Symbolic Evaluation Graphs and Term Rewriting — A General Methodology for Analyzing Logic Programs

Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

joint work with T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs

Termination Analysis for TRSs

$$egin{array}{rcl} \mathcal{R}: & {\sf double}(0) &
ightarrow & 0 \ & {\sf double}({\sf s}(x)) &
ightarrow & {\sf s}({\sf s}({\sf double}(x))) \end{array}$$

 $\mathcal R$ is *terminating* iff there is no infinite evaluation $t_1 o_{\mathcal R} t_2 o_{\mathcal R} \dots$

 $\begin{array}{lll} \mbox{Computation of "double(1)":} & \mbox{double}(s(0)) & \rightarrow_{\mathcal{R}} s(s(\mbox{double}(0))) \\ & \rightarrow_{\mathcal{R}} s(s(0)) \end{array}$

- easier / more general than for programs
- suitable for automation
- But: halting problem is undecidable!
 ⇒ automated termination proofs do not always succeed

Automated Termination Tools for TRSs

- AProVE (Aachen)
- CARIBOO (Nancy)
- CiME (Orsay)
- Jambox (Amsterdam)
- Matchbox (Leipzig)
- MU-TERM (Valencia)
- MultumNonMulta (Kassel)
- TEPARLA (Eindhoven)
- Termptation (Barcelona)
- TORPA (Eindhoven)
- TPA (Eindhoven)
- TTT (Innsbruck)
- VMTL (Vienna)

- Annual International Competition of Termination Tools
- well-developed field
- active research
- powerful techniques & tools
- But: What about application in practice?

Functional Languages

- first-order languages with strict evaluation strategy (Walther, 94), (Giesl, 95), (Lee, Jones, Ben-Amram, 01)
- ensuring termination (e.g., by typing) (Telford & Turner, 00), (Xi, 02), (Abel, 04), (Barthe et al, 04) etc.
- outermost termination of untyped first-order rewriting (Fissore, Gnaedig, Kirchner, 02), (Endrullis & Hendriks, 09), (Raffelsieper & Zantema, 09), (Thiemann, 09)
- automated technique for small HASKELL-like language (*Panitz & Schmidt-Schauss, 97*)
- do not work on full existing languages
- no use of TRS-techniques (stand-alone methods)

Functional Languages

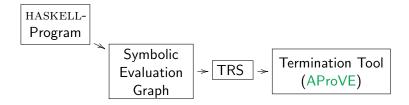
- using TRS-techniques for **HASKELL** is challenging
 - HASKELL has a lazy evaluation strategy. For TRSs, one proves termination of *all* reductions.
 - HASKELL's equations are handled from top to bottom. For TRSs, *any* rule may be used for rewriting.
 - HASKELL has polymorphic types. TRSs are *untyped*.
 - In HASKELL-programs, often only some functions terminate. TRS-methods try to prove termination of *all* terms.
 - HASKELL is a higher-order language. Most automatic TRS-methods only handle *first-order* rewriting.

Functional Languages

- using TRS-techniques for **HASKELL** is challenging
- New approach (ACM TOPLAS '11)
 - Frontend
 - evaluate HASKELL a few steps ⇒ symbolic evaluation graph graph captures evaluation strategy, types, etc.
 - transform symbolic evaluation graph \Rightarrow TRS
 - Backend
 - prove termination of the resulting TRS (using existing techniques & tools)
- implemented in AProVE
 - accepts full HASKELL 98 language
 - successfully evaluated with standard HASKELL-libraries (succeeds on approx. 80 % of the functions in standard libraries)

Functional Languages

• using TRS-techniques for **HASKELL** is challenging



• implemented in **AProVE**

- accepts full HASKELL 98 language
- successfully evaluated with standard HASKELL-libraries (succeeds on approx. 80 % of the functions in standard libraries)

Imperative Languages

- Synthesis of Linear Ranking Functions (Colon & Sipma, 01), (Podelski & Rybalchenko, 04)
- Terminator: Termination Analysis by Abstraction & Model Checking (Cook, Podelski, Rybalchenko et al., since 05)
- Julia & COSTA: Termination Analysis of JAVA BYTECODE (Spoto, Mesnard, Payet, 10), (Albert, Arenas, Codish, Genaim, Puebla, Zanardini, 08)

• . . .

- used at Microsoft for verifying Windows device drivers
- no use of TRS-techniques (stand-alone methods)

Imperative Languages

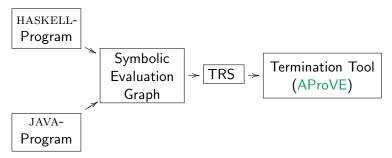
- using TRS-techniques for JAVA is challenging
 - sharing and aliasing
 - side effects
 - cyclic data objects
 - object-orientation
 - recursion
 - . . .

