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Abstract. We present the Loop Acceleration Tool (LoAT), a powerful tool
for proving non-termination and worst-case lower bounds for programs
operating on integers. It is based on the novel calculus from [10,11] for loop
acceleration, i.e., transforming loops into non-deterministic straight-line
code, and for finding non-terminating configurations. To implement it
efficiently, LoAT uses a new approach based on unsat cores. We evaluate
LoAT’s power and performance by extensive experiments.

1 Introduction

Efficiency is one of the most important properties of software. Consequently,
automated complexity analysis is of high interest to the software verification
community. Most research in this area has focused on deducing upper bounds on
the worst-case complexity of programs. In contrast, the Loop Acceleration Tool
LoAT aims to find performance bugs by deducing lower bounds on the worst-case
complexity of programs operating on integers. Since non-termination implies the
lower bound ∞, LoAT is also equipped with non-termination techniques.

LoAT is based on loop acceleration [4,5,9–11,15], which replaces loops by non-
deterministic code: The resulting program chooses a value n, representing the num-
ber of loop iterations in the original program. To be sound, suitable constraints
on n are synthesized to ensure that the original loop allows for at least n iterations.
Moreover, the transformed program updates the program variables to the same
values as n iterations of the original loop, but it does so in a single step. To
achieve that, the loop body is transformed into a closed form, which is parame-
terized in n. In this way, LoAT is able to compute symbolic under-approximations
of programs, i.e., every execution path in the resulting transformed program
corresponds to a path in the original program, but not necessarily vice versa.
In contrast to many other techniques for computing under-approximations, the
symbolic approximations of LoAT cover infinitely many runs of arbitrary length.

Contributions: The main new feature of the novel version of LoAT presented
in this paper is the integration of the loop acceleration calculus from [10, 11],
which combines different loop acceleration techniques in a modular way, into
LoAT’s framework. This enables LoAT to use the loop acceleration calculus for
the analysis of full integer programs, whereas the standalone implementation of
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the calculus from [10,11] was only applicable to single loops without branching
in the body. To control the application of the calculus, we use a new technique
based on unsat cores (see Sect. 5). The new version of LoAT is evaluated in
extensive experiments. See [14] for all missing proofs.

2 Preliminaries

Let L ⊇ {main} be a finite set of locations, where main is the canonical start
location (i.e., the entry point of the program), and let x⃗ := [x1, . . . , xd] be
the vector of program variables. Furthermore, let T V be a countably infinite
set of temporary variables, which are used to model non-determinism, and let
supZ :=∞. We call an arithmetic expression e an integer expression if it evaluates
to an integer when all variables in e are instantiated by integers. LoAT analyzes
tail-recursive programs operating on integers, represented as integer transition

systems (ITSs), i.e., sets of transitions f(x⃗)
p−→ g(⃗a) [φ] where f, g ∈ L, the update

a⃗ is a vector of d integer expressions over T V∪ x⃗, the cost p is either an arithmetic
expression over T V ∪ x⃗ or ∞, and the guard φ is a conjunction of inequations
over integer expressions with variables from T V ∪ x⃗.1 For example, consider the
loop on the left and the corresponding transition tloop on the right.

while x > 0 do x← x− 1 f(x)
1−→ f(x− 1) [x > 0] (tloop)

Here, the cost 1 instructs LoAT to use the number of loop iterations as cost
measure. LoAT allows for arbitrary user defined cost measures, since the user can
choose any polynomials over the program variables as costs.

