
Automated Termination Analysis for

Logic Programs by Term Rewriting⋆

P. Schneider-Kamp1, J. Giesl1, A. Serebrenik2, and R. Thiemann1

1 LuFG Informatik 2, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany,
{psk,giesl,thiemann}@informatik.rwth-aachen.de

2 Dept. of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands, a.serebrenik@tue.nl

Abstract. There are two kinds of approaches for termination analysis of
logic programs: “transformational” and “direct” ones. Direct approaches
prove termination directly on the basis of the logic program. Transforma-
tional approaches transform a logic program into a term rewrite system
(TRS) and then analyze termination of the resulting TRS instead. Thus,
transformational approaches make all methods previously developed for
TRSs available for logic programs as well. However, the applicability of
most existing transformations is quite restricted, as they can only be used
for certain subclasses of logic programs. (Most of them are restricted to
well-moded programs.) In this paper we improve these transformations
such that they become applicable for any definite logic program. To si-
mulate the behavior of logic programs by TRSs, we slightly modify the
notion of rewriting by permitting infinite terms. We show that our trans-
formation results in TRSs which are indeed suitable for automated ter-
mination analysis. In contrast to most other methods for termination of
logic programs, our technique is also sound for logic programming with-

out occur check, which is typically used in practice. We implemented our
approach in the termination prover AProVE and successfully evaluated
it on a large collection of examples.

1 Introduction

Termination of logic programs is widely studied (see, e.g., [12] for an overview
and [9, 13, 20, 26, 33] for more recent work on “direct” approaches). “Transforma-
tional” approaches have been developed in [1, 5, 8, 15, 19, 23, 24, 30] and a com-
parison of these approaches is given in [28]. Transformational methods

(I) should be applicable for a class of logic programs as large as possible and
(II) should produce TRSs whose termination is easy to analyze automatically.

Concerning (I), the above transformations can only be used for certain subclasses
of logic programs. More precisely, all approaches except [23, 24] are restricted to
well-moded programs. [23, 24] also consider the classes of simply well-typed and
safely typed programs. We present a new transformation which, in contrast to

⋆ Supported by the Deutsche Forschungsgsmeinschaft DFG under grant GI 274/5-1.
In Proc. LOPSTR “06, LNCS, 2007.

all previous transformations, is applicable for any (definite1) logic program.
Concerning (II), one needs an implementation and an empirical evaluation to

find out whether termination of the transformed TRSs can indeed be verified au-
tomatically for a large class of examples. Unfortunately, to our knowledge there
is only a single other termination tool available which implements a transforma-
tional approach. This tool TALP [29] is based on the transformations of [5, 8, 15]
which are shown to be equally powerful in [28]. So these transformations are in-
deed suitable for automated termination analysis, but consequently, TALP only
accepts well-moded logic programs. This is in contrast to our approach which
we implemented in our termination prover AProVE. Our experiments on large
collections of examples in Sect. 5 show that our transformation indeed produces
TRSs that are suitable for automated termination analysis and that AProVE is
currently among the most powerful termination provers for logic programs.

Our transformation is inspired by the transformation of [5, 8, 15, 28]. In this
classical transformation, each argument position of each predicate is either la-
belled as input or output. As mentioned, the labelling must be such that the
labelled program is well moded [3]. Well-modedness guarantees that each atom
is “sufficiently” instantiated during any derivation with a query that is ground
on all input positions. More precisely, a program is well moded iff for any of its
clauses H :– B1, . . . , Bk with k ≥ 0, we have

(a) Vout(H) ⊆ Vin(H) ∪ Vout(B1) ∪ . . . ∪ Vout(Bk) and

(b) Vin(Bi) ⊆ Vin(H) ∪ Vout(B1) ∪ . . . ∪ Vout(Bi−1) for all 1 ≤ i ≤ k

Vin(B) and Vout(B) are the variables in terms on B’s input and output positions.

Example 1. We illustrate our concepts with a variant of a small example from
[28]. Let p’s first argument position be input and the second be output.

p(X, X)
p(f(X), g(Y)) :– p(f(X), f(Z)), p(Z, g(Y))

The program is well moded: This is obvious for the first clause. For the second
clause, (a) holds since the output variable Y of the head is also an output variable
of the second body atom. Similarly, (b) holds since the input variable X of the
first body atom is also an input variable of the head, and the input variable Z of
the second body atom is also an output variable of the first body atom.

In the classical transformation from logic programs to TRSs [28], two new func-
tion symbols pin and pout are introduced for each predicate p. We write “p(s, t)”
to denote that s and t are the sequences of terms on p’s in- and output positions.

• For each fact p(s, t), the TRS contains the rule pin(s) → pout(t).

• For each clause c of the form p(s, t) :– p1(s1, t1), . . . , pk(sk, tk), the resulting
TRS contains the following rules:

1 Like most approaches for termination of logic programs, we restrict ourselves to pro-
grams without cut and negation. While there are transformational approaches which
go beyond definite programs [24], it is not clear how to transform non-definite logic
programs into TRSs that are suitable for automated termination analysis, cf. (II).

2

pin(s) → uc,1(p1in
(s1),V(s))

uc,1(p1out
(t1),V(s)) → uc,2(p2in

(s2),V(s) ∪ V(t1))

. . .

uc,k(pkout
(tk),V(s) ∪ V(t1) ∪ . . . ∪ V(tk−1)) → pout(t)

Here, V(s) are the variables occurring in s. Moreover, if V(s) = {x1, ..., xn},
then “uc,1(p1in

(s1),V(s))” abbreviates the term uc,1(p1in
(s1), x1, ..., xn), etc.

If the resulting TRS is terminating, then the original logic program terminates
for any query with ground terms on all input positions of the predicates, cf. [28].

Example 2. For Ex. 1, the transformation results in the following TRS R.

pin(X) → pout(X) u1(pout(f(Z)), X) → u2(pin(Z), X, Z)
pin(f(X)) → u1(pin(f(X)), X) u2(pout(g(Y)), X, Z) → pout(g(Y))

The original logic program is terminating for any query p(t1, t2) where t1 is a
ground term. However, the above TRS is not terminating:

pin(f(X)) →R u1(pin(f(X)), X) →R u1(u1(pin(f(X)), X), X) →R . . .

