
Symbolic Evaluation Graphs and Term Rewriting —
A General Methodology for Analyzing Logic Programs

Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

joint work with T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs

Termination Analysis for TRSs

R : double(0) → 0

double(s(x)) → s(s(double(x)))

R is terminating iff there is no infinite evaluation t1 →R t2 →R . . .

Computation of “double(1)”: double(s(0)) →R s(s(double(0)))
→R s(s(0))

easier / more general than for programs

suitable for automation

But: halting problem is undecidable!
⇒ automated termination proofs do not always succeed

Automated Termination Tools for TRSs

AProVE (Aachen)

CARIBOO (Nancy)

CiME (Orsay)

Jambox (Amsterdam)

Matchbox (Leipzig)

MU-TERM (Valencia)

MultumNonMulta (Kassel)

TEPARLA (Eindhoven)

Termptation (Barcelona)

TORPA (Eindhoven)

TPA (Eindhoven)

TTT (Innsbruck)

VMTL (Vienna)

Annual International
Competition
of Termination Tools

well-developed field

active research

powerful techniques & tools

But:
What about application in
practice?

Termination of Programming Languages

Functional Languages

first-order languages with strict evaluation strategy
(Walther, 94), (Giesl, 95), (Lee, Jones, Ben-Amram, 01)

ensuring termination (e.g., by typing)
(Telford & Turner, 00), (Xi, 02), (Abel, 04), (Barthe et al, 04) etc.

outermost termination of untyped first-order rewriting
(Fissore, Gnaedig, Kirchner, 02), (Endrullis & Hendriks, 09),
(Raffelsieper & Zantema, 09), (Thiemann, 09)

automated technique for small haskell-like language
(Panitz & Schmidt-Schauss, 97)

do not work on full existing languages

no use of TRS-techniques (stand-alone methods)

Termination of Programming Languages

Functional Languages

using TRS-techniques for haskell is challenging

haskell has a lazy evaluation strategy.
For TRSs, one proves termination of all reductions.

haskell’s equations are handled from top to bottom.
For TRSs, any rule may be used for rewriting.

haskell has polymorphic types.
TRSs are untyped.

In haskell-programs, often only some functions terminate.
TRS-methods try to prove termination of all terms.

haskell is a higher-order language.
Most automatic TRS-methods only handle first-order rewriting.

Termination of Programming Languages

Functional Languages

using TRS-techniques for haskell is challenging

New approach (ACM TOPLAS ’11)

Frontend
evaluate haskell a few steps ⇒ symbolic evaluation graph

graph captures evaluation strategy, types, etc.

transform symbolic evaluation graph ⇒ TRS

Backend
prove termination of the resulting TRS
(using existing techniques & tools)

implemented in AProVE

accepts full haskell 98 language

successfully evaluated with standard haskell-libraries
(succeeds on approx. 80 % of the functions in standard libraries)

Termination of Programming Languages

Functional Languages

using TRS-techniques for haskell is challenging

haskell-
Program

''OO
Symbolic

Evaluation
Graph

// TRS // Termination Tool
(AProVE)

implemented in AProVE

accepts full haskell 98 language

successfully evaluated with standard haskell-libraries
(succeeds on approx. 80 % of the functions in standard libraries)

Termination of Programming Languages

Imperative Languages

Synthesis of Linear Ranking Functions
(Colon & Sipma, 01), (Podelski & Rybalchenko, 04)

Terminator: Termination Analysis by Abstraction & Model Checking
(Cook, Podelski, Rybalchenko et al., since 05)

Julia & COSTA: Termination Analysis of java bytecode
(Spoto, Mesnard, Payet, 10),
(Albert, Arenas, Codish, Genaim, Puebla, Zanardini, 08)

. . .

used at Microsoft for verifying Windows device drivers

no use of TRS-techniques (stand-alone methods)

Termination of Programming Languages

Imperative Languages

using TRS-techniques for java is challenging

sharing and aliasing

side effects

cyclic data objects

object-orientation

recursion

. . .

Termination of Programming Languages

Imperative Languages

using TRS-techniques for java is challenging

New approach (RTA ’10, RTA ’11, CAV ’12)

Frontend
evaluate java a few steps ⇒ symbolic evaluation graph

graph captures side effects, sharing, cyclic data objects, etc.

transform symbolic evaluation graph ⇒ TRS

Backend
prove termination of the resulting TRS
(using existing techniques & tools)

implemented in AProVE

successfully evaluated on java-collection

most powerful termination tool for java
(winner of the international termination competition for java)

Termination of Programming Languages

Imperative Languages

using TRS-techniques for java is challenging

haskell-
Program

''OO
Symbolic

Evaluation
Graph

// TRS // Termination Tool
(AProVE)

java-
Program

88rrr

implemented in AProVE

successfully evaluated on java-collection

most powerful termination tool for java
(winner of the international termination competition for java)

Termination of Programming Languages

Logic Languages

well-developed field (De Schreye & Decorte, 94) etc.

direct approaches: work directly on the logic program

cTI (Mesnard et al)
TerminWeb (Codish et al)
TermiLog (Lindenstrauss et al)
Polytool (Nguyen, De Schreye, Giesl, Schneider-Kamp)

TRS-techniques can be adapted to work directly on the LP

transformational approaches: transform LP to TRS

TALP (Ohlebusch et al)
AProVE (Giesl et al)

only for definite LP (without cut)

not for real prolog

app([],YS ,YS).
app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS).

appin([],YS) → appout(YS)
appin([X |XS],YS) → u(appin(XS ,YS),X)

u(appout(ZS),X) → appout([X |ZS])

class of queries Qp
m described by predicate p and moding m

Example: Qapp
m = {app(t1, t2, t3) | t1, t2 are ground}.

encode atom p(. . .) to terms pin(. . .), pout(. . .)

