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Abstrat. Several indution theorem provers have been developed

whih support mehanized veri�ation of funtional programs. Unfor-

tunately, a major problem is that they often fail in verifying tail reur-

sive funtions (whih orrespond to imperative programs). However, in

pratie imperative programs are used almost exlusively.

We present an automati transformation to takle this problem. It trans-

forms funtions whih are hard to verify into funtions whose orretness

an be shown by the existing provers. In ontrast to lassial program

transformations, the aim of our tehnique is not to inrease eÆieny, but

to inrease veri�ability. Therefore, this paper introdues a novel applia-

tion area for program transformations and it shows that suh tehniques

an in fat solve some of the most urgent urrent hallenge problems in

automated veri�ation and indution theorem proving.

1 Introdution

To guarantee the orretness of programs, a formal veri�ation is required. How-

ever, mathematial orretness proofs are usually very expensive and time-on-

suming. Therefore, program veri�ation should be automated as far as possible.

As indution

1

is the essential proof method for veri�ation, several systems

have been developed for automated indution proving. These systems are su-

essfully used for funtional programs, but a major problem for their pratial

appliation is that they are often not suitable for verifying imperative programs.

The reason is that the translation of imperative programs into the funtional

input language of these systems always yields tail reursive funtions whih are

partiularly hard to verify. Thus, developing tehniques for proofs about tail

reursive funtions is one of the most important researh topis in this area.

In Set. 2 we present our funtional programming language and give a brief

introdution to indution proving. We illustrate that the reason for the diÆul-

ties in verifying tail reursive funtions is that their aumulator parameter is

usually initialized with a �xed value, but this value is hanged in reursive alls.
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This paper introdues a new framework for mehanized veri�ation of suh

funtions by �rst transforming them into funtions whih are better suitable for

veri�ation and by afterwards applying the existing indution provers for their

veri�ation. To solve the veri�ation problems with tail reursive funtions, the

ontext around reursive aumulator arguments has to be shifted away, suh

that the aumulator parameter is no longer hanged in reursive alls. For that

purpose, we introdue two automati transformation tehniques in Set. 3 - 5.

While of ourse our transformations are not always appliable, they proved su-

essful on a representative olletion of tail reursive funtions, f. [Gie99b℄. In

this way, orretness of many imperative programs an be proved automatially

without inventing loop invariants or generalizations.

2 Funtional Programs and their Veri�ation

We onsider a �rst order funtional language with eager semantis and (non-

parameterized and free) algebrai data types. As an example, regard the data

type nat for natural numbers whose objets are built with the onstrutors 0

and s : nat ! nat (for the suessor funtion). Thus, the onstrutor ground

terms represent the data objets of the respetive data type. In the following,

we often write \1" instead of \s(0)", et. For every n-ary onstrutor  there

are n seletor funtions d

1

; : : : ; d

n

whih serve as inverse funtions to  (i.e.,

d

i

((x

1

; : : : ; x

n

)) � x

i

). For example, for the unary onstrutor s we have the

seletor funtion p suh that p(s(m)) � m (i.e., p is the predeessor funtion).

In partiular, every program F ontains the type bool whose objets are

built with the (nullary) onstrutors true and false. Moreover, there is a built-in

equality funtion = : � � � ! bool for every data type � . To distinguish the

funtion symbol = from the equality prediate symbol, we denote the latter by

\�". The funtions of a funtional program F have the following form.

funtion f (x

1

: �

1

; : : : ; x

n

: �

n

) : � (

if b

1

then r

1

.

.

.

if b

m

then r

m

Here, \if b

i

then r

i

" is alled the i-th ase of f with ondition b

i

and result r

i

.

For funtions with just one ase of the form \if true then r" we write \funtion

f (x

1

: �

1

; : : : ; x

n

: �

n

) : � ( r". To ease readability, if b

m

is true, then we

often denote the last ase by \else r

m

". As an example, onsider the following

funtion (whih alls an auxiliary algorithm + for addition).

funtion times (x; y : nat) : nat (

if x 6= 0 then y + times(p(x); y)

else 0

If a funtion f is alled with a tuple of ground terms t

�

as arguments, then t

�

is evaluated �rst (to onstrutor ground terms q

�

). Now the ondition b

1

[x

�

=q

�

℄
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of the �rst ase is heked. If it evaluates to true, then r

1

[x

�

=q

�

℄ is evaluated.

Otherwise, the ondition of the seond ase is heked, et. So the onditions of

a funtional program as above are tested from top to bottom.

Our aim is to verify statements about the algorithms of a funtional program.

We only onsider universally quanti�ed equations 8... s � t and we often omit

the quanti�ers to ease readability. Let s; t ontain the tuple of variables x

�

. Then

s � t is indutively true for the program F , denoted F j=

ind

s � t, if for all those

data objets q

�

where evaluation of s[x

�

=q

�

℄ or evaluation of t[x

�

=q

�

℄ is de�ned,

evaluation of the other term t[x

�

=q

�

℄ resp. s[x

�

=q

�

℄ is de�ned as well, and if both

evaluations yield the same result. For example, the onjeture

times(times(x; y); z) � times(x; times(y; z)) (1)

is indutively true, sine times(times(x; y); z) and times(x; times(y; z)) evaluate

to the same result for all instantiations with data objets. Similar notions of

indutive truth are widely used in program veri�ation and indution theorem

proving. For an extension of indutive truth to more general formulas and for a

model theoreti haraterization see e.g. [ZKK88,Wal94,BR95,Gie99℄.

To prove indutive truth automatially, several indution theorem provers

have been developed, e.g. [BM79,KM87,ZKK88,BSH

+

93,Wal94,BR95,BM98℄.

For instane, these systems an prove onjeture (1) by strutural indution

on the variable x. If we abbreviate (1) by '(x; y; z), then in the indution base

ase they would prove '(0; y; z) and in the step ase (where x 6= 0), they would

show that the indution hypothesis '(p(x); y; z) implies the indution onlusion

'(x; y; z).

However, one of the main problems for the appliation of these indution

theorem provers in pratie is that most of them an only handle funtional

algorithms with reursion, but they are not designed to verify imperative algo-

rithms ontaining loops.