In the logic program, after resolving with the second clause, one obtains a query
starting with p(f(. . .), f(. . .)). Since p’s output argument f(. . .) is already partly
instantiated, the second clause cannot be applied again for this atom. However,
this information is neglected in the translated TRS. Here, one only regards the
input argument of p in order to determine whether a rule can be applied. Note
that current tools for termination proofs of logic programs like cTI [25], Hasta-

La-Vista [32], TALP [29], TermiLog [22], and TerminWeb [10] fail on Ex. 1.2

So this example already illustrates a drawback of the classical transforma-
tion of [28]: there are several terminating well-moded logic programs which are
transformed into non-terminating TRSs. In such cases, one fails in proving the
termination of the logic program. Even worse, most of the existing transforma-
tions are not applicable for logic programs that are not well moded.3

Example 3. We modify Ex. 1 by replacing g(Y) with g(W) in the body:

p(X, X)
p(f(X), g(Y)) :– p(f(X), f(Z)), p(Z, g(W))

Still, all queries p(t1, t2) terminate if t1 is ground. But this program is not well
moded, as the second clause violates Condition (a): Vout(p(f(X), g(Y)))={Y } 6⊆
Vin(p(f(X), g(Y)))∪Vout(p(f(X), f(Z)))∪Vout(p(Z, g(W)))={X, Z, W}. Trans-

2 They can handle Ex. 1 if one performs a program specialization step before [31].
Our example collection at http://aprove.informatik.rwth-aachen.de/eval/LP/

illustrates the advantages of different tools and also includes several examples where
“direct” tools fail because the termination proof requires complex ranking functions.

3 Ex. 3 is neither well moded nor simply well typed nor safely typed (using the types
“Any” and “Ground”) as required by the transformations [1, 5, 8, 15, 19, 23, 24, 30].

3

forming the program as before yields a TRS with the rule u2(pout(g(W)), X, Z)→
pout(g(Y)). So non-well-moded programs result in rules with variables like Y in
the right- but not in the left-hand side. Such rules are usually forbidden in term
rewriting and they do not terminate, since Y may be instantiated arbitrarily.

A natural non-well-moded example is the append-program with the clauses
append([],XS ,XS) and append([X |XS],YS , [X |ZS]) :– append(XS ,YS ,ZS). If
one only considers append’s first argument as input, then this program is not
well moded although all queries append(t1, t2, t3) are terminating if t1 is ground.

Recently, several authors tackled the problem of applying termination tech-
niques from term rewriting for (possibly non-well-moded) logic programs. A
framework for integrating orders from term rewriting into direct termination
approaches for logic programs is discussed in [13].4 However, the automation of
this framework is non-trivial in general. As an instance of this framework, the
automatic application of polynomial interpretations (well-known in rewriting)
to termination analysis of logic programs is investigated in [27].

Instead of integrating each termination technique from term rewriting sep-
arately, we want to make all these techniques available at once. Therefore, un-
like [13, 27], we choose a transformational approach. Our goal is a method which

(A) handles programs like Ex. 1 where classical transformations like [28] fail,

(B) handles non-well-moded programs like Ex. 3 where most current transfor-
mational techniques are not even applicable,

(C) allows the successful automated application of powerful techniques from re-
writing for logic programs like Ex. 1 and 3 where current tools based on direct
approaches fail. For larger and more realistic examples we refer to Sect. 5.

After presenting required preliminaries in Sect. 2, in Sect. 3 we modify the
transformation from logic programs to TRSs to achieve (A) and (B). So re-
strictions like well-modedness, simple well-typedness, or safe typedness are no
longer required. Our new transformation results in TRSs where the notion of
“rewriting” has to be slightly modified: we regard a restricted form of infinitary
rewriting, called infinitary constructor rewriting. The reason is that logic pro-
grams use unification, whereas TRSs use matching. For that reason, the logic
program p(s(X)) :– p(X) does not terminate for the query p(X) whereas the TRS
p(s(X)) → p(X) terminates for all finite terms. However, the infinite derivation
of the logic program corresponds to an infinite reduction of the TRS with the
infinite term p(s(s(. . .))) containing infinitely many nested s-symbols. So to sim-
ulate unification by matching, we have to regard TRSs where the variables in
rewrite rules may be instantiated by infinite constructor terms. It turns out that
this form of rewriting also analyzes the termination behavior of logic programs
with infinite terms, i.e., of logic programming without occur check.

Sect. 4 shows that the existing termination techniques for TRSs can easily
be adapted in order to prove termination of infinitary constructor rewriting. We
conclude with an experimental evaluation of our results in Sect. 5 which shows

4 But in contrast to [13], we also apply more recent powerful termination techniques
from rewriting (e.g., dependency pairs [4, 16]) for termination of logic programs.

4

that Goal (C) is achieved as well. In other words, the implementation of our
approach can indeed compete with modern tools for direct termination analysis
of logic programs and it succeeds for many programs where these tools fail.

2 Preliminaries on Logic Programming and Rewriting

A signature is a pair (Σ, ∆) where Σ and ∆ are finite sets of function and
predicate symbols. Each f ∈ Σ ∪ ∆ has an arity n ≥ 0 and we often write f/n
instead of f . We always assume that Σ contains at least one constant f/0.

Definition 4 (Infinite Terms and Atoms). A term over Σ is a tree where
every node is labelled with a function symbol from Σ or with a variable from V =
{X, Y, . . .}. Every node labelled with f/n has n children and leaves are labelled
with variables or with f/0 ∈ Σ. We write f(t1, . . . , tn) for the term with root f
and direct subtrees t1, . . . , tn. A term t is called finite if all paths in the tree t are
finite, otherwise it is infinite. A term is rational if it only contains finitely many
subterms. The sets of all finite terms, all rational terms, and all (possibly infinite)
terms over Σ are denoted by T (Σ,V), T rat(Σ,V), and T ∞(Σ,V), respectively.
If t is the sequence t1, . . . , tn, then t ∈ T

∞(Σ,V) means that ti ∈ T ∞(Σ,V) for
all i. T (Σ,V) is defined analogously. A position p in a (possibly infinite) term t
addresses a subtree t|p of t where the path from root(t) to root(t|p) is finite. The
term t[s]p results from replacing the subterm t|p at position p in t by the term s.

An atom over (Σ, ∆) is a tree p(t1, . . . , tn), where p/n ∈ ∆ and t1, . . . , tn ∈
T ∞(Σ,V). A∞(Σ, ∆,V) is the set of atoms and Arat(Σ, ∆,V) (and A(Σ, ∆,V),
resp.) are the atoms p(t1, . . . , tn) where ti ∈ T rat(Σ,V) (and ti ∈ T (Σ,V), resp.)
for all i. We write A(Σ, ∆) and T (Σ) instead of A(Σ, ∆, ∅) and T (Σ, ∅).

A clause c is a formula H :– B1, . . . , Bk with k ≥ 0 and H, Bi ∈ A(Σ, ∆,V).
H is c’s head and B1, . . . , Bk is c’s body. A finite set of clauses P is a (logic) pro-
gram. A clause with empty body is a fact and a clause with empty head is a query.
We usually omit “ :– ” in queries and just write “B1, . . . , Bk”. The empty query is
denoted �. In queries, we also admit rational instead of finite atoms B1, . . . , Bk.