LoAT synthesizes transitions with cost ∞ to represent non-terminating runs,
i.e., such transitions are not allowed in the input. A configuration is of the form
f(c⃗) with f ∈ L and c⃗ ∈ Zd. For any entity s /∈ L and any arithmetic expressions

b⃗ = [b1, . . . , bd], let s(⃗b) denote the result of replacing each variable xi in s by bi, for
all 1 ≤ i ≤ d. Moreover, Vars(s) denotes the program variables and T V(s) denotes
the temporary variables occurring in s. For an integer transition system T , a
configuration f(c⃗) evaluates to g(c⃗ ′) with cost k ∈ Z∪{∞}, written f(c⃗) k−→T g(c⃗ ′),

if there exists a transition f(x⃗)
p−→ g(⃗a) [φ] ∈ T and an instantiation of its

temporary variables with integers such that the following holds:

φ(c⃗) ∧ c⃗ ′ = a⃗(c⃗) ∧ k = p(c⃗).

As usual, we write f(c⃗) k→∗
T g(c⃗ ′) if f(c⃗) evaluates to g(c⃗ ′) in arbitrarily many

steps, and the sum of the costs of all steps is k. We omit the costs if they are
irrelevant. The derivation height of f(c⃗) is

dhT (f(c⃗)) := sup{k | ∃g(c⃗ ′). f(c⃗) k→∗
T g(c⃗ ′)}

and the runtime complexity of T is

rcT (n) := sup{dhT (main(c1, . . . , cd)) | |c1|+ . . .+ |cd| ≤ n}.
1 LoAT can also analyze the complexity of certain non-tail-recursive programs, see [9].
For simplicity, we restrict ourselves to tail-recursive programs in the current paper.
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T terminates if no configuration main(c⃗) admits an infinite −→T -sequence and
T is finitary if no configuration main(c⃗) admits a −→T -sequence with cost ∞.
Otherwise, c⃗ is a witness of non-termination or a witness of infinitism, respectively.
Note that termination implies finitism for ITSs where no transition has cost ∞.
However, our approach may transform non-terminating ITSs into terminating,
infinitary ITSs, as it replaces non-terminating loops by transitions with cost ∞.

3 Overview of LoAT

The goal of LoAT is to compute a lower bound on rcT or even prove non-
termination of T . To this end, it repeatedly applies program simplifications,
so-called processors. When applying them with a suitable strategy (see [8, 9]),

one eventually obtains simplified transitions of the form main(x⃗)
p−→ f (⃗a) [φ]

where f ≠ main. As LoAT’s processors are sound for lower bounds (i.e., if they
transform T to T ′, then dhT ≥ dhT ′), such a simplified transition gives rise to
the lower bound Iφ · p on dhT (main(x⃗)) (where Iφ denotes the indicator function
of φ which is 1 for values where φ holds and 0 otherwise). This bound can be
lifted to rcT by solving a so-called limit problem, see [9].

LoAT’s processors are also sound for non-termination, as they preserve finitism.
So if p =∞, then it suffices to prove satisfiability of φ to prove infinitism, which
implies non-termination of the original ITS, where transitions with cost ∞ are
forbidden (see Sect. 2). LoAT’s most important processors are:

Loop Acceleration (Sect. 4) transforms a simple loop, i.e., a single transition

f(x⃗)
p−→ f (⃗a) [φ], into a non-deterministic transition that can simulate several

loop iterations in one step. For example, loop acceleration transforms tloop to

f(x)
n−→ f(x− n) [x ≥ n ∧ n > 0] (tloopn)

where n ∈ T V, i.e., the value of n can be chosen non-deterministically.
Instantiation [9, Thm. 3.12] replaces temporary variables by integer expres-

sions. For example, it could instantiate n with x in tloopn , resulting in

f(x)
x−→ f(0) [x > 0] . (tloopx)

Chaining [9, Thm. 3.18] combines two subsequent transitions into one transition.
For example, chaining combines the transitions

main(x)
1−→ f(x)

and tloopx to main(x)
x+1−−→ f(0) [x > 0] .