The lassial tehniques for the veri�ation of imperative programs (like the

so-alled Hoare-alulus [Hoa69℄) allow the proof of partial orretness state-

ments of the form f'

pre

g P f'

post

g. The semantis of this expression is that in

ase of termination, the program P transforms all program states whih satisfy

the preondition '

pre

into program states satisfying the postondition '

post

. As

an example, regard the following imperative program for multipliation.

proedure multiply (x; y; z : nat)(

z := 0;

while x 6= 0 do x := p(x);

z := y + z od

To verify that this imperative program is equivalent to the funtional program

times, one has to prove the statement

fx�x

0

^ y�y

0

^ z�0g while x 6= 0 do x := p(x); z := y + z od fz� times(x

0

; y

0

)g:

Here, x

0

and y

0

are additional variables whih represent the initial values of

the variables x and y. However, in the Hoare-alulus, for that purpose one
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needs a loop invariant whih is a onsequene of the preondition and whih

(together with the exit ondition x = 0 of the loop) implies the postondition

z � times(x

0

; y

0

). In our example, the proof sueeds with the loop invariant

z + times(x; y) � times(x

0

; y

0

): (2)

The searh for loop invariants is the main diÆulty when verifying imperative

programs. Of ourse, it would be desirable that programmers develop suitable

loop invariants while writing their programs, but in reality this is still often

not the ase. Thus, for an automation of program veri�ation, suitable loop

invariants would have to be disovered mehanially. However, while there exist

some heuristis and tehniques for the hoie of loop invariants [SI98℄, in general

this task seems diÆult to mehanize [Dij85℄.

Therefore, in the following we present an alternative approah for automated

veri�ation of imperative programs. For that purpose our aim was to use the

existing powerful indution theorem provers. As the input language of these sys-

tems is restrited to funtional programs, one �rst has to translate imperative

programs into funtional ones. Suh a translation an easily be done automati-

ally, f. [MC60,Gie99a℄.

In this translation, every while-loop is transformed into a separate funtion.

For the loop of the proedure multiply we obtain the following algorithm mult

whih takes the input values of x, y, and z as arguments. If the loop-ondition is

satis�ed (i.e., if x 6= 0), then mult is alled reursively with the new values of x,

y, and z. Otherwise, mult returns the value of z. The whole imperative proedure

multiply orresponds to the following funtional algorithm with the same name

whih alls the auxiliary funtion mult with the initial value z � 0.

funtion multiply (x; y : nat) : nat (

mult(x; y; 0)

funtion mult (x; y; z : nat) : nat (

if x 6= 0 then mult(p(x); y; y + z)

else z

Thus, while the above funtions may look unnatural on their own, veri�ation

of suh funtions is indeed an important pratial problem, sine this is required

in order to verify (very natural) imperative proedures like multiply.

Now indution provers may be used to prove onjetures about the funtions

multiply and mult. However, it turns out that the funtional algorithms resulting

from this translation have a ertain harateristi form whih makes them un-

suitable for veri�ation tasks. In fat, this diÆulty orresponds to the problem

of �nding loop invariants for the original imperative program.

To verify the equivalene of multiply and times using the transformed fun-

tions multiply and mult, one now has to prove multiply(x; y) � times(x; y), i.e.,

mult(x; y; 0) � times(x; y): (3)

Using strutural indution on x, the base formula mult(0; y; 0) � times(0; y)

an easily be proved, but there is a problem with the indution step. In the ase

x 6= 0 we have to show that the indution hypothesis

4



mult(p(x); y; 0) � times(p(x); y) (IH)

implies the indution onlusion mult(x; y; 0) � times(x; y). Using the algorithms

of mult and times, the indution onlusion an be transformed into

mult(p(x); y; y) � y + times(p(x); y). (IC)

However, the desired proof fails, sine the indution hypothesis (IH) annot be

suessfully used for the proof of (IC).

The reason for this failure is due to the tail reursive form of mult (i.e., there

is no ontext around mult's reursive all). Instead, its result is omputed in the

aumulator parameter z. The aumulator z is initialized with 0, but this value

is hanged in the reursive alls of mult. For that reason the indution hypothesis

(where z � 0) does not orrespond to the indution onlusion (where z � y).

The lassial solution for this problem is to generalize the onjeture (3) to

a stronger onjeture whih is easier to prove. For instane, in our example one

needs the following generalization whih an be proved by a suitable indution.

mult(x; y; z) � z + times(x; y) (4)

Thus, developing generalization tehniques is one of the main hallenges in

indution theorem proving [Aub79,BM79,HBS92,Wal94,IS97,IB99℄. Note that

the generalization (4) orresponds to the loop invariant (2) that one would need

for a diret veri�ation of the imperative program multiply in the Hoare-alulus.

So in fat, �nding suitable generalizations is losely related to the searh for loop

invariants.

2

In this paper we propose a new approah to avoid the need for generaliza-

tions or loop invariants. The idea is to transform funtions like mult, whih are

diÆult to verify, into algorithms like times whih are muh better amenable

to automated indution proofs. For example, the well-known indution theorem

proving system nqthm [BM79,BM98℄ fails in proving (3), whereas after a trans-

formation of multiply and mult into times this onjeture beomes trivial. This

approah of verifying imperative programs via a translation into funtional pro-

grams is based on the observation that in funtional languages there often exists

a formulation of the algorithms whih is easy to verify (whereas this formulation

annot be expressed in iterative form). The aim of our tehnique is to �nd suh

a formulation automatially.

Our approah has the advantage that the transformation solves the veri�a-

tion problems resulting from a tail reursive algorithm one and for all. On the

other hand, when using generalizations or loop invariants one has to �nd a new

generalization (or a new loop invariant, respetively) for every new onjeture

2

A di�erene between verifying funtional programs by indution and verifying im-

perative programs by loop invariants and indutive assertions is that for imperative

programs one uses a \forward" indution starting with the initial values of the pro-

gram variables and for funtional programs a \reversed" indution is used whih goes

bak from their �nal values to the initial ones. However, the required loop invariants

resp. the orresponding generalizations are easily interhangeable, f. [RY76℄.

5



about suh an algorithm. Moreover, most tehniques for �nding generalizations

or loop invariants have to be guided by the system user, sine they rely on the

presene of suitable lemmata. By these lemmata the user often has to provide

the main idea for the generalization resp. the loop invariant. In ontrast, our

transformation works automatially.

In partiular, automati generalization tehniques fail for many onjetures

whih ontain several ourrenes of a tail reursive funtion. As an example,

regard the assoiativity of multiply or, in other words,

mult(mult(x; y; 0); z; 0) � mult(x;mult(y; z; 0); 0): (5)

Similar to (3), a diret proof by strutural indution on x does not sueed.

