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Abstract. This paper introduces a propositional encoding for lexico-
graphic path orders in connection with dependency pairs. This facilitates
the application of SAT solvers for termination analysis of term rewrite
systems based on the dependency pair method. We address two main
inter-related issues and encode them as satisfiability problems of propo-
sitional formulas that can be efficiently handled by SAT solving: (1) the
combined search for a lexicographic path order together with an argu-
ment filtering to orient a set of inequalities; and (2) how the choice of the
argument filtering influences the set of inequalities that have to be ori-
ented. We have implemented our contributions in the termination prover
AProVE. Extensive experiments show that by our encoding and the ap-
plication of SAT solvers one obtains speedups in orders of magnitude as
well as increased termination proving power.

1 Introduction

In recent work [5], Codish et al. introduce a propositional encoding of lexico-
graphic path orders (LPO) and demonstrate that SAT solving can drastically
speed up the solving of LPO termination problems. The key idea is that the
encoding of a term rewrite system (TRS) R is satisfiable if and only if R is
LPO-terminating and that each model of the encoding indicates a particular
LPO which orients the rules in R. However, lexicographic path orders on their
own are too weak for many interesting termination problems and hence LPO
is typically combined with more sophisticated termination proving techniques.
One of the most popular and powerful such techniques is the dependency pair
(DP) method [2]. Essentially, for any TRS the DP method generates a set of
inequalities between terms. If one can find a well-founded order satisfying these
inequalities, then termination is proved. A main advantage of the DP method is
that it permits the use of orders which need not be monotonic. This allows the
application of lexicographic path orders combined with argument filterings.

For every function symbol f , an argument filtering π specifies which parts
of a term f(. . .) may be eliminated before comparing terms. As stated in [17],
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“the dependency pairs method derives much of its power from the ability to
use argument filterings to simplify constraints”. However, argument filterings
represent a severe bottleneck for the automation of dependency pairs, as the
search space for argument filterings is enormous. In recent refinements of the
DP method [11, 23], the choice of π also influences the set of usable rules which
contribute to the inequalities that have to be oriented.

This paper extends the approach of [5] by providing a propositional encoding
which combines the search for an LPO with the search for an argument filtering.
This extension is non-trivial as the choice of an argument filtering π influences
the structure of the terms in the rules as well as the set of rules which contribute
to the inequalities that need to be oriented. The key idea is to combine all of the
constraints on π which influence the definition of the LPO and the definition of
the usable rules and to encode these constraints in SAT. This encoding captures
the synergy between precedences on function symbols and argument filterings. In
our approach there exist an argument filtering π and an LPO which orient a set of
inequalities if and only if the encoding of the inequalities is satisfiable. Moreover,
each model of the encoding corresponds to a suitable argument filtering and a
suitable LPO which orient the inequalities.

After the necessary preliminaries on LPO and on the DP method in Sect. 2,
Sect. 3 extends the approach of [5] to consider argument filterings. Sect. 4 shows
how to extend this encoding to account for the influence of an argument filtering
on the set of usable rules. In Sect. 5 we describe the implementation of our
results in the termination prover AProVE [14] and provide extensive experimental
evidence indicating speedups in orders of magnitude. We conclude in Sect. 6.

2 Preliminaries

This section briefly describes the starting points for the rest of the paper: propo-
sitional encodings for lexicographic path orders [5, 20] and the dependency pair
framework [2, 12, 17]. We refer to [3] for further details on term rewriting.

We assume an algebra of terms constructed over given sets of symbols F
and variables V . Let >F denote a (strict or non-strict) partial order on F (a
so-called precedence) and let ≈F denote the corresponding equivalence relation.
We denote by ∼ the equality of terms up to equivalence of symbols. Observe that
if >F is strict then ≈F and ∼ are the identity of symbols and terms respectively.
Each precedence >F on the symbols induces a lexicographic path order on terms.

Definition 1 (LPO [19]). The lexicographic path order ≻LPO on terms in-
duced by the partial order >F is defined as s = f(s1, . . . , sn) ≻LPO t if and only
if one of the following holds:

1. t = g(t1, . . . , tm) and s ≻LPO tj for all 1 ≤ j ≤ m and either
(i) f >F g or (ii) f ≈F g and 〈s1, . . . , sn〉 ≻

lex
LPO 〈t1, . . . , tm〉; or

2. si %LPO t for some 1 ≤ i ≤ n.

Here ≻lex
LPO is the lexicographic extension of ≻LPO to tuples of terms and %LPO

is the union of ≻LPO and ∼.
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The classical approach to prove termination of a TRS R is to find a reduction
order ≻ which orients all rules ℓ → r in R (i.e., ℓ ≻LPO r). A reduction order
is an order which is well founded, monotonic, and stable (closed under contexts
and substitutions). In practice, most reduction orders amenable to automation
are simplification orders [7], i.e., they contain the embedding relation ≻emb.

The LPO is one of the most prominent simplification orders and raises the
associated decision problem: For terms s and t, is there a precedence >F such
that s ≻LPO t holds? This decision problem comes in two flavors: “strict-LPO”
and “quasi-LPO” depending on whether >F is required to be strict or not.
Finding >F such that s ≻LPO t is tantamount to solving a constraint obtained
by unfolding the definition of s ≻LPO t, cf. [6, 15].