Nonterm (Sect. 6) searches for witnesses of non-termination, characterized by
a formula ψ. So it turns, e.g.,

f(x1, x2)
1−→ f(x1 − x2, x2) [x1 > 0] (tnonterm)

into f(x1, x2)
∞−→ sink(x1, x2) [x1 > 0 ∧ x2 ≤ 0]

(where sink ∈ L is fresh), as each c⃗ ∈ Z2 with c1 > 0 ∧ c2 ≤ 0 witnesses
non-termination of tnonterm , i.e., here ψ is x1 > 0 ∧ x2 ≤ 0.

Intuitively, LoAT uses Chaining to transform non-simple loops into simple
loops. Instantiation resolves non-determinism heuristically and thus reduces
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the number of temporary variables, which is crucial for scalability. In addition to
these processors, LoAT removes transitions after processing them, as explained
in [9]. See [8, 9] for heuristics and a suitable strategy to apply LoAT’s processors.

4 Modular Loop Acceleration

For Loop Acceleration, LoAT uses conditional acceleration techniques [10].
Given two formulas ξ and qφ, and a loop with update a⃗, a conditional acceleration
technique yields a formula accel(ξ, qφ, a⃗) which implies that ξ holds throughout n
loop iterations (i.e., ξ is an n-invariant), provided that qφ is an n-invariant, too.
In the following, let a⃗0(x⃗) := x⃗ and a⃗m+1(x⃗) := a⃗(⃗am(x⃗)) = a⃗[x⃗/a⃗m(x⃗)].

Definition 1 (Conditional Acceleration Technique). A function accel is
a conditional acceleration technique if the following implication holds for all
formulas ξ and qφ with variables from T V ∪ x⃗, all updates a⃗, all n > 0, and all
instantiations of the variables with integers:(

accel(ξ, qφ, a⃗) ∧ ∀i ∈ [0, n). qφ(⃗ai(x⃗))
)

=⇒ ∀i ∈ [0, n). ξ(⃗ai(x⃗)).

The prerequisite ∀i ∈ [0, n). qφ(⃗ai(x⃗)) is ensured by previous acceleration steps,
i.e., qφ is initially ⊤ (true), and it is refined by conjoining a part ξ of the loop
guard in each acceleration step. When formalizing acceleration techniques, we
only specify the result of accel for certain arguments ξ, qφ, and a⃗, and assume
accel(ξ, qφ, a⃗) = ⊥ (false) otherwise.

Definition 2 (LoAT’s Conditional Acceleration Techniques [10, 11]).
Increase accel inc(ξ, qφ, a⃗) := ξ if |= ξ ∧ qφ =⇒ ξ(⃗a)
Decrease acceldec(ξ, qφ, a⃗) := ξ(⃗an−1(x⃗)) if |= ξ(⃗a) ∧ qφ =⇒ ξ
Eventual Decrease accelev-dec(t > 0, qφ, a⃗) := t > 0 ∧ t(⃗an−1(x⃗)) > 0

if |= (t ≥ t(⃗a) ∧ qφ) =⇒ t(⃗a) ≥ t(⃗a2(x⃗))
Eventual Increase accelev-inc(t > 0, qφ, a⃗) := t > 0 ∧ t ≤ t(⃗a)

if |= (t ≤ t(⃗a) ∧ qφ) =⇒ t(⃗a) ≤ t(⃗a2(x⃗))
Fixpoint accel fp(t > 0, qφ, a⃗) := t > 0 ∧

∧
x∈closurea⃗(t)

x = x(⃗a)

where closure a⃗(t) :=
⋃

i∈N Vars(t(⃗ai(x⃗)))

The above five techniques are taken from [10,11], where only deterministic
loops are considered (i.e., there are no temporary variables). Lifting them to
non-deterministic loops in a way that allows for exact conditional acceleration
techniques (which capture all possible program runs) is non-trivial and beyond
the scope of this paper. Thus, we sacrifice exactness and treat temporary variables
like additional constant program variables whose update is the identity, resulting
in a sound under-approximation (that captures a subset of all possible runs).