So again, the standard solution would be to generalize the onjeture (5) by

replaing the �xed value 0 by suitable terms. For example, one may generalize

(5) to

mult(mult(x; y; v); z; 0) � mult(x;mult(y; z; 0);mult(v; z; 0)):

To ease readability, we have underlined those terms where the generalization took

plae. While the proof of this onjeture is not too hard (using the distributivity

of + over multiply), we are not aware of any tehnique whih would �nd this

generalization (or the orresponding loop invariant) automatially, beause it is

diÆult to synthesize the orret replaement of the third argument in the right-

hand side (by mult(v; z; 0)). The problem is that the disturbing 0's ourring in

(5) annot just be generalized to new variables, sine this would yield a awed

onjeture. Thus, �nding generalizations for onjetures with several ourrenes

of a tail reursive funtion is often partiularly hard, as di�erent ourrenes of an

instantiated aumulator may have to be generalized to di�erent new terms.

3

On

the other hand, our transformation allows us to prove suh onjetures without

user interation. Essentially, the reason is that while generalizations and loop

invariants depend on both the algorithms and the onjetures to be proved, the

transformation only depends on the algorithms.

The area of program transformation is a well examined �eld whih has found

many appliations in software engineering, program synthesis, and ompiler on-

strution. For surveys see e.g. [BW82,Par90,MPS93,PP96,PP98℄. However, the

transformations developed for these appliations had a goal whih is fundamen-

tally di�erent from ours. Our aim is to transform programs into new programs

whih are easier to verify. In ontrast to that, the lassial transformation meth-

ods aim to inrease eÆieny. Suh transformations are unsuitable for our pur-

pose, sine a more eÆient algorithm is often harder to verify than a less eÆient

easier algorithm. Moreover, we want to transform tail reursive algorithms into

non-tail reursive ones, but in the usual appliations of program transformation,

3

An alternative generalization of (5) is mult(mult(x; y; 0); z; v) � mult(x;mult(y; z; 0);

v): This generalization is easier to �nd (as we just replaed both third arguments of

the left- and right-hand side by the same new variable v). However, it is not easy to

verify (its proof is essentially as hard as the proof of the original onjeture (5)).
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non-tail reursive programs are transformed into tail reursive ones (\reursion

removal", f. e.g. [Coo66,DB76,BD77,Wan80,BW82,AK82,HK92℄).

As the goals of the existing program transformations are often opposite to

ours, a promising approah is to use these lassial transformations in the reverse

diretion. To our knowledge, suh an appliation of these transformations for the

purpose of veri�ation has rarely been investigated before. In this way, we indeed

obtained valuable inspirations for the development of our transformation rules

in Set. 3 - 5. However, our rules go far beyond the reversed standard program

transformation methods, beause these methods had to be modi�ed substantially

to be appliable for the programs resulting in our ontext.

3 Context Moving

The only di�erene betweenmult and times is that the ontext y+ : : : to ompute

times' result is outside of the reursive all, whereas in mult the ontext y+ : : : is

in the reursive argument for the aumulator z. This hange of the aumulator

in reursive alls is responsible for the veri�ation problems with mult.

For that reason, we now introdue a transformation rule whih allows tomove

the ontext away from reursive aumulator arguments to a position outside

of the reursive all. In this way, the former result mult(p(x); y; y+ z) an be

replaed by y+mult(p(x); y; z). So the algorithm mult is transformed into

funtion mult (x; y; z : nat) : nat (

if x 6= 0 then y + mult(p(x); y; z)

else z.

To develop a rule for ontext moving, we have to �nd suÆient riteria whih

ensure that suh a transformation is equivalene preserving. For our rule, we

regard algorithms of the form (6) where the last argument z is used as an au-

mulator. Our aim is to move the ontexts r

1

; : : : ; r

k

of the reursive aumulator

arguments to the top, i.e., to transform the algorithm (6) into (7).

funtion f (x

�

: �

�

; z : �) : � (

if b

1

then f(r

�

1

; r

1

)

.

.

.

if b

k

then f(r

�

k

; r

k

) (6)

if b

k+1

then r

k+1

.

.

.

if b

m

then r

m

funtion f (x

�

: �

�

; z : �) : � (

if b

1

then r

1

[z=f(r

�

1

; z)℄

.

.

.

if b

k

then r

k

[z=f(r

�

k

; z)℄ (7)

if b

k+1

then r

k+1

.

.

.

if b

m

then r

m

.

We demand m > k � 1, but the order of the f -ases is irrelevant and the

transformation may also be applied if the aumulator z is not f 's last parameter.

(We just used the above formulation to ease readability.)

First of all, note that the intermediate values of the parameter z are not

the same in the two versions of f . Thus, to guarantee that evaluation of both

versions of f leads to the same ases in the same order, we must demand that

the aumulator z does not our in the onditions b

1

; : : : ; b

m

or in r

�

1

; : : : ; r

�

k

.
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Let u

�

; w be onstrutor ground terms. Now for both versions of f , evaluation

of f(u

�

; w) leads to the same f -ases i

1

; : : : ; i

d

where i

1

; : : : ; i

d�1

2 f1; : : : ; kg

and i

d

2 fk + 1; : : : ;mg (provided that the evaluation is de�ned). Let t[r

�

; s℄

abbreviate t[x

�

=r

�

; z=s℄ (where for terms t ontaining at most the variables x

�

,

we also write t[r

�

℄) and let a

�

h

= r

�

i

h

[r

�

i

h�1

[: : : [r

�

i

1

[u

�

℄℄ : : :℄℄, where a

�

0

= u

�

. Then

with the old de�nition of f we obtain the result (8) and with the new de�nition

we obtain (9).

r

i

d

[a

�

d�1

; r

i

d�1

[a

�

d�2

; : : : r

i

2

[a

�

1

; r

i

1

[a

�

0

; w℄℄ : : :℄℄ (8)

r

i

1

[a

�

0

; r

i

2

[a

�

1

; : : : r

i

d�1

[a

�

d�2

; r

i

d

[a

�

d�1

; w℄℄ : : :℄℄: (9)

For example, the original algorithm mult omputes a result of the form

y

x

+ (y

x�1

+ (: : : (y

2

+ (y

1

+ z)) : : :))

where y

i

denotes the number whih is added in the i-th exeution of the algo-

rithm. On the other hand, the new version of mult omputes the result

y

1

+ (y

2

+ (: : : (y

x�1

+ (y

x

+ z)) : : :)):

Therefore, the ruial ondition for the soundness of this transformation is the

left-ommutativity of the ontexts r

1

; : : : ; r

k

moved, f. [BW82℄. In other words,

for all i 2 f1; : : : ;mg and all i

0

2 f1; : : : ; kg we demand

r

i

[x

�

; r

i

0

[y

�

; z℄℄ � r

i

0

[y

�

; r

i

[x

�

; z℄℄:

Then (8) and (9) are indeed equal as an be proved by subsequently moving the

inner r

i

j

[a

�

j�1

; : : :℄ ontexts of (8) to the top. So for mult, we only have to prove

x+ (y + z) � y + (x+ z) and y + z � y + z (whih an easily be veri�ed by the

existing indution theorem provers).

