat <« function g(z : nat) : nat <
if  # 0 then f(p(z),g(2)) if z # 0 then g(z)
else 0 else 0

The required left-commutativity conditions are fulfilled and thus, context moving would
transform f into

function f(z,z : nat) : nat <
if  # 0 then g(f(p(z), 2))

else 0.

However, with the original algorithm, f(1, 1) results in the call g(1) and hence, it is undefined.
On the other hand, in the new algorithm f(1,1) is 0.

Finally, we also have to demand that in rq,...,r,, the accumulator z may not occur
within arguments of functions dependent on f. Here, every function is dependent on itself and



moreover, if g is dependent on f and g occurs in the algorithm A, then h is also dependent on
f-

So in particular, this requirement excludes nested recursive calls with the argument z and it
also excludes corresponding calls of functions which are mutually recursive with f. Otherwise,
the transformation would not preserve the semantics. As an example regard the following
function, where the algorithm one(z) returns 1 for all arguments z.

function f(z,z:nat):nat <
if z # 0 then f(p(z),f(2,0))
else one(2)

By moving the context f(. .., 0) to the top, the result of the first case would be transformed into
f(f(p(z), 2),0). The original algorithm satisfies all previously developed conditions. However,
the original algorithm is total, whereas after the transformation f(z, z) does not terminate any
more for z # 0.

Similarly, the occurrence of functions dependent on f in the results rx41,. ..,y also gives
rise to counterexamples.

function f (z,z : nat) : nat < function g(z : nat) : nat <
if  # 0 then f(p(z), p(2)) if z # 0 then f(z, 2)
else g(z) else 0

Note that we have f(z,2) = 0 and g(z) = 0 for all numbers z and 2. Thus, the required
left-commutativity conditions are satisfied and context moving would yield

function f(z,z : nat) : nat <«
if  # 0 then p(f(p(z), 2))
else g(z).
However, in contrast to the original version of f, this algorithm is no longer total, since evalu-
ation of f(1,1) is not terminating.
Under the above requirements, the transformation of (6) into (7) is sound.*

Theorem 1 (Soundness of Context Moving) Let F' be a functional program containing
the algorithm (6) and let F' result from F by replacing (6) with (7). Then for all data objects
t*, t, and q, f(t*,t) evaluates to q in the program F iff it does so in F', provided that the
following requirements are fulfilled:

(A) zg V(b)) U...UV(bp)
(B) z ¢ V(ri)U...UV(r;)
(C) For alli e {1,...m},i" € {1,..,k}: F Eina mi[z*,ru[y", 2]] = ra[y*, rilz™, 2]]
(D) z€V(ri)N...0V(ry)

(E) Inry,.. ,rm, z does not occur in arguments of functions dependent on f.

In contrast to the original version of mult, the algorithm obtained by context moving is
much better suited for verification tasks. The reason is that the (former) accumulator z is
initialized with 0 and it is no longer changed in the algorithm mult. For that reason, z can
now be eliminated from the function mult by replacing all its occurrences by 0. The semantics
of the main function multiply remains unchanged by this transformation.

function multiply (z,y : nat) : nat < function mult (z,y : nat) : nat <
mult(z,y) if z # 0 then y + mult(p(z),y)
else 0

Now mult indeed corresponds to the algorithm times and thus, the complicated generalizations
or loop invariants of Section 2 are no longer required. Thus, the verification problems for these
procedures are solved.

4The proofs for the theorems can be found in Appendix A.



Similarly, context moving can also be applied to transform an algorithm like

function plus (z, 2 : nat) : nat < function plus (z,y : nat) : nat <
if z # 0 then plus(p(x),s(2)) into if z # 0 then s(plus(p(z), 2))
else z else z,

which is much better suited for verification tasks. Here, for condition (C) we only have to
prove s(s(z)) = s(s(z)) and s(z) = s(z) (which is trivial).

To apply context moving mechanically, the conditions (A) - (E) for its application have to
be checked automatically. For (A), (B), (D), and (E) this is easily done, since these conditions
are just syntactic. The left-commutativity condition (C) has to be checked by an underlying
induction theorem prover. In many cases, this is not a hard task, since for algorithms like plus
the terms r;[z*, ry[y*, 2z]] and ry [y*, r;[z*, 2]] are already syntactically equal and for algorithms
like mult, the required left-commutativity follows from the associativity and commutativity of
“4+”. To ease the proof of such conjectures about auxiliary algorithms, we follow the strategy
to apply our transformations to those algorithms first which depend on few other algorithms.
Thus, we would attempt to transform “+4” before transforming mult. In this way, one can
usually avoid the need for generalizations when performing the required left-commutativity
proofs. Finally, note that of course, context moving should only be done if at least one of the
recursive arguments ry, . .., ry is different from z (otherwise the algorithm would not change).

Our context moving rule has some similarities to the reversal of a technique known in
program transformation (operand commautation, cf. e.g. [Coo66,DB76, BW82]). However, our
rule generalizes this (reversed) technique substantially.

For example, directly reversing the formulation in [BW82] would result in a rule which
would also impose applicability conditions on the functions that call the transformed function
f (by demanding that f’s accumulator would have to be initialized in a certain way). In this
way, the applicability of the reversed rule would be unnecessarily restricted (and unnecessarily
difficult to check). Therefore, we developed a rule where context moving is separated from
the subsequent replacement of the (former) accumulator by initial values like 0. Moreover,
in [BW82] the problems concerning the occurrence of the accumulator z and of nested recur-
sive calls are not examined (i.e., the requirements (D) and (E) are missing there). Another
important difference is that our rule allows the use of several different recursive arguments
r1,...,7; and the use of several non-recursive cases with arbitrary results (whereas reversing
the formulation in [BW82] would only allow one single recursive case and it would only allow
the non-recursive result z instead of the arbitrary terms rgy1,...,7,). Note that for this
reason in our rule we have to regard all cases of an algorithm at once.

As an example consider the following algorithm to compute the multiplication of all ele-
ments in a list, where however occurring 0’s are ignored. We use a data type list for lists of
naturals with the constructors nil : list and cons : nat x list — list, where car : list — nat and
cdr : list — list are the selectors to cons.

procedure prod ( : list, z : nat) <
z = s(0);
while [ # nil do if car(l) # 0 then z := car(l) * z;
[ :=cdr(l) od

This procedure can be translated automatically into the following functions (here, we re-
ordered the cases of pr to ease readability).

function prod (I : list) : nat < function pr(/: list,z : nat) : nat <
pr(l,s(0)) if i =nil  then z
if car(l) # 0 then pr(cdr(l),car(l) * z)
else pr(cdr(l),z)

To transform the algorithm pr, we indeed need a technique which can handle algorithms



with several recursive cases. Since * is left-commutative, context moving and replacing z with
s(0) results in

function prod ([ : list) : nat < function pr(l: list) : nat <
pr(l) if l=nil  then s(0)
if car(l) # 0 then car(l) = pr(cdr(l))
else pr(cdr(l)).

Further algorithms with several recursive and non-recursive cases where context moving is
required are presented in Appendix B.

Moreover, a somewhat related technique was discussed in [Moo75]. However, in contrast to
our rule, his transformation is not equivalence-preserving, but it corresponds to a generaliza-
tion of the conjecture. For that reason this approach faces the danger of over-generalization
(e.g., the associativity law for multiply is generalized into a flawed conjecture). It turns out
that for almost all algorithms considered in [Moo75] our transformation techniques can gen-
erate equivalent algorithms that are easy to verify. So for such examples, generalizations are
no longer needed.

4 Context Splitting

Because of the required left-commutativity, context moving is not always applicable. As an
example regard the following imperative procedure for uniting lists. We use a data type llist
for lists of list’s. Its constructors are empty and add with the selectors hd and tl. So add(z, k)
represents the insertion of the list z in front of the list of lists & and hd(add(z, k)) yields z.
Moreover, we use an algorithm app for list-concatenation. Then after execution of union(k, z),
the value of z is the union of all lists in &.

procedure union(k : llist, z : list) <
z = nil;
while k # empty do z := app(hd(k), 2);
k= tl(k) od

Translation of union into functional algorithms yields

function union (k : llist) : list < function uni (k : llist, z : list) : list <
uni(k, nil) if k # empty then uni(tl(k),app(hd(k), 2))
else z.