Since we are also interested in logic programming without occur check we
consider infinite substitutions θ : V → T ∞(Σ,V). Here, we allow θ(X) 6= X
for infinitely many X ∈ V . Instead of θ(X) we often write Xθ. If θ is a variable
renaming (i.e., a one-to-one correspondence on V), then tθ is a variant of t, where
t can be any expression (e.g., a term, atom, clause, etc.). We write θσ to denote
that the application of θ is followed by the application of σ.5

5 One can even define the composition of infinitely many substitutions σ0, σ1, . . . such
that tσ0σ1 . . . is an instance of tσ0 . . . σn for all terms (or atoms) t and all n ≥ 0: It
suffices to define the symbols at the positions of tσ0σ1... for any term t. Obviously, p

is a position of tσ0σ1... iff p is a position of tσ0...σn for some n ≥ 0. We define that the
symbol of tσ0σ1... at such a position p is f ∈ Σ iff f is at position p in tσ0...σm for
some m ≥ 0. Otherwise, (tσ0...σn)|p = X0 ∈ V. Let n = i0 < i1 < ... be the maximal
(finite or infinite) sequence with σij+1(Xj) = ... = σij+1−1(Xj) = Xj and σij+1

(Xj)

5

We briefly present the procedural semantics of logic programs based on SLD-
resolution using the left-to-right selection rule implemented by most Prolog sys-
tems. More details on logic programming can be found in [2], for example.

Definition 5 (Derivation, Termination). Let Q be a query A1, . . . , Am, let c
be a clause H :– B1, . . . , Bk. Then Q′ is a resolvent of Q and c using θ (denoted
Q ⊢c,θ Q′) if θ is the mgu6 of A1 and H, and Q′ = (B1, . . . , Bk, A2, . . . , Am)θ.

A derivation of a program P and Q is a possibly infinite sequence Q0, Q1, ... of
queries with Q0 = Q where for all i, we have Qi ⊢ci+1,θi+1

Qi+1 for some substitu-
tion θi+1 and some fresh variant ci+1 of a clause of P. For a derivation Q0, ..., Qn

as above, we also write Q0⊢
n
P,θ1...θn

Qn or Q0⊢
n
P Qn, and we also write Q0⊢P Q1.

The query Q terminates for P if all derivations of P and Q are finite.

Our notion of derivation coincides with logic programming without occur
check [11] as implemented in recent Prolog systems such as SICStus or SWI.
Since we consider only definite logic programs, any program which is terminating
without occur check is also terminating with occur check, but not vice versa. So
if our approach detects “termination”, then the program is indeed terminating,
no matter whether one uses logic programming with or without occur check. In
other words, our approach is sound for both kinds of programs, whereas most
other approaches only consider logic programming with occur check.

Example 6. Regard a program P with the clauses p(X) :– equal(X, s(X)), p(X)
and equal(X, X). We obtain p(X) ⊢2

P p(s(s(. . .))) ⊢2
P p(s(s(. . .))) ⊢2

P . . ., where
s(s(. . .)) is the term containing infinitely many nested s-symbols. So the finite
query p(X) leads to a derivation with infinite (rational) queries. While p(X) is
not terminating according to Def. 5, it would be terminating if one uses logic
programming with occur check. Indeed, tools like cTI [25] and TerminWeb [10]
report that such queries are “terminating”. So in contrast to our technique,
such tools are in general not sound for logic programming without occur check,
although this form of logic programming is typically used in practice.

Now we define TRSs and introduce the notion of infinitary constructor rewrit-
ing. For further details on term rewriting we refer to [6].

Definition 7 (Infinitary Constructor Rewriting). A TRS R is a finite set
of rules l→r with l, r∈T (Σ,V) and l /∈V.We divide the signature in defined sym-
bols ΣD ={f | l→r∈R, root(l)=f} and constructors ΣC =Σ\ΣD. R’s infinita-
ry constructor rewrite relation is denoted →R: for s, t ∈ T ∞(Σ,V) we have
s →R t if there is a rule l→r, a position p and a substitution σ : V → T ∞(ΣC ,V)

= Xj+1 for all j. We require Xj 6= Xj+1, but permit Xj = Xj′ otherwise. If this se-
quence is finite (i.e., it has the form n = i0 < . . . < im), then we define (tσ0σ1 . . .)|p =
Xm. Otherwise, the substitutions perform infinitely many variable renamings. In this
case, we use one special variable Z∞ and define (tσ0σ1 . . .)|p = Z∞. So if σ0(X) = Y ,
σ1(Y) = X, σ2(X) = Y , σ3(Y) = X, etc., we define Xσ0σ1 . . . = Y σ0σ1 . . . = Z∞.

6 Note that for finite sets of rational atoms or terms, unification is decidable, the mgu
is unique modulo renaming, and it is a substitution with rational terms [18].

6

with s|p = lσ and t = s[rσ]p. Let →n
R, →≥n

R , →∗
R denote rewrite sequences of n

steps, of at least n steps, and of arbitrary many steps, respectively (where n ≥ 0).
A term t is terminating for R if there is no infinite sequence of the form t →R

t1 →R t2 →R . . . A TRS R is terminating if all terms are terminating for R.

The above definition of →R differs from the usual rewrite relation in two
aspects: (i) We only permit instantiations of rule variables by constructor terms
and (ii) we use substitutions with possibly non-rational infinite terms. In Ex.
9 and 10 in the next section, we will motivate these modifications and show
that there are TRSs which terminate w.r.t. the usual rewrite relation, but are
non-terminating w.r.t. infinitary constructor rewriting and vice versa.

3 Transforming Logic Programs into TRSs

Now we modify the transformation of logic programs into TRSs from Sect. 1 to
make it applicable for arbitrary (possibly non-well-moded) programs as well.
Instead of separating between input and output positions of a predicate p/n, now
we keep all arguments both for pin and pout (i.e., pin and pout have arity n).

Definition 8 (Transformation). A logic program P over (Σ, ∆) is trans-
formed into the following TRS RP over ΣP = Σ ∪ {pin/n, pout/n | p/n ∈ ∆}
∪ {uc,i | c ∈ P , 1 ≤ i ≤ k, where k is the number of atoms in the body of c }.

• For each fact p(s) in P, the TRS RP contains the rule pin(s) → pout(s).
• For each clause c of the form p(s) :– p1(s1), . . . , pk(sk) in P, RP contains:

pin(s) → uc,1(p1in
(s1),V(s))

uc,1(p1out
(s1),V(s)) → uc,2(p2in

(s2),V(s) ∪ V(s1))

. . .

uc,k(pkout
(sk),V(s) ∪ V(s1) ∪ . . . ∪ V(sk−1)) → pout(s)

The following two examples motivate the need for infinitary constructor
rewriting in Def. 8, i.e., they motivate Modifications (i) and (ii).

