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Abstract. The framework of dependency pairs allows automated ter-

mination and innermost termination proofs for many TRSs where such

proofs were not possible before. In this paper we present a re�nement of

this framework in order to prove termination in a modular way. Our mod-

ularity results signi�cantly increase the class of term rewriting systems

where termination resp. innermost termination can be proved automat-

ically. Moreover, the modular approach to dependency pairs yields new

modularity criteria which extend previous results in this area. In partic-

ular, existing results for modularity of innermost termination can easily

be obtained as direct consequences of our new criteria.

1 Introduction

Termination is one of the most important properties of a term rewriting system

(TRS). While in general this problem is undecidable [HL78], several methods

for proving termination have been developed (for surveys see e.g. [Der87, Ste95,

DH95]). However, most methods that are amenable to automation are restricted

to the generation of simpli�cation orderings and there exist numerous important

TRSs whose termination cannot be proved by orderings of this restricted class.

For that reason we developed the framework of dependency pairs [Art96,

AG96, AG97a, AG97b, Art97] which allows to apply standard methods for termi-

nation proofs to such TRSs where they failed up to now. In this way, termination

of many (also non-simply terminating) systems could be proved automatically.

When proving termination, one bene�ts from modularity results that ensure

termination of the whole TRS as soon as it is proved for parts of the TRS. The

aim of this paper is to re�ne the dependency pair approach in order to allow

modular termination proofs using dependency pairs.

Although in general, termination is not modular for the direct sum [Toy87,

Dro89, TKB95], i.e. the partition of a TRS into subsystems with disjoint signa-

tures, this modularity property holds for TRSs of a special form [Rus87, Mid89,

Gra94, TKB95, SMP95]. For a survey see e.g. [Mid90, Ohl94, Gra96a].
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However, a TRS often cannot be split into subsystems with disjoint signa-

tures. Therefore, partitions into subsystems which may at least have constructors

in common have also been considered [KO92, MT93, Gra95, MZ97]. Neverthe-

less, in practice these results often cannot be applied for automated termination

proofs, either. For example, many systems are hierarchical combinations of TRSs

that do not only share constructors, but where one subsystem contains de�ned

symbols of the other subsystem. Termination is only proved modular for hierar-

chical combinations of several restricted forms [Der94, FJ95].

The modularity results for innermost termination are less restrictive than

those for termination. Innermost termination is modular for direct sums and

for TRSs with shared constructors [Gra95], for composable constructor systems

[MT93], for composable TRSs [Ohl95], and for proper extensions [KR95], which

are special hierarchical combinations. As innermost termination implies termi-

nation for several classes of TRSs [Gra95, Gra96b], these results can also be

used for termination proofs of such systems. For example, this holds for locally

conuent overlay systems (and in particular for non-overlapping TRSs).

In this paper we show that the modular approach using dependency pairs

extends previous modularity results and we demonstrate that in our framework

the existing modularity results for innermost termination of composable TRSs

and proper extensions are obtained as easy consequences.

In Sect. 2 we present the dependency pair approach and introduce a new

termination criterion to use this framework in a modular way. Similarly, in Sect.

3 we present a modular approach for innermost termination proofs using de-

pendency pairs. As shown in Sect. 4, these results imply new modularity criteria

(which can also be used independently from the dependency pair technique). See

[AG97c] for a collection of examples to demonstrate the power of these results.

In Sect. 5 we give a comparison with related work and we conclude in Sect. 6.

2 Modular Termination with Dependency Pairs

In [AG97a] we introduced the dependency pair technique to prove termina-

tion automatically. In this section we briey recapitulate its basic concepts and

present a new modular approach for automated termination proofs.

In the following, the root of a term f(: : :) is the leading function symbol f . For

a TRS R with the rules R over a signature F , D = froot(l)jl ! r 2 Rg is the set

of the de�ned symbols and C = FnD is the set of constructors of R. To stress the

splitting of the signature we denote a TRS by R(D;C;R). For example consider

the following TRS with the constructors s and c and the de�ned symbol f.

f(x; c(y)) ! f(x; s(f(y; y)))

f(s(x); y) ! f(x; s(c(y)))

Most methods for automated termination proofs are restricted to simpli�-

cation orderings [Der87, Ste95]. Hence, these methods cannot prove termina-

tion of TRSs like the one above, as f(x; c(s(x))) can be reduced to the term

f(x; s(f(x; s(c(s(x)))))) where it is embedded in.
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In contrast to previous approaches we do not compare left- and right-hand

sides of rules, but we only compare left-hand sides with those subterms that may

possibly start a new reduction. Hence, we focus on those subterms of right-hand

sides which have a de�ned root symbol.

More precisely, if f(s

1

; : : : ; s

n

) rewrites to C[g(t

1

; : : : ; t

m

)] (where g is a de-

�ned symbol and C is some context), then we only compare the argument tuples

s

1

; : : : ; s

n

and t

1

; : : : ; t

m

. To avoid the handling of tuples, a new tuple symbol

F 62 F is introduced for every de�ned symbol f in D. Instead of comparing

tuples, now the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

) are compared. To ease

readability we assume that the signature F consists of lower case function sym-

bols only and denote the tuple symbols by the corresponding upper case symbols.