These functions are again unsuited for verification, because the accumulator z of uni is
initially called with nil, but this value is changed in the recursive calls. Context moving
is not possible, because the context app(hd(k),...) is not left-commutative. This motivates
the development of the following context splitting transformation. Given a list of lists & =
[21,..., 2n], the result of uni(k,nil) is

app(zn,app(zn—1, - --app(z3,app(z2, 21)) - - .))- (10)

In order to move the context of uni’s recursive accumulator argument to the top, our aim
is to compute this result in a way such that z; is moved as far to the “outside” in this term
as possible (whereas z, may be moved to the “inside”). Although app is not commutative, it
is at least associative. So (10) is equal to

app(app(. .. app(app(zn, Zn—1)s Zn—2) . - -5 22), 21)- (11)

This gives an idea on how the algorithm uni may be transformed into a new (unary) al-
gorithm uni’ such that uni’(k) computes uni(k,nil). The result of uni’([z1,...,2,]) should
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be app(uni’([22, ., 2n]),21). Similarly, uni’([22, .., 2,]) app(uni’([z3,. ., 2n]), 22), etc. Finally,
uni’([2,,]) is app(uni’(empty), 2,,). To obtain the result (11), app(uni’(empty), z,,) must be equal
to z,. Hence, uni’(empty) should yield app’s neutral argument nil. Thus, we obtain the fol-
lowing new algorithms, which are well suited for verification tasks.

function union (k : llist) : list < function uni’ (k : llist) : list <
uni’ (k) if k # empty then app(uni’(tl(k)), hd(k))
else nil

So the idea is to split up the former context app(hd(k),...) into an outer part app(...,...)
and an inner part hd(k). If the outer context is associative, then one can transform tail
recursive results of the form f(...,app(hd(k), z)) into results of the form app(f’(...),hd(k)). In
general, our context splitting rule generates a new algorithm (13) from an algorithm of the
form (12).

function f(z*:7*,z:7):7 « function f'(z*:7%):7 <
if by  then f(rf,p[r,z]) if by  then p[f'(r}),r1]
if by  then f(r{,plrr,2]) (12) if by then p[f'(r}),rs] (13)
if by 1 then plriyq,2] if by11 then rgyq
if b, then p[ry,,z] if b,, then r,.

Here, p is a term of type 7 containing exactly the two new variables z; and z» of type 7
and p[t1, t2] abbreviates p[x1 /t1, z2/t2]. Then our transformation splits the contexts into their
common top part p and their specific part r; and it moves the common part p to the top
of recursive results. (This allows an elimination of the accumulator z.) If there are several
possible choices for p, then we use the heuristic to choose p as small and r; as big as possible.
Let e be a constructor ground term which is a neutral argument of p, i.e., F' Eina plz, €] =
and F' Eing ple, 2] = z. Then in (12), one may also have z instead of p[e, z]. For example, in
uni we had the non-recursive result z instead of app(nil, z). Moreover we demand m >k > 1,
but the order of the f-cases is again irrelevant and the rule may also be applied if z is not the
last parameter of f.

We want to ensure that all occurrences of f(t*,e) in other algorithms g (that f is not
dependent on) may be replaced by f'(¢*). For the soundness of this transformation, similar to
context moving, the accumulator z must not occur in conditions or in the subterms r{,...,r}
or ri,...,7m- Then for constructor ground terms u*, the evaluation of f(u*,e) and of f'(u*)
leads to the same cases iy, ...,iq where iy,...,iq—1 € {1,...,k} andig € {k+1,...,m}. For
1 <h<dlet ap bery, [rf _ [...[rf [u]]...]]. Then the result of f(u*,e) is (14) and the result
of f'(u*) is (15).

plaq,plag-1,...plas,a1]..]] (14)
ppl. - - plplaa, ai-1], aa—2] . . . as], a1] (15)

To ensure the equality of these two results, p must be associative. The following theorem
summarizes our rule for context splitting.®

Theorem 2 (Soundness of Context Splitting) Let F' be a functional program containing
(12) and let F' result from F by adding the algorithm (18). Then for all data objects t*
and q, f(t*,e) evaluates to q in F iff f'(t*) evaluates to q in F', provided that the following
requirements are fulfilled:

(A) z¢ V() U...UV(by)

5 Again, the proof can be found in Appendix A.
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(B) z&V(f)U...UV(EH)UV(r)U...UV(ry)
(C) F kina plp[z1, 2], 3] = plz1, plra, 23]]
(D) F kEina plz,e] =z and F Eing ple, z] = z.

Context splitting is only applied if there is a term f(¢*,e) in some other algorithm g
that f is not dependent on. In this case, the conditions (C) and (D) are checked by an
underlying induction theorem prover (where usually associativity is even easier to prove than
(left-)commutativity). Conditions (A) and (B) are just syntactic. In case of success, f' is
generated and the term f(t*,¢e) in the algorithm g is replaced by f'(#*).

Similar to context moving, a variant of the above rule if often used in the reverse direction
(re-bracketing, cf. e.g. [Coo66, DB76, BD77, Wan80, BW82, PP96]). Again, instead of directly
reversing the technique, we modified and generalized this method, e.g., by regarding several
tail recursive and non-tail recursive cases. An algorithm where this general form of our rule
is needed will be presented in Section 5 and several others can be found in Appendix B.
Moreover, in the next section we will also introduce important refinements which increase the
applicability of context splitting considerably and which have no counterpart in the classical
re-bracketing rules.

5 Refined Context Splitting

A refinement of our context splitting technique can be used for examples where the context p
is not yet in the right form. Regard the following imperative procedure for reversing lists.

procedure reverse(l, z : list) <
z = nil;
while [ # nil do z := cons(car(l), 2);
l:= cdr(l) od

By translating reverse into functional form one obtains

function reverse(l : list) : list < function rev(l,z : list) : list <=
rev(l, nil) if I # nil then rev(cdr(l), cons(car(l), z))
else z.

In order to eliminate the accumulator z, we would like to apply context splitting. Here,
the term p in (12) would be cons(x1,x=2). But then x; would be a variable of type nat (instead
of list as required) and hence, the associativity law is not even well typed.

Whenever p has the form c¢(zy,...,z1,22) for some constructor ¢, where z; is of the
“wrong” type, then one may use the following reformulation of the algorithm. (Of course,
here x5 does not have to be the last argument of ¢.) The idea is to “lift” xy,...,z1 to
an object lift.(z1,...,21) of type 7 and to define a new function ¢’ : 7 X 7 — 7 such that
c(lift.(z1,...,21),22) = c(x1,...,21,22). Moreover, in order to split contexts afterwards, ¢’
should be associative.

As a heuristic, we use the following construction for lift, and ¢/, provided that apart from

¢ the data type 7 just has a constant constructor ¢.o,. The function lift.(z1,...,z,) should
yield the term ¢(x1,...,%n,ccon) and the function ¢ is defined by the following algorithm
(where dy,...,d,+1 are the selectors to c).

function ¢'(z,z: 7)1 7 <
.2 = (dh (), da(2), dny () then c(dy(2), - dn(z), ¢ (dns1(2), 2)
else z

Then ¢ (lift.(z1,...,25),2) = c(x1,...,%n,2), Ceon is a neutral argument for ¢’, and ' is
associative. So for rev, we obtain lifteons(z1) = cons(zy, nil) and
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function cons'(z, z : list) : list <
if x = cons(car(z), cdr(z)) then cons(car(z), cons'(cdr(z), 2))
else z.

Note that in this example, cons’ corresponds to the concatenation function app.

Thus, the term cons(car(l), z) in the algorithm rev may be replaced by cons'(lifteons(car(l)),
z), i-e., by cons'(cons(car(l),nil), z). Now the rule for context splitting is applicable which
yields

function reverse(l : list) : list < function rev/(l : list) : list <
rev’(1) if [ # nil then cons'(rev'(cdr(1)), cons(car(l), nil))
else nil.

In contrast to the original versions of reverse and rev, these algorithms are well suited for
verification.

Of course, there are also examples where the context p has the form g(z;,z2) for some
algorithm g (instead of a constructor ¢) and where z; has the “wrong” type. For instance,
regard the following imperative procedure to filter all even elements out of a list [. It uses an
auxiliary algorithm even and an algorithm atend(z, z) which inserts an element z at the end
of a list z.

function atend(z : nat, z : list) : list <=
if z = nil then cons(z, nil)
else cons(car(z),atend(z, cdr(z)))

Now the procedure filter reads as follows.

procedure filter(l, z : list) <
z = nil;
while [ # nil do if even(car(l)) then z := atend(car(l), z);
[ :=cdr(l) od

Translating this procedure into functional algorithms yields

function filter(] : list) : list < function fil(l, z : list) : list «
fil(Z, nil) if 1 = nil then »
if even(car(l)) then fil(cdr(l), atend(car(l), z))
else fil(cdr(l), 2).