• arguments of pin: input arguments of p(. . .)
• arguments of pout : remaining arguments of p(. . .)

Encoding of app([],YS ,YS): appin([],YS), appout(YS)

Encoding of app([X |XS],YS , [X |ZS]): appin([X |XS],YS), appout([X |ZS])

Encoding of app(XS ,YS ,ZS): appin(XS ,YS), appout(ZS)

encode clauses to rewrite rules

• fact p(. . .): pin(. . .) → pout(. . .)

• rule p(. . .) :- q(. . .): pin(. . .) → u(qin(. . .))
u(qout(. . .)) → pout(. . .)

Termination of Programming Languages

Logic Languages

well-developed field (De Schreye & Decorte, 94) etc.

direct approaches: work directly on the logic program

cTI (Mesnard et al)
TerminWeb (Codish et al)
TermiLog (Lindenstrauss et al)
Polytool (Nguyen, De Schreye, Giesl, Schneider-Kamp)

TRS-techniques can be adapted to work directly on the LP

transformational approaches: transform LP to TRS

TALP (Ohlebusch et al)
AProVE (Giesl et al)

only for definite LP (without cut)

not for real prolog

Termination of Programming Languages

Logic Languages

analyzing prolog is challenging due to cuts etc.

New approach

Frontend
evaluate prolog a few steps ⇒ symbolic evaluation graph

graph captures evaluation strategy due to cuts etc.

transform symbolic evaluation graph ⇒ TRS

Backend
prove termination of the resulting TRS
(using existing techniques & tools)

implemented in AProVE

successfully evaluated on prolog-collections with cuts

most powerful termination tool for prolog
(winner of termination competition for prolog)

Termination of Programming Languages

Logic Languages

analyzing prolog is challenging due to cuts etc.

haskell-
Program

''OO

prolog-
Program

//
Symbolic

Evaluation
Graph

// TRS // Termination Tool
(AProVE)

java-
Program

88rrr

implemented in AProVE

successfully evaluated on prolog-collections with cuts

most powerful termination tool for prolog
(winner of termination competition for prolog)

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

//

--

TRS // Rewrite Tool
(AProVE)

OO

��

Complexity

DeterminacyOutline

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

star(XS , []) :- !. (1)
star([],ZS) :- !, eq(ZS , []). (2)

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS). (3)
app([],YS ,YS). (4)

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS). (5)
eq(X ,X). (6)

star(t1, t2) holds iff t2 results from concatenation of t1 (t2 ∈ (t1)∗)

star([1, 2], []) holds

star([1, 2], [1, 2]) holds, since app([1, 2], [], [1, 2]), star([1 , 2], []) hold

star([1, 2], [1, 2, 1, 2]) holds, etc.

cut in clause (2) needed for termination. Otherwise:

star([], t) would lead to

app([],YS , t), star([],YS) would lead to

star([], t)

star(XS , []) :- !. (1)
star([],ZS) :- !, eq(ZS , []). (2)

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS). (3)
app([],YS ,YS). (4)

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS). (5)
eq(X ,X). (6)

state: (G1 | . . . | Gn) with current goal G1 and next goals G2, . . . ,Gn

goal: (t1, . . . , tk)c query or

goal: (t1, . . . , tk)c query labeled by clause c used for next resolution

inference rules:

Case

Eval

Back

Cut

Suc

star([1, 2], []) `Case

star([1, 2], [])(1) | star([1, 2], [])(2) | star([1, 2], [])(3) `Eval
! | star([1, 2], [])(2) | star([1, 2], [])(3) `Cut

� `Suc
ε

star(XS , []) :- !. (1)
star([],ZS) :- !, eq(ZS , []). (2)

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS). (3)
app([],YS ,YS). (4)

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS). (5)
eq(X ,X). (6)

state: (G1 | . . . | Gn) with current goal G1 and next goals G2, . . . ,Gn

linear semantics, since state contains all backtracking information

⇒ evaluation is a sequence of states, not a search tree

suitable for extension to abstract states

Case

Eval

Back

Cut

Suc

star([1, 2], []) `Case

star([1, 2], [])(1) | star([1, 2], [])(2) | star([1, 2], [])(3) `Eval
! | star([1, 2], [])(2) | star([1, 2], [])(3) `Cut

� `Suc
ε

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

//

--

TRS // Rewrite Tool
(AProVE)

OO

��

Complexity

DeterminacyOutline

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

star(XS , []) :- !. (1)
star([],ZS) :- !, eq(ZS , []). (2)

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS). (3) star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval star(T1,T2) � star(XS, [])

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval star(T1,T2) � star([], ZS)

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

app(T1,T3,T2)g

Split

star(T1,T4)h

Split
T3/T4

Inst

T2/T4

. . .