De�nition 1 (Dependency Pair). Let R(D;C;R) be a term rewriting sys-

tem. If f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)] is a rewrite rule of R with g 2 D, then

hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i is a dependency pair of R.

In the above example we obtain the following dependency pairs:

hF(x; c(y));F(x; s(f(y; y)))i (1)

hF(x; c(y));F(y; y)i (2)

hF(s(x); y);F(x; s(c(y)))i: (3)

To trace newly introduced redexes in a reduction, we consider special se-

quences of dependency pairs. Here, the right-hand side of every dependency pair

corresponds to the redex being traced.

De�nition 2 (Chain). LetR be a TRS. A sequence of dependency pairs hs

1

; t

1

i

hs

2

; t

2

i : : : is an R-chain if there exists a substitution �, such that t

j

�!

�

R

s

j+1

�

holds for every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

We always assume that di�erent (occurrences of) dependency pairs have

disjoint sets of variables and we always regard substitutions whose domains may

be in�nite. Hence, in our example we have the R-chain (resp. `chain' for short)

hF(x

1

; c(y

1

));F(y

1

; y

1

)i hF(x

2

; c(y

2

));F(y

2

; y

2

)i hF(x

3

; c(y

3

));F(y

3

; y

3

)i;

as F(y

1

; y

1

)�!

�

R

F(x

2

; c(y

2

))� and F(y

2

; y

2

)�!

�

R

F(x

3

; c(y

3

))� hold for the sub-

stitution � replacing y

1

and x

2

by c(c(y

3

)) and both y

2

and x

3

by c(y

3

). In fact

any �nite sequence of the dependency pair (2) is a chain. As proved in [AG97a],

absence of in�nite chains is a su�cient and necessary criterion for termination.

Theorem3 (Termination Criterion). A TRS R is terminating if and only

if there exists no in�nite R-chain.

Some dependency pairs can never occur twice in any chain and hence, they

need not be considered when proving that no in�nite chain exists. Recall that

a dependency pair hv; wi may only follow hs; ti in a chain if t� reduces to v�

for some substitution �. For a term t with a constructor root symbol c, t� can

only be reduced to terms which have the same root symbol c. If the root symbol

of t is de�ned, then this does not give us any direct information about those

terms t� can be reduced to. Let cap(t) result from replacing all subterms of t

3
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hF(x; c(y));F(y; y)i hF(s(x); y);F(x; s(c(y)))i

hF(x; c(y));F(x; s(f(y; y)))i

Fig. 1. The estimated dependency graph in our example.

that have a de�ned root symbol by di�erent fresh variables and let ren(t) result

from replacing all variables in t by di�erent fresh variables. Then, to determine

whether hv; wi can follow hs; ti in a chain, we check whether ren(cap(t)) uni�es

with v. Here, the function ren is needed to rename multiple occurrences of the

same variable x in t, because when instantiated with �, two occurrences of x�

could reduce to di�erent terms.

So for instance we have ren(cap(F(y; y))) = ren(F(y; y)) = F(y

1

; y

2

) and

ren(cap(F(x; s(f(y; y))))) = ren(F(x; s(z))) = F(x

1

; s(z

1

)). Hence, (1) can never

follow itself in a chain, because F(x

1

; s(z

1

)) does not unify with F(x; c(y)). To es-

timate which dependency pairs may occur consecutive, the estimated dependency

graph has been introduced, cf. [AG97a].

De�nition 4 (Estimated Dependency Graph). The estimated dependency

graph of a TRS R is the directed graph whose nodes are the dependency pairs

and there is an arc from hs; ti to hv; wi if ren(cap(t)) and v are uni�able.

In our example, we obtain the estimated dependency graph in Fig. 1. As

usual, a subset P of dependency pairs is called a cycle if for any two dependency

pairs hs; ti; hv; wi in P there is a path from hs; ti to hv; wi and from hv; wi to hs; ti

in the estimated dependency graph. (In particular, there must also be a path

from hs; ti to itself for every hs; ti in P .) In our example we have two non-empty

cycles, viz. f(2)g and f(3)g.

Using the estimated dependency graph, we develop a newmodular re�nement

of Thm. 3. In the following we always restrict ourselves to �nite TRSs. Then

any in�nite chain corresponds to a cycle. Dependency pairs that do not occur

on cycles (such as (1)) can be ignored. Hence, it su�ces to prove that there is

no in�nite chain from any cycle.

Theorem5 (Modular Termination Criterion). A TRS R is terminating if

and only if for each cycle P in the estimated dependency graph there exists no

in�nite R-chain of dependency pairs from P.