To apply context splitting for fil, p would be atend(z;,z2) and thus, z; would be of type
nat instead of list as required. While for constructors like cons, such a problem can be solved
by the lifting technique described above, now the root of p is the algorithm atend. For such
examples, the following parameter enlargement transformation often helps.

In the algorithm atend, outside of its own recursive argument the parameter 2 only occurs
in the term cons(z, nil) and the value of cons(z, nil) does not change throughout the whole
execution of atend (as the value of x does not change in any recursive call). Hence, the
parameter x can be “enlarged” into a new parameter y which corresponds to the value of
cons(z, nil). Thus, we result in the following algorithm atend’, where atend’(cons(z, nil), z) =
atend(z, 2).

function atend'(y, 2 : list) : list <
if z = nil then y
else cons(car(z),atend (y, cdr(2)))

In general, let h(z*, z*) be a function where the parameters z* are not changed in recursive
calls and where x* only occur within the terms ¢q,...,%,, outside of their recursive calls in
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the algorithm h. If V(t;) C {z*} for all i and if the ¢; only contain total functions (like
constructors), then one may construct a new algorithm h'(y1,...,ym,2*) by enlarging the
parameters x* into yi,...,Ym. The algorithm A’ results from h by replacing all ¢; by y;,
where the parameters y; again remain unchanged in their recursive arguments. Then we have
W(t1,. ,tm,z*) = h(z*,z*). Thus, in all algorithms f that h is not dependent on, we may
replace any subterm h(s*, p*) by h'(t1[z*/s*],.. ., tm[z*/s*],p*). (The only restriction for this
replacement is that all possibly undefined subterms of s* must still occur in some ¢;[z*/s*].)

Hence, in the algorithm fil, the term atend(car(l), z) can be replaced by atend’(cons(car(),
nil), z). It turns out that atend’(l;,ls) concatenates the lists Iy and I; (i.e., it corresponds to
app(l2,11)). Therefore, atend’ is associative and thus, context splitting can be applied to fil
now. This yields the following algorithms which are well suited for verification.

function filter(/ : list) : list < function fil'( : list) : list <
fil' (1) if{=nil  then nil
if even(car(l)) then atend'(fil'(cdr(l)), cons(car(l), nil))
else atend'(fil'(cdr(1)), nil)

Of course, by subsequent unfolding (or “symbolic evaluation”) of atend’, the algorithm fil’
can be simplified to

function fil'(l : list) : list <
if [ = nil then nil
if even(car(l)) then cons(car(l), fil' (cdr(1)))
else fil'(cdr(l)).

Note that here we indeed needed a context splitting rule which can handle algorithms with
several tail recursive cases. Thus, a direct reversal of the classical re-bracketing rules [BW82]
would fail for both reverse and filter (since these rules are restricted to just one recursive case
and moreover, they lack the concepts of lifting and of parameter enlargement).

The examples union, reverse, and filter show that context splitting can help in cases where
context moving is not applicable. On the other hand for algorithms like plus, context moving is
successful, but context splitting is not possible. So none of our two transformations subsumes
the other and to obtain a powerful approach, we indeed need both of them. But there are also
several algorithms where the verification problems can be solved by both context moving and
splitting. For example, the algorithms resulting from mult by context moving or splitting only
differ in the order of the arguments of + in mult’s first recursive case. Thus, both resulting
algorithms are well suited for verification tasks.

6 Conclusion

We have presented a new transformational approach for the mechanized verification of im-
perative programs and tail recursive functions. By our technique, functions that are hard
to verify are automatically transformed into functions where verification is significantly eas-
ier. Hence, for many programs the invention of loop invariants or of generalizations is no
longer required and an automated verification is possible by the existing induction theorem
provers. As our transformations generate equivalent functions, this transformational verifi-
cation approach is not restricted to partial correctness, but it can also be used to simpli-
fy total correctness and termination proofs [Gie95, Gie97, GWB98, AG99, BG99]. See Ap-
pendix B for a collection of examples that demonstrates the power of our approach. It shows
that our transformation indeed simplifies the verification tasks substantially for many practi-
cally relevant algorithms from different areas of computer science (e.g., arithmetical algorithms
or procedures for processing (possibly multidimensional) lists including algorithms for matrix
multiplication and sorting algorithms like selection-, insertion-, and merge-sort, etc.). Based
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on the rules and heuristics presented, we implemented a system to perform such transforma-
tions automatically [Gie99a].

The field of mechanized verification and induction theorem proving represents a new ap-
plication area for program transformation techniques. It turns out that our approach of trans-
forming algorithms often seems to be superior to the classical solution of generalizing theorems.
For instance, our technique automatically transforms all (first order) tail recursive functions
treated in recent generalization techniques [IS97, IB99] into non-tail recursive ones whose ver-
ification is very simple. On the other hand, the techniques for finding generalizations are
mostly semi-automatic (since they are guided by the system user who has to provide suitable
lemmata). Obviously, by formulating the right lemmata (interactively), in principle gener-
alization techniques can deal with almost every conjecture to be proved. But in particular
for conjectures which involve several occurrences of a tail recursive function, finding suitable
generalizations is often impossible for fully automatic techniques. Therefore, our approach
represents a significant contribution for mechanized verification of imperative and tail recur-
sive functional programs. Nevertheless, of course there also exist tail recursive algorithms
where our automatic transformations are not applicable. For such examples, (interactive)
generalizations are still required.

Further work will include an examination of other existing program transformation tech-
niques in order to determine whether they can be modified into transformations suitable for an
application in the program verification domain. Moreover, in future work the application area
of program verification may also give rise to new transformations which have no counterpart
at all in classical program transformations.

A Proofs

Theorem 1 (Soundness of Context Moving) Let F' be a functional program containing
the algorithm (6) and let F' result from F by replacing (6) with (7). Then for all data objects
t*, t, and q, f(t*,t) evaluates to q in the program F iff it does so in F', provided that the
following requirements are fulfilled:

(A) z & V(b)) U...UV(bn)

(B) z ¢ V(r{)U...UV(rf)

(C) For alli e {1, ..,m}, i € {1,..,k}: F Fina ri[z*,rs[y", 2]] = ror [y, mi[z", 2]]
(D) z€V(ri)N...0V(ry)

(E) Inry,.. ,rm, z does not occur in arguments of functions dependent on f.

Proof. For the “if”-direction, we first prove the following context moving lemma for all con-
structor ground terms u*, v*, w, ¢ and all ¢’ € {1,...,k}:

If F Eing ro[v*, f(u*,w)] = q, then F Eing f(u*,ry[v*, w]) = q. (16)

We use an induction on the length of r; [v*, f(u*,w)]’s evaluation. Due to Condition (D),
we have z € V(ry) and thus, evaluation of f(u*,w) is defined as well. Hence, there is an
i € {1,...,m} such that b;[u*] =p true and b;[u*] =p false for all 1 < j < ¢, where s =p ¢
abbreviates F' ing s =¢. If i > k+ 1, then

rifo*, fu*,w)] =p  reo,rilut, wl]
=r ri[ut,re[v*,w]], by (C)
=r f(u*,ry[v*,w]), since z € V(r;) (by (D)).

If ¢ <k, then we have

rifv*, fww)] =p o relo”, f(ri[u], v, w])]
=r f(rfu*],ry[v*,rifu*,w]]), by the induction hypothesis
=r [f(ri[u*],rilu”, refo*, w]]), by (C)
=r flu*,ryv*,w]), since z € V(r;) (by (D)).
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Thus, Lemma (16) is proved and now the “if”-direction of Thm. 1 can be shown by
induction on the length of f(¢*,¢)’s evaluation in F’. There must be an ¢’ € {1,...,m}
such that by [t*] =p true and bj [t*] = false for all 1 < j' < i’. The induction hypothesis
implies by [t*] =F true and bj [t*] =F false as well.

If ' > k+1, then the conjecture follows from f(t*,t) =p 7y [t*,t], f(t*,t) =F ry[t*, t], and
the induction hypothesis. If i’ < k, then we have f(t*,¢) =g ri [t*, f(r}[t*],t)] =F ¢ for some
constructor ground term ¢g. By the induction hypothesis we obtain 73 [t*, f(r}:[t*],t)] =F ¢ and
Lemma (16) implies f(r} [t*],rir[t*,t]) =F ro [t*, f(rf [t*], 1)]. As f(t*,t) =F f(rf[t*], ra t*,1]),
the “if”-direction of Thm. 1 is proved.

