
Dependeny Pairs for Equational Rewriting

?

J�urgen Giesl

1

and Deepak Kapur

2

1

LuFG Informatik II, RWTH Aahen, Ahornstr. 55, 52074 Aahen, Germany,

giesl�informatik.rwth-aahen.de

2

Computer Siene Dept., University of New Mexio, Albuquerque, NM 87131, USA

kapur�s.unm.edu

Abstrat. The dependeny pair tehnique of Arts and Giesl [1{3℄ for

termination proofs of term rewrite systems (TRSs) is extended to rewrit-

ing modulo equations. Up to now, suh an extension was only known in

the speial ase of AC-rewriting [15, 17℄. In ontrast to that, the pro-

posed tehnique works for arbitrary non-ollapsing equations (satisfying

a ertain linearity ondition). With the proposed approah, it is now pos-

sible to perform automated termination proofs for many systems where

this was not possible before. In other words, the power of dependeny

pairs an now also be used for rewriting modulo equations.

1 Introdution

Termination of term rewriting (e.g., [1{3, 9, 22℄) and termination of rewriting

modulo assoiativity and ommutativity equations (e.g., [8, 13, 14, 20, 21℄) have

been extensively studied. For equations other than AC-axioms, however, there

are only a few tehniques available to prove termination (e.g., [6, 10, 16, 18℄).

This paper presents an extension of the dependeny pair approah [1{3℄ to

rewriting modulo equations. In the speial ase of AC-axioms, our tehnique

orresponds to the methods of [15, 17℄, but in ontrast to these methods, our

tehnique an also be used if the equations are not AC-axioms. This allows muh

more automated termination proofs for equational rewrite systems than those

possible with diretly applying simpli�ation orderings for equational rewriting

(like equational polynomial orderings or AC-versions of path orderings).

We �rst review dependeny pairs for ordinary term rewriting in Set. 2.

In Set. 3, we show why a straightforward extension of dependeny pairs to

rewriting modulo equations is not possible. Therefore, we follow an idea similar

to the one of [17℄ for AC-axioms: We onsider a restrited form of equational

rewriting, whih is more suitable for termination proofs with dependeny pairs.

In Set. 4, we show how to ensure that termination of this restrited equa-

tional rewrite relation is equivalent to termination of full rewriting modulo equa-

tions. Under ertain onditions on the equations E , we show how to ompute an

?

Proeedings of the 12th International Conferene on Rewriting Tehniques and Ap-

pliations, RTA-2001, Utreht, The Netherlands, Leture Notes in Computer Si-

ene, Springer-Verlag. Supported by the Deutshe Forshungsgemeinshaft Grant

GI 274/4-1 and the National Siene Foundation Grants nos. CCR-9996150, CDA-

9503064, CCR-9712396.

extended rewrite system Ext

E

(R) from the given TRS R suh that the restrited

rewrite relation of Ext

E

(R) modulo E is terminating i� R is terminating modulo

E . This is proved for (almost) arbitrary E-rewriting, thus generalizing a related

result for AC-rewriting. This general result may be of independent interest, and

may also be useful in investigating other properties of E-rewriting. Finally, in

Set. 5, we extend the dependeny pair approah to rewriting modulo equations.

2 Dependeny Pairs for Ordinary Rewriting

The dependeny pair approah allows the use of standard methods like simpli-

�ation orderings [9, 22℄ for automated termination proofs where they were not

appliable before. In this setion we briey summarize the basi onepts of this

approah. All results in this setion are due to Arts and Giesl and we refer to

[1{3℄ for further details, re�nements, and explanations.

In ontrast to the standard tehniques for termination proofs, whih om-

pare left and right-hand sides of rules, in this approah one onentrates on the

subterms in the right-hand sides that have a de�ned

1

root symbol, beause these

are the only terms responsible for starting new redutions.

More preisely, for every rule f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ; t

m

)℄ (where f and g

are de�ned symbols), we ompare the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

.

To avoid the handling of tuples, for every de�ned symbol f , we introdue a

fresh tuple symbol F . To ease readability, we assume that the original signature

onsists of lower ase funtion symbols only, whereas the tuple symbols are

denoted by the orresponding upper ase symbols. Now instead of the tuples

s

1

; : : : ; s

n

and t

1

; : : : ; t

m

we ompare the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

).

De�nition 1 (Dependeny Pair [1{3℄). If f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)℄

is a rule of a TRSR and g is a de�ned symbol, then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i

is a dependeny pair of R.

Example 2. As an example, onsider the TRS fa + b ! a + (b +)g, f. [17℄.

Termination of this system annot be shown by simpli�ation orderings, sine the

left-hand side of the rule is embedded in the right-hand side. In this system, the

de�ned symbol is + and thus, we obtain the dependeny pairs hP(a; b);P(a; b+)i

and hP(a; b);P(b;)i (where P is the tuple symbol for the plus-funtion \+").

Arts and Giesl developed the following new termination riterion. As usual,

a quasi-ordering % is a reexive and transitive relation, and we say that an

ordering > is ompatible with % if we have > Æ % � > or % Æ >� >.

Theorem 3 (Termination with Dependeny Pairs [1{3℄). A TRS R is

terminating i� there exists a weakly monotoni quasi-ordering % and a well-

founded ordering > ompatible with %, where both % and > are losed under

substitution, suh that

1

Root symbols of left-hand sides are de�ned and all other funtions are onstrutors.

2

(1) s > t for all dependeny pairs hs; ti of R and

(2) l % r for all rules l! r of R.

Consider the TRS from Ex. 2 again. In order to prove its termination a-

ording to Thm. 3, we have to �nd a suitable quasi-ordering % and ordering >

suh that P(a; b) > P(a; b+), P(a; b) > P(b;), and a+ b % a+ (b+).

Most standard orderings amenable to automation are strongly monotoni

(f. e.g. [9, 22℄), whereas here we only need weak monotoniity. Hene, before

synthesizing a suitable ordering, some of the arguments of funtion symbols may

be eliminated, f. [3℄. For example, in our inequalities, one may eliminate the

�rst argument of +. Then every term s+t in the inequalities is replaed by +

0

(t)

(where +

0

is a new unary funtion symbol). By omparing the terms resulting

from this replaement instead of the original terms, we an take advantage of

the fat that + does not have to be strongly monotoni in its �rst argument.

Note that there are only �nitely many possibilities to eliminate arguments of

funtion symbols. Therefore all these possibilities an be heked automatially.