Imperative Languages

- using TRS-techniques for JAVA is challenging
- New approach (RTA '10, RTA '11, CAV '12)
 - Frontend
 - evaluate JAVA a few steps ⇒ symbolic evaluation graph graph captures side effects, sharing, cyclic data objects, etc.
 - transform symbolic evaluation graph \Rightarrow TRS
 - Backend
 - prove termination of the resulting TRS (using existing techniques & tools)
- implemented in **AProVE**
 - successfully evaluated on JAVA-collection
 - most powerful termination tool for JAVA (winner of the international termination competition for JAVA)

Imperative Languages

• using TRS-techniques for JAVA is challenging



- implemented in **AProVE**
 - successfully evaluated on JAVA-collection
 - most powerful termination tool for JAVA (winner of the international termination competition for JAVA)

Logic Languages

- well-developed field (De Schreye & Decorte, 94) etc.
- direct approaches: work directly on the logic program
 - cTI (Mesnard et al)
 - TerminWeb (Codish et al)
 - TermiLog (Lindenstrauss et al)
 - Polytool (Nguyen, De Schreye, Giesl, Schneider-Kamp)

TRS-techniques can be adapted to work *directly* on the LP

• transformational approaches: transform LP to TRS

 $\begin{array}{l} \operatorname{app}([], YS, YS).\\ \operatorname{app}([X \mid XS], YS, [X \mid ZS]) := \operatorname{app}(XS, YS, ZS).\\ \operatorname{app}^{in}([X \mid XS], YS) \to \operatorname{u}(\operatorname{app}^{in}(XS, YS), X)\\ \operatorname{u}(\operatorname{app}^{out}(ZS), X) \to \operatorname{app}^{out}([X \mid ZS]) \end{array}$

- class of queries Q_m^p described by predicate p and moding m Example: $Q_m^{app} = \{app(t_1, t_2, t_3) | t_1, t_2 \text{ are ground}\}.$
- encode atom $p(\ldots)$ to terms $p^{in}(\ldots)$, $p^{out}(\ldots)$
 - arguments of p^{in} : input arguments of $p(\ldots)$
 - arguments of p^{out} : remaining arguments of $p(\ldots)$

Encoding of app([], YS, YS): $app^{in}([], YS)$, $app^{out}(YS)$ Encoding of app([X | XS], YS, [X | ZS]): $app^{in}([X | XS], YS)$, $app^{out}([X | ZS])$ Encoding of app(XS, YS, ZS): $app^{in}(XS, YS)$, $app^{out}(ZS)$

• encode clauses to rewrite rules

• fact $p(\ldots)$: $p^{in}(\ldots) \rightarrow p^{out}(\ldots)$ • rule $p(\ldots)$: $-q(\ldots)$: $p^{in}(\ldots) \rightarrow u(q^{in}(\ldots))$ $u(q^{out}(\ldots)) \rightarrow p^{out}(\ldots)$

Logic Languages

- well-developed field (De Schreye & Decorte, 94) etc.
- direct approaches: work directly on the logic program
 - cTI (Mesnard et al)
 - TerminWeb (Codish et al)
 - TermiLog (Lindenstrauss et al)
 - Polytool (Nguyen, De Schreye, Giesl, Schneider-Kamp)

TRS-techniques can be adapted to work *directly* on the LP

- transformational approaches: transform LP to TRS
 - TALP (Ohlebusch et al)
 - AProVE (Giesl et al)
- only for *definite* LP (without cut)
- not for real PROLOG

Logic Languages

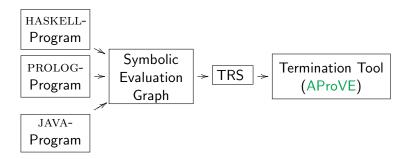
• analyzing **PROLOG** is challenging due to cuts etc.

• New approach

- Frontend
 - evaluate PROLOG a few steps ⇒ symbolic evaluation graph graph captures evaluation strategy due to cuts etc.
 - transform symbolic evaluation graph \Rightarrow TRS
- Backend
 - prove termination of the resulting TRS (using existing techniques & tools)
- implemented in AProVE
 - successfully evaluated on PROLOG-collections with cuts
 - most powerful termination tool for PROLOG (winner of termination competition for PROLOG)

Logic Languages

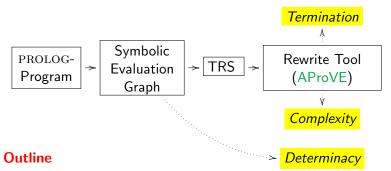
• analyzing **PROLOG** is challenging due to cuts etc.