Proof. The `only if' direction is a direct consequence of Thm. 3. For the other

direction, suppose that R is not terminating. Then by Thm. 3 there exists an

in�nite R-chain. As R is �nite, there are only �nitely many dependency pairs

and hence, one dependency pair occurs in�nitely many times in the chain (up to

renaming of the variables). Thus the in�nite chain has the form : : : hs�

1

; t�

1

i : : :

hs�

2

; t�

2

i : : : hs�

3

; t�

3

i : : : ; where �

1

; �

2

; �

3

; : : : are renamings. Hence, the tail

hs�

1

; t�

1

i : : : hs�

2

; t�

2

i : : : is an in�nite R-chain which consists of dependency

pairs from one cycle in the estimated dependency graph only. ut
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By the above theorem we can prove termination of a TRS in a modular way,

because the absence of in�nite chains can be proved separately for every cycle.

For each cycle P , we generate a set of inequalities such that the existence of

well-founded quasi-orderings

1

�

P

satisfying these inequalities is su�cient for the

absence of in�nite chains. For that purpose we have to ensure that the depen-

dency pairs from P are decreasing w.r.t. �

P

. More precisely, for any sequence

of dependency pairs hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : from P and for any substitution �

with t

j

�!

�

R

s

j+1

� (for all j) we demand

s

1

� �

P

t

1

� �

P

s

2

� �

P

t

2

� �

P

s

3

� �

P

t

3

� �

P

: : : ;

and for at least one hs; ti in P we demand the strict inequality s� >

P

t�. Then

there exists no chain of dependency pairs from P which traverses all dependency

pairs in P in�nitely many times.

In the following we restrict ourselves to weakly monotonic quasi-orderings�

P

where both �

P

and its strict part >

P

are closed under substitution. (A quasi-

ordering �

P

is weakly monotonic if s �

P

t implies f(: : : s : : :) �

P

f(: : : t : : :).)

Then, to guarantee t

j

� �

P

s

j+1

� whenever t

j

�!

�

R

s

j+1

� holds, it is su�cient

to demand l �

P

r for all rules l! r of the TRS. Moreover, s

j

�

P

t

j

and s

j

>

P

t

j

ensure s

j

� �

P

t

j

� and s

j

� >

P

t

j

�, respectively, for all substitutions �.

Theorem6 (Modular Termination Proofs). A TRS R(D;C;R) is termi-

nating if for each cycle P in the estimated dependency graph there exists a well-

founded weakly monotonic quasi-ordering �

P

where both �

P

and >

P

are closed

under substitution, such that

� l �

P

r for all rules l! r in R,

� s �

P

t for all dependency pairs from P, and

� s >

P

t for at least one dependency pair from P.

Proof. Suppose there exists an in�nite R-chain of dependency pairs from a cycle

P . Without loss of generality let P be minimal, i.e. if P contains a cycle P

0

as

proper subset, then there is no in�nite chain of dependency pairs from P

0

.

For one dependency pair hs; ti in P we have the strict inequality s >

P

t. Due

to the minimality of P , hs; ti occurs in�nitely many times in the chain (up to

variable renaming), i.e. the chain has the form

hv

1;1

w

1;1

i : : : hv

1;n

1

w

1;n

1

i hs�

1

; t�

1

i hv

2;1

w

2;1

i : : : hv

2;n

2

w

2;n

2

i hs�

2

; t�

2

i : : : ;

where �

1

; �

2

; : : : are renamings. Hence, there exists a substitution � such that

w

i;j

�!

�

R

v

i;j+1

�, w

i;n

i

�!

�

R

s�

i

�, and t�

i

�!

�

R

v

i+1;1

�. As l �

P

r holds for all

rules of R and as �

P

is weakly monotonic, we have !

�

R

��

P

. Moreover, all

dependency pairs from P are weakly decreasing. Thus, we obtain

1

A quasi-ordering �

P

is a reexive and transitive relation and �

P

is called well-

founded if its strict part >

P

is well founded.
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v

1;1

� �

P

w

1;1

� �

P

: : : v

1;n

1

� �

P

w

1;n

1

� �

P

s�

1

� >

P

t�

1

� �

P

v

2;1

� �

P

w

2;1

� �

P

: : : v

2;n

2

� �

P

w

2;n

2

� �

P

s�

2

� >

P

t�

2

� �

P

: : :

But this is a contradiction to the well-foundedness of >

P

. Hence, no in�nite

chain of dependency pairs from P exists and by Thm. 5, R is terminating. ut

With this theorem, termination of our example can easily be proved au-

tomatically. After computing the estimated dependency graph in Fig. 1, two

quasi-orderings �

1

;�

2

have to be generated which satisfy

f(x; c(y)) �

1

f(x; s(f(y; y))) (4)

f(s(x); y) �

1

f(x; s(c(y))) (5)

F(x; c(y)) >

1

F(y; y) (6)

f(x; c(y)) �

2

f(x; s(f(y; y))) (7)

f(s(x); y) �

2

f(x; s(c(y))) (8)