As an example, let F = {−, +, ∗}. Then there exists a strict precedence
such that −(x + y) ≻LPO (−x) ∗ (−y) if and only if the partial order constraint
(− >F ∗)∨ ((+ >F ∗)∧ (+ >F −)) has a solution. In [20] the authors show how
such constraints can be encoded into propositional formulas. These formulas are
satisfiable if and only if there exists a suitable partial order >F . A substan-
tially improved encoding from such partial order constraints into propositional
formulas is presented in [5].

It is well known that lexicographic path orders on their own are not very
powerful for proving termination.

Example 2. Consider the following TRS R for division on natural numbers [2].

minus(x, 0) → x (1)
minus(s(x), s(y)) → minus(x, y) (2)

quot(0, s(y)) → 0 (3)
quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) (4)

Rules (1) - (3) can easily be oriented using an LPO, but rule (4) cannot. To see
this, observe that if we instantiate y by s(x), we obtain quot(s(x), s(s(x))) ≺emb

s(quot(minus(x, s(x)), s(s(x)))). Thus, no simplification order can show termina-
tion of R. This drawback was the reason for developing more powerful approaches
like the dependency pair method.

The dependency pair framework [12] is a modular reformulation and improve-
ment of Arts and Giesl’s dependency pair approach [2] which was also inspired by
related work in [4, 17]. To ease readability, the following presentation is slightly
simplified yet sufficient to state the contributions of this paper. For further de-
tails on the dependency pair framework see [12].

For a term rewrite system R over the symbols F , the set of defined symbols
DR ⊆ F is the set of all root symbols of left-hand sides of R. With each defined
symbol f ∈ DR we extend the signature F by a fresh tuple symbol F . For
each rule f(s1, . . . , sn) → r in a term rewrite system R and for each subterm
g(t1, . . . , tm) of r with g ∈ DR, F (s1, . . . , sn) → G(t1, . . . , tm) is a dependency
pair, intuitively indicating that a function call to f may lead to a function call
to g. The set of dependency pairs of R is denoted DP (R).

Example 3. Recall the term rewrite system from Ex. 2. The defined symbols are
minus and quot and there are three dependency pairs:
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MINUS(s(x), s(y)) → MINUS(x, y) (5)
QUOT(s(x), s(y)) → MINUS(x, y) (6)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y)) (7)

The main result underlying the dependency pair method states that a term
rewrite system R is terminating if and only if there is no infinite (minimal)
R-chain of its dependency pairs DP (R) [2]. In other words, there is no infinite
sequence of dependency pairs s1 → t1, s2 → t2, . . . from DP (R) such that for all i

there is a substitution σi where tiσi is terminating with respect to R and tiσi →
∗
R

si+1σi+1. To prove absence of such infinite chains automatically, we consider so-
called dependency pair problems. A dependency pair problem (P ,R) is a pair
of term rewrite systems P and R and poses the question: “Is there an infinite
R-chain of dependency pairs from P?” The goal is to solve the dependency pair
problem (DP (R),R) in order to determine termination of R.

Termination techniques now operate on dependency pair problems and are
called DP processors. Formally, a DP processor Proc takes a dependency pair
problem as input and returns a new dependency pair problem which then has to
be solved instead. A processor Proc is sound if for all dependency pair problems
(P ,R) where Proc(P ,R) = (P ′,R), there is an infinite R-chain of pairs from
P ′ whenever there is an infinite R-chain of pairs from P . Soundness of a DP
processor is required to prove termination and in particular, to conclude that
there is no infinite R-chain if Proc(P ,R) = (∅,R).

So termination proofs in the DP framework start with the initial DP prob-
lem (DP (R),R). Then the DP problem is simplified repeatedly by sound DP
processors. If one reaches the DP problem (∅,R), then termination is proved.
In the following, we present one of the most important processors of the frame-
work, the so-called reduction pair processor. Additional processors are described
in [12].

For a DP problem (P ,R), the reduction pair processor generates inequality
constraints which should be satisfied by a reduction pair (%,≻) [21] where % is
reflexive, transitive, monotonic, and stable and ≻ is a stable well-founded order
compatible with % (i.e., % ◦ ≻ ⊆ ≻ or ≻ ◦ % ⊆ ≻). However, ≻ need not be
monotonic. A typical choice for a reduction pair (%,≻) is to use simplification
orders in combination with argument filterings [2] (we adopt notation of [21]).

Definition 4 (Argument Filtering). An argument filtering π maps every n-
ary function symbol to an argument position i ∈ {1, . . . , n} or to a (possibly
empty) list [i1, . . . , ip] with 1 ≤ i1 < · · · < ip ≤ n. An argument filtering π

induces a mapping from terms to terms:

π(t) =







t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1), . . . , π(tip
)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , ip]

For a relation ≻ on terms, let ≻π be the relation where s ≻π t holds if and only
if π(s) ≻ π(t). An argument filtering with π(f) = i is called collapsing on f .