- implemented in **AProVE**
 - successfully evaluated on PROLOG-collections with cuts
 - most powerful termination tool for PROLOG (winner of *termination competition* for PROLOG)

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing PROLOG programs



• linear operational semantics of PROLOG

- from PROLOG to symbolic evaluation graphs
- from symbolic evaluation graphs to TRSs for termination analysis
- from symbolic evaluation graphs to TRSs for complexity analysis
- determinacy analysis

$$\begin{array}{cccc} star(XS,[]) := !. & (1) \\ star([], ZS) := !, eq(ZS,[]). & (2) \\ star(XS, ZS) := app(XS, YS, ZS), star(XS, YS). & (3) \\ app([], YS, YS). & (4) \\ app([X | XS], YS, [X | ZS]) := app(XS, YS, ZS). & (5) \\ eq(X, X). & (6) \end{array}$$

• star(t_1, t_2) holds iff t_2 results from concatenation of t_1 ($t_2 \in (t_1)^*$)

- star([1, 2], []) holds
- star([1,2],[1,2]) holds, since app([1,2],[],[1,2]), star([1,2],[]) hold
- star([1,2], [1,2,1,2]) holds, etc.

cut in clause (2) needed for termination. Otherwise:
 star([], t) would lead to
 app([], YS, t), star([], YS) would lead to
 star([], t)

$$\begin{array}{cccc} star(XS,[]) := !. & (1) \\ star([], ZS) := !, eq(ZS,[]). & (2) \\ star(XS, ZS) := app(XS, YS, ZS), star(XS, YS). & (3) \\ app([], YS, YS). & (4) \\ app([X | XS], YS, [X | ZS]) := app(XS, YS, ZS). & (5) \\ eq(X, X). & (6) \end{array}$$

• state: $(G_1 \mid \ldots \mid G_n)$ with current goal G_1 and next goals G_2, \ldots, G_n

• goal: (t_1, \ldots, t_k) query or $(t_1, \ldots, t_k)^c$ query labeled by clause c used for next resolution

• inference rules:

• CASE • EVAL • BACK • CUT • SUC • CASE $star([1,2],[]) | = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(2)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(3)} | = star([1,2],[])^{(3)} | = EVAL$ $| = star([1,2],[])^{(3)} | = star([1,2],[])$

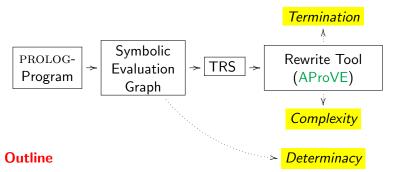
$$\begin{array}{cccc} {\rm star}(XS,[]):=!. & (1) \\ {\rm star}([],ZS):=!,{\rm eq}(ZS,[]). & (2) \\ {\rm star}(XS,ZS):={\rm app}(XS,YS,ZS),{\rm star}(XS,YS). & (3) \\ {\rm app}([],YS,YS). & (4) \\ {\rm app}([X\mid XS],YS,[X\mid ZS]):={\rm app}(XS,YS,ZS). & (5) \\ {\rm eq}(X,X). & (6) \end{array}$$

- state: $(G_1 \mid \ldots \mid G_n)$ with current goal G_1 and next goals G_2, \ldots, G_n
- *linear* semantics, since state contains all backtracking information
 ⇒ evaluation is a sequence of states, not a search tree
- suitable for extension to abstract states

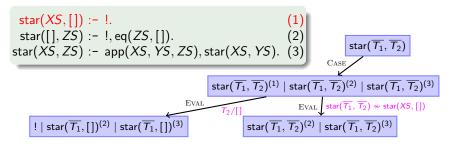
$$\begin{array}{ccc} \mathsf{star}([1,2],[]) & \vdash_{\mathrm{CASE}} \\ \mathsf{star}([1,2],[])^{(1)} \mid \mathsf{star}([1,2],[])^{(2)} \mid \mathsf{star}([1,2],[])^{(3)} & \vdash_{\mathrm{EVAL}} \\ & ! \mid \mathsf{star}([1,2],[])^{(2)} \mid \mathsf{star}([1,2],[])^{(3)} & \vdash_{\mathrm{CUT}} \\ & \Box & \vdash_{\mathrm{SUC}} \\ & \varepsilon \end{array}$$

Symbolic Evaluation Graphs and Term Rewriting

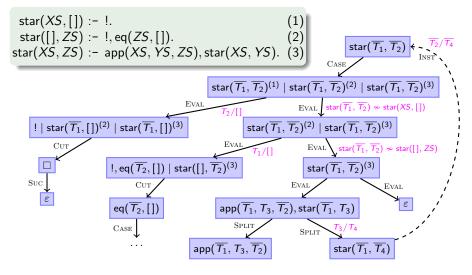
General methodology for analyzing PROLOG programs



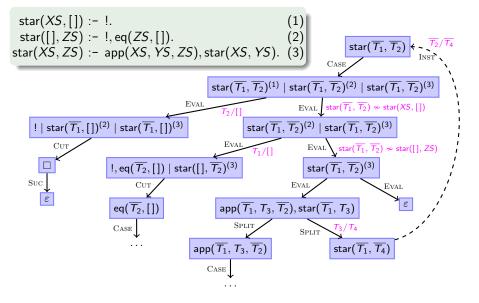
- linear operational semantics of PROLOG
- from PROLOG to symbolic evaluation graphs
- from symbolic evaluation graphs to TRSs for termination analysis
- from symbolic evaluation graphs to TRSs for complexity analysis
- determinacy analysis