F(s(x); y) >

2

F(x; s(c(y))): (9)

Note that in contrast to direct termination proofs, here we only need weakly

monotonic quasi-orderings�

1

;�

2

. Hence, before synthesizing a suitable ordering

some of the arguments of function symbols may be eliminated, cf. [AG97a]. For

instance, in the inequalities (4) - (6) one may eliminate the second argument of

the function symbol f. Then every term f(s; t) in the inequalities is replaced by

f

0

(s) (where f

0

is a new unary function symbol). So instead of (4) we obtain the

inequality f

0

(x) �

1

f

0

(x). By comparing the terms resulting from this replacement

(instead of the original terms) we can take advantage of the fact that f does not

have to be strongly monotonic in its second argument. Now the inequalities

resulting from (4) - (6) are satis�ed by the lexicographic path ordering (lpo)

where subterms are compared right-to-left [KL80]. For the inequalities (7) -

(9) we again delete the second argument of f. Then these inequalities are also

satis�ed by the lpo (with the precedence F . s;F . c), but this time subterms

are compared left-to-right. Note that there exist only �nitely many (and only

few) possibilities to eliminate arguments of function symbols. Therefore all these

possibilities can be checked automatically. As path orderings like the lpo can also

be generated automatically, this enables a fully automatic termination proof of

our TRS, whereas a direct termination proof with simpli�cation orderings was

not possible.

So Thm. 6 allows us to use di�erent quasi-orderings to prove the absence of

chains for di�erent cycles. In our example this is essential, because there exists

no quasi-simpli�cation ordering satisfying all inequalities (4) - (9) (not even after

elimination of arguments). Hence, without our modularity result, an automated

termination proof with the dependency pair approach fails.

3 Modular Innermost Termination with Dependency Pairs

In [AG97b] we showed that the dependency pair approach can also be modi�ed in

order to verify innermost termination. Unlike previous methods, this technique

can also prove innermost termination of non-terminating systems automatically.
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Similar to the preceding section, our technique for innermost termination proofs

can also be used in a modular way. As an example consider the following TRS:

f(x; c(x); c(y)) ! f(y; y; f(y; x; y))

f(s(x); y; z) ! f(x; s(c(y)); c(z))

f(c(x); x; y) ! c(y)

g(x; y) ! x

g(x; y) ! y

By applying the �rst f-rule to f(x; c(x); c(g(x; c(x)))), we obtain an in�nite (cy-

cling) reduction. However, it is not an innermost reduction, because this term

contains a redex g(: : :) as a proper subterm. It turns out that the TRS is not

terminating, but it is innermost terminating.

To develop a criterion for innermost termination similar to the termination

criterion of Sect. 2, we have to restrict the notion of chains. Since we now consider

innermost reductions, arguments of a redex must be in normal form before the

redex is contracted. Therefore we demand that all instantiated left-hand sides

s

j

� of dependency pairs have to be normal. Moreover, the reductions of the

arguments to normal forms must be innermost reductions (denoted by `

i

!').

De�nition 7 (Innermost Chain). Let R be a TRS. A sequence of depen-

dency pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an innermost R-chain if there exists a substitu-

tion �, such that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for every

two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

Of course, every innermost chain is also a chain, but not vice versa. In our

example, we have the following dependency pairs.

hF(x; c(x); c(y));F(y; y; f(y; x; y))i (10)

hF(x; c(x); c(y));F(y; x; y)i (11)

hF(s(x); y; z);F(x; s(c(y)); c(z))i (12)

The in�nite sequence consisting of the dependency pair (10) is an in�nite

chain, but no innermost chain, because F(y

1

; y

1

; f(y

1

; x

1

; y

1

))� can only reduce

to F(x

2

; c(x

2

); c(y

2

))� for substitutions � where y

1

� is not a normal form. In

[AG97b] we proved that absence of in�nite innermost chains is a su�cient and

necessary criterion for innermost termination.

Theorem8 (Innermost Termination Criterion). A TRS R is innermost

terminating if and only if there exists no in�nite innermost R-chain.

Analogous to Sect. 2, we introduce the estimated innermost dependency

graph to approximate whether a dependency pair hv; wi can follow hs; ti in an

innermost chain. Again we replace subterms in t with de�ned root symbols by

new variables and check whether this modi�cation of t uni�es with v, but in

contrast to Sect. 2 we do not have to rename multiple occurrences of the same

variable. The reason is that we restrict ourselves to normal substitutions �, i.e.

all variables x are instantiated with normal forms and therefore, occurrences

of x� cannot be reduced. Hence, there is no arc from (10) to itself, because

7



cap(F(y

1

; y

1

; f(y

1

; x

1

; y

1

))) = F(y

1

; y

1

; z) does not unify with F(x

2

; c(x

2

); c(y

2

)).

Furthermore, we also demand that the most general uni�er of cap(t) and v

instantiates the left-hand sides s and v to normal forms.