Arts and Giesl show in [2] that if (%,≻) is a reduction pair and π is an argu-
ment filtering then (%π,≻π) is also a reduction pair. In particular, we focus on

4



reduction pairs of the form (%π
LPO, ≻π

LPO) to prove termination of examples like
Ex. 2 where the direct application of simplification orders fails.

The constraints generated by the reduction pair processor require that (a)
all dependency pairs in P are weakly or strictly decreasing and, (b) all usable
rules U(P ,R) are weakly decreasing. Here, a rule f(. . .) → r from R is usable
if f occurs in the right-hand side of a dependency pair from P or of a usable
rule. In Ex. 2, the symbols occurring in the right-hand sides of the dependency
pairs (5) - (7) are MINUS, QUOT, s, and minus. Therefore the minus-rules (1)
and (2) are usable. Since the right-hand sides of the minus-rules do not contain
additional symbols, these are in fact all of the usable rules. Hence, the quot-rules
(3) and (4) are not usable.

As shown in [16, 23], under certain conditions on the reduction pair, Restric-
tion (b) ensures that in chains s1 → t1, s2 → t2, . . . with tiσi →∗

R si+1σi+1,
we have tiσi % si+1σi+1. The required conditions hold in particular for any re-
duction pair constructed using simplification orders and argument filterings and
specifically for (%π

LPO,≻π
LPO). Hence, the strictly decreasing pairs of P cannot

occur infinitely often in chains. This enables the processor to delete such pairs
from P . In the following, for any term rewrite system Q and relation ≻, we
denote Q≻ = {s → t ∈ Q | s ≻ t}.

Theorem 5 (Reduction Pair Processor). Let (%,≻) be a reduction pair for
a simplification order ≻ and let π be an argument filtering. Then the following
DP processor Proc is sound.

Proc(P ,R) =

{
(P \ P≻π ,R) if P≻π ∪ P%π = P and R%π ⊇ U(P ,R)

(P ,R) otherwise

Example 6. For the term rewrite system of Ex. 2, according to Thm. 5 we search
for a reduction pair solving the following inequality constraints.

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)

MINUS(s(x), s(y))
(
%

)
MINUS(x, y) (8)

QUOT(s(x), s(y))
(
%

)
MINUS(x, y) (9)

QUOT(s(x), s(y))
(
%

)
QUOT(minus(x, y), s(y)) (10)

By Thm. 5, all dependency pairs corresponding to strictly decreasing inequalities
(8) - (10) can be removed. To solve the inequalities we may take (%π

LPO, ≻π
LPO)

where π(minus)=1, π(s)=π(MINUS)=π(QUOT)=[1], and where %LPO and ≻LPO

are induced by the partial order QUOT >F MINUS. For this choice, inequalities
(8) - (10) are all strict and hence removed by the reduction pair processor. This
results in the new DP problem (∅,R) which proves termination of Ex. 2.

We conclude this brief description of the dependency pair framework with a
statement of the central decision problem associated with argument filterings,
LPO, and dependency pairs:

For a given dependency pair problem (P ,R), does there exist a reduction
pair (%π

LPO, ≻π
LPO) for some argument filtering π and lexicographic path

order induced by some partial order >F such that all rules in P and in
R are weakly decreasing and at least one rule in P is strictly decreasing?
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In the following section we show how to encode constraints like “s ≻π
LPO t”

and “s %π
LPO t” as propositional formulas. Such an encoding enables us to encode

the decision problem stated above as a SAT problem. Based on the solution of the
SAT problem one can then identify the dependency pairs which can be removed
from P .

3 Encoding LPO and Argument Filtering

In this section we consider lexicographic path orders with argument filterings and
the corresponding decision problem. Consider first a naive brute force approach.
For any given argument filtering π we generate the formula

∧

ℓ→r∈U(P,R)

π(ℓ) %LPO π(r) ∧
∧

s→t∈P

π(s) %LPO π(t) ∧
∨

s→t∈P

π(s) ≻LPO π(t) (11)

The constraints “π(s) %LPO π(t)” and “π(s) ≻LPO π(t)” can be encoded as
described in Sect. 2. Then SAT solving can search for an LPO satisfying (11) for
the given filtering π. However, this approach is hopelessly inefficient, potentially
calling the SAT solver for each of the exponentially many argument filterings.
Even if one considers the less naive enumeration algorithms implemented in [14]
and [18], for many examples the SAT solver would be called exponentially often.

A contribution of this paper is to show instead how to encode the argument
filterings into the propositional formula and delegate the search for an argument
filtering to the SAT solver. In this way, the SAT solver is only called once with
an encoding of Formula (11) and it can search for an argument filtering and for
a precedence at the same time. This is clearly advantageous, since the filtering
and the precedence highly influence each other.

So our goal is to encode constraints like “s ≻π
LPO t” (or “s %π

LPO t”) into
propositional formulas such that every model of the encoding corresponds to a
concrete filtering π and precedence >F which satisfy “s ≻π

LPO t” (or “s %π
LPO

t”). We first provide an explicit definition which then provides the basis for
specifying partial order and argument filtering constraints, satisfaction of which
give “s ≻π

LPO t” (or “s %π
LPO t”). The essential differences with Definition 1

are two: each of the two cases of Definition 1 is refined to consider the effect of
π; and we define the weak version %π

LPO of the order explicitly instead of just
defining it via the equivalence on terms.