So essentially, Increase and Decrease handle inequations t > 0 in the loop
guard where t increases or decreases (weakly) monotonically when applying the
loop’s update. The canonical examples where Increase or Decrease applies are

f(x, . . .)→ f(x+1, . . .) [x > 0 ∧ . . .] or f(x, . . .)→ f(x−1, . . .) [x > 0 ∧ . . .] ,
respectively. Eventual Decrease applies if t never increases again once it starts
to decrease. The canonical example is f(x, y, . . .)→ f(x+y, y−1, . . .) [x > 0 ∧ . . .].
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Similarly, Eventual Increase applies if t never decreases again once it starts to
increase. Fixpoint can be used for inequations t > 0 that do not behave (even-
tually) monotonically. It should only be used if accel fp(t > 0, qφ, a⃗) is satisfiable.

LoAT uses the acceleration calculus of [10]. It operates on acceleration problems
Jψ | qφ | φ̂Ka⃗, where ψ (which is initially ⊤) is repeatedly refined. When it stops,
ψ is used as the guard of the resulting accelerated transition. The formulas qφ
and φ̂ are the parts of the loop guard that have already or have not yet been
handled, respectively. So qφ is initially ⊤, and φ̂ and a⃗ are initialized with the

guard φ and the update of the loop f(x⃗)
p−→ f (⃗a) [φ] under consideration, i.e., the

initial acceleration problem is J⊤ | ⊤ | φKa⃗. Once φ̂ is ⊤, the loop is accelerated

to f(x⃗)
q−→ f (⃗an(x⃗)) [ψ ∧ n > 0], where the cost q and a closed form for a⃗n(x⃗) are

computed by the recurrence solver PURRS [2].

Definition 3 (Acceleration Calculus for Conjunctive Loops). The rela-
tion ⇝ on acceleration problems is defined as

accel(ξ, qφ, a⃗) = ψ2

Jψ1 | qφ | ξ ∧ φ̂Ka⃗ ⇝ Jψ1 ∧ ψ2 | qφ ∧ ξ | φ̂Ka⃗

accel is a conditional
acceleration technique

So to accelerate a loop, one picks a not yet handled part ξ of the guard in
each step. When accelerating f(x⃗) −→ f (⃗a) [ξ] using a conditional acceleration
technique accel , one may assume ∀i ∈ [0, n). qφ(⃗ai(x⃗)). The result of accel is
conjoined to the result ψ1 computed so far, and ξ is moved from the third to the
second component of the problem, i.e., to the already handled part of the guard.

Example 4 (Acceleration Calculus). We show how to accelerate the loop

f(x, y)
x−→ f(x− y, y) [x > 0 ∧ y ≥ 0] to

f(x, y)
(x+ y

2 )·n−
y
2 ·n

2

−−−−−−−−−−→ f(x− n · y, y) [y ≥ 0 ∧ x− (n− 1) · y > 0 ∧ n > 0] .

The closed form a⃗n(x) = (x− n · y, y) can be computed via recurrence solving.
Similarly, the cost (x+ y

2 ) · n−
y
2 · n

2 of n loop iterations is obtained by solving

the following recurrence relation (where c(n) and x(n) denote the cost and the
value of x after n applications of the transition, respectively).

c(n) = c(n−1) + x(n−1) = c(n−1) + x− (n− 1) · y and c(1) = x.

The guard is computed as follows:

J⊤ | ⊤ | x > 0 ∧ y ≥ 0Ka⃗ ⇝ Jy ≥ 0 | y ≥ 0 | x > 0Ka⃗
⇝ Jy ≥ 0 ∧ x− (n− 1) · y > 0 | y ≥ 0 ∧ x > 0 | ⊤Ka⃗ .

In the 1st step, we have ξ = (y ≥ 0) and accel inc(y ≥ 0,⊤, a⃗) = (y ≥ 0). In the
2nd step, we have ξ = (x > 0) and acceldec(x > 0, y ≥ 0, a⃗) = (x− (n−1) ·y > 0).
So the inequation x− (n− 1) · y > 0 ensures n-invariance of x > 0.