The proof for the “only if”-direction has a similar structure, but instead of an induction on
the length of the evaluation, we need an induction w.r.t. the relation > ;. Here, u* >; ¢* holds
for the constructor ground terms u* and ¢* iff there exist constructor ground terms u and ¢ such
that f(u*,u) is defined in F' and such that F-evaluation of f(u*,u) leads to the recursive call
f(g*,q). The reason for this asymmetry in the proof is that the left-commutativity condition
(C) is only demanded for the original program F'.

Note that by the requirements (A), (B), and (E), u* >, ¢* implies that for all constructor
ground terms u where f(u*,u) is defined, there exists a constructor ground term ¢ such that
evaluation of f(u*,u) leads to evaluation of f(¢*,¢). Hence, > is well founded (i.e., it may
indeed be used for induction proofs). Now the reverse direction of Lemma (16) can be proved
by induction w.r.t. >¢.

If F ina f(u*,ry[v*,w]) = q, then F g vy [v*, f(u*,w)] = q. (17)

The proof of (17) is analogous to the one of (16), but if evaluation of f(u*,ry[v*, w])
leads to execution of a case i with ¢ < k, then we need the induction hypothesis to infer
frr[u*], o v*, mu*,w]]) =p oo, f(rfu],rle*,w])]. This would not be possible if we
performed induction on the length of the evaluation, but it can be done with our induction
relation, since rf[u*] =r ¢* for some constructor ground terms ¢* with u* >, ¢*.

Finally, the “only if”-direction of the theorem is also proved by induction w.r.t. >f. If
F-evaluation of f(t*,t) leads to the i'-th case and i’ > k + 1, then the proof is analogous to
the “if”-direction. If i’ < k, then we have f(t*,t) =g f(r} [t*],rs [t*,t]) =F ra [t*, f(r}[t*],1)]
by Lemma (17). Note that for all f-subterms f(s*,s) in this term, s* evaluates to constructor
ground terms ¢* with t* >; ¢*. For f-subterms where the root is in r;, this follows from
Condition (E). (However, the length of the evaluation r;[t*, f(r}[t*],t)] is not necessarily
smaller than the one of f(t*,t), i.e., we really need an induction w.r.t. >y.)

Then by the induction hypothesis, ry[t*, f(r}[t*],t)] =r ¢ for some constructor ground
term ¢ implies ry [t*, f(r}[t*],t)] =F' ¢ and hence, f(t*,t) =F q. a

Theorem 2 (Soundness of Context Splitting) Let F be a functional program containing
(12) and let F' result from F by adding the algorithm (13). Then for all data objects t*
and q, f(t*,e) evaluates to q in F iff f'(t*) evaluates to q in F', provided that the following
requirements are fulfilled:

(A) z¢&V(b)U...UV(by)

(B) zg¢V({H)U...uVEHuV(r)U...UV(rm)
(C) F [Eina plplr1, 22], 73] = play, plas, 23]

(D) F kina plz,e] =z and F Eing ple, z] = z.

Proof. Note that evaluation of f is the same in F' and F’. Moreover, Conditions (C) and (D)
also hold for F'. We prove the (stronger) conjecture

f@t*t) =p q iff p[f'(t"),t] = q (18)
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for all constructor ground terms ¢*, ¢, and gq.

The “only if”-direction of (18) is proved by induction on the length of f(¢*,¢)’s evaluation.
There must be an ¢ € {1,...,m} such that b;[t*] =g true and b;[t*] =p false for all 1 < j < i.
If i > k+ 1, then we have

f&,t) =p plrilt™] 1] =p p[f' (£7)t].
If i <k, then we obtain

ft) = f(r] [t*][ plrilt*], 1)

=p plf(r} ;f*]),p[ri [t*],%]], by the induction hypothesis
=p plplf (7 [7]), milt*]], 8], by (C)
= plf'(t"),1].

For the “if”-direction of (18) we use an induction w.r.t. the relation >/, where u* > ¢*
holds for two tuples of constructor ground terms u* and ¢* iff evaluation of f'(u*) is defined
and it leads to evaluation of f'(¢*).

As z1 € V(p), evaluation of f'(t*) is defined and thus, it results in execution of some
case 1. Now the proof is analogous to the “only if”-direction. (Note that if ¢ < &, to conclude
plf' (rE[t*]), plri[t*], t]] =p f(ri[t*], p[ri[t*], t]), we really need an induction w.r.t. >, whereas
an induction on the length of the evaluation does not work.) a

B Examples

This section contains a collection of 55 tail recursive algorithms where context moving or
context splitting can be applied in order to transform them into algorithms which are better
suited for (possibly mechanized) verification.

B.1 plus

This algorithm adds two numbers.
function plus(z,z : nat) : nat <
if z = 0 then plus(p(x),s(2))
else z
Context moving and replacing z with 0 results in
function plus(z,z : nat) : nat <
if z =0 then s(plus(p(z), 2))

else z.

In the following, we often abbreviate plus with +.

B.2 multiply

The following tail recursive multiplication algorithm was used to introduce the technique of
context moving in the paper.

function multiply (z,y : nat) : nat < mult(z,y,0)

function mult (z,y, 2 : nat) : nat <
if x # 0 then mult(p(z),y,y + 2)
else z
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As + is left-commutative, we can apply context moving. Subsequently, all occurrences of
z in the algorithm mult can be replaced by 0.

function multiply (z,y : nat) : nat < mult(z,y)

function mult (z,y : nat) : nat <
if  # 0 then y + mult(p(z),y)
else 0

Of course, in this and all other corresponding examples, one may also exchange cases, ex-
change the parameters x and y, and (resp. or) exchange the arguments of the left-commutative
function (“+” in the above example). The corresponding transformation by context moving
would still be possible. In the following, we often abbreviate multiplication algorithms like
times or multiply with *.

Note that a suitable transformation of multiply would also be possible by context splitting.
This would yield

function multiply (z, : nat) : nat < mult'(z,y)

function mult’ (z,y : nat) : nat <
if z # 0 then mult'(p(z),y) +y
else 0.

Both resulting versions of multiply are well suited for verification tasks. Similarly, in many
of the following examples (where we have a binary left-commutative auxiliary function whose
both arguments are of the same type), instead of context moving one could also use context
splitting.

B.3 multiply2

This algorithm also computes multiplication, but in contrast to multiply it does not use an
auxiliary algorithm for addition. Instead, the addition is encoded into the multiplication
algorithm as well.

function multiply2 (z,y : nat) : nat < mult2(z,y,y,0)

function mult2 (z,y,r,z : nat) : nat <
if x =0 then z
if r =0 then mult2(p(z),y,y, 2)
else mult2(z,y, p(r),s(z))

Note that this algorithm requires the use of a transformation rule which can handle several
recursive cases. Context moving and replacement of the parameter z by 0 yields

function multiply2 (z,y : nat) : nat < mult2(z,y,y)

function mult2 (z,y,r : nat) : nat <
if z=0then 0
if r =0 then mult2(p(z),y,y)
else s(mult2(z,y,p(r))).
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B.4 double
The next algorithm duplicates natural numbers.
function double (z : nat) : nat < do(z,0)

function do(z,z: nat):nat <
if =0 then z

else do(p(z),s(s(2)))

Here, context moving (and replacing z with 0) results in
function double (z : nat) : nat < do(z)

function do(z :nat) : nat <
ifr =0then 0

else s(s(do(p(z)))).