In this way, we obtain the inequalities P(a; b) > P(a;+

0

()), P(a; b) > P(b;),

and +

0

(b) % +

0

(+

0

()). These inequalities are satis�ed by the reursive path

ordering (rpo) [9℄ with the preedene a A b A A +

0

(i.e., we hoose % to

be %

rpo

and > to be �

rpo

). So termination of this TRS an now be proved

automatially. For implementations of the dependeny pair approah see [4, 7℄.

3 Rewriting Modulo Equations

For a set E of equations between terms, we write s !

E

t if there exist an

equation l � r in E , a substitution �, and a ontext C suh that s = C[l�℄ and

t = C[r�℄. The symmetri losure of !

E

is denoted by à

E

and the transitive

reexive losure of à

E

is denoted by �

E

. In the following, we restrit ourselves

to equations E where �

E

is deidable.

De�nition 4 (Rewriting Modulo Equations). Let R be a TRS and let E be

a set of equations. A term s rewrites to a term t modulo E, denoted s !

R=E

t,

i� there exist terms s

0

and t

0

suh that s �

E

s

0

!

R

t

0

�

E

t. The TRS R is alled

terminating modulo E i� there does not exist an in�nite !

R=E

redution.

Example 5. An interesting speial ase are equations E whih state that ertain

funtion symbols are assoiative and ommutative (AC). As an example, on-

sider the TRSR = fa+b! a+(b+)g again and let E onsist of the assoiativity

and ommutativity axioms for +, i.e., E = fx

1

+ x

2

� x

2

+ x

1

; x

1

+ (x

2

+ x

3

) �

(x

1

+ x

2

) + x

3

g, f. [17℄. R is not terminating modulo E , sine we have

a+b!

R

a+(b+) �

E

(a+b)+!

R

(a+(b+))+ �

E

((a+b)+)+!

R

: : :

There are, however, many other sets of equations E apart from assoiativity

and ommutativity, whih are also important in pratie, f. [11℄. Hene, our aim

is to extend dependeny pairs to rewriting modulo (almost) arbitrary equations.

3

The soundness of dependeny pairs for ordinary rewriting relies on the fat

that whenever a term starts an in�nite redution, then one an also onstrut

an in�nite redution where only terminating or minimal non-terminating sub-

terms are redued (i.e., one only applies rules to redexes without proper non-

terminating subterms). The ontexts of minimal non-terminating redexes an

be ompletely disregarded. If a rule is applied at the root position of a minimal

non-terminating subterm s (i.e., s !

�

R

t where � denotes the root position),

then s and eah minimal non-terminating subterm t

0

of t orrespond to a depen-

deny pair. Hene, Thm. 3 (1) implies s > t

0

. If a rule is applied at a non-root

position of a minimal non-terminating subterm s (i.e., s !

>�

R

t), then we have

s % t by Thm. 3 (2). However, due to the minimality of s, after �nitely many

suh non-root rewrite steps, a rule must be applied at the root position of the

minimal non-terminating term. Thus, every in�nite redution of minimal non-

terminating subterms orresponds to an in�nite >-sequene. This ontradits

the well-foundedness of >.

So for ordinary rewriting, any in�nite redution from a minimal non-termi-

nating subterm involves an R-redution at the root position. But as observed in

[15℄, when extending the dependeny pair approah to rewriting modulo equa-

tions, this is no longer true. For an illustration, onsider Ex. 5 again, where

a + (b +) is a minimal non-terminating term. However, in its in�nite R=E-

redution no R-step is ever appliable at the root position. (Instead one applies

an E-step at the root position and further R- and E-steps below the root.)

In the rest of the paper, from a rewrite system R, we generate a new rewrite

system R

0

with the following three properties: (i) the termination of a weaker

form of rewriting by R

0

modulo E is equivalent to the termination of R modulo

E , (ii) every in�nite redution of a minimal non-terminating term in this weaker

form of rewriting by R

0

modulo E involves a redution step at the root level, and

(iii) every suh minimal non-terminating term has an in�nite redution where

the variables of the R

0

-rules are instantiated with terminating terms only.

4 E-Extended Rewriting

We showed why the dependeny pair approah annot be extended to rewriting

modulo equations diretly. As a solution for this problem, we propose to onsider

a restrited form of rewriting modulo equations, i.e., the so-alled E-extended R-

rewrite relation !

EnR

. (This approah was already taken in [17℄ for rewriting

modulo AC.) The relation!

EnR

was originally introdued in [19℄ in order to ir-

umvent the problems with in�nite or impratially large E-equivalene lasses.

2

De�nition 6 (E-extended R-rewriting [19℄). Let R be a TRS and let E be

a set of equations. The E-extended R-rewrite relation is de�ned as s!

�

EnR

t i�

sj

�

�

E

l� and t = s[r�℄

�

for some rule l ! r in R, some position � of s, and

some substitution �. We also write !

EnR

instead of !

�

EnR

.

2

In [12℄, the relation !

EnR

is denoted \!

R;E

".

4

To demonstrate the di�erene between !

R=E

and !

EnR

, onsider Ex. 5

again. We have already seen that !

R=E

is not terminating, sine a + b !

R=E

(a+ b) + !

R=E

((a+ b) +) + !

R=E

: : : But !

EnR

is terminating, beause

a+ b!

EnR

a+ (b+), whih is a normal form w.r.t. !

EnR

.

The above example also demonstrates that in general, termination of !

EnR

is not suÆient for termination of !

R=E

. In this setion we will show how ter-

mination of !

R=E

an nevertheless be ensured by only regarding an E-extended

rewrite relation indued by a larger R

0

� R.

For the speial ase of AC-rewriting, this problem an be solved by extending

R as follows: Let G be the set of all AC-symbols and

Ext

AC(G)

= R[ff(l; y)! f(r; y) j l! r 2 R; root(l) = f 2 Gg;

where y is a new variable not ourring in the respetive rule l ! r. A similar

extension has also been used in previous work on extending dependeny pairs

to AC-rewriting [17℄. The reason is that for AC-equations E , the termination of

!

R=E

is in fat equivalent to the termination of !

EnExt

AC(G)

(R)

.

For Ex. 5, we obtain Ext

AC(G)

(R) = fa + b ! a + (b +); (a + b) + y !

(a+(b+))+yg. Thus, in order to prove termination of!

R=E

, it is now suÆient

to verify termination of !

EnExt

AC(G)

(R)

.