- symbolic evaluation graph: all evaluations for a class of queries
- class of queries Q_m^p described by predicate p and moding m Example: $Q_m^{\text{star}} = \{ \text{star}(t_1, t_2) | t_1, t_2 \text{ are ground} \}.$
- abstract state: stands for set of concrete states
 - state with *abstract* variables T_1, T_2, \ldots representing arbitrary terms
 - constraints on the terms represented by T_1, T_2, \ldots
 - groundness constraints: $\overline{T_1}$, $\overline{T_2}$
 - unification constraints: $star(\overline{T_1}, \overline{T_2}) \approx star(XS, [])$

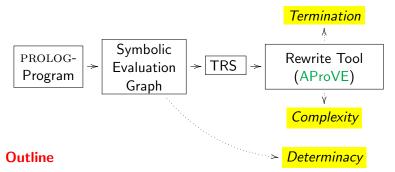


- INST: connection to previous state if current state is an *instance*
- $\bullet~\mathrm{SPLIT}:$ split away first atom from a query
 - $\bullet~$ fresh variables in $\ensuremath{\operatorname{SPLIT}}$'s second successor
 - approximate first atom's answer substitution by groundness analysis

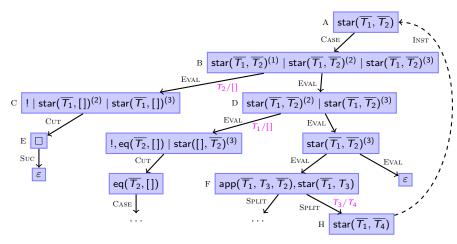


Symbolic Evaluation Graphs and Term Rewriting

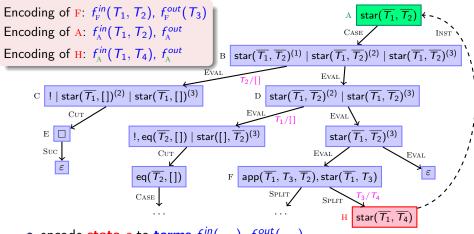
General methodology for analyzing PROLOG programs



- linear operational semantics of PROLOG
- from PROLOG to symbolic evaluation graphs
- from symbolic evaluation graphs to TRSs for termination analysis
- from symbolic evaluation graphs to TRSs for complexity analysis
- determinacy analysis

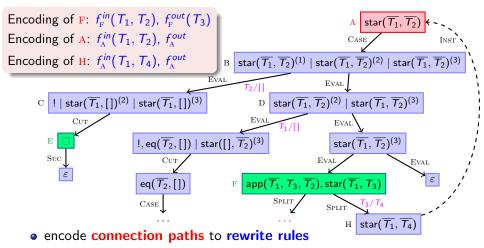


- Aim: show termination of concrete states represented by graph
- Solution: synthesize TRS from the graph
 - TRS captures all evaluations that are crucial for termination behavior
 - existing rewrite tools can show termination of TRS
 - \Rightarrow prove termination of original PROLOG program

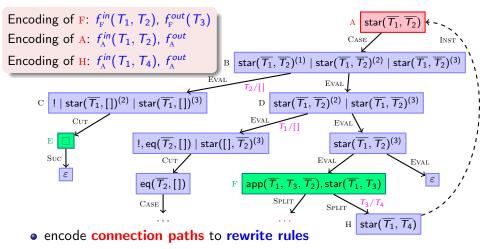


• encode state *s* to terms $f_s^{in}(\ldots)$, $f_s^{out}(\ldots)$

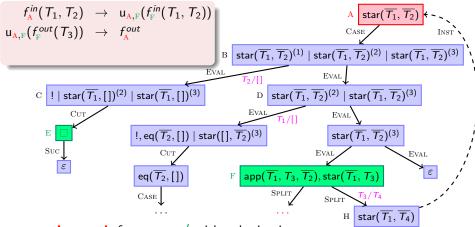
arguments of fⁱⁿ_s: abstract ground variables of s (T₁, T₂,...)
arguments of f^{out}_s: remaining abstract variables of s which are made ground by every answer substitution of s (groundness analysis)
for state s with INST edge to s': use fⁱⁿ_{s'}, f^{out}_{s'} instead of fⁱⁿ_s, f^{out}_s



- connection path:
 - start state = root, successor of INST, or successor of SPLIT but no INST or SPLIT node itself
 - $\bullet~\mbox{end}$ state = $\rm INST,~SPLIT,~SUC$ node, or successor of $\rm INST$ node
 - \bullet connection path may not traverse end nodes except Suc nodes



- connection path: cover all ways through graph except
 - INST edges (are covered by the encoding of terms)
 - $\bullet~\mathrm{SPLIT}$ edges (will be covered by extra SPLIT rules later)
 - parts without cycles or SUC nodes (irrelevant for termination behavior)