B.5 half
The next algorithm halves natural numbers, i.e., half(z) computes |5 ].
function half (x : nat) : nat < ha(z,0)

function ha(z,z :nat):nat <
ifr=0 thenz
if  =5(0) then 2
else ha(p(p(z)),s(2))

Context moving (and replacing z with 0) results in
function half (z : nat) : nat < ha(z)

function ha(z : nat) : nat <
ifz=0 then0
if z =5(0) then 0
else s(ha(p(p(z))))-

B.6 half2

Similarly, the following algorithm also halves natural numbers, but it works from “top to
bottom”.

function half2 (x : nat) : nat < ha2(z,z)

function ha2(z,z :nat):nat <
ifr=0 thenz
if z =s(0) then p(z)
else ha2(p(p(z)),p(2))

Note that here we need our context moving rule which can deal with several different
non-recursive results. In this way, we result in

function half2 (z : nat) : nat < ha2(z,z)

function ha2(z,z :nat):nat <
ifz=0 thenz
if z =s(0) then p(z)
else p(ha2(p(p(z)),2))-
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B.7 multiply3

The following is again a multiplication algorithm, but this time even numbers are treated
differently from odd ones.

function multiply3 (z,y : nat) : nat < mult3(z,y,0)

function mult3(z,y,z : nat) : nat <
ifz=0 then 2z
if even(z) then mult3(half(x), double(y), z)
else mult3(p(z),y,y + 2)

Note that this algorithm again requires a transformation rule that can deal with several
recursive cases. Qur context moving rule yields the following algorithms (where we replaced
all occurrences of z by 0 again).

function multiply3 (z,y : nat) : nat <= mult3(z,y)

function mult3 (z,y, 2 : nat) : nat <
ifz=0 thenO
if even(z) then mult3(half(x), double(y))
else y+ mult3(p(z),y)

B.8 multiply_succ
The following algorithm computes = *y + 1.

function multiply_succ (z,y : nat) : nat < multsucc(z, y,0)

function multsucc (z,y, 2z : nat) : nat <
if z # 0 then multsucc(p(z),y,y + 2)
else s(z)

Although the non-recursive result has a different context s than the recursive accumulator
argument, we can still apply context moving. For the desired left-commutative cooperation of
ro and rq one has to prove

s(y +2) =y +s(2),

which is in fact true. Subsequently, all occurrences of z in the algorithm multsucc can be
replaced by 0.

function multiply_succ (z,y : nat) : nat < multsucc(z, y)

function multsucc(z,y : nat) : nat <
if  # 0 then y + multsucc(p(x), y)
else s(0)

B.9 minus

Similar to half and half2 one can also transform corresponding subtraction algorithms. Here,
we use an auxiliary algorithm > for the usual greater-relation on naturals.

function minus (z,y : nat) : nat < mi(z,y,0)

function mi(z,y,z : nat) : nat <
if z >y then mi(p(z),y,s(2))
else z.
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Context moving (and replacing z with 0) results in
function minus (z,y : nat) : nat < mi(z,y)

function mi(z,y : nat) : nat <
if z > y then s(mi(p(z),y))
else 0.
B.10 minus?2

Analogously, this alternative subtraction algorithm works from “top to bottom”.

function minus2 (z,y : nat) : nat <
if y =0 then z
else minus2(p(z), p(y))

As p is also left-commutative, context moving yields

function minus2 (z,y : nat) : nat <
if y =0 then z
else p(minus2(z,p(y))).
B.11 logarithm

The following algorithm computes the truncated logarithm w.r.t. base 2 using an auxiliary
algorithm >.

function logarithm (x : nat) : nat < log(z,0)

function log(z,z : nat) : nat <«
if z > s(0) then log(half(z),s(z))

else z
Context moving and replacement of the parameter z by 0 yields
function logarithm (z : nat) : nat < log(z)
function log(z : nat) : nat <
if > s(0) then s(log(half(z)))
else 0.
B.12 power_two
The next function computes the greatest power of 2 that is less than or equal to z.
function power_two (z : nat) : nat < pt(z,s(0))

function pt(z,z : nat) : nat <
if > s(0) then pt(half(z), double(z))

else z

Context moving can be used to move the auxiliary function double to the outside. After-
wards, a replacement of the parameter z by s(0) yields

function power_two (z : nat) : nat < pt(x)

function pt(z :nat):nat <
if z > s(0) then double(pt(half(z)))
else s(0).
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B.13 quotient

The following algorithm computes the truncated division | 2] using an algorithm > for com-

[49

paring natural numbers. Here, “—” abbreviates the algorithm minus.
function quotient (x,y : nat) : nat < quot(z,y,0)

function quot(z,y,z : nat) : nat <
if x > y then quot(z — y,y,s(2))
else z

Context moving and replacement of the parameter z by 0 yields
function quotient (z,y : nat) : nat < quot(z,y)

function quot(z,y : nat) : nat <
if x > y then s(quot(z — y,y))
else 0.

B.14 quotient?2

This algorithm also computes truncated division, but in contrast to quotient this time the
subtraction is encoded into the division algorithm as well (this is similar to the encoding of
addition into the multiplication algorithm multiply2 in Example B.3). The auxiliary boolean
algorithm and for conjunction is abbreviated by A.

function quotient2 (z,y : nat) : nat < quot2(z,y,y,0)

function quot2(z,y,r,z: nat) : nat <
ifz=0Ar=0 then s(2)
ifz =0Ar #0 then z
if r = 0 then quot2(z,y,y,s(z
else quot2(p(z), 3, p(

)
r),2)
Note that this algorithm requires the use of a transformation rule which can handle several

recursive and non-recursive cases. Context moving and replacement of the parameter z by 0
yields

function quotient2 (x,y : nat) : nat < quot2(z,y,y)
function quot2(x,y,r : nat) : nat <
if z=0A r =0 then s(0)
ifr=0A7r#0then0

if r = 0 then s(quot2(z,y,y))
else quot2(p(z),y,p(r)).

B.15 length
This algorithm computes the length of a list.
function length (I : list) : nat < len(l,0)

function len (I : list, z : nat) : nat <
if [ = nil then z
else len(cdr(l),s(2))
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Context moving and replacing z with 0 results in
function length (I : list) : nat < len(l)

function len (I : list) : nat <«
if [ = nil then 0
else s(len(cdr(l))).

B.16 index

The function index(z, ) computes the first index z, such that the z-th element of [ is z. Here,
the leftmost element of [ has index 0. We again use an auxiliary algorithm and for conjunction
(which we abbreviate by A).

function index (z : nat,[ : list) : nat < ind(z,[,0)
function ind (z : nat,l : list, z : nat) : nat <«
if [ # nil A car(l) # x then ind(z, cdr(l),s(2))
else z
Context moving and replacing z with 0 results in
function index (z : nat,!l : list) : nat < ind(z,1)
function ind (z : nat,/ : list) : nat <«

if I # nil A car(l) # x then s(ind(z,cdr(l)))
else 0.

B.17 sum

The function sum computes the sum of all elements of a list.
function sum ([ : list) : nat < su(l,0)

function su (I : list,z : nat) : nat <
if [ = nil then z
else su(cdr(l),car(l) + z)

By the left-commutativity of 4+, context moving and replacing z with 0 results in
function sum (I : list) : nat < su(l)

function su (! : list) : nat <«
if [ = nil then 0
else car(l) + su(cdr(l)).

B.18 weight
Similar to the previous algorithm, the following algorithm computes the weighted sum of the
elements in a list. In other words, we have weight([ao, ..., an]) =2,y ,i*a;

function weight (I : list) : nat < we(l,0,0)
function we (I : list, %,z : nat) : nat <

if [ = nil then z
else we(cdr(l),s(),i = car(l) + z)
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Again, context moving and replacing z with 0 results in
function we (! : list) : nat < we(l,0)

function we (I : list) : nat <«
if [ = nil then 0
else i xcar(l) + we(cdr(l),s(7)).

B.19 count_even

This algorithm counts the number of even elements in a list (using an auxiliary algorithm
even).

function count_even ( : list) : nat < ce(l,0)

function ce (!l : list,z : nat) : nat <
if [ = nil then z
if even(car(l)) then ce(cdr(l),s(2))
else ce(cdr(l), 2)

To transform this algorithm, we need a technique which can handle algorithms with several
recursive cases. Context moving and replacing z with 0 results in

function count_even (I : list) : nat < ce(l)

function ce (!l : list,z : nat) : nat <
if [ = nil then 0
if even(car(l)) then s(ce(cdr(l)))
else ce(cdr(l)).

Analogously, context moving would also work for similar algorithms (i.e., a “count” algo-
rithm where even elements are counted twice whereas odd ones are just counted once, or a
“sum” algorithm which only adds the even elements of a list).