Case

symbolic evaluation graph: all evaluations for a class of queries

class of queries Qp
m described by predicate p and moding m

Example: Qstar
m = {star(t1, t2) | t1, t2 are ground}.

abstract state: stands for set of concrete states

state with abstract variables T1,T2, . . . representing arbitrary terms

constraints on the terms represented by T1,T2, . . .

groundness constraints: T1, T2

unification constraints: star(T1,T2) � star(XS , [])

star(XS , []) :- !. (1)
star([],ZS) :- !, eq(ZS , []). (2)

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS). (3) star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval star(T1,T2) � star(XS, [])

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval star(T1,T2) � star([], ZS)

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

app(T1,T3,T2)g

Split

star(T1,T4)h

Split
T3/T4

Inst

T2/T4

. . .

Case

symbolic evaluation graph: all evaluations for a class of queries

class of queries Qp
m described by predicate p and moding m

Example: Qstar
m = {star(t1, t2) | t1, t2 are ground}.

abstract state: stands for set of concrete states

Inst: connection to previous state if current state is an instance

Split: split away first atom from a query

fresh variables in Split’s second successor

approximate first atom’s answer substitution by groundness analysis

star(XS , []) :- !. (1)
star([],ZS) :- !, eq(ZS , []). (2)

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS). (3) star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval star(T1,T2) � star(XS, [])

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval star(T1,T2) � star([], ZS)

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

app(T1,T3,T2)g

Split

star(T1,T4)h

Split
T3/T4

Inst

T2/T4

. . .

Case

symbolic evaluation graph: all evaluations for a class of queries

class of queries Qp
m described by predicate p and moding m

Example: Qstar
m = {star(t1, t2) | t1, t2 are ground}.

abstract state: stands for set of concrete states

Inst: connection to previous state if current state is an instance

Split: split away first atom from a query

fresh variables in Split’s second successor

approximate first atom’s answer substitution by groundness analysis

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

//

--

TRS // Rewrite Tool
(AProVE)

OO

��

Complexity

DeterminacyOutline

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

Encoding of f:

f in
f (T1,T2), f out

f (T3)

Encoding of a: f in
a (T1,T2), f out

a

Encoding of h: f in
a (T1,T4), f out

a

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

. . .

Split

star(T1,T4)h

Split
T3/T4

Inst

Aim: show termination of concrete states represented by graph

Solution: synthesize TRS from the graph

TRS captures all evaluations that are crucial for termination behavior

existing rewrite tools can show termination of TRS

⇒ prove termination of original prolog program

encode state

s

to terms

f in
s (. . .), f out

s (. . .)

• arguments of f in
s : abstract ground variables of s (T1,T2, . . .)

• arguments of f out
s : remaining abstract variables of s

which are made ground by every
answer substitution of s (groundness analysis)

for state s with Inst edge to s ′:

use f in
s′ , f out

s′ instead of f in
s , f out

s

encode

connection

paths to rewrite rules

connection path:

cover all ways through graph except

start state = root

, successor of Inst, or successor of Split

start state =

but no Inst or Split node itself

end state = Inst

, Split, Suc node, or successor of Inst node

connection path may not traverse end nodes except Suc nodes

connection path from s to s ′ with substitution σ:

f in
s (. . .)σ evaluates to f out

s (. . .)σ if f in
a (T1,T2) evaluates to f out

a if
f in
s′ (. . .) evaluates to f out

s′ (. . .) f in
f (T1,T2) evaluates to f out

f (T3)

rewrite rules:
f in
s (. . .)σ → us,s′(f in

s′ (. . .)) f in
a (T1,T2) → ua,f(f in

f (T1,T2))
us,s′(f out

s′ (. . .)) → f out
s (. . .)σ ua,f(f out

f (T3)) → f out
a

Encoding of f: f in
f (T1,T2), f out

f (T3)

Encoding of a: f in
a (T1,T2), f out

a

Encoding of h: f in
a (T1,T4), f out

a

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

. . .

Split

star(T1,T4)h

Split
T3/T4

Inst

Aim: show termination of concrete states represented by graph

Solution: synthesize TRS from the graph

TRS captures all evaluations that are crucial for termination behavior

existing rewrite tools can show termination of TRS

⇒ prove termination of original prolog program

encode state s to terms f in
s (. . .), f out

s (. . .)

• arguments of f in
s : abstract ground variables of s (T1,T2, . . .)

• arguments of f out
s : remaining abstract variables of s

which are made ground by every
answer substitution of s (groundness analysis)

for state s with Inst edge to s ′: use f in
s′ , f out

s′ instead of f in
s , f out

s

encode

connection

paths to rewrite rules

connection path:

cover all ways through graph except

start state = root

, successor of Inst, or successor of Split

start state =

but no Inst or Split node itself

end state = Inst

, Split, Suc node, or successor of Inst node

connection path may not traverse end nodes except Suc nodes

connection path from s to s ′ with substitution σ:

f in
s (. . .)σ evaluates to f out

s (. . .)σ if f in
a (T1,T2) evaluates to f out

a if
f in
s′ (. . .) evaluates to f out

s′ (. . .) f in
f (T1,T2) evaluates to f out

f (T3)

rewrite rules:
f in
s (. . .)σ → us,s′(f in

s′ (. . .)) f in
a (T1,T2) → ua,f(f in

f (T1,T2))
us,s′(f out

s′ (. . .)) → f out
s (. . .)σ ua,f(f out

f (T3)) → f out
a

Encoding of f: f in
f (T1,T2), f out

f (T3)

Encoding of a: f in
a (T1,T2), f out

a

Encoding of h: f in
a (T1,T4), f out

a

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

. . .