Example 9. For the logic program of Ex. 1, we obtain the following TRS.

pin(X, X) → pout(X, X)
pin(f(X), g(Y)) → u1(pin(f(X), f(Z)), X, Y)

u1(pout(f(X), f(Z)), X, Y) → u2(pin(Z, g(Y)), X, Y, Z)
u2(pout(Z, g(Y)), X, Y, Z) → pout(f(X), g(Y))

This example shows why rules of TRSs may only be instantiated with constructor
terms (Modification (i)). The reason is that local variables like Z (i.e., variables
occurring in the body but not in the head of a clause) give rise to rules l → r
where V(r) 6⊆ V(l) (cf. the second rule). Such rules are never terminating in
standard term rewriting. However, in our setting one may only instantiate Z with

7

constructor terms. So in contrast to the old transformation in Ex. 2, now all terms
pin(t1, t2) terminate for the TRS if t1 is finite, since now the second argument
of pin prevents an infinite application of the second rule. Indeed, constructor
rewriting correctly simulates the behavior of logic programs, since the variables
in a logic program are only instantiated by “constructor terms”.

For the non-well-moded program of Ex. 3, one obtains a similar TRS where
g(Y) is replaced by g(W) in the right-hand side of the third and the left-hand
side of the last rule. Thus, we can now handle programs where the classical
transformation of [5, 8, 15, 28] failed, cf. Goals (A) and (B).

Derivations in logic programming use unification, while rewriting is defined by
matching. Ex. 10 shows that to simulate unification by matching, we have to con-
sider substitutions with infinite and even non-rational terms (Modification (ii)).

Example 10. Let P be ordered(cons(X, cons(s(X),XS))) :– ordered(cons(s(X),XS)).
If one only considers rewriting with finite or rational terms, then the transformed
TRS RP is terminating. However, the query ordered(YS) is not terminating for
P . Thus, to obtain a sound approach, RP must also be non-terminating. Indeed,
orderedin(cons(X, cons(s(X), cons(s2(X), . . .)))) is non-terminating with RP ’s
rule orderedin(cons(X, cons(s(X),XS))) → u(orderedin(cons(s(X),XS)), X,XS).
This non-rational term corresponds to the infinite derivation with ordered(YS).

Lemma 11 is needed to prove the soundness of the transformation. It relates
derivations with the logic program P to rewrite sequences with the TRS RP .

Lemma 11 (Connecting P and RP). Let P be a program, let t be terms from

T rat(Σ,V), let p(t) ⊢n
P,σ Q. If Q = �, then pin(t)σ →≥n

RP
pout(t)σ. Otherwise, if

Q is “q(v), . . .”, then pin(t)σ →≥n
RP

r for a term r containing the subterm qin(v).

Proof. Let p(t) = Q0 ⊢c1,θ1
. . . ⊢cn,θn

Qn = Q with σ = θ1 . . . θn. We use induc-
tion on n. The base case n = 0 is trivial, since Q = p(t) and pin(t) →0

RP
pin(t).

Now let n ≥ 1. We first regard the case Q1 = � and n = 1. Then, c1 is a
fact p(s) and θ1 is the mgu of p(t) and p(s). Note that such mgu’s instantiate
all variables with constructor terms (as symbols of Σ are constructors of RP).
We obtain pin(t)θ1 = pin(s)θ1 →RP

pout(s)θ1 = pout(t)θ1 where σ = θ1.

Finally, let Q1 6= �. Thus, c1 is p(s) :– p1(s1), . . . , pk(sk), Q1 is p1(s1)θ1, . . . ,
pk(sk)θ1, and θ1 is the mgu of p(t) and p(s). There is an i with 1 ≤ i ≤ k such
that for all j with 1 ≤ j ≤ i − 1 we have pj(sj)σ0 . . . σj−1 ⊢

nj

P,σj
�. Moreover,

if Q = � then i = k and pi(si)σ0 . . . σi−1 ⊢ni

P,σi
� and if Q is “q(v), . . .”,

then pi(si)σ0 . . . σi−1 ⊢ni

P,σi
q(v), . . . Here, n = n1 + . . . + ni + 1, σ0 = θ1,

σ1 = θ2 . . . θn1+1, . . . , and σi = θn1+...+ni−1+2 . . . θn1+...+ni+1. So σ = σ0 . . . σi.

By the induction hypothesis we have pjin
(sj)σ0 . . . σj →

≥nj

RP
pjout

(sj)σ0 . . . σj

and thus also pjin
(sj)σ →

≥nj

RP
pjout

(sj)σ. Moreover, if Q = � then we also have

piin
(si)σ →≥ni

RP
piout

(si)σ where i = k. Otherwise, if Q is “q(v), . . .”, then the

8

induction hypothesis implies piin
(si)σ →≥ni

RP
r′, where r′ contains qin(v). Thus

pin(t)σ = pin(s)σ →RP
uc1,1(p1in

(s1),V(s))σ

→≥n1

RP
uc1,1(p1out

(s1),V(s))σ
→RP

uc1,2(p2in
(s2),V(s) ∪ V(s1))σ

→≥n2

RP
uc1,2(p2out

(s2),V(s) ∪ V(s1))σ

→
≥n3+...+ni−1

RP
uc1,i(piin

(si),V(s) ∪ V(s1) ∪ ... ∪ V(si−1))σ

Moreover, if Q = �, then i = k and the rewrite sequence yields pout(t)σ, since

uc1,i(piin
(si),V(s) ∪ ... ∪ V(si−1))σ →≥ni

RP
uc1,i(piout

(si),V(s) ∪ ... ∪ V(si−1))σ
→RP

pout(s)σ = pout(t)σ.

Otherwise, if Q is “q(v), . . .”, then rewriting yields a term containing qin(v):

uc1,i(piin
(si),V(s) ∪ . . . ∪ V(si−1))σ →≥ni

RP
uc1,i(r

′,V(s)σ ∪ . . . ∪ V(si−1)σ). ⊓⊔

For the soundness proof, we need another lemma which states that we can
restrict ourselves to non-terminating queries which only consist of a single atom.

Lemma 12 (Form of Non-Terminating Queries). Let P be a logic program.
Then for every infinite derivation Q0 ⊢P Q1 ⊢P . . ., there is a Qi of the form
“q(v), . . .” with i > 0 such that the query q(v) is also non-terminating.

Proof. Assume that for all i > 0, the first atom in Qi is successfully proved in ni

steps during the derivation Q0 ⊢P Q1 ⊢P . . . (Otherwise, the derivation would
not be infinite.) Let m be the number of atoms in Q1. But then Q1+n1+...+nm

is
the empty query � which contradicts the infiniteness of the derivation. ⊓⊔

To characterize the classes of queries whose termination we want to analyze,
we use argument filterings. Related definitions can be found in, e.g., [4, 21].

Definition 13 (Argument Filtering). An argument filtering π over a signa-
ture (Σ, ∆) is a function π : Σ ∪ ∆ → 2N where π(f/n) ⊆ {1, . . . , n} for every
f/n ∈ Σ ∪ ∆. We extend π to terms and atoms by defining π(x) = x if x is a
variable and π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tik

)) if π(f) = {i1, . . . , ik} with
i1 < . . . < ik. For any TRS R, we define π(R) = {π(l) → π(r) | l → r ∈ R}.