B.20 prod

This algorithm (from Section 3) computes the multiplication of all elements in a list, where
however occurring 0’s are ignored.

function prod (I : list) : nat < pr(l,s(0))

function pr(l: list,z : nat) : nat <
if [ = nil then z
if car(l) # 0 then pr(cdr(l),car(l) * 2)
else pr(cdr(l),2)

To transform this algorithm, we again need a technique which can handle algorithms with
several recursive cases. Since * is left-commutative, context moving and replacing z with s(0)
results in

function prod (I : list) : nat < pr(])

function pr(l: list) : nat <
if [ = nil then s(0)
if car(l) # 0 then car(l) = pr(cdr(l))
else pr(cdr(l)).
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B.21 sum_digits

The following algorithm sums all digits of a natural number. It uses the algorithms div_10 and
mod_10 for truncated division by 10 and for computing x mod 10.

function sum_digits (z : nat) : nat < sumd(z,0)

function sumd(z,z : nat) : nat <
if z =0 then z
else sumd(div_10(z), mod_10(z) + z)

Due to the left-commutativity of +, context moving (and replacing z with 0) results in
function sum_digits (z : nat) : nat < sumd(z)

function sumd (z : nat) : nat <«
ifr =0then 0
else mod_10(z) + sumd(div_10(z)).

B.22 factorial

The next algorithm computes the factorial of z.
function factorial (z : nat) : nat < fac(z,s(0))

function fac(z,z :nat):nat <
if x = 0 then z
else fac(p(z),x * 2)

As x is left-commutative, context moving (and replacing z with s(0)) results in
function factorial (z : nat) : nat < fac(x)
function fac(z :nat):nat <

if z = 0 then s(0)
else z xfac(p(z)).

B.23 exponent

The next algorithm computes z¥.
function exponent (z,y : nat) : nat < exp(z,y,s(0))
function exp (z,y,z : nat) : nat <
if y =0 then z
else exp(z,p(y),z * z)

Similar to factorial, as * is left-commutative, context moving (and replacing z with s(0))
results in

function exponent (z,y : nat) : nat < exp(z,y)
function exp (z,y : nat) : nat <

if y = 0 then s(0)
else z xexp(z,p(y)).
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B.24 exponent2

The following is again an exponentiation algorithm, but this time even numbers are treated
differently from odd ones (this is similar to the algorithm multiply3 in Example B.7).

function exponent2 (z,y : nat) : nat < exp2(z,y,s(0))

function exp2(z,y,z : nat) : nat <
ify=0 then z
if even(y) then exp2(z * x, half(y), 2)
else exp2(z,p(y),z * z)

This algorithm requires a transformation rule that can deal with several recursive cases.
Our context moving rule yields the following algorithms (where we replaced all occurrences of
z by s(0) again).

function exponent2 (z,y : nat) : nat < exp2(z,y)

function exp2(z,y : nat) : nat <
ify=0 then s(0)
if even(y) then exp2(z * z, half(y))
else z xexp2(z,p(y))

B.25 maximum_list

The next algorithm computes the maximum of a list. It uses the auxiliary algorithm max
which returns the maximum of two numbers.

function maximum_list (] : list) : nat < maxlist(l, 0)

function maxlist (I : list, z : nat) : nat <«
if [ = nil then z
else maxlist(cdr(l), max(car(l), z))

As max is left-commutative, context moving (and replacing z with 0) results in
function maximum_list (7 : list) : nat < maxlist(l)

function maxlist (1) : nat <«
if [ = nil then 0
else max(car(l), maxlist(cdr(1))).

Similar algorithms can also be defined on lists of list’s (i.e., on objects of type llist), where
the element list’s can be compared by their length, for example. In this way, we also obtain
left-commutative functions on list’s.

B.26 minimum_list

The next algorithm computes the minimum of a list by using the auxiliary algorithm min
which returns the minimum of two numbers. We assume that car(nil) = 0 and cdr(nil) = nil.

function minimum_list (/ : list) : nat < minlist(cdr(1), car(l))

function minlist (I : list, z : nat) : nat <«
if [ = nil then z
else minlist(cdr(l), min(car(l), z))
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As min is left-commutative, context moving results in
function minimum_list (1 : list) : nat < minlist(cdr(1), car(l))

function minlist (7 : list, z : nat) : nat <«
if [ = nil then z
else min(car(l), minlist(cdr(l), z)).
B.27 member

The next algorithm determines whether a number x occurs in a list [. It uses an auxiliary
boolean algorithm or for disjunction.

function member (z : nat,! : list) : bool < mem(z,1, false)

function mem (z : nat,l : list, z : bool) : bool <
if [ = nil then z
else mem(z,cdr(l),or(z = car(l), 2))

This algorithm can be transformed by context moving, as the boolean algorithm or is
left-commutative. Replacing z by false afterwards yields

function member (z : nat,l : list) : bool < mem(x,1)

function mem (x : nat,[ : list) : bool <«
if [ = nil then false
else or(z = car(l), mem(z,cdr(l))).

B.28 subset

The algorithm subset(l, k) returns true iff all elements of [ also occur in k. It uses an auxiliary
boolean algorithm and for conjunction.

function subset (I, k : list) : bool < sub(l, k, true)

function sub (I, k : list, z : bool) : bool <
if [ = nil then z
else sub(cdr(l), k,and(member(car(l), k), z))

This algorithm can also be transformed by context moving, as the boolean algorithm and
is left-commutative. Replacing z by true afterwards yields

function subset (I, k : list) : bool < sub(l, k)

function sub (I, k : list) : bool <
if [ = nil then true
else and(member(car(l), k), sub(cdr(l), k)).

Similarly, one may also perform analogous transformations for an algorithm which deter-

mines whether two lists are disjoint, for an algorithm which tests whether all elements in a
list satisfy some property, etc.
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B.29 nthcdr
The next algorithm deletes the n first elements of a list [.

function nthedr (n : nat,! : list) : bool <
if n =0 then [

else nthedr(p(n),cdr(l))

Here, context moving can be used to move the function cdr (of type list) to the outside

function nthedr (n : nat,! : list) : bool <
if n =0 then [

else cdr(nthcdr(p(n),1))
B.30 union

The next algorithm was used to introduce the context splitting rule in Section 4.
function union (k : llist) : list < uni(k, nil)

function uni (k : llist, z : list) : list <

if k # empty then uni(tl(k),app(hd(k), 2))

else z.

Here, context splitting yields

function union (k : llist) : list < uni'(k)

function uni’ (k : llist) : list <

if k # empty then app(uni'(tl(k)), hd(k))
else nil.

B.31 union2
While union unites the lists in reverse order, the following alternative algorithm preserves their
order.

function union2 (k : llist) : list < uni2(k, nil)

function uni2 (k : llist, z : list) : list <

if k # empty then uni2(tl(k), app(z, hd(k)))
else z.

Context splitting yields

function union (k : llist) : list < uni2'(k)
function uni2’ (k : llist) : list <
if k # empty then app(hd(k), uni2’ (tl(k)))

else nil.
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B.32 reverse

The following list reversal algorithm was presented in Section 4 to introduce the technique of
lifting constructors.

function reverse (I : list) : list < rev(l, nil)

function rev (I, z : list) : list <=
if [ # nil then rev(cdr(l), cons(car(l), z))
else z.

By lifting the constructor cons to cons’, rev can be reformulated to
function rev (I, z : list) : list <
if [ # nil then rev(cdr(l), cons’(cons(car(l), nil), 2))

else z.

Here, cons' computes list concatenation (i.e., it corresponds to app). Context splitting
yields

function reverse (I : list) : list < rev/(])

function rev’ (I : list) : list <
if [ # nil then cons’(rev’(cdr(1)), cons(car(l), nil))
else nil.

B.33 intersect

The next algorithm computes all those elements of [ which are also contained in the list k.
function intersect (I, % : list) : list < int(l, k, nil)

function int(l,k,z : list) : list «
if [ = nil then z
if member(car(l), k) then int(cdr(l), k, app(z, cons(car(l), nil)))
else int(cdr(l),k, z)

Note that here we have to deal with several recursive cases. With our rule, we may perform
context, splitting and unfolding for app afterwards.

function intersect (I, k : list) : list < int'(l, k)
function int' (I, % : list) : list <
if [ = nil then nil

if member(car(l), k) then app(int’(cdr(l), k), cons(car(l), nil))
else int'(cdr(l),k)

B.34 filter

The next algorithm filters all even elements out of a list. It was introduced in Section 4
to present the technique of parameter enlargement for the auxiliary algorithm atend. Here,
atend(z,y) inserts an element z at the end of a list y.

function filter (I : list) : list < fil(Z, nil)
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function fil (1,2 : list) : list <=
if [ = nil then z
if even(car(l)) then fil(cdr(l), atend(car(l), z))
else fil(cdr(l), 2)

The algorithm atend reads as follows.

function atend (z : nat, z : list) : list <=
if z = nil then cons(z, nil)
else cons(car(z), atend(z, cdr(z)))

Parameter enlargement of z yields

function atend’ (y,z : list) : list <
if z = nil then y
else cons(car(z),atend’(y, cdr(z))).