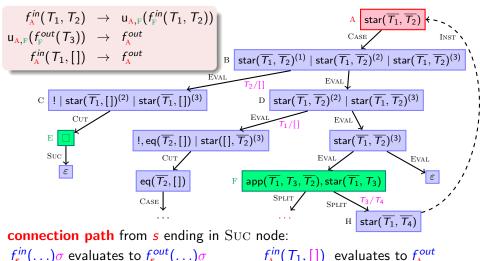


connection path from *s* to *s'* with substitution σ :

 $\begin{array}{ll} f_{s}^{in}(\ldots)\sigma \text{ evaluates to } f_{s}^{out}(\ldots)\sigma \text{ if } & f_{A}^{in}(T_{1},T_{2}) \text{ evaluates to } f_{A}^{out} \text{ if } \\ f_{s'}^{in}(\ldots) & \text{ evaluates to } f_{s'}^{out}(\ldots) & f_{F}^{in}(T_{1},T_{2}) \text{ evaluates to } f_{F}^{out}(T_{3}) \end{array}$

rewrite rules:

 $\begin{array}{ll} f_{\mathbf{s}}^{in}(\ldots)\sigma \rightarrow \mathsf{u}_{\mathbf{s},s'}(f_{s'}^{in}(\ldots)) & f_{\mathbf{A}}^{in}(T_1,T_2) \rightarrow \mathsf{u}_{A,F}(f_{F}^{in}(T_1,T_2)) \\ \mathsf{u}_{\mathbf{s},s'}(f_{s'}^{out}(\ldots)) \rightarrow f_{\mathbf{s}}^{out}(\ldots)\sigma & \mathsf{u}_{A,F}(f_{F}^{out}(T_3)) \rightarrow f_{A}^{out} \end{array}$

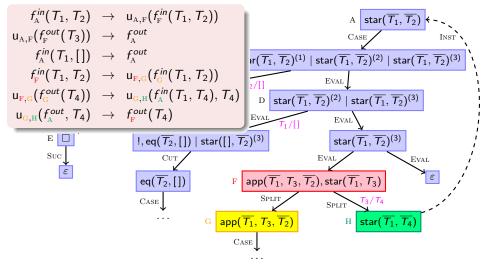


 $f_s^{in}(\ldots)\sigma$ evaluates to $f_s^{out}(\ldots)\sigma$ $f_A^{in}(T_1,[])$

intuition:

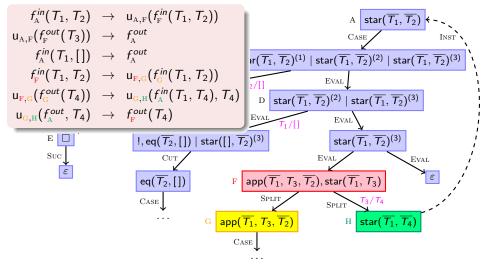
 $f_{A}^{in}(T_1, T_2)$ evaluates to f_{A}^{out} if $T_2 \in (T_1)^*$

 $f_{\mathbb{F}}^{in}(T_1, T_2)$ evaluates to $f_{\mathbb{F}}^{out}(T_3)$ if $T_1 \neq [], T_2 \neq [], T_3$ is T_2 without prefix $T_1, T_3 \in (T_1)^*$



SPLIT node **s** with successors s_1 and s_2 :

 $f_{s}^{in}(\ldots)\sigma$ evaluates to $f_{s}^{out}(\ldots)\sigma$ if $f_{s_1}^{in}(\ldots)\sigma$ evaluates to $f_{s_1}^{out}(\ldots)\sigma$ and $f_{s_2}^{in}(\ldots)$ evaluates to $f_{s_2}^{out}(\ldots)$ $f_{\rm F}^{in}(T_1, T_2)$ evaluates to $f_{\rm F}^{out}(T_4)$ if $f_{\rm G}^{in}(T_1, T_2)$ evaluates to $f_{\rm G}^{out}(T_4)$ and $f_{\rm A}^{in}(T_1, T_4)$ evaluates to $f_{\rm A}^{out}$



intuition:

 $f_{F}^{in}(T_{1}, T_{2}) \text{ evaluates to } f_{F}^{out}(T_{4}) \quad \text{if } T_{1} \neq [], \ T_{2} \neq [], \ T_{4} \text{ is } T_{2} \text{ without prefix } T_{1}, \ T_{4} \in (T_{1})^{*}$ $f_{G}^{in}(T_{1}, T_{2}) \text{ evaluates to } f_{G}^{out}(T_{4}) \quad \text{if } T_{1} \neq [], \ T_{2} \neq [], \ T_{4} \text{ is } T_{2} \text{ without prefix } T_{1}$ $f_{A}^{in}(T_{1}, T_{4}) \text{ evaluates to } f_{A}^{out} \qquad \text{if } T_{4} \in (T_{1})^{*}$