5 Efficient Loop Acceleration using Unsat Cores

Each attempt to apply a conditional acceleration technique other than Fixpoint
requires proving an implication, which is implemented via SMT solving by proving
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unsatisfiability of its negation. For Fixpoint, satisfiability of accel fp(t > 0, qφ, a⃗)
is checked via SMT. So even though LoAT restricts ξ to atoms, up to Θ(m2)
attempts to apply a conditional acceleration technique are required to accelerate
a loop whose guard contains m inequations using a naive strategy (5 ·m attempts
for the 1st ⇝-step, 5 · (m− 1) attempts for the 2nd step, . . . ).

To improve efficiency, LoAT uses a novel encoding that requires just 5 ·m
attempts. For any α ∈ ATimp = {inc, dec, ev -dec, ev -inc}, let encodeα(ξ, qφ, a⃗) be
the implication that has to be valid in order to apply accelα, whose premise is of
the form . . . ∧ qφ. Instead of repeatedly refining qφ, LoAT tries to prove validity2

of encodeα,ξ := encodeα(ξ, φ \ {ξ}, a⃗) for each α ∈ ATimp and each ξ ∈ φ, where
φ is the (conjunctive) guard of the transition that should be accelerated. Again,
proving validity of an implication is equivalent to proving unsatisfiability of its
negation. So if validity of encodeα,ξ can be shown, then SMT solvers can also
provide an unsat core for ¬encodeα,ξ.

Definition 5 (Unsat Core). Given a conjunction ψ, we call each unsatisfiable
subset of ψ an unsat core of ψ.

Thm. 6 shows that when handling an inequation ξ, one only has to require
n-invariance for the elements of φ\{ξ} that occur in an unsat core of ¬encodeα,ξ.
Thus, an unsat core of ¬encodeα,ξ can be used to determine which prerequisites
qφ are needed for the inequation ξ. This information can then be used to find a
suitable order for handling the inequations of the guard. Thus, in this way one
only has to check (un)satisfiability of the 4 ·m formulas ¬encodeα,ξ. If no such
order is found, then LoAT cannot accelerate the loop under consideration.

Theorem 6 (Unsat Core Induces ⇝-Step). Let depsα,ξ be the intersec-
tion of φ \ {ξ} and an unsat core of ¬encodeα,ξ. If qφ implies depsα,ξ, then
accelα(ξ, qφ, a⃗) = accelα(ξ, φ \ {ξ}, a⃗).

Example 7 (Controlling Acceleration Steps via Unsat Cores). Reconsider Ex. 4.
Here, LoAT would try to prove, among others, the following implications:

encodedec,x>0 = (x− y > 0 ∧ y > 0) =⇒ x > 0 (1)

encodeinc,y>0 = (y > 0 ∧ x > 0) =⇒ y > 0 (2)

To do so, it would try to prove unsatisfiability of ¬encodeα,ξ via SMT. For (1),
we get ¬encodedec,x>0 = (x− y > 0 ∧ y > 0 ∧ x ≤ 0), whose only unsat core is
¬encodedec,x>0, and its intersection with φ \ {x > 0} = {y > 0} is {y > 0}.

For (2), we get ¬encodeinc,y>0 = (y > 0 ∧ x > 0 ∧ y ≤ 0), whose minimal
unsat core is y > 0 ∧ y ≤ 0, and its intersection with φ \ {y > 0} = {x > 0} is
empty. So by Thm. 6, we have accel inc(y > 0,⊤, a⃗) = accel inc(y > 0, x > 0, a⃗).

In this way, validity of encodeα1,x>0 and encodeα2,y>0 is proven for all α1 ∈
ATimp \ {inc} and all α2 ∈ ATimp . However, the premise x ≤ x − y ∧ y > 0 of
encodeev-inc,x>0 is unsatisfiable and thus a corresponding acceleration step would
yield a transition with unsatisfiable guard. To prevent that, LoAT only uses a
technique α ∈ ATimp for ξ if the premise of encodeα,ξ is satisfiable.