The above extension of [19℄ only works for AC-axioms E . A later paper [12℄

treats arbitrary equations, but it does not ontain any de�nition for extensions

Ext

E

(R), and termination of !

R=E

is always a prerequisite in [12℄. The reason

is that [12℄ and also subsequent work on symmetrization and oherene were

devoted to the development of ompletion algorithms (i.e., here the goal was

to generate a onvergent rewrite system and not to investigate the termination

behavior of possibly non-terminating TRSs). Thus, these papers did not ompare

the termination behavior of full rewriting modulo equations with the termination

of restrited versions of rewriting modulo equations. In fat, [12℄ fouses on the

notion of oherene, whih is not suitable for our purpose sine oherene of EnR

modulo E does not imply that termination of!

R=E

is equivalent to termination

of !

EnR

.

3

To extend dependeny pairs to rewriting modulo non-AC-equations E , we

have to ompute extensions Ext

E

(R) suh that termination of !

R=E

is equiv-

alent to termination of !

EnExt

E

(R)

. The only restrition we will impose on the

equations in E is that they must have idential unique variables. This require-

ment is satis�ed by most pratial examples where R=E is terminating. As usual,

a term t is alled linear if no variable ours more than one in t.

De�nition 7 (Equations with Idential Unique Variables [19℄). An equa-

tion u � v is said to have idential unique variables if u and v are both linear

and the variables in u are the same as the variables in v.

3

In [12℄, EnR is oherent modulo E i� for all terms s; t; u, we have that s �

E

t!

+

EnR

u

implies s !

+

EnR

v �

E

w

�

EnR

u for some v; w. Consider R = fa + b ! a + (b +

); x + y ! dg with E being the AC-axioms for +. The above system is oherent,

sine s �

E

t !

+

EnR

u implies s !

+

R

d

�

R

u. However, !

EnR

is terminating but

!

R=E

is not terminating.

5

Let uni

E

(s; t) denote a omplete set of E-uni�ers of two terms s and t. As

usual, Æ is an E-uni�er of s and t i� sÆ �

E

tÆ and a set uni

E

(s; t) of E-uni�ers is

omplete i� for every E-uni�er Æ there exists a � 2 uni

E

(s; t) and a substitution

� suh that Æ �

E

��, f. [5℄. (\��" is the omposition of � and � where � is

applied �rst and \Æ �

E

��" means that for all variables x we have xÆ �

E

x��.)

To onstrut Ext

E

(R), we onsider all overlaps between equations u � v or

v � u from E and rules l ! r from R. More preisely, we hek whether a non-

variable subterm vj

�

of v E-uni�es with l (where we always assume that rules

in R are variable disjoint from equations in E). In this ase one adds the rules

(v[l℄

�

)� ! (v[r℄

�

)� for all � 2 uni

E

(vj

�

; l).

4

In Ex. 5, the subterm x

1

+ x

2

of

the right-hand side of x

1

+ (x

2

+ x

3

) � (x

1

+ x

2

) + x

3

uni�es with the left-hand

side of the only rule a+ b! a+ (b+). Thus, in the extension of R, we obtain

the rule (a+ b) + y ! (a+ (b+)) + y.

Ext

E

(R) is built via a kind of �xpoint onstrution, i.e., we also have to

onsider overlaps between equations of E and the newly onstruted rules of

Ext

E

(R). For example, the subterm x

1

+ x

2

also uni�es with the left-hand side

of the new rule (a+ b) + y ! (a+ (b+)) + y. Thus, one would now onstrut

a new rule ((a+ b) + y) + z ! ((a+ (b+)) + y) + z.

Obviously, in this way one obtains an in�nite number of rules by subsequently

overlapping equations with the newly onstruted rules. However, in order to

use Ext

E

(R) for automated termination proofs, our aim is to restrit ourselves

to �nitely many rules. It turns out that we do not have to inlude new rules

(v[l℄

�

)� ! (v[r℄

�

)� in Ext

E

(R) if u� !

�

0

EnExt

E

(R)

q �

E

(v[r℄

�

)� already holds

for some position �

0

of u and some term q (using just the old rules of Ext

E

(R)).

When onstruting the rule ((a+ b)+ y)+ z ! ((a+(b+))+ y)+ z above,

the equation u � v used was x

1

+ (x

2

+ x

3

) � (x

1

+ x

2

) + x

3

and the uni�er �

replaed x

1

by (a+b) and x

2

by y. Hene, here u� is the term (a+b)+(y+x

3

).

But this term redues with!

1

EnExt

E

(R)

to (a+(b+))+(y+x

3

) whih is indeed

�

E

-equivalent to (v[r℄

�

)�, i.e., to ((a+ (b+)) + y) + x

3

. Thus, we do not have

to inlude the rule ((a+ b) + y) + z ! ((a+ (b+)) + y) + z in Ext

E

(R).

The following de�nition shows how suitable extensions an be omputed for

arbitrary equations with idential unique variables. It will turn out that with

these extensions one an indeed simulate !

R=E

by !

EnExt

E

(R)

, i.e., s !

R=E

t

implies s !

EnExt

E

(R)

t

0

for some t

0

�

E

t. This onstitutes a ruial ontribu-

tion of the paper, sine it is the main requirement needed in order to extend

dependeny pairs to rewriting modulo equations.

De�nition 8 (Extending R for Arbitrary Equations). Let R be a TRS

and let E be a set of equations. Let R

0

be a set ontaining only rules of the form

4

Obviously, uni

E

(vj

�

; l) always exists, but it an be in�nite in general. So when au-

tomating our approah for equational termination proofs, we have to restrit our-

selves to equations E where uni

E

(vj

�

; l) an be hosen to be �nite for all subterms

vj

�

of equations and left-hand sides of rules l. This inludes all sets E of �nitary uni-

�ation type, but our restrition is weaker, sine we only need �niteness for ertain

terms vj

�

and l.

6

C[l�℄ ! C[r�℄ (where C is a ontext, � is a substitution, and l ! r 2 R). R

0

is an extension of R for the equations E i�

(a) R � R

0

and

(b) for all l ! r 2 R

0

, u � v 2 E and v � u 2 E, all positions � of v

and � 2 uni

E

(vj

�

; l), there is a position �

0

in u and a q �

E

(v[r℄

�

)� with

u� !

�

0

EnR

0

q.

In the following, let Ext

E

(R) always denote an arbitrary extension of R for E .

In order to satisfy Condition (b) of Def. 8, it is always suÆient to add the rule

(v[l℄

�

)� ! (v[r℄

�

)� to R

0

. The reason is that then we have u� !