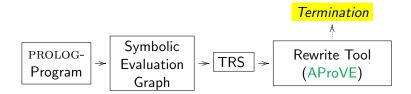
$$\begin{array}{l} {\rm star}(XS,[]):=!.\\ {\rm star}([],ZS):=!,{\rm eq}(ZS,[]).\\ {\rm star}(XS,ZS):={\rm app}(XS,YS,ZS),{\rm star}(XS,YS).\\ {\rm app}([],YS,YS).\\ {\rm app}([X|XS],YS,[X|ZS]):={\rm app}(XS,YS,ZS).\\ {\rm eq}(X,X). \end{array}$$

$$\begin{array}{c} f_{\rm A}^{in}(T_1,T_2) \ \rightarrow \ {\sf u}_{{\rm A},{\rm F}}(f_{\rm F}^{in}(T_1,T_2)) \\ {\sf u}_{{\rm A},{\rm F}}(f_{\rm F}^{out}(T_3)) \ \rightarrow \ f_{\rm A}^{out} \\ f_{\rm A}^{in}(T_1,[]) \ \rightarrow \ f_{\rm A}^{out} \\ f_{\rm F}^{in}(T_1,T_2) \ \rightarrow \ {\sf u}_{{\rm F},{\rm G}}(f_{\rm G}^{in}(T_1,T_2)) \\ {\sf u}_{{\rm F},{\rm G}}(f_{\rm G}^{out}(T_4)) \ \rightarrow \ {\sf u}_{{\rm G},{\rm H}}(f_{\rm A}^{in}(T_1,T_4),T_4) \\ {\sf u}_{{\rm G},{\rm H}}(f_{\rm A}^{out},T_4) \ \rightarrow \ f_{\rm F}^{out}(T_4) \\ {\sf u}_{{\rm G},{\rm H}}(f_{\rm I}^{out}(T_3)) \ \rightarrow \ {\sf u}_{{\rm G},{\rm I}}(f_{\rm I}^{in}(T_6,T_7)) \\ {\sf u}_{{\rm G},{\rm I}}(f_{\rm I}^{out}(T_3)) \ \rightarrow \ f_{\rm G}^{out}(T_3) \\ {\sf i}^{in}([T_8 \mid T_9],[T_8 \mid T_{10}]) \ \rightarrow \ {\sf u}_{{\rm I},{\rm K}}(f_{\rm I}^{in}(T_9,T_{10})) \\ {\sf u}_{{\rm I},{\rm K}}(f_{\rm I}^{out}(T_3)) \ \rightarrow \ f_{\rm I}^{out}(T_3) \\ f_{\rm I}^{in}([],T_3) \ \rightarrow \ f_{\rm I}^{out}(T_3) \end{array}$$

f,

- existing TRS tools prove termination automatically
- original PROLOG program terminates

Symbolic Evaluation Graphs and Term Rewriting

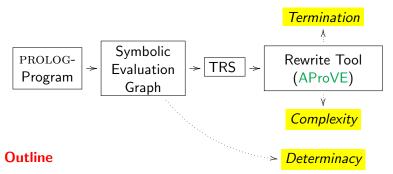


implemented in tool AProVE

- most powerful tool for termination of definite logic programs
- only tool for termination of non-definite PROLOG programs
- winner of *termination competition* for PROLOG (proves 342 of 477 examples, average runtime 6.5 s per example)

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing PROLOG programs



- linear operational semantics of PROLOG
- from PROLOG to symbolic evaluation graphs
- from symbolic evaluation graphs to TRSs for termination analysis
- from symbolic evaluation graphs to TRSs for complexity analysis
- determinacy analysis

Complexity for TRSs

$$egin{array}{ccc} \mathcal{R}: & \mathsf{double}(0) & o & \mathsf{0} \ & \mathsf{double}(\mathsf{s}(x)) & o & \mathsf{s}(\mathsf{s}(\mathsf{double}(x))) \end{array}$$

- *irc_R* maps n ∈ N to maximal evaluation starting with basic term t, where |t| ≤ n
- |t|: number of variables and function symbols in t

$$double(s^{k}(0)) \rightarrow_{\mathcal{R}}^{k+1} s^{2 \cdot k}(0)$$
$$double^{k}(s(0)) \rightarrow_{\mathcal{R}}^{2^{k}+k-1} s^{2^{k}}(0)$$

- only consider **basic terms** $f(t_1, \ldots, t_n)$
 - f defined symbol (double), t_1, \ldots, t_n no defined symbols (s, 0)

Complexity for TRSs

$$egin{array}{ccc} \mathcal{R}: & \mathsf{double}(0) & o & \mathsf{0} \ & \mathsf{double}(\mathsf{s}(x)) & o & \mathsf{s}(\mathsf{s}(\mathsf{double}(x))) \end{array}$$

- *irc_R* maps n ∈ N to maximal evaluation starting with basic term t, where |t| ≤ n
- |t|: number of variables and function symbols in t

double(s^k(0))
$$\rightarrow_{\mathcal{R}}^{k+1}$$
 s^{2·k}(0)