Note also that sine in the shema (6), r

1

; : : : ; r

m

denote arbitrary terms, suh

a ontext moving would also be possible if one would exhange the arguments

of + in mult's reursive all. Then r

1

would be z + y and the required left-

ommutativity onditions would read (z+y)+x � (z+x)+y and z+y � z+y.

However, ontext moving may only be done, if all terms r

1

; : : : ; r

m

ontain

the aumulator z. Otherwise f 's new de�nition ould be total although the

original de�nition was partial. For example, if f has the (�rst) ase

if x 6= 0 then f(x; 0)

then f(x; z) does not terminate for x 6= 0. However, if we would not demand that

z ourred in the reursive aumulator argument, then ontext moving ould

transform this ase into \if x 6= 0 then 0". The resulting funtion is learly not

equivalent to the original one, beause now the result of f(x; z) is 0 for x 6= 0.

Finally, we also have to demand that in r

1

; : : : ; r

m

, the aumulator z may

not our within arguments of funtions dependent on f . Here, every funtion

is dependent on itself and moreover, if g is dependent on f and g ours in the
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algorithm h, then h is also dependent on f . So in partiular, this requirement ex-

ludes nested reursive alls with the argument z. Otherwise, the transformation

would not preserve the semantis. As an example regard the following funtion,

where the algorithm one(z) returns 1 for all arguments z.

funtion f (x; z : nat) : nat (

if x 6= 0 then f(p(x); f(z; 0))

else one(z)

By moving the ontext f(: : : ; 0) to the top, the result of the �rst ase would be

transformed into f(f(p(x); z); 0). The original algorithm satis�es all previously

developed onditions. However, the original algorithm is total, whereas after the

transformation f(x; z) does not terminate any more for x 6= 0. Under the above

requirements, the transformation of (6) into (7) is sound.

Theorem 1 (Soundness of Context Moving). Let F be a funtional pro-

gram ontaining the algorithm (6) and let F

0

result from F by replaing (6) with

(7). Then for all data objets t

�

, t, and q, f(t

�

; t) evaluates to q in the program

F i� it does so in F

0

, provided that the following requirements are ful�lled:

(A) z 62 V(b

1

) [ : : : [ V(b

m

)

(B) z 62 V(r

�

1

) [ : : : [ V(r

�

k

)

(C) For all i 2 f1; : : :;mg, i

0

2 f1; : : :; kg: F j=

ind

r

i

[x

�

; r

i

0

[y

�

; z℄℄ � r

i

0

[y

�

; r

i

[x

�

; z℄℄

(D) z 2 V(r

1

) \ : : : \ V(r

m

)

(E) In r

1

; : : :; r

m

, z does not our in arguments of funtions dependent on f .

Proof. We �rst prove the following ontext moving lemma for all onstrutor

ground terms u

�

, v

�

, w and all i

0

2 f1; : : : ; kg:

F j=

ind

r

i

0

[v

�

; f(u

�

; w)℄ � f(u

�

; r

i

0

[v

�

; w℄): (10)

We use an indution on u

�

w.r.t. the relation �

f

. Here, u

�

�

f

q

�

holds for

the onstrutor ground terms u

�

and q

�

i� there exists a onstrutor ground

term u suh that f(u

�

; u) is de�ned in F and suh that F -evaluation of f(u

�

; u)

leads to a reursive all f(q

�

; q) for some onstrutor ground term q. The well-

foundedness of �

f

is due to the requirements (A), (B), and (E).

If one of the two terms in the equation (10) is de�ned, then there is an

i 2 f1; : : : ;mg suh that b

i

[u

�

℄ �

F

true and b

j

[u

�

℄ �

F

false for all 1 � j < i,

where s �

F

t abbreviates F j=

ind

s � t. (Here we need ondition (D) to infer

the de�nedness of f(u

�

; w) from the de�nedness of r

i

0

[v

�

; f(u

�

; w)℄.)

If i � k + 1, then

r

i

0

[v

�

; f(u

�

; w)℄ �

F

r

i

0

[v

�

; r

i

[u

�

; w℄℄

�

F

r

i

[u

�

; r

i

0

[v

�

; w℄℄; by (C)

�

F

f(u

�

; r

i

0

[v

�

; w℄); sine z 2 V(r

i

) (by (D)).

If i � k, then we have

r

i

0

[v

�

; f(u

�

; w)℄ �

F

r

i

0

[v

�

; f(r

�

i

[u

�

℄; r

i

[u

�

; w℄)℄

�

F

f(r

�

i

[u

�

℄; r

i

0

[v

�

; r

i

[u

�

; w℄℄); by the indution hypothesis

�

F

f(r

�

i

[u

�

℄; r

i

[u

�

; r

i

0

[v

�

; w℄℄); by (C)

�

F

f(u

�

; r

i

0

[v

�

; w℄); sine z 2 V(r

i

) (by (D)).
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Thus, Lemma (10) is proved and now the \only if"-diretion of Thm. 1 an

also be shown by indution w.r.t. �

f

. There must be an i

0

2 f1; : : : ;mg suh that

b

i

0

[t

�

℄ �

F

true and b

j

0

[t

�

℄ �

F

false for all 1 � j

0

< i

0

. The indution hypothesis

implies b

i

0

[t

�

℄ �

F

0

true and b

j

0

[t

�

℄ �

F

0

false as well.

If i

0

� k+1, then the onjeture follows from f(t

�

; t) �

F

r

i

0

[t

�

; t℄, f(t

�

; t) �

F

0

r

i

0

[t

�

; t℄, and the indution hypothesis. If i

0

� k, then we have f(t

�

; t) �

F

f(r

�

i

0

[t

�

℄; r

i

0

[t

�

; t℄) �

F

q for some onstrutor ground term q. By Lemma (10)

we obtain r

i

0

[t

�

; f(r

�

i

0

[t

�

℄; t)℄ �

F

q. Note that for all f -subterms f(s

�

; s) in this

term, s

�

evaluates to onstrutor ground terms q

�

with t

�

�

f

q

�

. For f -subterms

where the root is in r

i

0

, this follows from Condition (E). Thus, the indution hy-

pothesis implies r

i

0

[t

�

; f(r

�

i

0

[t

�

℄; t)℄ �

F

0

q and hene, we also have f(t

�

; t) �

F

0

q.