De�nition 9 (Estimated Innermost Dependency Graph). The estimated

innermost dependency graph of a TRS R is the directed graph whose nodes are

the dependency pairs and there is an arc from hs; ti to hv; wi if cap(t) and v are

uni�able by a most general uni�er � such that s� and v� are normal forms.

In the estimated innermost dependency graph of our example, there are arcs

from (11) to each dependency pair and there are arcs from (10) to (12) and from

(12) to itself. Hence, the only non-empty cycles are f(11)g and f(12)g. Analogous

to Thm. 5 one can show that it su�ces to prove the absence of in�nite innermost

chains separately for every cycle.

Theorem10 (Modular Innermost Termination Criterion). A TRS R is

innermost terminating i� for each cycle P in the estimated innermost dependency

graph there exists no in�nite innermost R-chain of dependency pairs from P.

To prove innermost termination in a modular way, we again generate a set of

inequalities for every cycle P and search for a well-founded quasi-ordering �

P

satisfying them. However, to ensure t� �

P

v� whenever t� reduces to v�, we

do not have to demand l �

P

r for all rules of the TRS any more. As we restrict

ourselves to normal substitutions �, not all rules are usable in a reduction of t�.

For example, no rule can be used to reduce a normal instantiation of F(y; x; y),

because F is no de�ned symbol. In general, if t contains a de�ned symbol f , then

all f -rules are usable and moreover, all rules that are usable for right-hand sides

of f -rules are also usable for t.

De�nition 11 (Usable Rules). Let R(D;C;R) be a TRS. For any symbol f

let Rls

R

(f) = fl! r 2 R j root(l) = fg. For any term we de�ne the usable rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rls

R

(f) [

S

l!r2Rls

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

where R

0

= R nRls

R

(f). Moreover, for any set P of dependency pairs we de�ne

U

R

(P) =

S

hs;ti2P

U

R

(t).

So we have U

R

(F(y; y; f(y; x; y))) = Rls

R

(f) and U

R

(f(11)g) = U

R

(f(12)g) =

;, i.e. there are no usable rules for the cycles. Note that Rls

R

(f) = ; for any

constructor f . Now our theorem for automatic

2

modular veri�cation of innermost

termination can be proved analogously to Thm. 6.

Theorem12 (Modular Innermost Termination Proofs). A TRS R(D;C;

R) is innermost terminating if for each cycle P in the estimated innermost

dependency graph there exists a well-founded weakly monotonic quasi-ordering

�

P

where both �

P

and >

P

are closed under substitution, such that

2

Additional re�nements for the automated checking of our innermost termination

criterion can be found in [AG97b].
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� l �

P

r for all rules l! r in U

R

(P),

� s �

P

t for all dependency pairs from P, and

� s >

P

t for at least one dependency pair from P.

In this way, we obtain the following constraints for our example:

F(x; c(x); c(y)) >

1

F(y; x; y) F(s(x); y; z) >

2

F(x; s(c(y)); c(z)):

For >

1

we may use the lpo comparing subterms right-to-left and for >

2

we may

use the lpo comparing subterms left-to-right. Hence, innermost termination of

this example can easily be proved automatically. Without our modularity result,

this proof would not be possible, because there exists no simpli�cation ordering

satisfying both inequalities (not even after elimination of arguments).

4 Modularity Criteria

In this section we present two corollaries of our results from the preceding sec-

tions which are particularly useful in practice. Moreover, these corollaries also

allow a comparison with existing modularity results, as will be shown in Sect. 5.

4.1 Hierarchical Combinations

A straightforward corollary of Thm. 10 and 12 can be obtained for hierarchical

combinations. Two term rewriting systems R

0

(D

0

; C

0

; R

0

) and R

1

(D

1

; C

1

; R

1

)

form a hierarchical combination if D

0

\D

1

= C

0

\D

1

= ;, i.e. de�ned symbols

of R

0

may occur as constructors in R

1

, but not vice versa. As an example

consider the following TRS. Here, nil denotes the empty list and n�x represents

the insertion of a number n into a list x, where `n�m�x' abbreviates `n�(m�x)'.

The function sum(x; y) adds all elements of x to the �rst element of y, i.e.

sum(n

0

�n

1

� : : : �n

k

�nil;m�y) = (m +

P

k

i=0

n

i

)�y. The function weight computes

the weighted sum, i.e. weight(n

0

�n

1

� : : : �n

k

�nil) = n

0

+

P

k

i=1

i n

i

.

sum(s(n)�x;m�y) ! sum(n�x; s(m)�y)

sum(0�x; y) ! sum(x; y)

sum(nil; y) ! y

weight(n�m�x) ! weight(sum(n�m�x; 0�x))

weight(n�nil) ! n

Let R

0

consist of the three sum-rules and let R

1

be the system consisting of

the two weight-rules. Then these two systems form a hierarchical combination,

where sum is a de�ned symbol of R

0

and a constructor of R

1

.