- \mathcal{R} has linear complexity if $irc_{\mathcal{R}}(n) \in \mathcal{O}(n)$ \mathcal{R} has quadratic complexity if $irc_{\mathcal{R}}(n) \in \mathcal{O}(n^2)$ etc.
- Example: has linear complexity
- Recently: many powerful techniques for complexity of TRSs (by adapting techniques for termination analysis)

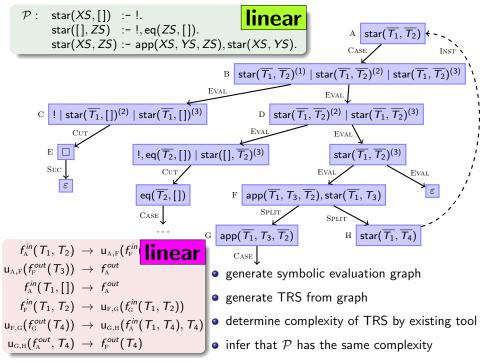
Complexity for Logic Programs

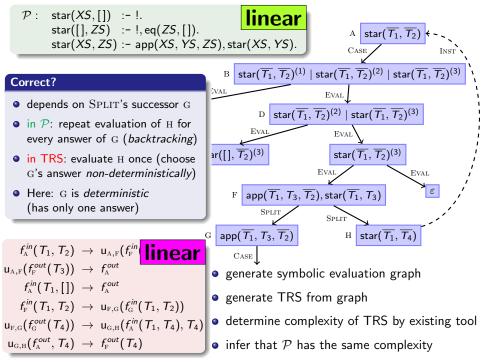
Program \mathcal{P} , **Class of queries** \mathcal{Q}_m^p

• $prc_{\mathcal{P},\mathcal{Q}_m^p}$ maps $n \in \mathbb{N}$ to longest evaluation starting with $Q \in \mathcal{Q}_m^p$, where $|Q|_m \leq n$

- $|Q|_m$: number of variables and function symbols on *input positions*
- corresponds to number of unification attempts

- \mathcal{P} has linear complexity for class \mathcal{Q}_m^p if $prc_{\mathcal{P},\mathcal{Q}_m^p}(n) \in \mathcal{O}(n)$ \mathcal{P} has quadratic complexity for class \mathcal{Q}_m^p if $prc_{\mathcal{P},\mathcal{Q}_m^p}(n) \in \mathcal{O}(n^2)$ etc.
- Example (star-program): has linear complexity
- Goal: Re-use existing methodology for termination analysis to analyze complexity as well

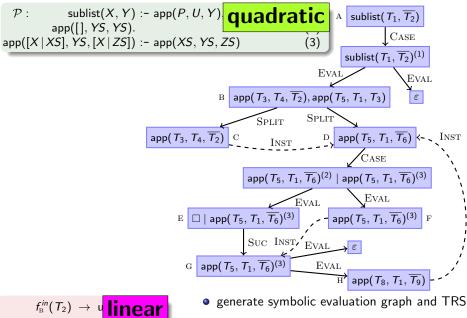




$$\mathcal{P}: \qquad \begin{array}{c} \text{sublist}(X,Y) := \operatorname{app}(P,U,Y) \\ \begin{array}{c} \text{quadratic} \\ \text{app}([],YS,YS). \\ \begin{array}{c} \text{app}([X|XS],YS,[X|ZS]) := \operatorname{app}(XS,YS,ZS) \end{array} \end{array}$$

Evaluation of sublist

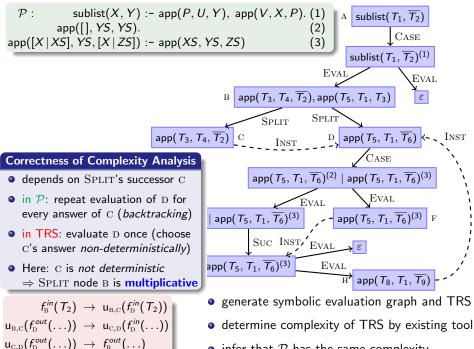
- $\mathcal{Q}_m^{\text{sublist}} = \{ \text{sublist}(t_1, t_2) | t_2 \text{ ground} \}$
- computes all sublists of Y (by backtracking)
- \mathcal{P} : quadratic complexity
 - linear many possibilities to split Y into P and U
 - for each possible *P*, linear evaluation of app(*V*, *X*, *P*)



 $u_{B,C}(f_D^{out}(\ldots)) \rightarrow u_{C,D}(f_D^{m}(\ldots))$

 $u_{\text{C},\text{D}}(f_{\text{D}}^{out}(\ldots)) \rightarrow f_{\text{B}}^{out}(\ldots)$

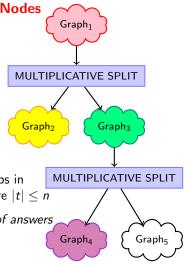
- determine complexity of TRS by existing tool
- infer that \mathcal{P} has the same complexity