Definition 7 (LPO modulo π). Let >F be a (strict or non-strict) precedence
and let π be an argument filtering on F . Let x denote a variable.

(I) The induced lexicographic path order ≻π
LPO on terms is defined as follows:

s = f(s1, . . . , sn) ≻π
LPO t if and only if one of the following holds:

1. t = g(t1, . . . , tm) and
(a) π(g) = j and s ≻π

LPO tj; or
(b) π(f) = [i1, ..., ip], π(g) = [j1, ..., jq], s ≻π

LPO tj for all j ∈ [j1, . . . , jq],
and either (i) f >F g or

(ii) f ≈F g and 〈si1 , . . . , sip
〉 ≻π,lex

LPO 〈tj1 , . . . , tjq
〉; or
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2. (a) π(f) = i and si ≻
π
LPO t; or

(b) π(f) = [i1, . . . , ip] and for some i ∈ [i1, . . . , ip], (si %π
LPO t).

(II) For tuples of terms we define 〈s1, . . . , sn〉 ≻π,lex
LPO 〈t1, . . . , tm〉 iff n > 0 and

(a) m = 0 or

(b) m>0 and ((s1≻
π
LPO t1)∨ ((s1 %π

LPO t1)∧〈s2, ..., sn〉 ≻
π,lex
LPO 〈t2, ..., tm〉)).

(III) %π
LPO and %

π,lex
LPO are defined in an analogous way to ≻π

LPO and ≻π,lex
LPO:

(a) replacing ≻π
LPO by %π

LPO in (I) 1(a) and 2(a); and
(b) adding the case x %π

LPO g(t1, . . . , tm) iff π(g) = j and x %π
LPO tj, and

the case x %π
LPO x to (I); and

(c) replacing ≻π,lex
LPO by %

π,lex
LPO in (I),(II) and adding 〈 〉 %

π,lex
LPO 〈 〉 to (II).

It follows directly from Definitions 1, 4, and 7 that for all terms s and t we
have s ≻π

LPO t ⇔ π(s) ≻LPO π(t) and s %π
LPO t ⇔ π(s) %LPO π(t).

The decision problem associated with Def. 7 is stated as follows: For terms s

and t, does there exist a partial order >F and an argument filtering π such that
s ≻π

LPO t resp. s %π
LPO t holds. This problem again comes in two flavors:“strict-

LPO” and “quasi-LPO” depending on whether >F is required to be strict or
not. Our aim is to encode these decision problems as constraints on >F and π,
similar to the encoding of s ≻LPO t as a partial order constraint in Sect. 2. The
difference is that now we have two types of constraints: constraints on the partial
order >F and constraints on the argument filtering π. To express constraints on
argument filterings we use atoms of the following forms: “π(f) = i” to constrain
π to map f to the value i; “π(f) ∋− i” to constrain π to map f either to a list
containing i or to i itself; and “list(π(f))” to constrain π to map f to a list. So
“list(π(f))” means that π is not collapsing on f .

Each of the definitions (I) - (III) in Def. 7 induces an encoding to constraints
on partial orders and argument filterings. In the following definition, we illustrate
the encoding of s ≻π

LPO t for the case of strict-LPO with argument filterings.
The encoding for s %π

LPO t and the encodings for quasi-LPO are defined in
a similar way. In the following definition, τ1a, τ1b and τ2 are the parts of the
encoding corresponding to cases 1(a), 1(b) and 2(a-b) in Def. 7 (I).

Definition 8 (Encoding strict-LPO with Argument Filterings). The
strict-LPO encoding of s ≻π

LPO t is a mapping τ from pairs of terms s and t

to constraints defined by the rules depicted in Fig. 1 (where x denotes a variable).

Example 9. Consider the first arguments of QUOT in dependency pair (7). Using
Def. 8, after simplification of conjunctions, disjunctions, and implications with
true and false we obtain:

τ(s(x) ≻π
LPO minus(x, y)) = (π(minus)=1 ∧ list(π(s)) ∧ π(s) ∋− 1)

∨(list(π(s)) ∧ list(π(minus)) ∧ (s >F minus) ∧
(π(minus) ∋− 1 → list(π(s)) ∧ π(s) ∋− 1) ∧ ¬(π(minus) ∋− 2))

Thus, s(x) ≻π
LPO minus(x, y) holds if and only if minus is collapsed to its first

argument and s is not filtered or if s and minus are not collapsed, s is greater than
minus in the precedence, the second argument of minus is filtered, and whenever
minus keeps the first argument then s keeps the first argument, too.