�

EnR

0

(v[r℄

�

)�.

But if u� !

�

0

EnR

0

q �

E

(v[r℄

�

)� already holds with the other rules of R

0

, then

the rule (v[l℄

�

)� ! (v[r℄

�

)� does not have to be added to R

0

.

Condition (b) of Def. 8 also makes sure that as long as the equations have

idential unique variables, we do not have to onsider overlaps at variable po-

sitions.

5

The reason is that if vj

�

is a variable x 2 V , then we have u� =

u[x�℄

�

0

�

E

u[l�℄

�

0

!

R

u[r�℄

�

0

�

E

v[r�℄

�

= (v[r℄

�

)�, where �

0

is the position of

x in u. Hene, suh rules (v[l℄

�

)� ! (v[r℄

�

)� do not have to be inluded in R

0

.

Overlaps at root positions do not have to be onsidered either. To see this,

assume that � is the top position � of v, i.e., that v� �

E

l�. In this ase we have

u� �

E

v� �

E

l� !

R

r� and thus, u� !

�

EnR

r� = (v[r℄

�

)�. So again, suh rules

(v[l℄

�

)! (v[r℄

�

)� do not have to be inluded in R

0

.

The following proedure is used to ompute extensions. Here, we assume both

R and E to be �nite, where the equations E must have idential unique variables.

1. R

0

:= R

2. For all l! r 2 R

0

,

all u � v or v � u from E ,

and all positions � of v where � 6= � and vj

�

62 V do:

2.1. Let � := uni

E

(vj

�

; l).

2.2. For all � 2 � do:

2.2.1. Let T := fq j u� !

�

0

EnR

0

q for a position �

0

of ug:

2.2.2. If there exists a q 2 T with (v[r℄

�

)� �

E

q, then � := � n f�g.

2.3. R

0

:= R

0

[f(v[l℄

�

)� ! (v[r℄

�

)� j � 2 �g.

This algorithm has the following properties:

(a) If in Step 2.1, uni

E

(vj

�

; l) is �nite and omputable, then every step in the

algorithm is omputable.

(b) If the algorithm terminates, then the �nal value of R

0

is an extension of R

for the equations E .

5

Note that onsidering overlaps at variable positions as well would still not allow us

to treat equations with non-linear terms. As an example regard E = ff(x) � g(x; x)g

and R = fg(a; b) ! f(a); a ! bg. Here, !

EnExt

E

(R)

is well founded although R is

not terminating modulo E .

7

With the TRS of Ex. 5, Ext

E

(R) = fa + b ! a + (b +); (a + b) + y !

(a+ (b+)) + yg. In general, if E only onsists of AC-axioms for some funtion

symbols G, then Def. 8 \oinides" with the well-known extension for AC-axioms,

i.e., R

0

= R [ff(l; y) ! f(r; y) j l ! r 2 R; root(l) = f 2 Gg satis�es the

onditions (a) and (b) of Def. 8. So in ase of AC-equations, our approah indeed

orresponds to the approahes of [15, 17℄. However, Def. 8 an also be used for

other forms of equations.

Example 9. As an example, onsider the following system from [18℄.

R = f x� 0! x; E = f(u� v)� w � (u� w)� vg

s(x)� s(y)! x� y;

0� s(y)! 0;

s(x)� s(y)! s((x� y)� s(y))g

By overlapping the subterm u � w in the right-hand side of the equation with

the left-hand sides of the last two rules we obtain

Ext

E

(R) = R [f (0� s(y))� z ! 0� z;

(s(x)� s(y))� z ! s((x� y)� s(y))� z g:

Note that these are indeed all the rules of Ext

E

(R). Overlapping the sub-

term u � v of the equation's left-hand side with the third rule would result in

(0 � s(y)) � z

0

! 0 � z

0

. But this new rule does not have to be inluded in

Ext

E

(R), sine the orresponding other term of the equation, (0 � z

0

) � s(y),

would !

�

EnExt

E

(R)

-redue with the rule (0 � s(y))� z ! 0 � z to 0 � z

0

. Over-

lapping u� v with the left-hand side of the fourth rule is also superuous.

Similarly, overlaps with the new rules (0 � s(y)) � z ! 0 � z or (s(x) �

s(y)) � z ! s((x � y) � s(y)) � z also do not give rise to additional rules in

Ext

E

(R). To see this, overlap the subterm u � w in the right-hand side of the

equation with the left-hand side of (0 � s(y)) � z ! 0 � z. This gives the rule

((0 � s(y)) � z) � z

0

! (0 � z) � z

0

. However, the orresponding other term of

the equation is ((0� s(y))� z

0

)� z. This redues at position 1 (or position 11)

to (0� z

0

)� z, whih is E-equivalent to (0� z)� z

0

. Overlaps with the other new

rule (s(x)� s(y))� z ! s((x� y)� s(y))� z are not needed either.

Nevertheless, the above algorithm for omputing extensions does not always

terminate. For example, for R = fa(x)! (x)g, E = fa(b(a(x))) � b(a(b(x)))g,

it an be shown that all extensions Ext

E

(R) are in�nite.

We prove below that Ext

E

(R) (aording to Def. 8) has the desired property

needed to redue rewriting modulo equations to E-extended rewriting. The fol-

lowing important lemma states that whenever s rewrites to t with!

R=E

modulo

E , then s also rewrites with !

EnExt

E

(R)

to a term whih is E-equivalent to t.

6

6

Our extension Ext

E

has some similarities to the onstrution of ontexts in [23℄.

However, in ontrast to [23℄ we also onsider the rules of R

0

in Condition (b) of Def.

8 in order to redue the number of rules in Ext

E

. Moreover, in [23℄ equations may

also be non-linear (and thus, Lemma 10 does not hold there).

8

Lemma 10 (Connetion between !

R=E

and !

EnExt

E

(R)

). Let R be a TRS

and let E be a set of equations with idential unique variables. If s!

R=E

t, then

there exists a term t

0

�

E

t suh that s!

EnExt

E

(R)

t

0

.

Proof. Let s !

R=E

t, i.e., there exist terms s

0

; : : : ; s

n

; p with n � 0 suh that

s = s

n

à

E

s

n�1

à

E

: : : à

E

s

0

!

R

p �

E

t. For the lemma, it suÆes to show

that there is a t

0

�

E

p suh that s!

EnExt

E

(R)

t

0

, sine t

0

�

E

p implies t

0

�

E

t.