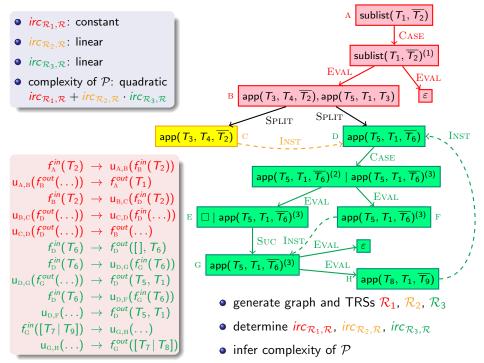


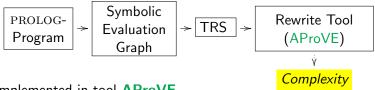
• infer that \mathcal{P} has the same complexity

Decompose Graph by Multiplicative Split Nodes

- generate symbolic evaluation graph
- generate separate TRSs R₁,..., R₅ for parts up to multiplicative SPLIT nodes (no multiplicative SPLIT node may reach itself)
- determine $irc_{\mathcal{R}_1,\mathcal{R}}, \ldots, irc_{\mathcal{R}_5,\mathcal{R}}$ separately
 - maps $n \in \mathbb{N}$ to maximal number of \mathcal{R}_i -steps in evaluation starting with basic term t, where $|t| \leq n$
 - upper bound for *runtime* and for *number of answers*
- combine complexities
 - multiply complexities for children of multiplicative SPLITs
 - add complexities of parents of multiplicative SPLITS
 - $irc_{\mathcal{R}_{1},\mathcal{R}} + irc_{\mathcal{R}_{2},\mathcal{R}} \cdot (irc_{\mathcal{R}_{3},\mathcal{R}} + irc_{\mathcal{R}_{4},\mathcal{R}} \cdot irc_{\mathcal{R}_{5},\mathcal{R}})$







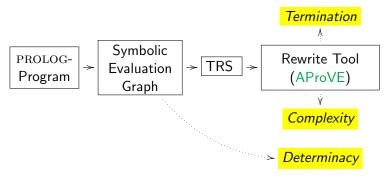
implemented in tool **AProVE**

- only tool for complexity of non-well-moded or non-definite programs
- experiments on all 477 programs of TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n \cdot 2^n)$	bounds	time
CASLOG	1	21	4	3	29	14.8
CiaoPP	3	19	4	3	29	11.7
AProVE	54	117	37	0	208	10.6

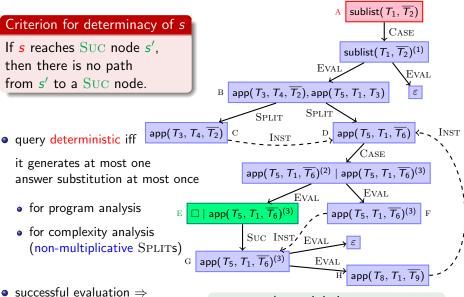
Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing PROLOG programs



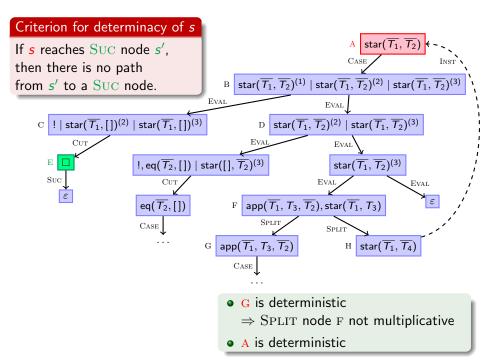
Outline

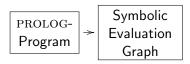
- linear operational semantics of PROLOG
- from PROLOG to symbolic evaluation graphs
- from symbolic evaluation graphs to TRSs for termination analysis
- from symbolic evaluation graphs to TRSs for complexity analysis
- determinacy analysis



path to $\mathop{\rm Suc}\nolimits$ node in symbolic evaluation graph

- C not deterministic \Rightarrow SPLIT node B multiplicative
- A not deterministic





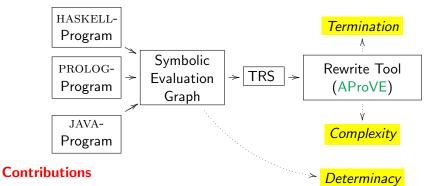
implemented in tool AProVE

• experiments on 300 definite programs: CiaoPP: 132, AProVE: 80

- experiments on 177 non-definite programs: CiaoPP: 61, AProVE: 92
- only first step, but substantial addition to existing determinacy analyses (AProVE succeeds on 78 examples where CiaoPP fails)
- strong enough for complexity analysis

Symbolic Evaluation Graphs and Term Rewriting

General methodology for analyzing PROLOG programs



- linear operational semantics of PROLOG
- from PROLOG to symbolic evaluation graphs
- from symbolic evaluation graphs to TRSs for termination analysis
- from symbolic evaluation graphs to TRSs for complexity analysis
- determinacy analysis

http://aprove.informatik.rwth-aachen.de