Argument filterings specify those positions which have to be instantiated
with finite ground terms. Then, we analyze termination of all queries Q where
π(Q) is a (finite) ground atom. In Ex. 1, we wanted to prove termination for all
queries p(t1, t2) where t1 is finite and ground. These queries are described by the
filtering π(h) = {1} for all h ∈ {p, f, g}. Thus, we have π(p(t1, t2)) = p(π(t1)).

Note that argument filterings also operate on function instead of just predi-
cate symbols. Therefore, they can describe more sophisticated classes of queries
than the classical approach of [28] which only distinguishes between input and
output positions of predicates. For example, if one wants to analyze all queries
append(t1, t2, t3) where t1 is a finite list, one would use the filtering π(append) =

9

{1} and π(.) = {2}, where “.” is the list constructor (i.e., .(X, L) = [X |L]). Of
course, our method can easily prove that all these queries are terminating.

Now we show the soundness theorem: to prove termination of all queries Q
where π(Q) is a finite ground atom, it suffices to show termination of all those
terms pin(t) for the TRS RP where π(pin(t)) is a finite ground term and where
t only contains function symbols from the logic program P . Here, π has to be
extended to the new function symbols pin by defining π(pin) = π(p).

Theorem 14 (Soundness of the Transformation). Let P be a logic program
and let π be an argument filtering over (Σ, ∆). We extend π such that π(pin) =
π(p) for all p ∈ ∆. Let S = {pin(t) | p ∈ ∆, t ∈ T

∞(Σ,V), π(pin(t)) ∈ T (Σ) }.
If all terms s ∈ S are terminating for RP , then all queries Q ∈ Arat(Σ, ∆,V)
with π(Q) ∈ A(Σ, ∆) are terminating for P.

Proof. Assume that there is a non-terminating query p(t) as above with p(t) ⊢P

Q1 ⊢P Q2 ⊢P . . . By Lemma 12 there is an i1 > 0 with Qi1 = q1(v1), . . . and an
infinite derivation q1(v1) ⊢P Q′

1 ⊢P Q′
2 ⊢P . . . From p(t) ⊢i1

σ0,P q1(v1), . . . and

Lemma 11 we get pin(t)σ0 →≥i1
RP

r1, where r1 contains the subterm q1in
(v1).

By Lemma 12 again, there is an i2 > 0 with Q′
i2

= q2(v2), . . . and an infinite

derivation q2(v2) ⊢P Q′′
1 ⊢P . . . From q1(v1) ⊢i2

σ1,P q2(v2), . . . and Lemma 11

we get pin(t)σ0σ1 →≥i1
RP

r1σ1 →≥i2
RP

r2, where r2 contains the subterm q2in
(v2).

Continuing this reasoning we obtain an infinite sequence σ0, σ1, . . . of substi-
tutions. For each j ≥ 0, let µj = σj σj+1 . . . result from the infinite composition
of these substitutions. Since rjµj is an instance of rjσj . . . σn for all n ≥ j (cf.
Footnote 5), we obtain that pin(t)µ0 is non-terminating for RP :

pin(t)µ0 →≥i1
RP

r1µ1 →≥i2
RP

r2µ2 →≥i3
RP

. . .

As π(p(t)) ∈ A(Σ, ∆) and thus π(pin(t)µ0) ∈ T (Σ), this is a contradiction. ⊓⊔

4 Termination of Infinitary Constructor Rewriting

One of the most powerful methods for automated termination analysis of rewrit-
ing is the dependency pair (DP) method [4] which is implemented in most current
termination tools for TRSs. However, since the DP method only proves termina-
tion of term rewriting with finite terms, its use is not sound in our setting. Nev-
ertheless, we now show that only very slight modifications are required to adapt
dependency pairs from ordinary rewriting to infinitary constructor rewriting. So
any rewriting tool implementing dependency pairs can easily be modified in or-
der to prove termination of infinitary constructor rewriting as well. Then, it can
also analyze termination of logic programs using the transformation of Def. 8.

Moreover, dependency pairs are a general framework that permits the inte-
gration of any termination technique for TRSs [16, Thm. 36]. Therefore, instead
of adapting each technique separately, it is sufficient only to adapt the DP frame-
work to infinitary constructor rewriting. Then, any termination technique can
be directly used for infinitary constructor rewriting without adapting it as well.

10

For a TRS R over Σ, for each f/n ∈ ΣD let f ♯/n be a fresh tuple symbol.
We often write F instead of f ♯. For t = g(t) with g ∈ ΣD, let t♯ denote g♯(t).

Definition 15 (Dependency Pair [4]). The set of dependency pairs for a
TRS R is DP (R) = {l♯ → t♯ | l → r ∈ R, t is a subterm of r, root(t) ∈ ΣD}.

Example 16. In the TRS R of Ex. 9, we have ΣD ={pin, u1, u2} and DP (R) is

Pin(f(X), g(Y)) → Pin(f(X), f(Z)) (1)
Pin(f(X), g(Y)) → U1(pin(f(X), f(Z)), X, Y) (2)

U1(pout(f(X), f(Z)), X, Y) → Pin(Z, g(Y)) (3)
U1(pout(f(X), f(Z)), X, Y) → U2(pin(Z, g(Y)), X, Y, Z) (4)

While Def. 15 is from [4], all following definitions and theorems are new.
They extend existing concepts from ordinary to infinitary constructor rewriting.

For termination, one tries to prove that there are no infinite chains of depen-
dency pairs. Intuitively, a dependency pair corresponds to a function call and
a chain represents a possible sequence of calls that can occur during rewriting.
Def. 17 extends the notion of chains to infinitary constructor rewriting. To this
end, we use an argument filtering π that describes which arguments of function
symbols have to be finite terms. So if π does not delete arguments (i.e., if π(f) =
{1, . . . , n} for all f/n), then this corresponds to ordinary (finitary) rewriting and
if π deletes all arguments (i.e., if π(f) = ∅ for all f), then this corresponds to full
infinitary rewriting. In Def. 17, the TRS D usually stands for a set of dependency
pairs. (Note that if R is a TRS, then DP (R) is also a TRS.)

Definition 17 (Chain). Let D,R be TRSs and π be a filtering over Σ. A (pos-
sibly infinite) sequence of pairs s1→t1, s2→t2, ... from D is a (D,R, π)-chain iff

• there are substitutions σi : V → T ∞(ΣC ,V) such that tiσi →∗
R si+1σi+1.

Here, ΣC are the constructors of the TRS R.
• π(siσi), π(tiσi) ∈ T (Σ) and for all terms q in the rewrite sequence from tiσi

to si+1σi+1 we have π(q) ∈ T (Σ) as well. So all terms in the sequence have
finite ground terms on those positions which are not filtered away by π.