Note that tuple symbols from dependency pairs of R

0

do not occur in left-

hand sides of R

1

-dependency pairs. Hence, a cycle in the estimated innermost

dependency graph either consists of R

0

-dependency pairs or of R

1

-dependency

pairs only. So in our example, every cycle either contains just SUM- or just

WEIGHT-dependency pairs. Thus, we obtain the following corollary.

9



Corollary 13 (Innermost Termination for Hierarchical Combinations).

Let R be the hierarchical combination of R

0

(D

0

; C

0

; R

0

) and R

1

(D

1

; C

1

; R

1

).

(a) R is innermost terminating i� R

0

is innermost terminating and there exists

no in�nite innermost R-chain of R

1

-dependency pairs.

(b) R is innermost terminating if R

0

is innermost terminating and if there exists

a well-founded weakly monotonic quasi-ordering � where both � and > are

closed under substitution, such that for all dependency pairs hs; ti of R

1

� l � r for all rules l! r in U

R

0

[R

1

(t) and

� s > t.

Proof. The corollary is a direct consequence of Thm. 10 and 12, since for any

dependency pair hs; ti of R

0

the only rules that can be used to reduce a normal

instantiation of t are the rules from R

0

(i.e. U

R

0

[R

1

(t) � R

0

). ut

(Innermost) termination of the sum-system (R

0

) is easily proved (e.g. by the

lpo with the precedence sum . � and sum . s). For the weight-subsystem (R

1

)

we obtain the following constraints. (Note that hWEIGHT(: : :); SUM(: : :)i is no

dependency pair of R

1

, since sum 62 D

1

.)

sum(s(n)�x;m�y) � sum(n�x; s(m)�y)

sum(0�x; y) � sum(x; y)

sum(nil; y) � y

WEIGHT(n�m�x) >WEIGHT(sum(n�m�x; 0�x))

After eliminating the �rst arguments of sum and `�' (i.e. after replacing each

term sum(s; t) and s�t by sum

0

(t) and �

0

(t), respectively), the inequalities are

also satis�ed by the lpo, but now we have to use the precedence �

0

. sum

0

.

In this way, innermost termination of the example can be proved automat-

ically. Moreover, as the system is non-overlapping, this also proves its termina-

tion. Note that this system is not simply terminating and without modularity, no

quasi-simpli�cation ordering would have satis�ed the constraints resulting from

the dependency pair approach (even when using elimination of arguments).

A corollary like Cor. 13 can also be formulated for termination instead of

innermost termination, because in the termination case there cannot be a cycle

consisting of dependency pairs from both R

0

and R

1

either. But in contrast

to the innermost termination case, rules of R

1

can be used to reduce instanti-

ated right-hand sides of R

0

-dependency pairs (as we cannot restrict ourselves

to normal substitutions then). Hence, to prove the absence of in�nite R

0

-chains

we have to use a quasi-ordering where the rules of R

1

are also weakly decreas-

ing. Therefore, the constraints for the termination proof of the sum and weight-

example (according to Sect. 2) are not satis�ed by any quasi-simpli�cation order-

ing amenable to automation, whereas the constraints for innermost termination

are ful�lled by such an ordering. Hence, for non-overlapping systems, it is always

advantageous to verify termination by proving innermost termination only.
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4.2 Splitting into Subsystems

The modularity results presented so far were all used in the context of depen-

dency pairs. However, the classical approach to modularity is to split a TRS into

subsystems and to prove their (innermost) termination separately. The follow-

ing corollary of Thm. 10 shows that the consideration of cycles in the estimated

innermost dependency graph can also be used to decompose a TRS into modu-

lar subsystems. In the following, let O(P) denote the origin of the dependency

pairs in P , i.e. O(P) is a set of those rules where the dependency pairs of P

stem from

3

. So for the example of Sect. 3 we have O(f(11)g) = ff(x; c(x); c(y))

! f(y; y; f(y; x; y))g and O(f(12)g) = ff(s(x); y; z)! f(x; s(c(y)); c(z))g.

Corollary 14 (Modularity for Subsystems). Let R(D;C;R) be a TRS, let

P

1

; : : : ;P

n

be the cycles in its estimated innermost dependency graph, and let

R

j

(D

j

; C

j

; R

j

) be subsystems of R such that U

R

(P

j

) [ O(P

j

) � R

j

(for all j 2

f1; : : :; ng). If R

1

; : : : ;R

n

are innermost terminating, then R is also innermost

terminating.

Proof. As P

j

is a cycle, every dependency pair from P

j

is an R

j

-dependency

pair. (The reason is that for every

4

hF (s); G(t)i in P

j

there is also a dependency

pair hG(v); H(w)i in P

j

. Hence, g must be a de�ned symbol of R

j

.) Thus, every

innermost R-chain of dependency pairs from P

j

is also an innermost R

j

-chain.