7



Encoding I:

τ (s ≻π
LPO t) = τ1a(s ≻π

LPO t)
W

τ1b(s ≻π
LPO t)

W

τ2(s ≻π
LPO t)

τ1a(x ≻π
LPO t)=τ1b(x ≻π

LPO t)=τ2(x ≻π
LPO t)=τ1a(s ≻π

LPO x)=τ1b(s ≻π
LPO x)=false

τ1a(s ≻π
LPO g(t1, . . . , tm)) =

_

1≤j≤m

“

(π(g) = j)
^

τ (s ≻π
LPO tj)

”

for non-variable s

τ1b(f(s1, . . . , sn) ≻π
LPO g(t1, . . . , tm)) = list(π(f))

V

list(π(g))
V

(f >F g)
V

^

1≤j≤m

(π(g) ∋− j) → τ (f(s1, . . . , sn) ≻π
LPO tj) for f 6= g

τ1b(f(s1, . . . , sn) ≻π
LPO f(t1, . . . , tn) = list(π(f))

V

τ (〈s1, . . . , sn〉 ≻
π,lex

LPO,f 〈t1, . . . , tn〉)
V

^

1≤j≤n

(π(f) ∋− j) → τ (f(s1, . . . , sn) ≻π
LPO tj)

τ2(f(s1, . . . , sn) ≻π
LPO t) =

_

1≤i≤n

“

(π(f) = i)
^

τ (si ≻
π
LPO t)

”

∨

0

@list(π(f)) ∧
_

1≤i≤n

(π(f) ∋− i) ∧ τ (si %
π
LPO t)

1

A

Encoding II:

τ (〈si, . . . , sn〉 ≻
π,lex

LPO,f 〈ti, . . . , tn〉) = false if n = 0 else

((π(f) ∋− i)
V

τ (si ≻
π
LPO ti))

W

“

( (π(f) ∋− i) → τ (si %π
LPO ti) )

V

τ (〈si+1, . . . , sn〉 ≻
π,lex

LPO,f 〈ti+1, . . . , tn〉)
”

Fig. 1. Encoding LPO with Argument Filterings

We proceed to describe how partial order and argument filtering constraints
are transformed into propositional logic. The propositional encoding of partial
order constraints is presented in more detail in [5].

Let |F| = m. The basic idea is to interpret the symbols in F as indices
in a partial order taking finite domain values from the set {1, . . . , m}. Each
symbol f ∈ F is thus modeled as 〈fk, . . . , f1〉 with fk the most significant bit
and k = ⌈log2 m⌉. The binary value of 〈fk, . . . , f1〉 represents the position of f

in the partial order. Of course, fk, . . . , f1 may be equal to gk, . . . , g1 for f 6= g,
if a (possibly strict) partial order imposes no order between f and g, or if a
non-strict partial order imposes f ≈F g. Constraints of the form (f >F g) or
(f ≈F g) on F are interpreted as constraints on indices and it is straightforward
to encode them in k-bit arithmetic: A constraint of the form (f ≈F g) is encoded
in k bits by

‖(f ≈F g)‖k =
∧

1≤i≤k

(fi ↔ gi).

A constraint of the form (f >F g) is encoded in k bits by

‖(f >F g)‖k =

{
(f1 ∧ ¬g1) if k = 1
(fk ∧ ¬gk) ∨ ((fk ↔ gk) ∧ ‖(f > g)‖k−1) if k > 1
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To encode argument filtering constraints, we associate with each symbol f ∈
F of arity n the propositional variables listf (which is true if and only if π is
not collapsing on f) and arg1

f , . . . , argn
f (which indicate which arguments of f

remain after filtering by π). We impose for each f ∈ F of arity n a constraint
of the form ¬listf →

⊕

1≤i≤n argi
f where

⊕

1≤i≤n argi
f specifies that exactly

one of the variables argi
f is true and the rest are false. The argument filtering

constraints are then encoded as follows: ‖list(π(f))‖ = listf ; ‖π(f) ∋− i‖ = argi
f ;

and ‖π(f) = i‖ = ¬listf ∧ argi
f .

Example 10. Consider the encoding in Ex. 9 which contains partial order con-
straints and argument filtering constraints. Using the above encoding for these
constraints, we obtain the following propositional formula. Since there are only
m = 2 symbols s and minus, we choose k = 1 and encode the partial order
constraint (s >F minus) as (s1 ∧ ¬minus1).

‖τ(s(x) ≻π
LPO minus(x, y))‖ = (¬listminus ∧ arg1

minus ∧ lists ∧ arg1
s )

∨(lists ∧ listminus ∧ (s1 ∧ ¬minus1) ∧
(arg1

minus → lists ∧ arg1
s ) ∧ ¬arg2

minus)

4 Argument Filterings and Usable Rules

Recent improvements of the DP method [11, 23] significantly reduce the number
of rules required to be weakly decreasing in the reduction pair processor of
Thm. 5. We first recapitulate the improved reduction pair processor and then
adapt our propositional encoding accordingly.

The idea is that one can restrict the set of usable rules by taking the argu-
ment filtering into account: in right-hand sides of dependency pairs or rules, an
occurrence of f in the i-th argument of g will never be the cause to introduce
a usable f -rule if the argument filtering eliminates g’s i-th argument. For in-
stance, when taking π(QUOT) = [2] in Ex. 2, the right-hand side of the filtered
dependency pairs do not contain minus anymore. Thus, no rule is considered
usable. In Def. 11, we define these restricted usable rules for a term t (initially
corresponding to the right-hand side of a dependency pair). Here, we make the
TRS R explicit to facilitate a straightforward encoding in Def. 14 afterwards.