Split

star(T1,T4)h

Split
T3/T4

Inst

Aim: show termination of concrete states represented by graph

Solution: synthesize TRS from the graph

TRS captures all evaluations that are crucial for termination behavior

existing rewrite tools can show termination of TRS

⇒ prove termination of original prolog program

encode state s to terms f in
s (. . .), f out

s (. . .)

• arguments of f in
s : abstract ground variables of s (T1,T2, . . .)

• arguments of f out
s : remaining abstract variables of s

which are made ground by every
answer substitution of s (groundness analysis)

for state s with Inst edge to s ′: use f in
s′ , f out

s′ instead of f in
s , f out

s

encode connection paths to rewrite rules

connection path:

cover all ways through graph except

start state = root, successor of Inst, or successor of Split
start state = but no Inst or Split node itself

end state = Inst, Split, Suc node, or successor of Inst node

connection path may not traverse end nodes except Suc nodes

connection path from s to s ′ with substitution σ:

f in
s (. . .)σ evaluates to f out

s (. . .)σ if f in
a (T1,T2) evaluates to f out

a if
f in
s′ (. . .) evaluates to f out

s′ (. . .) f in
f (T1,T2) evaluates to f out

f (T3)

rewrite rules:
f in
s (. . .)σ → us,s′(f in

s′ (. . .)) f in
a (T1,T2) → ua,f(f in

f (T1,T2))
us,s′(f out

s′ (. . .)) → f out
s (. . .)σ ua,f(f out

f (T3)) → f out
a

Encoding of f: f in
f (T1,T2), f out

f (T3)

Encoding of a: f in
a (T1,T2), f out

a

Encoding of h: f in
a (T1,T4), f out

a

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

. . .

Split

star(T1,T4)h

Split
T3/T4

Inst

Aim: show termination of concrete states represented by graph

Solution: synthesize TRS from the graph

TRS captures all evaluations that are crucial for termination behavior

existing rewrite tools can show termination of TRS

⇒ prove termination of original prolog program

encode state s to terms f in
s (. . .), f out

s (. . .)

• arguments of f in
s : abstract ground variables of s (T1,T2, . . .)

• arguments of f out
s : remaining abstract variables of s

which are made ground by every
answer substitution of s (groundness analysis)

for state s with Inst edge to s ′: use f in
s′ , f out

s′ instead of f in
s , f out

s

encode connection paths to rewrite rules

connection path: cover all ways through graph except

Inst edges (are covered by the encoding of terms)

Split edges (will be covered by extra Split rules later)

parts without cycles or Suc nodes (irrelevant for termination behavior)

connection path from s to s ′ with substitution σ:

f in
s (. . .)σ evaluates to f out

s (. . .)σ if f in
a (T1,T2) evaluates to f out

a if
f in
s′ (. . .) evaluates to f out

s′ (. . .) f in
f (T1,T2) evaluates to f out

f (T3)

rewrite rules:
f in
s (. . .)σ → us,s′(f in

s′ (. . .)) f in
a (T1,T2) → ua,f(f in

f (T1,T2))
us,s′(f out

s′ (. . .)) → f out
s (. . .)σ ua,f(f out

f (T3)) → f out
a

f in
a (T1,T2) → ua,f(f in

f (T1,T2))

ua,f(f out
f (T3)) → f out

a

f in
a (T1, []) → f out

a

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

. . .

Split

star(T1,T4)h

Split
T3/T4

Inst

Aim: show termination of concrete states represented by graph

Solution: synthesize TRS from the graph

TRS captures all evaluations that are crucial for termination behavior

existing rewrite tools can show termination of TRS

⇒ prove termination of original prolog program

encode state s to terms f in
s (. . .), f out

s (. . .)

• arguments of f in
s : abstract ground variables of s (T1,T2, . . .)

• arguments of f out
s : remaining abstract variables of s

which are made ground by every
answer substitution of s (groundness analysis)

for state s with Inst edge to s ′: use f in
s′ , f out

s′ instead of f in
s , f out

s

encode connection paths to rewrite rules

connection path: cover all ways through graph except

Inst edges (are covered by the encoding of terms)

Split edges (will be covered by extra Split rules later)

parts without cycles or Suc nodes (irrelevant for termination behavior)

connection path from s to s ′ with substitution σ:

f in
s (. . .)σ evaluates to f out

s (. . .)σ if f in
a (T1,T2) evaluates to f out

a if
f in
s′ (. . .) evaluates to f out

s′ (. . .) f in
f (T1,T2) evaluates to f out

f (T3)

rewrite rules:
f in
s (. . .)σ → us,s′(f in

s′ (. . .)) f in
a (T1,T2) → ua,f(f in

f (T1,T2))
us,s′(f out

s′ (. . .)) → f out
s (. . .)σ ua,f(f out

f (T3)) → f out
a

f in
a (T1,T2) → ua,f(f in

f (T1,T2))

ua,f(f out
f (T3)) → f out

a

f in
a (T1, []) → f out

a

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

. . .