Now the corollary is a direct consequence of Thm. 10. ut

For instance, in the example of Sect. 3 we only have two non-empty cycles,

viz. f(11)g and f(12)g. As these dependency pairs have no de�ned symbols on

their right-hand sides, their sets of usable rules are empty. Hence, to prove inner-

most termination of the whole system, by Cor. 14 it su�ces to prove innermost

termination of the two one-rule subsystems f(x; c(x); c(y))! f(y; y; f(y; x; y)) and

f(s(x); y; z)! f(x; s(c(y)); c(z)).

In fact, both subsystems are even terminating as can easily be proved auto-

matically. For the �rst system one can use a polynomial interpretation mapping

f(x; y; z) to x+y+z and c(x) to 5x+1 [Lan79]. Methods for the automated gener-

ation of polynomial orderings have for instance been developed in [Ste94, Gie95].

For the second system one can use the lpo with the precedence f . s and f . c.

Hence, the modularity criterion of Cor. 14 allows the use of well-known simpli-

�cation orderings for innermost termination proofs of non-terminating systems,

because it guarantees that innermost termination of the two simply terminating

subsystems is su�cient for innermost termination of the original TRS.

A similar splitting is also possible for the example in Sect. 2. Even better, if

we modify the TRS into a non-overlapping one

f(x; c(y)) ! f(x; s(f(y; y)))

f(s(x); s(y)) ! f(x; s(c(s(y))));

3

If a dependency pair of P may stem from several rules, then it is su�cient if O(P)

just contains one of them.

4

Here, s and t denote tuples of terms s

1

; : : : ; s

n

and t

1

; : : : ; t

m

, respectively.
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then Cor. 14 allows to conclude termination of the whole system from termi-

nation of the two one-rule subsystems. Innermost termination of the original

example resp. termination of the above modi�ed example can be proved by the

lpo, but for the �rst rule one needs the precedence c. s and c . f, whereas for the

second rule the precedence f . s and f . c is required.

5 Comparison with Related Work

Now we show that in the case of �nite TRSs, existing modularity results for

innermost termination are obtained as easy consequences of our criteria and that

our criteria extend previously developed results. Sect. 5.1 focuses on composable

TRSs and Sect. 5.2 gives a comparison with results on hierarchical combinations.

5.1 Shared Constructors and Composable TRSs

By the framework of the previous sections we can easily prove that innermost

termination is modular for composable TRSs [Ohl95] and hence also for TRSs

with disjoint sets of de�ned symbols and shared constructors [Gra95]. Two TRSs

R

0

(D

0

; C

0

; R

0

) andR

1

(D

1

; C

1

; R

1

) are composable if C

0

\D

1

= C

1

\D

0

= ; and

if both systems contain all rewrite rules that de�ne a de�ned symbol whenever

that symbol is shared, i.e. fl ! r j root(l) 2 D

0

\D

1

g � R

0

\ R

1

: Now Cor. 14

immediately implies

5

the following result of Ohlebusch [Ohl95].

Theorem15 (Modularity for Composable TRSs). Let R

0

(D

0

; C

0

; R

0

) and

R

1

(D

1

; C

1

; R

1

) be composable TRSs. If R

0

and R

1

are innermost terminating,

then R

0

[ R

1

is also innermost terminating.

Proof. Let hF (s); G(t)i be a dependency pair of R

0

[R

1

. If f 2 D

0

, then there

exists a rule f(t)!C[g(t)] in R

0

. (This rule cannot be from R

1

n R

0

, because

R

0

and R

1

are composable.) Hence, g 2 D

0

, because constructors of R

0

are not

de�ned symbols of R

1

. Similarly, f 2 D

1

implies g 2 D

1

. So any dependency

pair of R

0

[ R

1

is an R

0

-dependency pair or an R

1

-dependency pair.

Moreover, there can only be an arc from hF (s); G(t)i to a dependency pair of

the form hG(v); H(w)i. Hence, if hF (s); G(t)i is anR

j

-dependency pair, then g 2

D

j

and therefore, hG(v); H(w)i is also an R

j

-dependency pair (for j 2 f0; 1g).

So every cycle P in the estimated innermost dependency graph of R

0

[R

1

either

consists of R

0

-dependency pairs or of R

1

-dependency pairs only.

If a cycle P only contains R

0

-dependency pairs, then R

0

is a superset of

U

R

0

[R

1

(P)[O(P), as the de�ned symbols ofR

1

nR

0

do not occur as constructors

in R

0

. Similarly, for a cycle P of R

1

-dependency pairs, we have U

R

0

[R

1

(P) [

O(P) � R

1

. Hence by Cor. 14, R

0

[ R

1

is innermost terminating if R

0

and R

1

are innermost terminating. ut

5

A direct proof of Thm. 15 is not too di�cult either, but our alternative proof serves

to illustrate the connections between our criteria and existing modularity results.
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Note that our results extend modularity to a much larger class of TRSs, e.g.

they also allow a splitting into non-composable subsystems which share de�ned

symbols as demonstrated in Sect. 4.2.