Definition 11 (Usable Rules modulo π [11, 23]). Let R be a TRS and π

an argument filtering. For any function symbol f , let RlsR(f) = {ℓ → r ∈ R |
root(ℓ) = f}. For any term t, the usable rules Uπ(t,R) modulo π are given by:

Uπ(x,R) = ∅ for all variables x

Uπ(f(t1, . . . , tn),R) = RlsR(f) ∪
⋃

ℓ→r∈RlsR(f) Uπ(r,R \ RlsR(f)) ∪
⋃

π(f)∋−i Uπ(ti,R \ RlsR(f))

For a set of dependency pairs P, let Uπ(P ,R) =
⋃

s→t∈P Uπ(t,R).

9



We now refine the reduction pair processor of Thm. 5 to consider usable rules
modulo π.

Theorem 12 (Reduction Pair Processor modulo π [23]). Let (%,≻) be a
reduction pair for a simplification order ≻ and let π be an argument filtering.
Then the following DP processor Proc is sound.

Proc(P ,R) =

{
(P \ P≻π ,R) if P≻π ∪ P%π = P and R%π ⊇ Uπ(P ,R)

(P ,R) otherwise

Example 13. Consider the following TRS (together with the minus-rules (1), (2))

ge(x, 0) → true (12)
ge(0, s(y)) → false (13)

ge(s(x), s(y)) → ge(x, y) (14)

div(x, y) → if(ge(x, y), x, y) (15)
if(true, s(x), s(y)) → s(div(minus(x, y), s(y))) (16)

if(false, x, s(y)) → 0 (17)

The usable rules are the minus- and ge-rules since minus occurs in the right-hand
side of the dependency pair IF(true, s(x), s(y)) → DIV(minus(x, y), s(y)) resulting
from rule (16) and ge occurs in the dependency pair DIV(x, y) → IF(ge(x, y), x, y)
resulting from rule (15). However, if one chooses an argument filtering with
π(DIV) = [1] and π(IF) = [2], then the ge-rules are no longer usable since ge does
not occur in the right-hand side of the filtered dependency pair DIV(x) → IF(x).
Now Thm. 12 only requires the filtered minus-rules and the dependency pairs to
be decreasing.

As demonstrated in [11, 23] and confirmed by the experiments described in
Sect. 5, introducing argument filterings to the specification of usable rules results
in a significant gain of termination proving power. However, Thm. 12 is not
straightforward to automate using SAT solvers. The technique of Sect. 3 assumes
a given set of inequalities which is then encoded to a propositional formula. The
problem with Thm. 12 is that that the set of inequalities to be oriented depends
on the chosen argument filtering. Hence, the search for an argument filtering
should be combined with the computation of the usable rules. As discussed
before, an enumeration of argument filterings is hopelessly inefficient. Therefore,
we modify the encoding of the inequalities in Formula (11) to consider for every
rule ℓ → r ∈ R, the condition under which ℓ → r is usable. Only under this
condition one has to require the inequality π(ℓ) %LPO π(r). To this end, instead
of encoding formula (11) we encode the following formula.

∧

ℓ→r∈Uπ(P,R)

ℓ %π
LPO r

︸ ︷︷ ︸

(a)

∧
∧

s→t∈P

s %π
LPO t

︸ ︷︷ ︸

(b)

∧
∨

s→t∈P

s ≻π
LPO t

︸ ︷︷ ︸

(c)

(11′)

The subformulas (b) and (c) are identical to those in Formula (11) and are en-
coded as a conjunction and disjunction of encodings of the forms τ(s %π

LPO t)
and τ(s ≻π

LPO t) using Def. 8. The definition of the usable rules in Def. 11
now induces the following encoding of subformula (a) as a propositional for-
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mula ω(P ,R).4 As in Sect. 3, we use argument filtering constraints of the form
“π(f)∋− i”. Moreover, we introduce a new propositional variable uf for every de-
fined function symbol f of U(P ,R) which indicates whether f ’s rules are usable.

Definition 14 (Encoding Usable Rules modulo Argument Filtering).
For a term t and a TRS R the formula ω(t,R) is defined as follows:

ω(x,R) = true for x ∈ V
ω(f(t1, . . . , tn),R) =

∧

1≤i≤n (π(f) ∋− i → ω(ti,R)) for f 6∈ DR

ω(f(t1, . . . , tn),R) = uf ∧ for f ∈ DR∧

ℓ→r∈RlsR(f) ω(r,R \ RlsR(f)) ∧
∧

1≤i≤n (π(f) ∋− i → ω(ti,R \ RlsR(f)))

For a set of dependency pairs P, let

ω(P ,R) =

(
∧

s→t∈P

ω(t,R)

)

∧




∧

f∈DU(P,R)

uf →




∧

ℓ→r∈RlsR(f)

τ(ℓ %π
LPO r)







 .

For a DP problem (P ,R) we encode the formula (11′). Every model of this
encoding corresponds to a precedence >F and an argument filtering π satisfying
the constraints of the improved reduction pair processor from Thm. 12. Thus,
we can now use SAT solving to automate Thm. 12 as well.