So the \only if"-diretion of Thm. 1 is proved. The proof for the \if"-diretion

of Thm. 1 is ompletely analogous (where instead of �

f

one uses an indution

on the length of f(t

�

; t)'s evaluation in F

0

). ut

The algorithm obtained from mult by ontext moving is signi�antly easier

to verify. As mult's (former) aumulator z is no longer hanged, it an now

be eliminated by replaing all its ourrenes by 0. The semantis of the main

funtion multiply remains unhanged by this transformation.

funtion multiply (x; y : nat) : nat (

mult(x; y)

funtion mult (x; y : nat) : nat (

if x 6= 0 then y +mult(p(x); y)

else 0

Now mult indeed orresponds to the algorithm times and thus, the ompliated

generalizations or loop invariants of Set. 2 are no longer required. Thus, the

veri�ation problems for this algorithm are solved.

Similarly, ontext moving an also be applied to transform an algorithm like

funtion plus (x; z : nat) : nat (

if x 6= 0 then plus(p(x); s(z))

else z

into

funtion plus (x; z : nat) : nat (

if x 6= 0 then s(plus(p(x); z))

else z,

whih is muh better suited for veri�ation tasks. Here, for ondition (C) we

only have to prove s(s(z)) � s(s(z)) and s(z) � s(z) (whih is trivial).

To apply ontext moving mehanially, the onditions (A) - (E) for its appli-

ation have to be heked automatially. While the onditions (A), (B), (D), and

(E) are just syntati, the left-ommutativity ondition (C) has to be heked

by an underlying indution theorem prover. In many ases, this is not a hard

task, sine for algorithms like plus the terms r

i

[x

�

; r

i

0

[y

�

; z℄℄ and r

i

0

[y

�

; r

i

[x

�

; z℄℄

are already syntatially equal and for algorithms like mult, the required left-

ommutativity follows from the assoiativity and ommutativity of \+". To ease

the proof of suh onjetures about auxiliary algorithms, we follow the strategy

to apply our transformations to those algorithms �rst whih depend on few other

algorithms. Thus, we would attempt to transform \+" before transforming mult.

In this way, one an usually avoid the need for generalizations when perform-

ing the required left-ommutativity proofs. Finally, note that of ourse, ontext

10



moving should only be done if at least one of the reursive arguments r

1

; : : : ; r

k

is di�erent from z (otherwise the algorithm would not hange).

Our ontext moving rule has some similarities to the reversal of a tehnique

known in program transformation (operand ommutation, f. e.g. [Coo66,DB76,

BW82℄). However, our rule generalizes this (reversed) tehnique substantially.

For example, diretly reversing the formulation in [BW82℄ would result in a

rule whih would also impose appliability onditions on the funtions that all

the transformed funtion f (by demanding that f 's aumulator would have to

be initialized in a ertain way). In this way, the appliability of the reversed rule

would be unneessarily restrited (and unneessarily diÆult to hek). There-

fore, we developed a rule where ontext moving is separated from the subsequent

replaement of the (former) aumulator by initial values like 0. Moreover, in

[BW82℄ the problems onerning the ourrene of the aumulator z and of

nested reursive alls are not examined (i.e., the requirements (D) and (E) are

missing there). Another important di�erene is that our rule allows the use of sev-

eral di�erent reursive arguments r

1

; : : : ; r

k

and the use of several non-reursive

ases with arbitrary results (whereas reversing the formulation in [BW82℄ would

only allow one single reursive ase and it would only allow the non-reursive

result z instead of the arbitrary terms r

k+1

; : : : ; r

m

). Note that for this reason

in our rule we have to regard all ases of an algorithm at one.

As an example where this exibility of our transformation rule is needed

onsider the following algorithm to ompute the multipliation of all elements

in a list, where however ourring 0's are ignored. We use a data type list for

lists of naturals with the onstrutors nil : list and ons : nat� list! list, where

ar : list ! nat and dr : list ! list are the seletors to ons. Moreover, \�"

abbreviates a multipliation algorithm like times or multiply.

proedure prod (l : list; z : nat)(

z := s(0);

while l 6= nil do if ar(l) 6= 0 then z := ar(l) � z;

l := dr(l) od

This proedure an be translated automatially into the following funtions

(here, we re-ordered the ases of pr to ease readability).

funtion prod (l : list) : nat (

pr(l; s(0))

funtion pr (l : list; z : nat) : nat (

if l = nil then z

if ar(l) 6= 0 then pr(dr(l); ar(l) � z)

else pr(dr(l); z)

To transform the algorithm pr, we indeed need a tehnique whih an han-

dle algorithms with several reursive ases. Sine � is left-ommutative, ontext

moving and replaing z with s(0) results in

funtion prod (l : list) : nat (

pr(l)

funtion pr (l : list) : nat (

if l = nil then s(0)

if ar(l) 6= 0 then ar(l) � pr(dr(l))

else pr(dr(l)).

11



Further algorithms with several reursive and non-reursive ases where ontext

moving is required are presented in [Gie99b℄.

Context moving is also related to a tehnique in [Moo75℄. However, in ontrast

to our rule, his transformation is not equivalene-preserving, but it orresponds

to a generalization of the onjeture. For that reason this approah faes the

danger of over-generalization (e.g., the assoiativity law formultiply is generalized

into a awed onjeture). It turns out that for almost all algorithms onsidered in

[Moo75℄ our transformation tehniques an generate equivalent algorithms that

are easy to verify. So for suh examples, generalizations are no longer needed.

4 Context Splitting

Beause of the required left-ommutativity, ontext moving is not always appli-

able. As an example regard the following imperative proedure for uniting lists.

We use a data type llist for lists of list's. Its onstrutors are empty and add with

the seletors hd and tl. So add(z; k) represents the insertion of the list z in front

of the list of lists k and hd(add(z; k)) yields z. Moreover, we use an algorithm

app for list-onatenation. Then after exeution of union(k; z), the value of z is

the union of all lists in k.

proedure union(k : llist; z : list)(

z := nil;

while k 6= empty do z := app(hd(k); z);

k := tl(k) od

Translation of union into funtional algorithms yields

funtion union (k : llist) : list (

uni(k; nil)

funtion uni (k : llist; z : list) : list (

if k 6= empty then uni(tl(k); app(hd(k); z))

else z.