5.2 Proper Extensions

Krishna Rao [KR95] proved that innermost termination is modular for a certain

form of hierarchical combinations, viz. so-called proper extensions. In this section

we show that for �nite TRSs this is also a direct consequence of our results.

For a TRS R(D;C;R), the dependency relation �

d

is the smallest quasi-

ordering satisfying the condition f �

d

g whenever there is a rewrite rule f(: : :)!

C[g(: : :)] 2 R. So f �

d

g holds if the function f depends on the de�nition of g.

Let R

0

(D

0

; C

0

; R

0

) and R

1

(D

1

; C

1

; R

1

) form a hierarchical combination.

Now the de�ned symbols D

1

of R

1

are split in two sets D

0

1

and D

1

1

, where

D

0

1

contains all de�ned symbols which depend on a de�ned symbol of R

0

, i.e.

D

0

1

= ff jf 2 D

1

; f �

d

g for some g 2 D

0

g and D

1

1

= D

1

n D

0

1

. Then R

1

is a

proper extension of R

0

if each rewrite rule l ! r 2 R

1

satis�es the following

condition: For every subterm t of r, if root(t) 2 D

0

1

and root(t) �

d

root(l), then

t contains no symbols from D

0

[D

0

1

except at the root position, cf. [KR95].

For instance, in the sum and weight-example from Sect. 4.1 we have D

0

=

fsumg, D

0

1

= fweightg (because weight depends on the de�nition of sum), and

D

1

1

= ;. This example is not a proper extension, because there is a weight-rule

where the D

0

-symbol sum occurs below the D

0

1

-symbol weight. Thus, in a proper

extension functions depending on R

0

are never called within a recursive call of

R

1

-functions. Cor. 13 and 14 imply the following result of [KR95]

Theorem16 (Modularity for Proper Extensions). Let R

1

(D

1

; C

1

; R

1

) be

a proper extension of R

0

(D

0

; C

0

; R

0

). The TRS R

0

[R

1

is innermost terminat-

ing if R

0

and R

1

are innermost terminating.

Proof. As in the proof of Cor. 13, since R

0

and R

1

form a hierarchical combina-

tion, every cycle in the innermost dependency graph of R

0

[ R

1

consists solely

of R

0

-dependency pairs or of R

1

-dependency pairs. If a cycle P consists of de-

pendency pairs of R

0

, we have U

R

0

[R

1

(P) [ O(P) � R

0

, because dependency

pairs of R

0

do not contain any de�ned symbols of R

1

.

Otherwise, the cycle P consists of R

1

-dependency pairs. If hF (s); G(t)i is

an R

1

-dependency pair in P , then there exists a rule f(s)!C[g(t)] in R

1

and

f; g 2 D

1

. In addition, we have f �

d

g and g �

d

f (as P is a cycle).

If g 2 D

1

1

, then f also belongs to D

1

1

, hence no de�ned symbol of D

0

[ D

0

1

occurs in t. Otherwise, if g 2 D

0

1

, then by de�nition of a proper extension again

all de�ned symbols in t are from D

1

1

. Thus, in both cases, all de�ned symbols of

U

R

0

[R

1

(G(t)) belong to D

1

1

. Hence, U

R

0

[R

1

(G(t)) is a subsystem of R

1

.

So for any cycle P of R

1

-dependency pairs, we have U

R

0

[R

1

(P) [ O(P) �

R

1

. Hence, by Cor. 14 innermost termination of R

0

and R

1

implies innermost

termination of R

0

[ R

1

. ut
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However, apart from proper extensions, we can also handle certain hierar-

chical combinations where R

1

contains de�ned symbols of R

0

in the arguments

of its recursive calls, cf. the sum and weight-example. Such systems occur fre-

quently in practice. Hence, our results signi�cantly extend the class of TRSs

where innermost termination can be proved in a modular way.

Another modularity criterion for hierarchical combinations is due to Der-

showitz [Der94]. Here, occurrences ofD

0

-symbols in recursive calls ofD

1

-symbols

are allowed, but only if R

1

is oblivious of the R

0

-rules, i.e. termination of R

1

must not depend on theR

0

-rules. However, this criterion is not applicable for the

sum and weight-example, because termination of the weight-rules in fact depends

on the result of sum(n�m�x; 0�x).

An alternative modularity result for hierarchical combinations was presented

by Fernandez and Jouannaud [FJ95]. However, their result is restricted to sys-

tems where the arguments of recursive calls in R

1

decrease w.r.t. the subterm

relation (compared as multisets or lexicographically). Hence, their result is not

applicable to the sum and weight-example either.

6 Conclusion

In this paper we introduced a re�nement of the dependency pair approach in

order to perform termination and innermost termination proofs in a modular

way. This re�nement allows automated termination and innermost termination

proofs for many TRSs where such proofs were not possible before, cf. [AG97c]. We

showed that our new modularity results extend previous results for modularity

of innermost termination. Due to the framework of dependency pairs, we also

obtain easy proofs for existing modularity theorems.
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