2 Here and in the following, we unify conjunctions of atoms with sets of atoms.
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So for each inequation ξ from φ, LoAT synthesizes up to 4 potential ⇝-steps
corresponding to accelα(ξ, depsα,ξ, a⃗), where α ∈ ATimp . If validity of encodeα,ξ
cannot be shown for any α ∈ ATimp , then LoAT tries to prove satisfiability of
accel fp(ξ,⊤, a⃗) to see if Fixpoint should be applied. Note that the 2nd argument
of accel fp is irrelevant, i.e., Fixpoint does not benefit from previous acceleration
steps and thus ⇝-steps that use it do not have any dependencies.

It remains to find a suitably ordered subset S of m ⇝-steps that constitutes
a successful ⇝-sequence. In the following, we define AT = ATimp ∪ {fp} and we
extend the definition of depsα,ξ to the case α = fp by defining deps fp,ξ := ∅.

Lemma 8. Let C ⊆ AT × φ be the smallest set such that (α, ξ) ∈ C implies

(a) if α ∈ ATimp, then encodeα,ξ is valid and its premise is satisfiable,
(b) if α = fp, then accel fp(ξ,⊤, a⃗) is satisfiable, and
(c) depsα,ξ ⊆ {ξ′ | (α′, ξ′) ∈ C for some α′ ∈ AT}.
Let S := {(α, ξ) ∈ C | α ≥AT α′ for all (α′, ξ) ∈ C} where >AT is the total
order inc >AT dec >AT ev-dec >AT ev-inc >AT fp. We define (α′, ξ′) ≺ (α, ξ)
if ξ′ ∈ depsα,ξ. Then ≺ is a strict (and hence, well-founded) order on S.

The order >AT in Lemma 8 corresponds to the order proposed in [10]. Note that
the set C can be computed without further (potentially expensive) SMT queries
by a straightforward fixpoint iteration and well-foundedness of ≺ follows from
minimality of C. For Ex. 7, we get

C = {(dec, x > 0), (ev -dec, x > 0)} ∪ {(α, y > 0) | α ∈ AT} and

S = {(dec, x > 0), (inc, y > 0)} with (inc, y > 0) ≺ (dec, x > 0).

Finally, we can construct a valid ⇝-sequence via the following theorem.

Theorem 9 (Finding ⇝-Sequences). Let S be defined as in Lemma 8 and
assume that for each ξ ∈ φ, there is an α ∈ AT such that (α, ξ) ∈ S. W.l.o.g.,
let φ =

∧m
i=1 ξi where (α1, ξ1) ≺′ . . . ≺′ (αm, ξm) for some strict total order ≺′

containing ≺, and let qφj :=
∧j

i=1 ξi. Then for all j ∈ [0,m), we have:
r∧j

i=1 accelαi
(ξi, qφi−1, a⃗)

∣∣∣ qφj

∣∣∣ ∧m
i=j+1 ξi

z

a⃗
⇝

r∧j+1
i=1 accelαi

(ξi, qφi−1, a⃗)
∣∣∣ qφj+1

∣∣∣ ∧m
i=j+2 ξi

z

a⃗

In our example, we have ≺′ = ≺ as≺ is total. Thus, we obtain a⇝-sequence by
first processing y > 0 with Increase and then processing x > 0 with Decrease.

6 Proving Non-Termination of Simple Loops

To prove non-termination, LoAT uses a variation of the calculus from Sect. 4,
see [11]. To adapt it for proving non-termination, further restrictions have to be
imposed on the conditional acceleration techniques, resulting in the notion of
conditional non-termination techniques, see [11, Def. 10]. We denote a ⇝-step
that uses a conditional non-termination technique with ⇝nt .