Hence, in the algorithm fil, the term atend(car(l), z) can be replaced by atend’(cons(car(l),
nil), z).

function fil (I, z : list) : list <
if [ = nil then z
if even(car(l)) then fil(cdr(l), atend’(cons(car(l), nil), z))
else fil(cdr(l), 2)

Now context splitting (and subsequent unfolding resp. symbolic evaluation of atend') results
in
function filter (I : list) : list < fil'(])
function fil' (I : list) : list <
if [ = nil then nil

if even(car(l)) then cons(car(l), fil' (cdr(1)))
else fil'(cdr(l)).

Note that here we indeed need a transformation rule which can handle algorithms with
several recursive cases.

B.35 partition

The next algorithm re-orders the elements in a list such that the odd ones come before the
even ones.

function partition (I : list) : list < part(Z, nil)
function part (/,z : list) : list <
if [ = nil then app(z,filter(l))
if even(car(l)) then part(cdr(l), z)
else part(cdr(l),app(z, cons(car(l), nil)))
Context splitting yields (after symbolic evaluation of app)

function partition (I : list) : list < part’(l)
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function part’ (I : list) : list <
if [ = nil then filter(l)
if even(car(l)) then part’(cdr(l))
else cons(car(l), part’(cdr(l))).

Note that we again need a rule that can handle several recursive cases (and a non-recursive
result which is not just the variable z).

Of course, an alternative definition of partition could be the following algorithm of [IB99].
Here we also need an algorithm filter_odd which works analogously to filter, but it filters out
the odd elements of a list.

function partition (I : list) : list < app(filter_odd(l), filter(1))

To solve the verification problems with this algorithm, we have to apply context splitting
to both filter_odd and filter (as demonstrated in Example B.34).

B.36 add_to_list

The next algorithm adds the number x to all elements in a list /. It again uses the auxiliary
algorithm atend.

function add_to_list (z : nat,! : list) : list < atl(z,1, nil)
function atl(z : nat,l, z : list) : list <
if [ = nil then z
else atl(z,cdr(l), atend(car(l) + z, 2))

After replacing atend by atend’, one may perform context splitting. Subsequent unfolding
resp. symbolic evaluation of atend’ yields

function add_to_list (x : nat,[ : list) : list < atl’(z,1)
function atl’ (z : nat, [ : list) : list <

if [ = nil then nil
else cons(car(l) + z,atl'(z,cdr(l))).

B.37 add_to_pos

Similar to the previous algorithm, add_to_pos(j,z,l) adds the number x to the element at
position j in I. (The head of a list has position 0.)

function add_to_pos (j,z : nat,l : list) : list < atp(j, z, !, nil)

function atp (j,z : nat,l, z : list) : list <
if j = 0 then app(z, cons(car(l) + z, cdr(l)))
else atp(p(y),z,cdr(l),app(z, cons(car(l), nil)))

Context splitting and symbolic evaluation of app yields
function add_to_pos (j,z : nat,[ : list) : list <« atp'(j,z,1)
function atp’ (j,z : nat,[: list) : list <

if j =0 then cons(car(l) + =, cdr(l))
else cons(car(l),atp’(p(4), z, cdr(l))).
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B.38 insert_blanks

The following algorithm is inspired by an algorithm of the same name in [Gri81]. Given a list
l and a number z, the algorithm insert_blanks(z,[) adds z % j to every element of [ at the j-th
position.

function insert_blanks (z : nat,[ : list) : list < ibl(z, p(length(1)),1)

function ibl(z,j : nat,z : list) : list <
if j =0 then z
else ibl(z, p(j),add_to_pos(j, z * j, 2))

Note that add_to_pos is left-commutative. Thus, this is an example for an algorithm where
one uses a left-commutative function on list’s. Context moving transforms ibl into

function ibl(z,j : nat,z : list) : list <
if j =0 then z
else add_to_pos(j,z x j,ibl(z, p(j), 2)).

B.39 insert_blanks2

The next function represents an alternative algorithm for inserting blanks.
function insert_blanks2 (z : nat,[ : list) : list < ibl2(x, 0,1, nil)

function ibl2 (z,j : nat,l, 2 : list) : list <
if [ = nil then z
else ibl2(z,s(j),cdr(l),atend(z * j + car(l), z))

After parameter enlargement, we can perform context splitting. Subsequent symbolic
evaluation yields

function insert_blanks2 (z : nat,[ : list) : list < ibl2'(x,0,1)

function ibl2' (z,j : nat,[ : list) : list <
if [ = nil then z
else cons(x * j + car(l),ibl2'(z,s(j), cdr(l))).

B.40 union3

Using the auxiliary algorithm atend, one can also formulate a version of union which works
without calling the algorithm app. In this version, the order of the lists is again preserved.

function union3 (k : llist) : list < uni3(k, nil)

function uni3 (& : llist, z : list) : list <
if k = empty then z
if hd(k) # nil then uni3(add(cdr(hd(k)), tI(k)), atend(car(hd(k)), 2))
else uni3(tl(k), z)

Again by parameter enlargement, atend is replaced by atend’. Afterwards we perform
context splitting (where we again need a rule which can deal with several recursive cases).
Subsequent unfolding resp. symbolic evaluation of atend’ yields

function union3 (k : llist) : list & uni3’(k)

function uni3 (k : llist) : list <
if k = empty then nil
if hd(k) # nil then cons(car(hd(k)), uni3'(add(cdr(hd(k)), tl(k))))
else uni3'(tl(k)).
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B.41 insert

The following algorithm inserts a natural number 2z into an ordered list [ at the right position.
It uses an algorithm > to compare natural numbers.

function insert (z : nat,/ : list) : list < ins(z,1, nil)

function ins (z : nat,l,z : list) : list <
if l=nil  then app(z, cons(z,nil))
if z > car(l) then ins(z, cdr(l), app(z, cons(car(l), nil)))
else app(z,cons(z,l))

Here, we need our context splitting rule which can also deal with several non-recursive
results. Moreover, we apply unfolding resp. symbolic evaluation to app afterwards.

function insert (z : nat,[ : list) : list < ins'(z,1)

function ins' (z : nat,l : list) : list <
if [ = nil then cons(z, nil)
if z > car(l) then cons(car(l),ins'(z, cdr(l)))
else cons(z,l)

B.42 insertion_sort

The next algorithm sorts a list of naturals by the insertion-sort principle. It uses the algorithm
insert defined above.

function insertion_sort ( : list) : list < insort(l, nil)

function insort (I, z : list) : list <«
if [ = nil then z
else insort(cdr(l),insert(car(l), z))

As insert is left-commutative, our context moving rule can be applied. Afterwards, the
parameter z of insort can be replaced by the constant value nil. Thus, this is another example
for a left-commutative function on list’s.

function insertion_sort (/ : list) : list < insort(l)

function insort (I : list) : list <
if [ = nil then nil
else insert(car(l),insort(cdr(l)))

B.43 first and second

The following functions are used to split a list into two parts. For a list I of the form
[ag, a1, ..., a2n)], first(l) is [aon, ..., a2, a0] and second(l) is [a2n—1,...,as,a;]. Similarly, for a
list [ag, a1, ..., az,41], we obtain first(l) = [azp, . . ., a2, ag] and second(l) = [azpt1, - - ., a3, a1].
We only give the algorithms for first, since the transformation of second works analogously.

function first (I : list) : list < fir(l, nil)
function fir (I, z : list) : list <

if [ = nil then z
else fir(cdr(cdr(l)),cons(car(l), z))
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Similar to reverse, cons(car(l), z)) is lifted to cons’(cons(car(l),nil), z) first (where cons’'
computes list concatenation, i.e., it corresponds to app). Then context splitting yields

function first (I : list) : list < fir'(l)

function fir' (I : list) : list <
if [ = nil then nil
else cons'(fir'(cdr(cdr(1))), cons(car(l), nil)).