In Ex. 16, “(2), (3)” is a chain for any argument filtering π: if one instantiates
X and Z with the same finite ground term, then (2)’s instantiated right-hand
side rewrites to an instance of (3)’s left-hand side. Note that if one uses an
argument filtering π which permits an instantiation of X and Z with the infinite
term f(f(. . .)), then there is also an infinite chain “(2), (3), (2), (3), . . . ”

For termination of a program P , by Thm. 14 we have to show that if
π(pin(t)) is a finite ground term and t only contains function symbols from
the logic program (i.e., t contains no defined symbols of the TRS RP), then
pin(t) is terminating for RP . Thm. 18 states that one can prove absence of in-
finite (DP (RP),RP , π′)-chains instead. Here, π′ is a filtering which filters away
“at least as much” as π. However, π′ has to be chosen in such a way that the
filtered TRSs π′(DP (RP)) and π′(RP) satisfy the “variable condition”, i.e.,
V(π′(r)) ⊆ V(π′(l)) for all l → r ∈ DP (RP) ∪RP . Then the filtering π′ detects
all potentially infinite subterms in rewrite sequences (i.e., all subterms which
correspond to “non-unification-free parts” of P).

11

Theorem 18 (Proving Infinitary Termination). Let R be a TRS over Σ
and let π be an argument filtering over Σ. Let π′ be an argument filtering with
π′(f) ⊆ π(f) for all f ∈ Σ. Moreover, π′ should also be defined on tuple symbols
such that π′(F) ⊆ π′(f) for all f ∈ ΣD. Assume that π′(DP (R)) and π′(R)
satisfy the variable condition.7 If there is no infinite (DP (R),R, π′)-chain, then
all terms f(t) with t ∈ T

∞(ΣC ,V) and π(f(t)) ∈ T (Σ) are terminating for R.

Proof. Assume there is a non-terminating term f(t) as above. Since t does not
contain defined symbols, the first rewrite step in the infinite sequence is on the
root position with a rule l = f(l) → r where lσ1 = f(t). Since σ1 does not
introduce defined symbols, all defined symbols of rσ1 occur on positions of r.
So there is a subterm r′ of r with defined root such that r′σ1 is also non-termi-
nating. Let r′ denote the smallest such subterm (i.e., for all proper subterms r′′ of
r′, the term r′′σ1 is terminating). Then l♯ → r′♯ is the first dependency pair of the
infinite chain that we construct. Note that π(lσ1) and thus, π′(l♯σ1) = π′(F (t))
is a finite ground term by assumption. Moreover, as l♯ → r′♯ ∈ DP (R) and as
π′(DP (R)) satisfies the variable condition, π′(r′♯σ1) is finite and ground as well.

The infinite sequence continues by rewriting r′σ1’s proper subterms repeat-
edly. As π′(R) satisfies the variable condition, the terms remain finite and ground
when applying the filtering π′. Finally, a root rewrite step is performed again.
Repeating this construction infinitely many times results in an infinite chain. ⊓⊔

Example 19. We want to prove termination of Ex. 1 for all queries Q where π(Q)
is finite and ground for the filtering π(h) = {1} for all h ∈ {p, f, g}. By Thm. 14
and 18, it suffices to show absence of infinite (DP (R),R, π′)-chains. Here, R is
the TRS from Ex. 9 and DP (R) are Rules (1) – (4) from Ex. 16. The filtering
π′ has to satisfy π′(pin) ⊆ π(pin) = π(p) = {1}, π′(h) ⊆ π(h) = {1} for h ∈
{f, g}, and π′(H) ⊆ π′(h) for all defined symbols h. Moreover, we have to choose
π′ such that the variable condition is fulfilled. So while π is always given, π′ has to
be determined automatically. This can indeed be automated, since there are only
finitely many possibilities for π′. In particular, defining π′(h) = ∅ for all symbols
h is always possible. But to obtain a successful termination proof afterwards, in
our implementation we generate filterings where the sets π′(h) are as large as pos-
sible, since such filterings provide more information about the finiteness of argu-
ments. So in our example, we use π′(pin)=π′(Pin)=π′(f)=π′(g)={1}, π′(pout)
= π′(u1) = π′(U1) = {1, 2}, and π′(u2) = π′(U2) = {1, 2, 4}. For the non-
well-moded Ex. 3 we choose π′(g) = ∅ instead to satisfy the variable condition.

Finally, we show how to prove absence of infinite (DP (R),R, π)-chains auto-
matically. To this end, we adapt the DP framework of [16] to infinitary rewriting.

7 To see why the variable condition is needed in Thm. 18, let R = {g(X) → f(X),
f(s(X)) → f(X)} and π = π′ where π′(g) = ∅, π′(f) = π′(F) = π′(s) = {1}. R’s first
rule violates the variable condition: V(π′(f(X))) = {X} 6⊆ V(π′(g(X))) = ∅. There is
no infinite chain, since π′ does not allow us to instantiate the variable X in the depen-
dency pair F(s(X)) → F(X) by an infinite term. Nevertheless, there is a non-termi-
nating term g(s(s(. . .))) which is filtered to a finite ground term π′(g(s(s(. . .)))) = g.

12

In this framework, we now consider arbitrary DP problems (D,R, π) where D and
R are TRSs and π is an argument filtering. Our goal is to show that there is no in-
finite (D,R, π)-chain. In this case, we call the problem finite. Termination tech-
niques should now be formulated as DP processors which operate on DP prob-
lems instead of TRSs. A DP processor Proc takes a DP problem as input and
returns a new set of DP problems which then have to be solved instead. Proc is
sound if for all DP problems d, d is finite whenever all DP problems in Proc(d) are
finite. So termination proofs start with the initial DP problem (DP (R),R, π).
Then this problem is transformed repeatedly by sound DP processors. If the
final processors return empty sets of DP problems, then termination is proved.

In Thm. 22, 24, and 26 we will recapitulate three of the most important
existing DP processors [16] and describe how they must be modified for infinitary
constructor rewriting.8 To this end, they now also have to take the argument
filtering π into account. The first processor uses an estimated dependency graph
to estimate which dependency pairs can follow each other in chains.

Definition 20 (Estimated Dependency Graph). Let (D,R, π) be a DP
problem. The nodes of the estimated (D,R, π)-dependency graph are the pairs
of D and there is an arc from s → t to u → v iff CAP(t) and a variant u′ of u
unify with an mgu µ where π(CAP (t)µ) = π(u′µ) is a finite term. Here, CAP(t)
replaces all subterms of t with defined root symbol by different fresh variables.

Example 21. For the DP problem (DP (R),R, π′) from Ex. 19 we obtain:

(1) oo (3)
%%

(2) //
ee

(4)

For example, there is an arc (2) → (3), as CAP(U1(pin(f(X), f(Z)), X, Y)) =
U1(V, X, Y) unifies with U1(pout(f(X

′), f(Z ′)), X ′, Y ′) by instantiating the argu-
ments of U1 with finite terms. But there are no arcs (1) → (1) or (1) → (2),
since Pin(f(X), f(Z)) and Pin(f(X ′), g(Y ′)) do not unify, even if one instantiates
Z and Y ′ by infinite terms (as permitted by the filtering π′(Pin) = {1}).

Note that filterings are used to detect potentially infinite arguments, but
they are not removed, since they can still be useful in the termination proof. In
Ex. 21, these arguments are needed to determine that there are no arcs from (1).