Theorem 10 (Proving Non-Termination via ⇝nt). Let f(x⃗) −→ f (⃗a) [φ] ∈
T . If J⊤ | ⊤ | φKa⃗ ⇝

∗
nt Jψ | φ | ⊤Ka⃗, then for every c⃗ ∈ Zd where ψ(c⃗) is satisfiable,

the configuration f(c⃗) admits an infinite −→T -sequence.
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The conditional non-termination techniques used by LoAT are Increase,
Eventual Increase, and Fixpoint. So non-termination proofs can be synthesized
while trying to accelerate a loop with very little overhead. After successfully
accelerating a loop as explained in Sect. 5, LoAT tries to find a second suitably
ordered ⇝-sequence, where it only considers the conditional non-termination
techniques mentioned above. If LoAT succeeds, then it has found a ⇝nt -sequence
which gives rise to a proof of non-termination via Thm. 10.

7 Implementation, Experiments and Conclusion

Our implementation in LoAT can parse three widely used formats for ITSs
(see [13]), and it is configurable via a minimalistic set of command-line options:
--timeout to set a timeout in seconds
--proof-level to set the verbosity of the proof output
--plain to switch from colored to monochrome proof-output
--limit-strategy to choose a strategy for solving limit problems, see [9]
--mode to choose an analysis mode for LoAT (complexity or non termination)

We evaluate three versions of LoAT: LoAT ’19 uses templates to find invariants
that facilitate loop acceleration for proving non-termination [8]; LoAT ’20 deduces
worst-case lower bounds based on loop acceleration via metering functions [9];
and LoAT ’22 applies the calculus from [10, 11] as described in Sect. 5 and 6. We
also include three other state-of-the-art termination tools in our evaluation: T2 [6],
VeryMax [16], and iRankFinder [3, 7]. Regarding complexity, the only other tool
for worst-case lower bounds of ITSs is LOBER [1]. However, we do not compare
with LOBER, as it only analyses (multi-path) loops instead of full ITSs.

We use the examples from the categories Termination (1222 examples) and
Complexity of ITSs (781 examples), respectively, of the Termination Problems
Data Base [19]. All benchmarks have been performed on StarExec [18] (Intel
Xeon E5-2609, 2.40GHz, 264GB RAM [17]) with a timeout of 300 s.

No Yes Avg. Rt Median Rt Std. Dev. Rt

LoAT ’22 493 0 9.4 0.2 41.5
LoAT ’19 459 0 22.6 1.5 67.5

T2 438 610 22.6 1.2 66.7
VeryMax 419 628 29.9 1.0 66.7

iRankFinder 399 634 44.1 4.9 89.1

LoAT ’22

L
oA

T
’2
0

rcT (n) Ω(1) Ω(n) Ω(n2) Ω(n>2) EXP Ω(ω)
Ω(1) 180 63 1 − − 12
Ω(n) 6 218 3 − − −
Ω(n2) − 1 69 − − −
Ω(n>2) − − − 7 − −
EXP 1 − − − 4 −
Ω(ω) − − − − − 216

By the table on the left, LoAT ’22 is the most powerful tool for non-termination.
The improvement over LoAT ’19 demonstrates that the calculus from [10,11] is
more powerful and efficient than the approach from [8]. The last three columns
show the average, the median, and the standard deviation of the runtime, including
examples where the timeout was reached.

The table on the right shows the results for complexity. The diagonal corre-
sponds to examples where LoAT ’20 and LoAT ’22 yield the same result. The
entries above or below the diagonal correspond to examples where LoAT ’22 or
LoAT ’20 is better, respectively. There are 8 regressions and 79 improvements, so
the calculus from [10,11] used by LoAT ’22 is also beneficial for lower bounds.

LoAT is open source and its source code is available on GitHub [12]. See [13,14]
for details on our evaluation, related work, all proofs, and a pre-compiled binary.
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