We perform indution on n. If n = 0, we have s = s

n

= s

0

!

R

p. This

implies s!

EnExt

E

(R)

p sine R � Ext

E

(R). So with t

0

= p the laim is proved.

If n > 0, the indution hypothesis implies s = s

n

à

E

s

n�1

!

EnExt

E

(R)

t

0

suh that t

0

�

E

p. So there exists an equation u � v or v � u from E and a

rule l ! r from Ext

E

(R) suh that sj

�

= uÆ, s

n�1

= s[vÆ℄

�

, s

n�1

j

�

�

E

lÆ, and

t

0

= s

n�1

[rÆ℄

�

for positions � and � and a substitution Æ. We an use the same

substitution Æ for instantiating the equation u � v (or v � u) and the rule l! r,

sine equations and rules are assumed variable disjoint. We now perform a ase

analysis depending on the relationship of the positions � and �.

Case 1: � = �� for some �. In this ase, we have sj

�

= sj

�

[uÆ℄

�

à

E

sj

�

[vÆ℄

�

=

s

n�1

j

�

�

E

lÆ. This implies s!

EnExt

E

(R)

s[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

, as desired.

Case 2: �?�. Now we have sj

�

= s

n�1

j

�

�

E

lÆ and thus, s!

EnExt

E

(R)

s[rÆ℄

�

=

s[rÆ℄

�

[uÆ℄

�

à

E

s[rÆ℄

�

[vÆ℄

�

= s[vÆ℄

�

[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

.

Case 3: � = �� for some �. Thus, (vÆ)j

�

�

E

lÆ. We distinguish two sub-ases.

Case 3.1: uÆ !

EnExt

E

(R)

q �

E

(v[r℄

�

)Æ for some term q. This implies s = s[uÆ℄

�

!

EnExt

E

(R)

s[q℄

�

�

E

s[v[r℄

�

Æ℄

�

= (s[vÆ℄

�

)[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

.

Case 3.2: Otherwise. First assume that � = �

1

�

2

where vj

�

1

is a variable x.

Hene, (vÆ)j

�

= Æ(x)j

�

2

. Let Æ

0

(y) = Æ(y) for y 6= x and let Æ

0

(x) = Æ(x)[rÆ℄

�

2

.

Sine u � v (or v � u) is an equation with idential unique variables, x also

ours in u at some position �

0

. This implies uÆj

�

0

�

2

= Æ(x)j

�

2

�

E

lÆ !

Ext

E

(R)

rÆ. Hene, we obtain uÆ !

�

0

�

2

EnExt

E

(R)

uÆ[rÆ℄

�

0

�

2

= uÆ

0

�

E

vÆ

0

= (v[r℄

�

)Æ in

ontradition to the ondition of Case 3.2.

Hene, � is a position of v and vj

�

is not a variable. Thus, (vÆ)j

�

= vj

�

Æ �

E

lÆ.

Sine rules and equations are assumed variable disjoint, the subterm vj

�

E-uni�es

with l. Thus, there exists a � 2 uni

E

(vj

�

; l) suh that Æ �

E

��.

Due to the Condition (b) of Def. 8, there is a term q

0

suh that u� !

�

0

EnExt

E

(R)

q

0

�

E

(v[r℄

�

)�. Sine �

0

is a position in u, we have uj

�

0

� �

E

Æ !

Ext

E

(R)

q

00

, where

q

0

= u�[q

00

℄

�

0

. This also implies uj

�

0

Æ �

E

uj

�

0

�� �

E

Æ !

Ext

E

(R)

q

00

�, and thus

uÆ !

�

0

EnExt

E

(R)

uÆ[q

00

�℄

�

0

�

E

u�[q

00

℄

�

0

� = q

0

� �

E

(v[r℄

�

)�� �

E

(v[r℄

�

)Æ. This is a

ontradition to the ondition of Case 3.2. ut

The following theorem shows that Ext

E

indeed has the desired property.

Theorem 11 (Termination of R=E by E-Extended Rewriting). Let R be

a TRS, let E be a set of equations with idential unique variables, and let t be

a term. Then t does not start an in�nite !

R=E

-redution i� t does not start

9

an in�nite !

EnExt

E

(R)

-redution. So in partiular, R is terminating modulo E

(i.e., !

R=E

is well founded) i� !

EnExt

E

(R)

is well founded.

Proof. The \only if" diretion is straightforward beause !

Ext

E

(R)

=!

R

and

therefore, !

EnExt

E

(R)

�!

Ext

E

(R)=E

=!

R=E

.

For the \if" diretion, assume that t starts an in�nite !

R=E

-redution

t = t

0

!

R=E

t

1

!

R=E

t

2

!

R=E

: : :

For every i 2 IN, let f

i+1

be a funtion from terms to terms suh that for every

t

0

i

�

E

t

i

, f

i+1

(t

0

i

) is a term E-equivalent to t

i+1

suh that t

0

i

!

EnExt

E

(R)

f

i+1

(t

0

i

).

These funtions f

i+1

must exist due to Lemma 10, sine t

0

i

�

E

t

i

and t

i

!

R=E

t

i+1

implies t

0

i

!

R=E

t

i+1

. Hene, t starts an in�nite !

EnExt

E

(R)

-redution:

t!

EnExt

E

(R)

f

1

(t)!

EnExt

E

(R)

f

2

(f

1

(t))!

EnExt

E

(R)

f

3

(f

2

(f

1

(t)))!

EnExt

E

(R)

: : : ut

5 Dependeny Pairs for Rewriting Modulo Equations

In this setion we �nally extend the dependeny pair approah to rewriting

modulo equations: To show that R modulo E terminates, one �rst onstruts

the extension Ext

E

(R) of R. Subsequently, dependeny pairs an be used to

prove well-foundedness of !

EnExt

E

(R)

(whih is equivalent to termination of R

modulo E). The idea for the extension of the dependeny pair approah is simply

to modify Thm. 3 as follows.

1. The equations should be satis�ed by the equivalene � orresponding to the

quasi-ordering %, i.e., we demand u � v for all equations u � v in E .

2. A similar requirement is needed for equations u � v when the root symbols

of u and v are replaed by the orresponding tuple symbols. We denote

tuples of terms s

1

; : : : ; s

n

by s and for any term t = f(s) with a de�ned root

symbol f , let t

℄

be the term F (s). Hene, we also have to demand u

℄

� v

℄

.