B.44 merge

The following algorithm merge(l, k) merges two sorted lists I and & into one sorted list. It uses
the list concatenation function app and an algorithm < for comparing naturals.

function merge (I, k : list) : list < mer(, k, nil)

function mer (I,k,z : list) : list <
if [ = nil then app(z, k)
if & = nil then app(z,!)
if car(l) < car(k) then mer(cdr( ), k, app(z, cons(car(l), nil)))
else mer(l,cdr(k), app(z, cons(car(k), nil)))

This example demonstrates the need for a context splitting rule which can deal with algo-
rithms that have several different recursive and several different non-recursive results. By our
context splitting rule we obtain

function merge (I, k : list) : list < mer'(l, k)

function mer’ (I,k : list) : list <
if [ = nil then &
if k& = nil then [
if car(l) < car(k) then app(cons(car(l), nil), mer'(cdr(l), k))
else app(cons(car(k), nil), mer' (I, cdr(k))).

Finally, by unfolding (resp. by symbolic evaluation) of app, the algorithm mer’ can be
simplified to

function mer’ (I,k : list) : list <
if [ = nil then k
if & = nil then [
if car(l) < car(k) then cons(car(l), mer'(cdr(l), k))
else cons(car(k), mer' (I, cdr(k))).

B.45 merge_sort

The following function implements the “merge-sort” technique to sort lists.

function merge_sort (I : list) : list <«
if [ = nil then nil
else merge(merge_sort(first(l)), merge_sort(second(l))).

As illustrated in Examples B.43 and B.44, the tail recursive formulations of the auxiliary
algorithms first, second, and merge can be automatically transformed into a non-tail recursive
form which is well suited for verification. In this way, our approach eases the verification of
this implementation of merge_sort significantly.
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B.46 delete

This algorithm deletes an element from a list.
function delete (x : nat,l : list) : list < del(x,, nil)

function del (z : nat,l, z : list) : list <
if [ = nil then z
if car(l) = z then app(z, cdr(l))
else del(x, cdr(l),app(z, cons(car(l), nil)))

This algorithm requires the use of a transformation which can deal with several different
non-recursive results. Applying our context splitting technique yields (after unfolding resp.
symbolic evaluation)

function delete (x : nat,[ : list) : list < del'(z,1)

function del' (z : nat,[: list) : list <
if [ = nil then nil
if car(l) = = then cdr(])
else cons(car(l),del'(z,cdr(l))).

B.47 remove

This algorithm is similar to delete, but this time all occurrences of an element z are deleted
from a list .

function remove (z : nat,! : list) : list < rm(z, 1, nil)

function rm (z : nat,l,z : list) : list <
if [ = nil then z
if car(l) = z then rm(z,cdr(l), 2)
else rm(z,cdr(l),app(z,cons(car(l), nil)))

This algorithm requires the use of a transformation which can deal with several differ-
ent recursive results. Applying our context splitting technique yields (after unfolding resp.
symbolic evaluation)

function remove (x : nat,l : list) : list < rm'(z,1)

function rm’(z :nat,[: list) : list <
if [ = nil then nil
if car(l) = z then rm’(z, cdr(l))
else cons(car(l), rm’(z, cdr(l))).

B.48 selection_sort

The next algorithm implements the selection-sort principle. It uses the auxiliary algorithm
minimum_list from Example B.26 to compute the minimum of a list and it also calls the
algorithm delete from Example B.46 to delete an element from a list.

function selection_sort (I : list) : list < selsort(/, nil)

function selsort (I, z : list) : list <
if [ = nil then z
else selsort(delete(minimum_list(1), 1), atend(minimum_list(l), z))
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We again perform parameter enlargement for atend first and replace atend(minimum_list(/),
2) by atend’(cons(minimum_list(l), nil), z). Here, atend’(l,k) computes the same result as
app(k,1). Then context splitting and subsequent unfolding (resp. symbolic evaluation) yields

function selection_sort ([ : list) : list < selsort’ (1)

function selsort’ (I : list) : list «
if [ = nil then nil
else cons(minimum_list(1), selsort’ (delete(minimum_list(1),1))).

B.49 increment

The next algorithm is used to add 1 to a number in binary representation. For that purpose,
a list [ = [ag,...,a,] with a; € {0,1} represents the number ) .,  a;2'. Thus, the first
digit of the list is the least significant bit. Here, we assume that car(nil) = 0.

function increment (1 : list) : list < inc(l, nil)
function inc(l,z : list) : list <
if car(l) = 0 then app(z, cons(1,cdr()))
else inc(cdr(l),app(z, cons(0, nil)))
Context splitting and subsequent unfolding (resp. symbolic evaluation) yields
function increment ([ : list) : list < inc'(l)
function inc' (I : list) : list <

if car(l) = 0 then cons(1, cdr(l))
else cons(0,inc'(cdr(1))).

B.50 base

This algorithm converts a natural number z into its representation w.r.t. base y (where this
time the leftmost digit of the resulting number should be the most significant one). For that
purpose it uses the algorithm quotient from Example B.13 (where quot(z,y) computes L%J)
and an algorithm mod.

function base (z,y : nat) : list < ba(z,y,nil)
function ba(z,y : nat,z: list) : list <
if z = 0 then z
else ba(quotient(z,y),y, cons(mod(z,y), 2))

After lifting cons to cons’ (resp. to app), we can apply context splitting. Subsequent
unfolding (resp. symbolic evaluation) yields

function base (z,y : nat) : list < ba'(z,y)
function ba’(z,y : nat) :list <

if z = 0 then nil
else app(ba’(quotient(z,y),y), cons(mod(z,y), nil).
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B.51 column

List of lists B (i.e., objects of type llist) can be used to model matrices. For that purpose,
every list in B represents a row in the matrix. The following algorithm returns the first column
of a matrix B.

function column (B : llist) : list < col(B, nil)

function col (B : llist, z : list) : list <
if B = empty then z
else col(tl(B),atend(z, car(hd(B))))

After parameter enlargement for atend we can apply context splitting. Subsequent unfold-
ing (resp. symbolic evaluation) yields

function column (B : llist) : list < col'(B)
function col’ (B : llist) : list <
if B = empty then nil
else cons(car(hd(B)),col’(tI(B)))
B.52 but_column

Similar to the preceding algorithm, this algorithm deletes the first column from a matrix B.
It uses an algorithm atend.ll : list x Ilist — llist which works analogously to atend, but it adds
a list to the end of a list of list’s.

function but_column (B : llist) : llist < butcol(B, empty)

function butcol (B : llist, z : llist) : llist <
if B = empty then z
else butcol(tl(B), atend_ll(z, cdr(hd(B))))

After parameter enlargement for atend_ll we can apply context splitting. Subsequent, un-
folding (resp. symbolic evaluation) yields

function but_column (B : llist) : llist < butcol'(B)
function butcol’ (B : llist) : llist <
if B = empty then empty
else add(cdr(hd(B)), butcol’(tI(B)))
B.53 scalar_product
The next algorithm computes the scalar product of two vectors [ and k (modelled by list’s).
function scalar_product (I, k : list) : nat < scalar(l, &, 0)

function scalar (I, k : list, z : nat) : nat <
if [ = nil then z
else scalar(cdr(l),cdr(k), car(l) * car(k) + z)

As + is left-commutative we can apply context moving. Subsequent replacement of the
variable z by 0 yields

function scalar_product (I, % : list) : nat < scalar(l, k)

function scalar (I, k : list) : nat <
if [ = nil then 0
else car(l) * car(k) + scalar(cdr(l), cdr(k)).
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B.54 vec_matrix

The algorithm vec_matrix computes the multiplication of a vector a with a matrix B using the
auxiliary algorithms defined above.

function vec_matrix (a : list, B : llist) : list < vm(a, B, nil)

function vm (a : list, B : llist, z : list) : list <
if B = empty then z
else vm(a,but_column(B), atend(z, scalar_product(a, column(B))))

By parameter enlargement (for atend), context splitting, and symbolic evaluation we obtain
function vec_matrix (a : list, B : llist) : list < vm'(a, B)

function vm’(a : list, B : llist) : list <
if B = empty then nil
else cons(scalar_product(a, column(B)),vm’(a, but_column(B)))

B.55 matrix_mult

Similar to the previous algorithm, the following algorithm computes matrix multiplication.
function matrix-mult (4, B : llist) : llist <= mm(A, B, empty)

function mm (4, B,z : llist) : llist <
if A = empty then z
else mm(tl(A), B, atend_ll(z, vec_matrix(hd(A), B)))

By parameter enlargement (for atend_ll), context splitting, and symbolic evaluation we
obtain

function matrix-mult (4, B : llist) : llist < mm'(A, B)

function mm (A4, B : llist) : llist <
if A = empty then empty
else add(vec_matrix(hd(A4), B), mm’(tl(A), B)).
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