These funtions are again unsuited for veri�ation, beause the aumulator

z of uni is initially alled with nil, but this value is hanged in the reursive alls.

Context moving is not possible, beause the ontext app(hd(k); : : :) is not left-

ommutative. This motivates the development of the following ontext splitting

transformation. Given a list of lists k = [z

1

; : : :; z

n

℄, the result of uni(k; nil) is

app(z

n

; app(z

n�1

; : : : app(z

3

; app(z

2

; z

1

)) : : :)): (11)

In order to move the ontext of uni's reursive aumulator argument to the

top, our aim is to ompute this result in a way suh that z

1

is moved as far to the

\outside" in this term as possible (whereas z

n

may be moved to the \inside").

Although app is not ommutative, it is at least assoiative. So (11) is equal to

app(app(: : : app(app(z

n

; z

n�1

); z

n�2

) : : : ; z

2

); z

1

): (12)

This gives an idea on how the algorithm uni may be transformed into a new

(unary) algorithm uni

0

suh that uni

0

(k) omputes uni(k; nil). The result of
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uni

0

([z

1

; : : :; z

n

℄) should be app(uni

0

([z

2

; : : :; z

n

℄); z

1

). Similarly, uni

0

([z

2

; : : :; z

n

℄)

should yield app(uni

0

([z

3

; : : :; z

n

℄); z

2

), et. Finally, uni

0

([z

n

℄) is app(uni

0

(empty);

z

n

). To obtain the result (12), app(uni

0

(empty); z

n

) must be equal to z

n

. Hene,

uni

0

(empty) should yield app's neutral argument nil. Thus, we obtain the follow-

ing new algorithms, whih are well suited for veri�ation tasks.

funtion union (k : llist) : list (

uni

0

(k)

funtion uni

0

(k : llist) : list (

if k 6= empty then app(uni

0

(tl(k)); hd(k))

else nil

So the idea is to split up the former ontext app(hd(k); : : :) into an outer part

app(: : :; : : :) and an inner part hd(k). If the outer ontext is assoiative, then one

an transform tail reursive results of the form f(: : :; app(hd(k); z)) into results

of the form app(f

0

(: : :); hd(k)). In general, our ontext splitting rule generates a

new algorithm (14) from an algorithm of the form (13).

funtion f (x

�

: �

�

; z : �) : � (

if b

1

then f(r

�

1

; p[r

1

; z℄)

.

.

.

if b

k

then f(r

�

k

; p[r

k

; z℄) (13)

if b

k+1

then p[r

k+1

; z℄

.

.

.

if b

m

then p[r

m

; z℄

funtion f

0

(x

�

: �

�

) : � (

if b

1

then p[f

0

(r

�

1

); r

1

℄

.

.

.

if b

k

then p[f

0

(r

�

k

); r

k

℄ (14)

if b

k+1

then r

k+1

.

.

.

if b

m

then r

m

.

Here, p is a term of type � ontaining exatly the two new variables x

1

and x

2

of type � and p[t

1

; t

2

℄ abbreviates p[x

1

=t

1

; x

2

=t

2

℄. Then our transformation splits

the ontexts into their ommon top part p and their spei� part r

i

and it moves

the ommon part p to the top of reursive results. (This allows an elimination

of the aumulator z.) If there are several possible hoies for p, then we use the

heuristi to hoose p as small and r

i

as big as possible. Let e be a onstrutor

ground term whih is a neutral argument of p, i.e., F j=

ind

p[x; e℄ � x and

F j=

ind

p[e; x℄ � x. Then in (13), one may also have z instead of p[e; z℄. For

example, in uni we had the non-reursive result z instead of app(nil; z). Moreover

we demand m > k � 1, but the order of the f -ases is again irrelevant and the

rule may also be applied if z is not the last parameter of f .

We want to ensure that all ourrenes of f(t

�

; e) in other algorithms g (that

f is not dependent on) may be replaed by f

0

(t

�

). For the soundness of this

transformation, similar to ontext moving, the aumulator z must not our

in onditions or in the subterms r

�

1

; : : : ; r

�

k

or r

1

; : : : ; r

m

. Then for onstrutor

ground terms u

�

, the evaluation of f(u

�

; e) and of f

0

(u

�

) leads to the same ases

i

1

; : : : ; i

d

where i

1

; : : : ; i

d�1

2 f1; : : : ; kg and i

d

2 fk + 1; : : : ;mg. For 1 � h � d

let a

h

be r

i

h

[r

�

i

h�1

[: : : [r

�

i

1

[u

�

℄℄ : : :℄℄. Then the result of f(u

�

; e) is (15) and the

result of f

0

(u

�

) is (16).

p[a

d

; p[a

d�1

; : : : p[a

2

; a

1

℄ : : :℄℄ (15)

p[p[: : : p[p[a

d

; a

d�1

℄; a

d�2

℄ : : : a

2

℄; a

1

℄ (16)
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To ensure the equality of these two results, p must be assoiative. The following

theorem summarizes our rule for ontext splitting.

Theorem 2 (Soundness of Context Splitting). Let F be a funtional pro-

gram ontaining (13) and let F

0

result from F by adding the algorithm (14). Then

for all data objets t

�

and q, f(t

�

; e) evaluates to q in F i� f

0

(t

�

) evaluates to q

in F

0

, provided that the following requirements are ful�lled:

(A) z 62 V(b

1

) [ : : : [ V(b

m

)

(B) z 62 V(r

�

1

) [ : : : [ V(r

�

k

) [ V(r

1

) [ : : : [ V(r

m

)

(C) F j=

ind

p[p[x

1

; x

2

℄; x

3

℄ � p[x

1

; p[x

2

; x

3

℄℄

(D) F j=

ind

p[x; e℄ � x and F j=

ind

p[e; x℄ � x.

Proof. Note that evaluation of f is the same in F and F

0

. Moreover, Conditions

(C) and (D) also hold for F

0

. We prove the (stronger) onjeture

f(t

�

; t) �

F

0

q i� p[f

0

(t

�

); t℄ �

F

0

q (17)

for all onstrutor ground terms t

�

, t, and q.