Split

star(T1,T4)h

Split
T3/T4

Inst

Aim: show termination of concrete states represented by graph

Solution: synthesize TRS from the graph

TRS captures all evaluations that are crucial for termination behavior

existing rewrite tools can show termination of TRS

⇒ prove termination of original prolog program

encode state s to terms f in
s (. . .), f out

s (. . .)

• arguments of f in
s : abstract ground variables of s (T1,T2, . . .)

• arguments of f out
s : remaining abstract variables of s

which are made ground by every
answer substitution of s (groundness analysis)

for state s with Inst edge to s ′: use f in
s′ , f out

s′ instead of f in
s , f out

s

encode connection paths to rewrite rules

connection path: cover all ways through graph except

Inst edges (are covered by the encoding of terms)

Split edges (will be covered by extra Split rules later)

parts without cycles or Suc nodes (irrelevant for termination behavior)

connection path from s ending in Suc node:

f in
s (. . .)σ evaluates to f out

s (. . .)σ

if

f in
a (T1, []) evaluates to f out

a

if
f in
s′ (. . .) evaluates to f out

s′ (. . .) f in
f (T1,T2) evaluates to f out

f (T3)

intuition:
f ina (T1,T2) evaluates to f outa if T2 ∈ (T1)∗

f inf (T1,T2) evaluates to f outf (T3) if T1 6=[],T2 6=[], T3 is T2 without prefix T1, T3 ∈ (T1)∗

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

app(T1,T3,T2)g

Split

. . .

Case

star(T1,T4)h

Split
T3/T4

Inst

f in
a (T1,T2) → ua,f(f in

f (T1,T2))

ua,f(f out
f (T3)) → f out

a

f in
a (T1, []) → f out

a

f in
f (T1,T2) → uf,g(f in

g (T1,T2))

uf,g(f out
g (T4)) → ug,h(f in

a (T1,T4),T4)

ug,h(f out
a ,T4) → f out

f (T4)

Split node s with successors s1 and s2:

f in
s (. . .)σ evaluates to f out

s (. . .)σ if f in
f (T1,T2) evaluates to f out

f (T4) if

f in
s1 (. . .)σ evaluates to f out

s1 (. . .)σ and f in
g (T1,T2) evaluates to f out

g (T4) and

f in
s2 (. . .) evaluates to f out

s2 (. . .) f in
a (T1,T4) evaluates to f out

a

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval
T2/[]

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval
T1/[]

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

app(T1,T3,T2)g

Split

. . .

Case

star(T1,T4)h

Split
T3/T4

Inst

f in
a (T1,T2) → ua,f(f in

f (T1,T2))

ua,f(f out
f (T3)) → f out

a

f in
a (T1, []) → f out

a

f in
f (T1,T2) → uf,g(f in

g (T1,T2))

uf,g(f out
g (T4)) → ug,h(f in

a (T1,T4),T4)

ug,h(f out
a ,T4) → f out

f (T4)

intuition:

f inf (T1,T2) evaluates to f outf (T4) if T1 6=[], T2 6=[], T4 is T2 without prefix T1, T4 ∈ (T1)∗

f ing (T1,T2) evaluates to f outg (T4) if T1 6=[], T2 6=[], T4 is T2 without prefix T1

f ina (T1,T4) evaluates to f outa if T4 ∈ (T1)∗

star(XS , []) :- !.
star([],ZS) :- !, eq(ZS , []).

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS).
app([],YS ,YS).

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS).
eq(X ,X).

f in
a (T1,T2) → ua,f(f in

f (T1,T2))

ua,f(f out
f (T3)) → f out

a

f in
a (T1, []) → f out

a

f in
f (T1,T2) → uf,g(f in

g (T1,T2))

uf,g(f out
g (T4)) → ug,h(f in

a (T1,T4),T4)

ug,h(f out
a ,T4) → f out

f (T4)

f in
g ([T5 | T6], [T5 | T7]) → ug,i(f in

i (T6,T7))

ug,i(f out
i (T3)) → f out

g (T3)

f in
i ([T8 | T9], [T8 | T10]) → ui,k(f in

i (T9,T10))

ui,k(f out
i (T3)) → f out

i (T3)

f in
i ([],T3) → f out

i (T3)

existing TRS tools
prove termination
automatically

original prolog
program terminates

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

// TRS // Rewrite Tool
(AProVE)

OO

Complexity

Determinacy

implemented in tool AProVE

most powerful tool for termination of definite logic programs

only tool for termination of non-definite prolog programs

winner of termination competition for prolog

(proves 342 of 477 examples, average runtime 6.5 s per example)

Outline

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

//

--

TRS // Rewrite Tool
(AProVE)

OO

��

Complexity

Determinacy

implemented in tool AProVE

most powerful tool for termination of definite logic programs

only tool for termination of non-definite prolog programs

winner of termination competition for prolog

(proves 342 of 477 examples, average runtime 6.5 s per example)

Outline

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

Complexity for TRSs

R : double(0) → 0

double(s(x)) → s(s(double(x)))

ircR maps n ∈ N to maximal evaluation starting with basic term t,
ircR where |t| ≤ n

|t|: number of variables and function symbols in t

double(sk(0)) →k+1
R s2·k(0)

doublek(s(0)) →2k+k−1
R s2

k
(0)

only consider basic terms f (t1, . . . , tn)

f defined symbol (double), t1, . . . , tn no defined symbols (s, 0)

R has linear complexity if ircR(n) ∈ O(n)
R has quadratic complexity if ircR(n) ∈ O(n2) etc.