3. The notion of \de�ned symbols" must be hanged aordingly. As before, all

root symbols of left-hand sides of rules are regarded as being de�ned, but

if there is an equation f(u) = g(v) in E and f is de�ned, then g must be

onsidered de�ned as well, as otherwise we would not be able to trae the

redex in a redution by only regarding subterms with de�ned root symbols.

De�nition 12 (De�ned Symbols for Rewriting Modulo Equations). Let

R be a TRS and let E be a set of equations. Then the set of de�ned symbols D

of R=E is the smallest set suh that D = froot(l) j l! r 2 Rg [froot(v) ju �

v 2 E or v � u 2 E ; root(u) 2 Dg.

The onstraints of the dependeny pair approah as skethed above are not

yet suÆient for termination of !

EnR

as the following example illustrates.

Example 13. Consider R = ff(x)! xg and E = ff(a) � ag. There is no depen-

deny pair in this example and thus, the only onstraints would be f(x) % x,

f(a) � a, and F(a) � A. Obviously, these onstraints are satis�able (by using

an equivalene relation � where all terms are equal). However, !

EnR

is not

terminating sine we have a à

E

f(a)!

R

a à

E

f(a)!

R

a à

E

: : :

10

The soundness of the dependeny pair approah for ordinary rewriting (Thm.

3) relies on the fat that an in�nite redution from a minimal non-terminating

term an be ahieved by applying only normalized instantiations of R-rules. But

for E-extended rewriting (or full rewriting modulo equations), this is not true

any more. For instane, the minimal non-terminating subterm a in Ex. 13 is �rst

modi�ed by applying an E-equation (resulting in f(a)) and then an R-rule is

applied whose variable is instantiated with the non-terminating term a. Hene,

the problem is that the new minimal non-terminating subterm a whih results

from appliation of the R-rule does not orrespond to the right-hand side of a

dependeny pair, beause this minimal non-terminating subterm is ompletely

inside the instantiation of a variable of the R-rule. With ordinary rewriting, this

situation an never our.

In Ex. 13, the problem an be avoided by adding a suitable instane of the

rule f(x)! x (viz. f(a)! a) to R, sine this instane is used in the in�nite re-

dution. Now there would be a dependeny pair hF(a);Ai and with the additional

onstraint F(a) > A the resulting inequalities are no longer satis�able.

The following de�nition shows how to add the right instantiations of the

rules in R in order to allow a sound appliation of dependeny pairs. As usual,

a substitution � is alled a variable renaming i� the range of � only ontains

variables and if �(x) 6= �(y) for x 6= y.

De�nition 14 (Adding Instantiations). Given a TRS R, a set E of equa-

tions, let R

0

be a set ontaining only rules of the form l� ! r� (where � is a

substitution and l! r 2 R). R

0

is an instantiation of R for the equations E i�

(a) R � R

0

,

(b) for all l! r 2 R, all u � v 2 E and v � u 2 E, and all � 2 uni

E

(v; l), there

exists a rule l

0

! r

0

2 R

0

and a variable renaming � suh that l� �

E

l

0

� and

r� �

E

r

0

�.

In the following, let Ins

E

(R) always denote an instantiation of R for E .

Unlike extensions Ext

E

(R), instantiations Ins

E

(R) are never in�nite if R

and E are �nite and if uni

E

(v; l) is always �nite (i.e., they are not de�ned via a

�xpoint onstrution). In fat, one might even demand that for all l! r 2 R, all

equations, and all � from the orresponding omplete set of E-uni�ers, Ins

E

(R)

should ontain l� ! r�. The ondition that it is enough if some E-equivalent

variable-renamed rule is already ontained in Ins

E

(R) is only added for eÆieny

onsiderations in order to redue the number of rules in Ins

E

(R). Even without

this ondition, Ins

E

(R) would still be �nite and all the following theorems would

hold as well.

However, the above instantiation tehnique only serves its purpose if there

are no ollapsing equations (i.e., no equations u � v or v � u with v 2 V).

Example 15. Consider R = ff(x)! xg and E = ff(x) � xg. Note that Ins

E

(R)

= R. Although !

EnR

is learly not terminating, the dependeny pair approah

would falsely prove termination of !

EnR

, sine there is no dependeny pair.

Now we an present the main result of the paper.

11

Theorem 16 (Termination of Equational Rewriting using Dependeny

Pairs). Let R be a TRS and let E be a set of non-ollapsing equations with iden-

tial unique variables. R is terminating modulo E (i.e., !

R=E

is well founded) if

there exists a weakly monotoni quasi-ordering % and a well-founded ordering >

ompatible with % where both % and > are losed under substitution, suh that

(1) s > t for all dependeny pairs hs; ti of Ins

E

(Ext

E

(R)),

(2) l % r for all rules l! r of R,

(3) u � v for all equations u � v of E, and

(4) u

℄

� v

℄

for all equations u � v of E where root(u) and root(v) are de�ned.

Proof. Suppose that there is a term t with an in�nite !

R=E

-redution. Thm.

11 implies that t also has an in�nite !

EnExt

E

(R)

-redution. By a minimality

argument, t = C[t

0

℄, where t

0

is an minimal non-terminating term (i.e., t

0

is

non-terminating, but all its subterms only have �nite !

EnExt

E

(R)

-redutions).

We will show that there exists a term t

1

with t !

+

EnExt

E

(R)

t

1

, t

1

ontains a

minimal non-terminating subterm t

0

1

, and t

0

℄

% Æ > t

0

1

℄

. By repeated appliation

of this onstrution we obtain an in�nite sequene t!

+

EnExt

E

(R)

t

1

!

+

EnExt

E

(R)

t

2

!

+

EnExt

E

(R)

: : : suh that t

0

℄

% Æ > t

0

1

℄

% Æ > t

0

2

℄

% Æ > : : :. This, however, is

a ontradition to the well-foundedness of >.

Let t

0

have the form f(u). In the in�nite !

EnExt

E

(R)

-redution of f(u), �rst

some!

EnExt

E

(R)

-steps may be applied to u whih yields new terms v. Note that

due to the de�nition of E-extended rewriting, in these redutions, no E-steps an

be applied outside of u. Due to the termination of u, after a �nite number of

those steps, an !

EnExt

E

(R)

-step must be applied on the root position of f(v).

Thus, there exists a rule l ! r 2 Ext

E

(R) suh that f(v) �

E

l� and hene,

the redution yields r�. Now the in�nite !

EnExt

E

(R)

-redution ontinues with

r�, i.e., the term r� starts an in�nite !