For the \only if"-diretion of (17) we use indution on the length of f(t

�

; t)'s

evaluation. There must be a ase i suh that b

i

[t

�

℄ �

F

0

true and b

j

[t

�

℄ �

F

0

false

for all 1 � j < i. If i � k+1, then we have f(t

�

; t) �

F

0

p[r

i

[t

�

℄; t℄ �

F

0

p[f

0

(t

�

); t℄:

If i � k, then f(t

�

; t) �

F

0

f(r

�

i

[t

�

℄; p[r

i

[t

�

℄; t℄) �

F

0

p[f

0

(r

�

i

[t

�

℄); p[r

i

[t

�

℄; t℄℄ by

the indution hypothesis. By (C), this is �

F

0

-equal to p[p[f

0

(r

�

i

[t

�

℄); r

i

[t

�

℄℄; t℄

whih in turn is is �

F

0

-equal to p[f

0

(t

�

); t℄. The \if"-diretion of (17) is proved

analogously (by indution w.r.t. the relation �

f

0

, where u

�

�

f

0

q

�

holds for two

tuples of onstrutor ground terms u

�

and q

�

i� evaluation of f

0

(u

�

) is de�ned

and it leads to the evaluation of f

0

(q

�

)). ut

Context splitting is only applied if there is a term f(t

�

; e) in some other algo-

rithm g that f is not dependent on. In this ase, the onditions (C) and (D) are

heked by an underlying indution theorem prover (where usually assoiativity

is even easier to prove than (left-)ommutativity). Conditions (A) and (B) are

just syntati. In ase of suess, f

0

is generated and the term f(t

�

; e) in the

algorithm g is replaed by f

0

(t

�

).

Similar to ontext moving, a variant of the above rule if often used in the re-

verse diretion (re-braketing, f. e.g. [Coo66,DB76,BD77,Wan80,BW82,PP96℄).

Again, instead of diretly reversing the tehnique, we modi�ed and generalized it,

e.g., by regarding several tail reursive and non-tail reursive ases. An algorithm

where this general form of our rule is needed will be presented in Set. 5 and

several others an be found in [Gie99b℄. Moreover, the next setion also intro-

dues important re�nements whih inrease the appliability of ontext splitting

onsiderably and whih have no ounterpart in the lassial re-braketing rules.

5 Pre-Proessing Transformations for Context Splitting

In examples where the ontext p is not yet in the right form, one an use suitable

pre-proessing transformations whih in turn enable the appliation of ontext

splitting. Regard the following imperative proedure for reversing lists.
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proedure reverse(l; z : list)(

z := nil;

while l 6= nil do z := ons(ar(l); z);

l := dr(l) od

By translating reverse into funtional form one obtains

funtion reverse(l : list) : list(

rev(l; nil)

funtion rev(l; z : list) : list(

if l 6= nil then rev(dr(l); ons(ar(l); z))

else z.

In order to eliminate the aumulator z, we would like to apply ontext

splitting. Here, the term p in (13) would be ons(x

1

; x

2

). But then x

1

would be

a variable of type nat (instead of list as required) and hene, the assoiativity

law is not even well typed.

Whenever p has the form (x

1

; : : : ; x

1

; x

2

) for some onstrutor , where x

1

is of the \wrong" type, then one may use the following reformulation of the

algorithm. (Of ourse, here x

2

does not have to be the last argument of .) The

idea is to \lift" x

1

; : : : ; x

1

to an objet lift



(x

1

; : : : ; x

1

) of type � and to de�ne a

new funtion 

0

: � � � ! � suh that 

0

(lift



(x

1

; : : : ; x

1

); x

2

) � (x

1

; : : : ; x

1

; x

2

).

Moreover, in order to split ontexts afterwards, 

0

should be assoiative.

As a heuristi, we use the following onstrution for lift



and 

0

, provided that

apart from  the data type � just has a onstant onstrutor 

on

. The funtion

lift



(x

1

; : : : ; x

n

) should yield the term (x

1

; : : : ; x

n

; 

on

) and the funtion 

0

is

de�ned by the following algorithm (where d

1

; : : : ; d

n+1

are the seletors to ).

funtion 

0

(x; z : �) : � (

if x = (d

1

(x); : : :; d

n

(x); d

n+1

(x)) then (d

1

(x); : : :; d

n

(x); 

0

(d

n+1

(x); z))

else z

Then 

0

(lift



(x

1

; : : : ; x

n

); z) � (x

1

; : : : ; x

n

; z), 

on

is a neutral argument for



0

, and 

0

is assoiative. So for rev, we obtain lift

ons

(x

1

) � ons(x

1

; nil) and

funtion ons

0

(x; z : list) : list (

if x = ons(ar(x); dr(x)) then ons(ar(x); ons

0

(dr(x); z))

else z.

Note that in this example, ons

0

orresponds to the onatenation funtion app.

Thus, the term ons(ar(l); z) in the algorithm rev may be replaed by

ons

0

(lift

ons

(ar(l)); z), i.e., by ons

0

(ons(ar(l); nil); z). Now the rule for ontext

splitting is appliable whih yields

funtion reverse(l : list) : list(

rev

0

(l)

funtion rev

0

(l : list) : list(

if l 6= nil then ons

0

(rev

0

(dr(l)); ons(ar(l); nil))

else nil.

In ontrast to the original versions of reverse and rev, these algorithms are well

suited for veri�ation.
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Of ourse, there are also examples where the ontext p has the form g(x

1

; x

2

)

for some algorithm g (instead of a onstrutor ) and where x

1

has the \wrong"

type. For instane, regard the following imperative proedure to �lter all even

elements out of a list l. It uses an auxiliary algorithm even and an algorithm

atend(x; z) whih inserts an element x at the end of a list z.

funtion atend(x : nat; z : list) : list(

if z = nil then ons(x; nil)

else ons(ar(z); atend(x; dr(z)))

Now the proedure �lter reads as follows.

proedure �lter(l; z : list)(

z := nil;

while l 6= nil do if even(ar(l)) then z := atend(ar(l); z);

l := dr(l) od

Translating this proedure into funtional algorithms yields

funtion �lter(l : list) : list(

�l(l; nil)

funtion �l(l; z : list) : list(

if l = nil then z

if even(ar(l)) then �l(dr(l); atend(ar(l); z))

else �l(dr(l); z).

To apply ontext splitting for �l, p would be atend(x

1

; x

2

) and thus, x

1

would

be of type nat instead of list as required. While for onstrutors like ons, suh a

problem an be solved by the lifting tehnique desribed above, now the root of p

is the algorithm atend. For suh examples, the following parameter enlargement

transformation often helps.