Example: has linear complexity

Recently: many powerful techniques for complexity of TRSs

Recently: (by adapting techniques for termination analysis)

Complexity for TRSs

R : double(0) → 0

double(s(x)) → s(s(double(x)))

ircR maps n ∈ N to maximal evaluation starting with basic term t,
ircR where |t| ≤ n

|t|: number of variables and function symbols in t

double(sk(0)) →k+1
R s2·k(0)

doublek(s(0)) →2k+k−1
R s2

k
(0)

only consider basic terms f (t1, . . . , tn)

f defined symbol (double), t1, . . . , tn no defined symbols (s, 0)

R has linear complexity if ircR(n) ∈ O(n)
R has quadratic complexity if ircR(n) ∈ O(n2) etc.

Example: has linear complexity

Recently: many powerful techniques for complexity of TRSs

Recently: (by adapting techniques for termination analysis)

Complexity for Logic Programs

Program P, Class of queries Qp
m

prcP,Qp
m

maps n ∈ N to longest evaluation starting with Q ∈ Qp
m,

prcP,Qp
m

where |Q|m ≤ n

|Q|m: number of variables and function symbols on input positions

corresponds to number of unification attempts

P has linear complexity for class Qp
m if prcP,Qp

m
(n) ∈ O(n)

P has quadratic complexity for class Qp
m if prcP,Qp

m
(n) ∈ O(n2) etc.

Example (star-program): has linear complexity

Goal: Re-use existing methodology for termination analysis
Goal: to analyze complexity as well

P : star(XS , []) :- !.
star([],ZS) :- !, eq(ZS , []).
star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS).

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

app(T1,T3,T2)g

Split

. . .

Case

star(T1,T4)h

Split

Inst

f ina (T1,T2) → ua,f(f inf (T1,T2))

ua,f(f outf (T3)) → f outa

f ina (T1, []) → f outa

f inf (T1,T2) → uf,g(f ing (T1,T2))

uf,g(f outg (T4)) → ug,h(f ina (T1,T4),T4)

ug,h(f outa ,T4) → f outf (T4)

generate symbolic evaluation graph

generate TRS from graph

determine complexity of TRS by existing tool

infer that P has the same complexity

linear

linear

Correct?

depends on Split’s successor g

in P: repeat evaluation of h for
every answer of g (backtracking)

in TRS: evaluate h once (choose
g’s answer non-deterministically)

Here: g is deterministic
(has only one answer)

P : star(XS , []) :- !.
star([],ZS) :- !, eq(ZS , []).
star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS).

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

app(T1,T3,T2)g

Split

. . .

Case

star(T1,T4)h

Split

Inst

f ina (T1,T2) → ua,f(f inf (T1,T2))

ua,f(f outf (T3)) → f outa

f ina (T1, []) → f outa

f inf (T1,T2) → uf,g(f ing (T1,T2))

uf,g(f outg (T4)) → ug,h(f ina (T1,T4),T4)

ug,h(f outa ,T4) → f outf (T4)

generate symbolic evaluation graph

generate TRS from graph

determine complexity of TRS by existing tool

infer that P has the same complexity

linear

linear

Correct?

depends on Split’s successor g

in P: repeat evaluation of h for
every answer of g (backtracking)

in TRS: evaluate h once (choose
g’s answer non-deterministically)

Here: g is deterministic
(has only one answer)

P : sublist(X ,Y) :- app(P,U,Y), app(V ,X ,P). (1)
app([],YS ,YS). (2)

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS) (3)

sublist(T1,T2)a

sublist(T1,T2)(1)

Case

app(T3,T4,T2), app(T5,T1,T3)b

Eval

ε

Eval

app(T5,T1,T6)d

Split T3/T6

app(T3,T4,T2) c

Split

Inst

T5/T3,T1/T4,T6/T2

app(T5,T1,T6)(2) | app(T5,T1,T6)(3)

Case

� | app(T5,T1,T6)(3)e

Eval
T5/[],T1/T6

app(T5,T1,T6)(3)g

Suc

app(T5,T1,T6)(3) f

Eval

Inst

app(T8,T1,T9)h

Eval

T5/[T7 |T8],T6/[T7 |T9]

Inst

εEval

f inb (T2) → ub,c(f ind (T2))

ub,c(f outd (. . .)) → uc,d(f ind (. . .))

uc,d(f outd (. . .)) → f outb (. . .)

generate symbolic evaluation graph

and TRS

determine complexity of TRS by existing tool

infer that P has the same complexity

linear

quadratic

Evaluation of sublist

Qsublist
m = {sublist(t1, t2) | t2 ground}

computes all sublists of Y
(by backtracking)