If s→t, u→v is a (D,R, π)-chain then there is an arc from s→t to u→v in
the estimated dependency graph. Thus, absence of infinite chains can be proved
separately for each maximal strongly connected component (SCC) of the graph.
This observation is used by the following processor to modularize termination
proofs by decomposing a DP problem into sub-problems.

Theorem 22 (Dependency Graph Processor). For a DP problem (D,R,π),
let Proc return {(D1,R, π), . . . , (Dn,R, π)} where D1, . . . ,Dn are the nodes of
the SCCs in the estimated dependency graph. Then Proc is sound.

8 Their soundness proofs can be found in http://aprove.informatik.rwth-aachen.

de/eval/LP/SGST06.ps.

13

Example 23. In Ex. 21, the only SCC consists of (2) and (3). Thus, the depen-
dency graph processor transforms the initial DP problem (DP (R),R, π′) into
({(2), (3)},R, π′), i.e., it deletes the dependency pairs (1) and (4).

The next processor is based on reduction pairs (%,≻) where % and ≻ are rela-
tions on finite terms. Here, % is reflexive, transitive, monotonic (i.e., s % t implies
f(. . . s . . .) % f(. . . t . . .) for all function symbols f), and stable (i.e., s % t implies
sσ % tσ for all substitutions σ) and ≻ is a stable well-founded order compatible
with % (i.e., % ◦ ≻ ⊆ ≻ or ≻ ◦ % ⊆ ≻). There are many techniques to search
for such relations automatically (LPO, polynomial interpretations, etc. [14]).

For a DP problem (D,R, π), we now try to find a reduction pair (%,≻) such
that all filtered R-rules are weakly decreasing (w.r.t. %) and all filtered D-depen-
dency pairs are weakly or strictly decreasing (w.r.t. % or ≻).9 Requiring π(l) %
π(r) for all l → r ∈ R ensures that in chains s1 → t1, s2 → t2, . . . with tiσi →

∗
R

si+1σi+1 as in Def. 17, we have π(tiσi) % π(si+1σi+1). Hence, if a reduction
pair satisfies the above conditions, then the strictly decreasing dependency pairs
(i.e., those s → t ∈ D where π(s) ≻ π(t)) cannot occur infinitely often in chains.
So the following processor deletes these pairs from D. For any TRS D and any
relation ≻, let D≻π

= {s → t ∈ D | π(s) ≻ π(t)}.

Theorem 24 (Reduction Pair Processor). Let (%,≻) be a reduction pair.
Then the following DP processor Proc is sound. For (D,R, π), Proc returns

• {(D \ D≻π
,R, π)}, if D≻π

∪D%π
= D and R%π

= R
• {(D,R, π)}, otherwise

Example 25. For the DP problem ({(2), (3)},R, π′) in Ex. 23, one can easily
find a reduction pair10 where the dependency pair (3) is strictly decreasing and
where (2) and all rules are weakly decreasing after applying the filtering π′:

Pin(f(X)) % U1(pin(f(X)), X) pin(X) % pout(X, X)
U1(pout(f(X), f(Z)), X) ≻ Pin(Z) pin(f(X)) % u1(pin(f(X)), X)

u1(pout(f(X), f(Z)), X) % u2(pin(Z), X, Z)
u2(pout(Z, g(Y)), X, Z) % pout(f(X), g(Y))

Thus, the reduction pair processor can remove (3) from the DP problem which
results in ({(2)},R, π′). By applying the dependency graph processor again, one
obtains the empty set of DP problems, since now the estimated dependency
graph only has the node (2) and no arcs. This proves that the initial DP prob-
lem (DP (R),R, π′) from Ex. 19 is finite and thus, the logic program from Ex.
1 terminates for all queries Q where π(Q) is finite and ground. Note that ter-
mination of the non-well-moded program from Ex. 3 can be shown analogously
since finiteness of the initial DP problem can be proved in the same way. The
only difference is that we obtain g instead of g(Y) in the last inequality above.

9 We only consider filtered rules and dependency pairs. Thus, % and ≻ are only used
to compare those parts of terms which remain finite for all instantiations in chains.

10 One can use the polynomial interpretation |Pin(t1, t2)| = |pin(t1, t2)| = |U1(t1, t2)| =
|u1(t1, t2)|= |u2(t1, t2, t3)|= |t1|, |pout(t1, t2)|= |t2|, |f(t1)|= |t1| + 1, and |g(t1)|=0.

14

As in Thm. 22 and 24, many other existing DP processors [16] can easily be
adapted to infinitary constructor rewriting as well. Finally, one can also use the
following processor to transform a DP problem (D,R, π) for infinitary construc-
tor rewriting into a DP problem (π(D), π(R), id) for ordinary rewriting. After-
wards, any existing DP processor for ordinary rewriting becomes applicable.11

Since any termination technique for TRSs can immediately be formulated as a
DP processor [16, Thm. 36], now any termination technique for ordinary rewrit-
ing can be directly used for infinitary constructor rewriting as well.

Theorem 26 (Argument Filtering Processor). Let Proc((D,R, π)) =
{(π(D), π(R), id)} where id(f) = {1, . . . , n} for all f/n. Then Proc is sound.

5 Experiments and Conclusion

In this paper, we developed a new transformation from logic programsP to TRSs
RP . To prove the termination of a class of queries for P , it is now sufficient
to analyze the termination behavior of RP when using infinitary constructor
rewriting. This approach is even sound for logic programming without occur
check. We showed how to adapt the DP framework of [4, 16] from ordinary term
rewriting to infinitary constructor rewriting. Then the DP framework can be
used for termination proofs of RP and thus, for automated termination analysis
of P . Since any termination technique for TRSs can be formulated as a DP
processor [16], now any such technique can also be used for logic programs.

We integrated our approach in the termination tool AProVE [17] which im-
plements the DP framework. To evaluate our results, we tested AProVE against
three other representative termination tools for logic programming: TALP [29]
is the only other available tool based on transformational methods (it uses the
classical transformation [28] described in Sect. 1), whereas cTI [25] and Ter-

minWeb [10] are based on direct approaches. We ran the tools on a set of 296
examples in fully automatic mode.12 This set includes all logic programming
examples from the Termination Problem Data Base which is used in the annual
International Termination Competition13 and which contains several collections
provided by the developers of other tools. Moreover, we also included all exam-
ples from the experimental evaluation of [7]. However, to eliminate the influence
of the translation from Prolog to logic programs, we removed all examples that
use non-trivial built-in predicates or that are not definite logic programs after
ignoring the cut operator. Here, TALP succeeds on 163 examples, cTI proves ter-
mination of 167 examples, TerminWeb succeeds on 178 examples, and AProVE

verifies termination of 208 examples (including all where TALP is successful).

11 If (D,R, π) results from the transformation of a logic program, then for (π(D),
π(R), id) it is even sound to apply the existing DP processors for innermost rewriting
[16]. These processors are usually more powerful than those for ordinary rewriting.