EnExt

E

(R)

-redution, too. So up to now

the redution has the following form (where !

Ext

E

(R)

equals !

R

):

t = C[f(u)℄!

�

EnExt

E

(R)

C[f(v)℄ �

E

C[l�℄!

Ext

E

(R)

C[r�℄:

We perform a ase analysis depending on the positions of E-steps in f(v) �

E

l�.

First onsider the ase where all E-steps in f(v) �

E

l� take plae below the

root. Then we have l = f(w) and v �

E

w�. Let t

1

:= C[r�℄. Note that v do not

start in�nite !

EnExt

E

(R)

-redutions and by Thm. 11, they do not start in�nite

!

R=E

-redutions either. But thenw� also annot start in�nite!

R=E

-redutions

and therefore they also do not start in�nite!

EnExt

E

(R)

-redutions. This implies

that for all variables x ourring in f(w) the terms �(x) are terminating. Thus,

sine r� starts an in�nite redution, there ours a non-variable subterm s in

r, suh that t

0

1

:= s� is a minimal non-terminating term. Sine hl

℄

; s

℄

i is a

dependeny pair, we obtain t

0

℄

= F (u) % F (v) � l

℄

� > s

℄

� = t

0

1

℄

. Here, F (u) %

F (v) holds sine u!

�

EnExt

E

(R)

v and sine l % r for every rule l! r 2 Ext

E

(R).

Now we onsider the ase where there are E-steps in f(v) �

E

l� at the root

position. Thus we have f(v) �

E

f(q) à

E

p �

E

l�, where f(q) à

E

p is the �rst

12

E-step at the root position. In other words, there is an equation u � v or v � u

in E suh that f(q) is an instantiation of v.

Note that sine v �

E

q, the terms q only have �nite !

EnExt

E

(R)

-redutions

(the argumentation is similar as in the �rst ase). Let Æ be the substitution whih

operates like � on the variables of l and whih yields vÆ = f(q). Thus, Æ is an

E-uni�er of l and v. Sine l is E-uni�able with v, there also exists a orresponding

omplete E-uni�er � from uni

E

(l; v). Thus, there is also a substitution � suh

that Æ �

E

��. As l is a left-hand side of a rule from Ext

E

(R), there is a rule

l

0

! r

0

in Ins

E

(Ext

E

(R)) and a variable renaming � suh that l� �

E

l

0

� and

r� �

E

r

0

�.

Hene, v�� �

E

vÆ = f(q), l

0

�� �

E

l�� �

E

lÆ = l�, and r

0

�� �

E

r�� �

E

rÆ =

r�. So instead we now onsider the following redution (where !

Ins

E

(Ext

E

(R))

equals !

R

):

t = C[f(u)℄!

�

EnExt

E

(R)

C[f(v)℄ �

E

C[l

0

��℄!

Ins

E

(Ext

E

(R))

C[r

0

��℄ = t

1

:

Sine all proper subterms of vÆ only have �nite !

R=E

-redutions, for all

variables x of l

0

�, the term x� only has �nite !

R=E

-redutions and hene, also

only �nite!

EnExt

E

(R)

-redutions. To see this, note that sine all equations have

idential unique variables, v� �

E

l� �

E

l

0

� implies that all variables of l

0

� also

our in v�. Thus, if x is a variable from l

0

�, then there exists a variable y in

v suh that x ours in y�. Sine E does not ontain ollapsing equations, y is

a proper subterm of v and thus, yÆ is a proper subterm of vÆ. As all proper

subterms of vÆ only have �nite !

R=E

-redutions, this implies that yÆ only has

�nite !

R=E

-redutions, too. But then, sine yÆ �

E

y��, the term y�� only has

�nite !

R=E

-redutions, too. Then this also holds for all subterms of y��, i.e.,

all !

R=E

-redutions of x� are also �nite.

So for all variables x of l

0

, x�� only has �nite !

EnExt

E

(R)

-redutions. (Note

that this only holds beause � is just a variable renaming.) Sine r� starts an

in�nite!

EnExt

E

(R)

-redution, r

0

�� �

E

r�must start an in�nite!

R=E

-redution

(and hene, an in�nite !

EnExt

E

(R)

-redution) as well. As for all variables x of

r

0

, x�� is !

EnExt

E

(R)

-terminating, there must be a non-variable subterm s of

r

0

, suh that t

0

1

:= s�� is a minimal non-terminating term. As hl

0

℄

; s

℄

i is a

dependeny pair, we obtain t

0

℄

= F (u) % F (v) �

E

l

0

℄

�� > s

℄

�� = t

0

1

℄

. Here,

F (v) �

E

l

0

℄

�� is a onsequene of Condition (4). ut

Now termination of the division-system (Ex. 9) an be proved by depen-

deny pairs. Here we have Ins

E

(Ext

E

(R)) = Ext

E

(R) and thus, the resulting

onstraints are

M(s(x); s(y)) > M(x; y) Q(0� s(y); z) > Q(0; z)

Q(s(x); s(y)) > M(x; y) Q(s(x)� s(y); z) > M(x; y)

Q(s(x); s(y)) > Q(x� y; s(y)) Q(s(x)� s(y); z) > Q(x� y; s(y))

Q(s(x)� s(y); z) > Q(s((x� y)� s(y)); z)

as well as l % r for all rules l ! r, (u � v) � w � (u � w) � v, and Q(u �

v; w) � Q(u � w; v). (Here, M and Q are the tuple symbols for the minus-

symbol \�" and the quot-symbol \�".) As explained in Set. 2 one may again

13

eliminate arguments of funtion symbols before searhing for suitable orderings.

In this example we will eliminate the seond arguments of �, �, M, and Q

(i.e., every term s� t is replaed by �

0

(s), et.). Then the resulting inequalities

are satis�ed by the rpo with the preedene �

0

A s A �

0

, Q

0

A M

0

. Thus,

with the method of the present paper, one an now verify termination of this

example automatially for the �rst time. This example also demonstrates that

by using dependeny pairs, termination of equational rewriting an sometimes

even be shown by ordinary base orderings (e.g., the ordinary rpo whih on its

own annot be used for rewriting modulo equations).

6 Conlusion

We have extended the dependeny pair approah to equational rewriting. In the

speial ase of AC-axioms, our method is similar to the ones previously presented

in [15, 17℄. In fat, as long as the equations only onsist of AC-axioms, one an

show that using the instanes Ins

E

in Thm. 16 is not neessary.