In the algorithm atend, outside of its own reursive argument the parameter

x only ours in the term ons(x; nil) and the value of ons(x; nil) does not hange

throughout the whole exeution of atend (as the value of x does not hange in any

reursive all). Hene, the parameter x an be \enlarged" into a new parameter

y whih orresponds to the value of ons(x; nil). Thus, we result in the following

algorithm atend

0

, where atend

0

(ons(x; nil); z) � atend(x; z).

funtion atend

0

(y; z : list) : list(

if z = nil then y

else ons(ar(z); atend

0

(y; dr(z)))

In general, let h(x

�

; z

�

) be a funtion where the parameters x

�

are not

hanged in reursive alls and where x

�

only our within the terms t

1

; : : : ; t

m

outside of their reursive alls in the algorithm h. If V(t

i

) � fx

�

g for all i and if

the t

i

only ontain total funtions (like onstrutors), then one may onstrut a

new algorithm h

0

(y

1

; : : :; y

m

; z

�

) by enlarging the parameters x

�

into y

1

; : : : ; y

m

.

The algorithm h

0

results from h by replaing all t

i

by y

i

, where the param-

eters y

i

again remain unhanged in their reursive arguments. Then we have

h

0

(t

1

; : : :; t

m

; z

�

) � h(x

�

; z

�

). Thus, in all algorithms f that h is not dependent on,
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we may replae any subterm h(s

�

; p

�

) by h

0

(t

1

[x

�

=s

�

℄; : : : ; t

m

[x

�

=s

�

℄; p

�

). (The

only restrition for this replaement is that all possibly unde�ned subterms of

s

�

must still our in some t

i

[x

�

=s

�

℄.)

Hene, in the algorithm �l, the term atend(ar(l); z) an be replaed by

atend

0

(ons(ar(l); nil); z). It turns out that atend

0

(l

1

; l

2

) onatenates the lists

l

2

and l

1

(i.e., it orresponds to app(l

2

; l

1

)). Therefore, atend

0

is assoiative and

thus, ontext splitting an be applied to �l now. This yields the following algo-

rithms whih are well suited for veri�ation.

funtion �lter(l : list) : list(

�l

0

(l)

funtion �l

0

(l : list) : list(

if l = nil then nil

if even(ar(l)) then atend

0

(�l

0

(dr(l)); ons(ar(l); nil))

else atend

0

(�l

0

(dr(l)); nil)

Of ourse, by subsequent unfolding (or \symboli evaluation") of atend

0

, the

algorithm �l

0

an be simpli�ed to

funtion �l

0

(l : list) : list(

if l = nil then nil

if even(ar(l)) then ons(ar(l); �l

0

(dr(l)))

else �l

0

(dr(l)).

Note that here we indeed needed a ontext splitting rule whih an handle

algorithms with several tail reursive ases. Thus, a diret reversal of the lassial

re-braketing rules [BW82℄ would fail for both reverse and �lter (sine these rules

are restrited to just one reursive ase and moreover, they lak the onepts of

lifting and of parameter enlargement).

The examples union, reverse, and �lter show that ontext splitting an help in

ases where ontext moving is not appliable. On the other hand for algorithms

like plus, ontext moving is suessful, but ontext splitting is not possible. So

none of these two transformations subsumes the other and to obtain a powerful

approah, we indeed need both of them. But there are also several algorithms

where the veri�ation problems an be solved by both ontext moving and split-

ting. For example, the algorithms resulting from mult by ontext moving or

splitting only di�er in the order of the arguments of + in mult's �rst reursive

ase. Thus, both resulting algorithms are well suited for veri�ation tasks.

6 Conlusion

We have presented a new transformational approah for the mehanized veri�-

ation of imperative programs and tail reursive funtions, whih onsists of the

following transformations:

� ontext moving for left-ommutative ontexts of aumulators (Set. 3)

� ontext splitting for (partly) assoiative ontexts of aumulators (Set. 4)

� lifting of arguments in order to enable ontext splitting (Set. 5)

� parameter enlargement to enable ontext splitting (Set. 5)
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By our tehnique, funtions that are hard to verify are automatially trans-

formed into funtions where veri�ation is signi�antly easier. Hene, for many

programs the invention of loop invariants or of generalizations is no longer

required and an automated veri�ation is possible by the existing indution

theorem provers. As our transformations generate equivalent funtions, this

transformational veri�ation approah is not restrited to partial orretness,

but it an also be used to simplify total orretness and termination proofs

[Gie95,Gie97,GWB98,BG99,AG00℄. See [Gie99b℄ for a olletion of examples

that demonstrates the power of our approah. It shows that our transforma-

tion indeed simpli�es the veri�ation tasks substantially for many pratially

relevant algorithms from di�erent areas of omputer siene (e.g., arithmetial

algorithms or proedures for proessing (possibly multidimensional) lists inlud-

ing algorithms for matrix multipliation and sorting algorithms like seletion-,

insertion-, and merge-sort, et.). Based on the rules and heuristis presented, we

implemented a system to perform suh transformations automatially [Gie99a℄.

The �eld of mehanized veri�ation and indution theorem proving repre-

sents a new appliation area for program transformation tehniques. It turns

out that our approah of transforming algorithms often seems to be superior to

the lassial solution of generalizing theorems. For instane, our tehnique auto-

matially transforms all (�rst order) tail reursive funtions treated in reent gen-

eralization tehniques [IS97,IB99℄ into non-tail reursive ones whose veri�ation

is very simple. On the other hand, the tehniques for �nding generalizations are

mostly semi-automati (sine they are guided by the system user who has to pro-

vide suitable lemmata). Obviously, by formulating the right lemmata (intera-

tively), in priniple generalization tehniques an deal with almost every onje-

ture to be proved. But in partiular for onjetures whih involve several our-

renes of a tail reursive funtion, �nding suitable generalizations is often im-

possible for fully automati tehniques. Therefore, our approah represents a

signi�ant ontribution for mehanized veri�ation of imperative and tail reur-

sive funtional programs. Nevertheless, of ourse there also exist tail reursive

algorithms where our automati transformations are not appliable. For suh

examples, (interative) generalizations are still required.

Further work will inlude an examination of other existing program trans-

formation tehniques in order to determine whether they an be modi�ed into

transformations suitable for an appliation in the program veri�ation domain.

Moreover, in future work the appliation area of program veri�ation may also

give rise to new transformations whih have no ounterpart at all in lassial

program transformations.
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