Example 15. Consider the TRS R from Ex. 13. Using the encoding of Def. 14,
for P = DP (R) we obtain:

ω(P ,R) = (π(DIV) ∋− 1 → uminus) ∧ (π(IF) ∋− 1 → uge) ∧

(uminus → (τ(minus(x, 0) %π
LPO x) ∧ τ(minus(s(x), s(y)) %π

LPO minus(x, y)))) ∧

(uge → (τ(ge(x, 0) %π
LPO true) ∧ τ(ge(0, s(y)) %π

LPO false) ∧

τ(ge(s(x), s(y)) %π
LPO ge(x, y))))

5 Implementation and Experiments

The propositional encodings for LPO with argument filterings and for the reduc-
tion pair processors described in Sect. 3 and 4 are implemented and integrated
in the termination prover AProVE available from [9]. This Java implementation
consists of the following main components: (a) An encoder from DP problems
to formulas with partial order and argument filtering constraints (approx. 1700
lines). (b) A propositional encoder for partial order constraints following [5] and
for argument filtering constraints (approx. 300 lines). (c) Interfaces to several
SAT solvers (approx. 300 lines). In our experiments to evaluate the contributions
of this paper, we applied the MiniSAT solver [8]. For the translation to conjunc-
tive normal form (CNF) we used the implementation of Tseitin’s algorithm [24]
offered by SAT4J [22] - a freely available Java implementation of MiniSAT. Our
implementation uses several optimizations to minimize encoding size:

4 The definition of ω can easily be adapted to more advanced definitions of usable
rules as well, cf. e.g. [2, 11, 13].
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1. We apply basic simplification axioms for true and false as well as standard
Boolean simplifications to flatten nested conjunctions and disjunctions.

2. When building the formulas top-down, at each point we maintain the sets of
atomic constraints (partial order and argument filtering) that must be true
and false from this point on. This information is then applied to simplify
all constraints generated below (in the top-down process) and to prune the
encoding process.

3. We memo and identify identical subformulas in the propositional encodings
and represent formulas as directed acyclic graphs (or Boolean circuits) in-
stead of trees. This decreases the size of the representation considerably.
(The usefulness of sharing when solving LPO constraints was already dis-
cussed in [10].) For instance, consider the constraint from Ex. 9. Already in
this tiny example, the subformula list(π(s))∧ π(s) ∋− 1 occurs twice, since it
results from the encoding of both s(x) ≻π

LPO x and s(x) ≻π
LPO y.

Optimization (2) typically reduces the number of propositional variables in
the resulting CNF by a factor of at least 2. Optimizations (1) and (3) together
further reduce the number of propositional variables by a typical factor of 10.

To evaluate our new SAT-based implementation, we performed extensive
experiments to compare it with the corresponding methods in the current non-
SAT-based implementations of AProVE [14] and of the Tyrolean Termination Tool

(TTT) [18]. In the annual International Competition of Termination Tools 2004
and 2005 [1], AProVE and TTT were the two most powerful tools for termination
analysis of term rewriting. For our experiments, both AProVE and TTT were
configured to consider all argument filterings.5

We ran the three tools on all 773 TRSs from the Termination Problem Data
Base 2005. This is the collection of examples from the annual competition of ter-
mination tools. It contains 99 TRSs that are known to be non-terminating and
which serve as an error-checking mechanism. As expected, all three implemen-
tations fail to show termination of these TRSs. For the experiments, the TTT

analyzer was applied via its web interface and ran on a Xeon 2.24GHz dual-CPU
platform. The AProVE analyzer and our new SAT-based analyzer were run on
an AMD Athlon 64 at 2.2 GHz.

Apart from the reduction pair processor, we also used the dependency graph
processor [2, 12, 17], which is the other main processor of the dependency pair
framework. This processor is used to split up dependency pair problems into
smaller ones. As AProVE and TTT use slightly different techniques for estimat-
ing dependency graphs in the dependency graph processor and as they run on
different machines, their performance is not directly comparable.

For a fair comparison of the three different implementations, we did not use
any of the many other termination analysis techniques available in AProVE and
TTT. In particular we did not use any techniques to preprocess the TRSs and
we did not apply any other DP processors.

Tables 1 and 2 summarize the results using the DP processors based on

5 TTT offers two algorithms to search for argument filterings. We used the “divide-
and-conquer”-algorithm, since it is usually the more efficient one.

12



Thm. 5 and 12 respectively. The tools are indicated as: TTT, APR (AProVE)
and SAT (AProVE with our SAT-based encoding). For each of the experiments
we considered reduction pairs based on strict - and quasi-LPO. Each of the ex-
periments was performed with a time-out of 60 seconds (corresponding to the
way tools are evaluated in the annual competition) and with a time-out of 10
minutes. We indicate by “Yes”, “Fail”, and “RL” the number of TRSs for which
proving termination with the given technique succeeds, fails, or encounters a re-
source limit (time-out or exhausts memory). Finally, we give the total time in
seconds for analyzing all 773 examples. Individual runtimes and proof details
are available from our empirical evaluation web site [9].