12 We combined termsize and list-length norm for TerminWeb and allowed 5 iterations
before widening for cTI. Apart from that, we used the default settings of the tools.

13 For details, see http://www.lri.fr/~marche/termination-competition/.

15

The comparison of AProVE and TALP shows that our approach improves
significantly upon the previous transformational method that TALP is based on,
cf. Goals (A) and (B). In particular, TALP fails for all non-well-moded programs.

The comparison with cTI and TerminWeb demonstrates that our new trans-
formational approach is comparable in power to direct approaches. But there is
a substantial set of programs where AProVE succeeds and direct tools fail (cf.
Goal (C)) and there is also a substantial set of examples where direct tools suc-
ceed and AProVE fails. More precisely, AProVE succeeds on 57 examples where
cTI fails and on 46 examples where TerminWeb fails. On the other hand, there
are 16 examples where cTI succeeds whereas AProVE cannot prove termination
and there are also 16 examples where TerminWeb succeeds and AProVE fails.

Thus, transformational and direct approaches both have their advantages
and the most powerful solution would be to combine direct tools like cTI or
TerminWeb with a transformational prover like AProVE which is based on the
contributions of this paper. This also indicates that it is indeed beneficial to use
termination techniques from TRSs for logic programs as well. To run AProVE,
for details on our experiments, to access our collection of examples, and for a
discussion on the limitations14 of our approach and its implementation, we refer
to http://aprove.informatik.rwth-aachen.de/eval/LP/.

Acknowledgements. We thank M. Codish, D. De Schreye, and F. Mesnard for
helpful comments and R. Bagnara and S. Genaim for help with the experiments.

References

1. G. Aguzzi and U. Modigliani. Proving termination of logic programs by trans-
forming them into equivalent term rewriting systems. In Proc. 13th FST & TCS,
LNCS 761, pages 114–124, 1993.

2. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
3. K. R. Apt and S. Etalle. On the unification free Prolog programs. In Proc. 18th

MFCS, LNCS 711, pages 1–19, 1993.
4. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133–178, 2000.
5. T. Arts and H. Zantema. Termination of logic programs using semantic unification.

In Proc. 5th LOPSTR, LNCS 1048, pages 219–233, 1995.
6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
7. M. Bruynooghe, M. Codish, J. Gallagher, S. Genaim, and W. Vanhoof. Termina-

tion analysis of logic programs through combination of type-based norms. ACM

Transactions on Programming Languages and Systems, 2006. To appear.

14 Our approach could fail for 3 reasons: (1) The transformation of Thm. 14 could fail,
i.e., there could be a logic program which is terminating for the set of queries, but not
all corresponding terms are terminating in the transformed TRS. We do not know
such examples and it could be that this step is indeed complete. (2) The approach via
dependency pairs (Thm. 18) can fail to prove termination of the transformed TRS.
(3) Our implementation can fail to prove finiteness of the resulting DP problem from
Thm. 18. On the website, we give examples for Failures (2) and (3).

16

8. M. Chtourou and M. Rusinowitch. Méthode transformationelle pour la preuve de
terminaison des programmes logiques. Unpublished manuscript, 1993.

9. M. Codish, V. Lagoon, and P. Stuckey. Testing for termination with monotonicity
constraints. In Proc. 21st ICLP, LNCS 3668, pages 326–340, 2005.

10. M. Codish and C. Taboch. A semantic basis for termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

11. A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S. Tärnlund, editors,
Logic Programming. Academic Press, 1982.

12. D. De Schreye and S. Decorte. Termination of logic programs: The never-ending
story. Journal of Logic Programming, 19&20:199–260, 1994.

13. D. De Schreye and A. Serebrenik. Acceptability with general orderings. In Com-

putational Logic. Logic Prog. and Beyond., LNCS 2407, pages 187–210, 2002.
14. N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3:69–116, 1987.
15. H. Ganzinger and U. Waldmann. Termination proofs of well-moded logic programs

via conditional rewrite systems. Proc. 3rd CTRS, LNCS 656, pages 216–222, 1993.
16. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:

Combining techniques for automated termination proofs. In Proc. 11th LPAR,
LNAI 3452, pages 301–331, 2005.

17. J. Giesl, P. Schneider-Kamp, R. Thiemann. AProVE 1.2: Automatic termination
proofs in the DP framework. In Proc. 3rd IJCAR, LNAI 4130, pp. 281–286, 2006.

18. G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. PhD, 1976.
19. M. Krishna Rao, D. Kapur, and R. Shyamasundar. Transformational methodology

for proving termination of logic programs. J. Log. Prog., 34(1):1–42, 1998.
20. V. Lagoon, F. Mesnard, and P. J. Stuckey. Termination analysis with types is more

accurate. In Proc. 19th ICLP, LNCS 2916, pages 254–268, 2003.
21. M. Leuschel and M. H. Sørensen. Redundant argument filtering of logic programs.

In Proc. 6th LOPSTR, LNCS 1207, pages 83–103, 1996.
22. N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. TermiLog: A system for checking ter-

mination of queries to logic programs. Proc. 9th CAV, LNCS 1254, p. 444-447, 1997.
23. M. Marchiori. Logic programs as term rewriting systems. In Proc. 4th ALP, LNCS

850, pages 223–241, 1994.
24. M. Marchiori. Proving existential termination of normal logic programs. In Proc.

5th AMAST, LNCS 1101, pages 375–390, 1996.
25. F. Mesnard and R. Bagnara. cTI: A constraint-based termination inference tool

for ISO-Prolog. Theory and Practice of Logic Programming, 5(1&2):243–257, 2005.
26. F. Mesnard and S. Ruggieri. On proving left termination of constraint logic pro-

grams. ACM Transaction on Computational Logic, 4(2):207–259, 2003.
27. M. T. Nguyen and D. De Schreye. Polynomial interpretations as a basis for termi-

nation analysis of logic programs. Proc. 21. ICLP, LNCS 3668, p.311-325, 2005.
28. E. Ohlebusch. Termination of logic programs: Transformational methods revisited.

Appl. Algebra in Engineering, Communication and Computing, 12:73–116, 2001.
29. E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination analysis

of logic programs. In Proc. 11th RTA, LNCS 1833, pages 270–273, 2000.
30. F. van Raamsdonk. Translating logic programs into conditional rewriting systems.

In Proc. 14th ICLP, pages 168–182. MIT Press, 1997.
31. A. Serebrenik and D. De Schreye. Proving termination with adornments. In Proc.

13th LOPSTR, LNCS 3018, pages 108–109, 2003.
32. A. Serebrenik and D. De Schreye. Inference of termination conditions for numerical

loops in Prolog. Theory and Practice of Logic Programming, 4:719–751, 2004.
33. J.-G. Smaus. Termination of logic programs using various dynamic selection rules.

In Proc. 20th ICLP, LNCS 3132, pages 43–57, 2004.

17