P: quadratic complexity

linear many possibilities

to split Y into P and U

for each possible P,

linear evaluation of app(V ,X ,P)

Correctness of Complexity Analysis

depends on Split’s successor c

in P: repeat evaluation of d for
every answer of c (backtracking)

in TRS: evaluate d once (choose
c’s answer non-deterministically)

Here: c is not deterministic

⇒ Split node b is multiplicative

P : sublist(X ,Y) :- app(P,U,Y), app(V ,X ,P). (1)
app([],YS ,YS). (2)

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS) (3)

sublist(T1,T2)a

sublist(T1,T2)(1)

Case

app(T3,T4,T2), app(T5,T1,T3)b

Eval

ε

Eval

app(T5,T1,T6)d

Split T3/T6

app(T3,T4,T2) c

Split

Inst

T5/T3,T1/T4,T6/T2

app(T5,T1,T6)(2) | app(T5,T1,T6)(3)

Case

� | app(T5,T1,T6)(3)e

Eval
T5/[],T1/T6

app(T5,T1,T6)(3)g

Suc

app(T5,T1,T6)(3) f

Eval

Inst

app(T8,T1,T9)h

Eval

T5/[T7 |T8],T6/[T7 |T9]

Inst

εEval

f inb (T2) → ub,c(f ind (T2))

ub,c(f outd (. . .)) → uc,d(f ind (. . .))

uc,d(f outd (. . .)) → f outb (. . .)

generate symbolic evaluation graph and TRS

determine complexity of TRS by existing tool

infer that P has the same complexity

linear

quadratic

Evaluation of sublist

Qsublist
m = {sublist(t1, t2) | t2 ground}

computes all sublists of Y
(by backtracking)

P: quadratic complexity

linear many possibilities

to split Y into P and U

for each possible P,

linear evaluation of app(V ,X ,P)

Correctness of Complexity Analysis

depends on Split’s successor c

in P: repeat evaluation of d for
every answer of c (backtracking)

in TRS: evaluate d once (choose
c’s answer non-deterministically)

Here: c is not deterministic

⇒ Split node b is multiplicative

P : sublist(X ,Y) :- app(P,U,Y), app(V ,X ,P). (1)
app([],YS ,YS). (2)

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS) (3)

sublist(T1,T2)a

sublist(T1,T2)(1)

Case

app(T3,T4,T2), app(T5,T1,T3)b

Eval

ε

Eval

app(T5,T1,T6)d

Split T3/T6

app(T3,T4,T2) c

Split

Inst

T5/T3,T1/T4,T6/T2

app(T5,T1,T6)(2) | app(T5,T1,T6)(3)

Case

� | app(T5,T1,T6)(3)e

Eval
T5/[],T1/T6

app(T5,T1,T6)(3)g

Suc

app(T5,T1,T6)(3) f

Eval

Inst

app(T8,T1,T9)h

Eval

T5/[T7 |T8],T6/[T7 |T9]

Inst

εEval

f inb (T2) → ub,c(f ind (T2))

ub,c(f outd (. . .)) → uc,d(f ind (. . .))

uc,d(f outd (. . .)) → f outb (. . .)

generate symbolic evaluation graph and TRS

determine complexity of TRS by existing tool

infer that P has the same complexity

linear

quadratic

Evaluation of sublist

Qsublist
m = {sublist(t1, t2) | t2 ground}

computes all sublists of Y
(by backtracking)

P: quadratic complexity

linear many possibilities

to split Y into P and U

for each possible P,

linear evaluation of app(V ,X ,P)

Correctness of Complexity Analysis

depends on Split’s successor c

in P: repeat evaluation of d for
every answer of c (backtracking)

in TRS: evaluate d once (choose
c’s answer non-deterministically)

Here: c is not deterministic
⇒ Split node b is multiplicative

Decompose Graph by Multiplicative Split Nodes

generate symbolic evaluation graph

generate separate TRSs R1, . . . ,R5

for parts up to multiplicative Split nodes

(no multiplicative Split node may reach itself)

determine ircR1,R, . . . , ircR5,R separately

maps n ∈ N to maximal number of Ri -steps in
evaluation starting with basic term t, where |t| ≤ n

upper bound for runtime and for number of answers

combine complexities

multiply complexities for children of multiplicative Splits

add complexities of parents of multiplicative Splits

ircR1,R + ircR2,R · (ircR3,R + ircR4,R · ircR5,R)

Graph1

MULTIPLICATIVE SPLIT

Graph2 Graph3

MULTIPLICATIVE SPLIT

Graph4 Graph5

ircR1,R: constant

ircR2,R: linear

ircR3,R: linear

complexity of P: quadratic
ircR1,R + ircR2,R · ircR3,R

sublist(T1,T2)a

sublist(T1,T2)(1)

Case

app(T3,T4,T2), app(T5,T1,T3)b

Eval

ε

Eval

app(T5,T1,T6)d

Split T3/T6

app(T3,T4,T2) c

Split

Inst

T5/T3,T1/T4,T6/T2

app(T5,T1,T6)(2) | app(T5,T1,T6)(3)