7

(Hene, suh a

onept annot be found in [17℄). However, even then the only additional inequal-

ities resulting from Ins

E

are instantiations of other inequalities already present

and inequalities whih are speial ases of an AC-deletion property (whih is sat-

is�ed by all known AC-orderings and similar to the one required in [15℄). This

indiates that in pratial examples with AC-axioms, our tehnique is at least

as powerful as the ones of [15, 17℄ (atually, we onjeture that for AC-examples,

these three tehniques are virtually equally powerful). But ompared to the ap-

proahes of [15, 17℄, our tehnique has a more elegant treatment of tuple symbols.

(For example, if the TRS ontains a rule f(t

1

; t

2

)! g(f(s

1

; s

2

); s

3

) were f and g

are de�ned AC-symbols, then we do not have to extend the TRS by rules with

tuple symbols like f(t

1

; t

2

) ! G(f(s

1

; s

2

); s

2

) in [17℄. Moreover, we do not need

dependeny pairs where tuple symbols our outside the root position suh as

hF(F(t

1

; t

2

); y); : : :i in [17℄ and [15℄ and hF(t

1

; t

2

);G(F(s

1

; s

2

); s

3

)i in [15℄. Finally,

we also do not need the \AC-marked ondition" F(f(x; y); z) � F(F(x; y); z) of

[15℄.) But most signi�antly, unlike [15, 17℄ our tehnique works for arbitrary

non-ollapsing equations E with idential unique variables where E-uni�ation

is �nitary (for subterms of equations and left-hand sides of rules). Obviously,

an implementation of our tehnique also requires E-uni�ation algorithms [5℄ for

the onrete sets of equations E under onsideration.

In [1{3℄, Arts and Giesl presented the dependeny graph re�nement whih is

based on the observation that it is possible to treat subsets of the dependeny

pairs separately. This re�nement arries over to the equational ase in a straight-

forward way (by using E-uni�ation to ompute an estimation of this graph). For

details on this re�nement and for further examples to demonstrate the power

and the usefulness of our tehnique, the reader is referred to [11℄.

Aknowledgments. We thank A. Middeldorp, T. Arts, and the referees for omments.

7

Then in the proof of Thm. 16, instead of a minimal non-terminating term t

0

one re-

gards a term t

0

whih is non-terminating and minimal up to some extra f -ourrenes

on the top (where f is an AC-symbol).

14

Referenes

1. T. Arts and J. Giesl, Automatially Proving Termination where Simpli�ation

Orderings Fail, in Pro. TAPSOFT '97, LNCS 1214, 261-272, 1997.

2. T. Arts and J. Giesl, Modularity of Termination Using Dependeny Pairs, in Pro.

RTA '98, LNCS 1379, 226-240, 1998.

3. T. Arts and J. Giesl, Termination of Term Rewriting Using Dependeny Pairs,

Theoretial Computer Siene, 236:133-178, 2000.

4. T. Arts, System Desription: The Dependeny Pair Method, in Pro. RTA '00,

LNCS 1833, 261-264, 2000.

5. F. Baader and W. Snyder, Uni�ation Theory, in Handbook of Automated Reason-

ing, J. A. Robinson and A. Voronkov (eds.), Elsevier. To appear.

6. A. Ben Cherifa and P. Lesanne, Termination of Rewriting Systems by Polynomial

Interpretations and its Implementation, S. Comp. Prog., 9(2):137-159, 1987.

7. CiME 2. Pre-release available at http://www.lri.fr/~demons/ime-2.0.html.

8. C. Delor and L. Puel, Extension of the Assoiative Path Ordering to a Chain of

Assoiative Commutative Symbols, in Pro. RTA '93, LNCS 690, 389-404, 1993.

9. N. Dershowitz, Termination of Rewriting, J. Symboli Computation, 3:69-116, 1987.

10. M. C. F. Ferreira, Dummy Elimination in Equational Rewriting, in Pro. RTA '96,

LNCS 1103, 78-92, 1996.

11. J. Giesl and D. Kapur, Dependeny Pairs for Equational Rewriting, Tehnial

Report TR-CS-2000-53, University of New Mexio, USA, 2000. Available from

http://www.s.unm.edu/soe/s/teh reports

12. J.-P. Jouannaud and H. Kirhner, Completion of a Set of Rules Modulo a Set of

Equations, SIAM Journal on Computing, 15(4):1155-1194, 1986.

13. D. Kapur and G. Sivakumar, A Total Ground Path Ordering for Proving Termi-

nation of AC-Rewrite Systems, in Pro. RTA '97, LNCS 1231, 142-156, 1997.

14. D. Kapur and G. Sivakumar, Proving Assoiative-Commutative Termination Using

RPO-Compatible Orderings, in Pro. Automated Dedution in Classial and Non-

Classial Logis, LNAI 1761, 40-62, 2000.

15. K. Kusakari and Y. Toyama, On Proving AC-Termination by AC-Dependeny

Pairs, Researh Report IS-RR-98-0026F, Shool of Information Siene, JAIST,

Japan, 1998. Revised version in K. Kusakari, Termination, AC-Termination and

Dependeny Pairs of Term Rewriting Systems, PhD Thesis, JAIST, Japan, 2000.

16. J.-P. Jouannaud and M. Mu~noz, Termination of a Set of Rules Modulo a Set of

Equations, in Pro. 7th CADE, LNCS 170, 175-193, 1984.

17. C. Marh�e and X. Urbain, Termination of Assoiative-Commutative Rewriting by

Dependeny Pairs, in Pro. RTA '98, LNCS 1379, 241-255, 1998.

18. H. Ohsaki, A. Middeldorp, and J. Giesl, Equational Termination by Semanti La-

belling, in Pro. CSL '00, LNCS 1862, 457-471, 2000.

19. G. E. Peterson and M. E. Stikel, Complete Sets of Redutions for Some Equational

Theories, Journal of the ACM, 28(2):233-264, 1981.

20. A. Rubio and R. Nieuwenhuis, A Total AC-Compatible Ordering based on RPO,

Theoretial Computer Siene, 142:209-227, 1995.

21. A. Rubio, A Fully Syntati AC-RPO, Pro. RTA-99, LNCS 1631, 133-147, 1999.

22. J. Steinbah, Simpli�ation Orderings: History of Results, Fundamenta Informat-

iae, 24:47-87, 1995.

23. L. Vigneron, Positive Dedution modulo Regular Theories, in Pro. CSL '95, LNCS

1092, 468-485, 1995.

15