LPO - 60sec t/o LPO - 10min t/o

Tool Yes Fail RL Time Yes Fail RL Time

TTT 268 448 57 4202 269 465 39 28030
APR 310 358 105 6936 310 365 98 60402
SAT 327 446 0 82 327 446 0 82

QLPO - 60sec t/o QLPO - 10min t/o

Yes Fail RL Time Yes Fail RL Time

297 395 81 6241 297 408 68 43540
320 331 122 7913 326 341 106 67764
359 414 0 183 359 414 0 183

Table 1. Strict–LPO (left) and Quasi-LPO (right) with the DP processor of Thm. 5

The comparison of the corresponding SAT-based and non-SAT-based con-
figurations in Table 1 shows that the analyzers based on SAT solving with our
proposed encoding are faster by orders of magnitude. Moreover, the power (i.e.,
the number of examples where termination can be proved) also increases sub-
stantially in the SAT-based configurations. It is also interesting to note that there
are no time-outs in the SAT-based configurations, whereas the non-SAT-based
configurations have many time-outs.6

LPO - 60sec t/o LPO - 10min t/o

Tool Yes Fail RL Time Yes Fail RL Time

APR 338 368 67 4777 341 383 49 33329
SAT 348 425 0 82 348 425 0 82

QLPO - 60sec t/o QLPO - 10min t/o

Yes Fail RL Time Yes Fail RL Time

357 323 93 6100 359 336 78 49934
380 393 0 193 380 393 0 193

Table 2. Strict-LPO (left) and Quasi-LPO (right) with the DP processor of Thm. 12

Table 2 provides results using the improved reduction pair processor of
Thm. 12. Again, the SAT-based configuration is much faster than the corre-
sponding non-SAT-based one. The comparison with Table 1 shows that replac-
ing the processor of Thm. 5 by the one of Thm. 12 increases power significantly
and has no negative influence on runtimes.

In both tables, the comparison between strict- and quasi-LPO (of correspond-
ing configurations) shows that quasi-LPO is more powerful but also slower than
strict-LPO. However, for the SAT-based analyses, the overall runtimes are still
extremely fast in comparison to the non-SAT-based configurations.

Table 3 highlights 5 examples which could not be solved by any tool in the
termination competition 2005, whereas the SAT-based configuration proves ter-
mination for all 5 in a total of 4.3 seconds. In fact, except for the second example,
neither TTT nor AProVE are able to prove termination within 10 minutes in their

6 To evaluate the optimizations on p. 11, we also tested the SAT-based configuration
with strict-LPO and the 10-minute time-out in a version where optimizations (2)
and (3) are switched off. Here, the total runtime increases from 82 to 1968 seconds.
Thus, optimizations (2) and (3) decrease total runtime by a factor of more than 20.
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fully automatic mode (which uses many other termination techniques in addition
to LPO and argument filtering). This demonstrates that our encoding advances
the state of the art of automated termination analysis. The third example could
be proven terminating by TTT or AProVE if they employed a strategy which
applies LPO earlier. But due to efficiency considerations, both tools did not do
this yet in their fully automatic mode. However, with the speed of our new SAT-
based approach one can now develop strategies which try LPO and argument
filtering as one of the first termination techniques. Since failure of LPO is now
detected very quickly, one can still use other termination techniques afterwards.

The columns TTT, APR, and SAT indicate for the 3 tools the analysis times
in seconds (including parsing, producing proofs, computing dependency graphs,
etc.) and “t/o” indicates a 10 minute timeout. For each of the examples and tools,
the time indicated is for the fastest configuration from those described in Tables 1
and 2. For the second and third example, TTT’s “divide-and-conquer”-algorithm
times out, but its “enumeration”-algorithm (which is usually less efficient) finds
a solution within 10 minutes. Therefore, here the runtimes are given in brackets.
The last four columns give details for the largest CNF which occurred during
the termination proof with SAT (ranging over all dependency pair problems
encountered). Columns 4 and 5 indicate the number of clauses and the number
of literals of this CNF while Columns 6 and 7 indicate the time (in milliseconds)
for encoding to propositional logic and for SAT solving.

Example TTT APR SAT # clauses # literals encod. time SAT time

Ex26 Luc03b Z t/o t/o 1.15 12462 32027 90 48
Ex2 Luc02a C (476.8) t/o 0.69 8478 21200 137 20
Ex49 GM04 C ( 25.8) 44.4 0.81 7040 17638 212 16
ExSec11 1 Luc02a C t/o t/o 0.78 10968 28265 145 12
ExSec11 1 Luc02a GM t/o t/o 0.87 19782 50608 155 72

Table 3. Five hard examples: SAT solving increases termination proving power

6 Conclusion

In [5] the authors demonstrate the power of propositional encoding and ap-
plication of SAT solving to LPO termination analysis. This paper extends the
SAT-based approach to consider the more realistic setting of dependency pair
problems with LPO and argument filtering. The main challenge derives from
the strong dependencies between the notions of LPO, argument filterings, and
the set of rules which need to be oriented. The key to a solution is to intro-
duce and encode in SAT all of the constraints originating from these notions
into a single search process. We introduce such an encoding and through im-
plementation and experimentation prove that it meets the challenge yielding
speedups in orders of magnitude over existing termination tools as well as in-
creasing termination proving power. To experiment with our SAT-based imple-
mentation and for further details on our experiments please visit our web page
at http://aprove.informatik.rwth-aachen.de/eval/SATLPO [9].
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