Case

� | app(T5,T1,T6)(3)e

Eval
T5/[],T1/T6

app(T5,T1,T6)(3)g

Suc

app(T5,T1,T6)(3) f

Eval

Inst

app(T8,T1,T9)h

Eval

T5/[T7 |T8],T6/[T7 |T9]

Inst

εEval

f ina (T2) → ua,b(f inb (T2))

ua,b(f outb (. . .)) → f outa (T1)

f inb (T2) → ub,c(f ind (T2))

ub,c(f outd (. . .)) → uc,d(f ind (. . .))

uc,d(f outd (. . .)) → f outb (. . .)

f ind (T6) → f outd ([],T6)

f ind (T6) → ud,g(f ing (T6))

ud,g(f outg (. . .)) → f outd (T5,T1)

f ind (T6) → ud,f(f ing (T6))

ud,f(. . .) → f outd (T5,T1)

f ing ([T7 |T9]) → ug,h(. . .)

ug,h(. . .) → f outg ([T7 |T8])

generate graph and TRSs R1, R2, R3

determine ircR1,R, ircR2,R, ircR3,R

infer complexity of P

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

// TRS // Rewrite Tool
(AProVE)

��

Complexity

Determinacy

implemented in tool AProVE

only tool for complexity of non-well-moded or non-definite programs

experiments on all 477 programs of TPDB

O(1) O(n) O(n2) O(n · 2n) bounds time

CASLOG 1 21 4 3 29 14.8

CiaoPP 3 19 4 3 29 11.7

AProVE 54 117 37 0 208 10.6

Outline

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

//

--

TRS // Rewrite Tool
(AProVE)

OO

��

Complexity

Determinacy

implemented in tool AProVE

only tool for complexity of non-well-moded or non-definite programs

experiments on all 477 programs of TPDB

O(1) O(n) O(n2) O(n · 2n) bounds time

CASLOG 1 21 4 3 29 14.8

CiaoPP 3 19 4 3 29 11.7

AProVE 54 117 37 0 208 10.6

Outline

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

Criterion for determinacy of s

If s reaches Suc node s ′,
then there is no path
from s ′ to a Suc node.

sublist(T1,T2)a

sublist(T1,T2)(1)

Case

app(T3,T4,T2), app(T5,T1,T3)b

Eval

ε

Eval

app(T5,T1,T6)d

Split T3/T6

app(T3,T4,T2) c

Split

Inst

T5/T3,T1/T4,T6/T2

app(T5,T1,T6)(2) | app(T5,T1,T6)(3)

Case

� | app(T5,T1,T6)(3)e

Eval
T5/[],T1/T6

app(T5,T1,T6)(3)g

Suc

app(T5,T1,T6)(3) f

Eval

Inst

app(T8,T1,T9)h

Eval

T5/[T7 |T8],T6/[T7 |T9]

Inst

εEval

query deterministic iff

it generates at most one
answer substitution at most once

for program analysis

for complexity analysis
(non-multiplicative Splits)

successful evaluation ⇒

path to Suc node in
symbolic evaluation graph

c not deterministic
⇒ Split node b multiplicative

a not deterministic

Criterion for determinacy of s

If s reaches Suc node s ′,
then there is no path
from s ′ to a Suc node.

star(T1,T2)a

star(T1,T2)(1) | star(T1,T2)(2) | star(T1,T2)(3)b

Case

! | star(T1, [])(2) | star(T1, [])(3)c

Eval

star(T1,T2)(2) | star(T1,T2)(3)d

Eval

�e

Cut

!, eq(T2, []) | star([],T2)(3)

Eval

star(T1,T2)(3)

Eval

ε

Suc

eq(T2, [])

Cut

app(T1,T3,T2), star(T1,T3)f

Eval

ε

Eval

. . .

Case

app(T1,T3,T2)g

Split

. . .

Case

star(T1,T4)h

Split

Inst

g is deterministic
⇒ Split node f not multiplicative

a is deterministic

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

haskell-
Program

Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

,,

TRS
Rewrite Tool

(AProVE)

java-
Program

Complexity

Determinacy

implemented in tool AProVE

experiments on 300 definite programs:
CiaoPP: 132, AProVE: 80

experiments on 177 non-definite programs:
CiaoPP: 61, AProVE: 92

only first step, but substantial addition to existing determinacy analyses
(AProVE succeeds on 78 examples where CiaoPP fails)

strong enough for complexity analysis

Contributions

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

http://aprove.informatik.rwth-aachen.de

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing prolog programs

haskell-
Program

''NN
Termination

prolog-
Program

//
Symbolic

Evaluation
Graph

//

,,

TRS // Rewrite Tool
(AProVE)

OO

��
java-

Program

88rrr

Complexity

Determinacy

implemented in tool AProVE

experiments on 300 definite programs:
CiaoPP: 132, AProVE: 80

experiments on 177 non-definite programs:
CiaoPP: 61, AProVE: 92

only first step, but substantial addition to existing determinacy analyses
(AProVE succeeds on 78 examples where CiaoPP fails)

strong enough for complexity analysis

Contributions

linear operational semantics of prolog
from prolog to symbolic evaluation graphs
from symbolic evaluation graphs to TRSs for termination analysis
from symbolic evaluation graphs to TRSs for complexity analysis
determinacy analysis

http://aprove.informatik.rwth-aachen.de

