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Abstract. In this paper, we show how the problem of verifying liveness
properties is related to termination of term rewrite systems (TRSs). We
formalize liveness in the framework of rewriting and present a sound and
complete transformation to transform particular liveness problems into
TRSs. Then the transformed TRS terminates if and only if the original
liveness property holds. This shows that liveness and termination are
essentially equivalent. To apply our approach in practice, we introduce a
simpler sound transformation which only satisfies the ‘only if’-part. By
refining existing techniques for proving termination of TRSs we show how
liveness properties can be verified automatically. As examples, we prove
a liveness property of a waiting line protocol for a network of processes
and a liveness property of a protocol on a ring of processes.

1 Introduction

Usually, liveness is roughly defined as: “something will eventually happen” [1] and
it is often remarked that “termination is a particular case of liveness”. In this
paper we present liveness in the general but precise setting of abstract reduction
and TRSs and we study the relationship between liveness and termination. While
classically, TRSs are applied to model evaluation in programming languages, we
use TRSs to study liveness questions which are of high importance in practice
(e.g., in protocol verification for distributed processes). In particular, we show
how to verify liveness properties by existing termination techniques for TRSs.

In Sect. 2 we define a suitable notion of liveness to express eventuality prop-
erties using abstract reduction. Sect. 3 specializes this notion to the framework
of term rewriting. In Sect. 4 we investigate the connection between a particular
kind of liveness and termination, and present a sound and complete transfor-
mation which allows us to express liveness problems as termination problems
of ordinary TRSs. Now techniques for proving termination of TRSs can also
be used to infer liveness properties. To apply this approach in practice, based
on our preceding results we present a sound (but incomplete) technique to per-
form termination proofs for liveness properties in Sect. 5, which is significantly
easier to mechanize. In contrast to methods like model checking, our technique
does not require finite state space. Our approach differs from other applications
of term rewriting techniques to parameterized systems or infinite state spaces,
where the emphasis is on verification of other properties like reachability [4]. We
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demonstrate our approach on two case studies of network protocols.

2 Liveness in Abstract Reduction

In this section we give a formal definition of liveness using the framework of
abstract reduction. We assume a set S of states and a notion of computation
that can be expressed by a binary relation →⊆ S ×S. So “t → u” means that a
computation step from t to u is possible. A computation sequence or reduction
is defined to be a finite sequence t1, t2, . . . , tn or an infinite sequence t1, t2, t3, . . .
with ti → ti+1. We write →∗ for the reflexive transitive closure of →, i.e., →∗

represents zero or more computation steps.
To define liveness we assume a set G⊆S of ‘good’ states and a set I⊆S of ini-

tial states. A reduction is maximal if it is either infinite or if its last element is in
the set of normal forms NF = {t ∈ S | ¬∃u : t → u}. The liveness property Live(I,
→,G) holds if every maximal reduction starting in I contains an element of G.
Thus, our notion of liveness describes eventuality properties (i.e., it does not
capture properties like starvation freedom which are related to fairness).

Definition 1 (Liveness). Let S be a set of states, →⊆ S×S, and G, I ⊆ S. Let
“t1, t2, t3, . . .” denote an infinite sequence of states. Then Live(I,→, G) holds iff

1. ∀t1, t2, t3, . . . : (t1 ∈ I ∧ ∀i : ti → ti+1) ⇒ ∃i : ti ∈ G, and
2. ∀t1, t2, . . . , tn : (t1 ∈ I ∧ tn ∈ NF ∧ ∀i : ti → ti+1) ⇒ ∃i : ti ∈ G.

For example, termination (or strong normalization SN(I,→)) is a special
liveness property describing the non-existence of infinite reductions, i.e.,

SN(I,→) = ¬(∃t1, t2, t3, . . . : t1 ∈ I ∧ ∀i : ti → ti+1).

Theorem 2. The property SN(I,→) holds if and only if Live(I,→, NF) holds.

Proof. For the ‘if’-part, if SN(I,→) does not hold, then there is an infinite re-
duction t1 → t2 → · · · with t1 ∈ I. Due to NF’s definition, this infinite reduction
does not contain elements of NF, contradicting Property 1 in Def. 1.

Conversely, if SN(I,→) holds, then Property 1 in the definition of Live(I,→,
NF) holds trivially. Property 2 also holds, since G = NF. ⊓⊔

Thm. 2 states that termination is a special case of liveness. The next theorem
proves a kind of converse. For that purpose, we restrict the computation relation
→ such that it may only proceed if the current state is not in G.

Definition 3 (→G). Let S, →, G be as in Def. 1. Then →G ⊆ S × S is the
relation where t →G u holds if and only if t → u and t 6∈ G.

Now we show that Live(I,→, G) is equivalent to SN(I,→G). The ‘only if’-
part holds without any further conditions. However, for the ‘if’-part we have
to demand that G contains all normal forms NF(I) reachable from I, where
NF(I) = {u ∈ NF | ∃t ∈ I : t →∗ u}. Otherwise, if there is a terminating sequence
t1 → . . . → tn with all ti /∈ G, we might have SN(I,→G) but not Live(I,→, G).

Theorem 4. Let NF(I) ⊆ G. Then Live(I,→, G) holds iff SN(I,→G) holds.

Proof. For the ‘if’-part assume SN(I,→G). Property 2 of Def. 1 holds since
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NF(I) ⊆ G. If Property 1 does not hold then there is an infinite reduction
without elements of G starting in I, contradicting SN(I,→G).

Conversely assume that Live(I,→, G) holds and that SN(I,→G) does not
hold. Then there is an infinite sequence t1, t2, . . . with t1 ∈ I ∧ ∀i : ti →G ti+1.
Hence, ti 6∈ G and ti → ti+1 for all i, contradicting Property 1 in Def. 1. ⊓⊔

Thm. 4 allows us to verify actual liveness properties: if NF(I) ⊆ G, then one
can instead verify termination of →G. If NF(I) 6⊆ G, then SN(I,→G) still implies
the liveness property for all infinite computations. In Sect. 4 and 5 we show how
techniques to prove termination of TRSs can be used for termination of →G.

3 Liveness in Term Rewriting

Now we focus on liveness in rewriting, i.e., we study the property Live(I,→R, G)
where →R is the rewrite relation corresponding to a TRS R. For an introduction
to term rewriting, the reader is referred to [3], for example.

Let Σ be a signature containing a constant and let V be a set of variables. We
write T (Σ,V) for the set of terms over Σ and V and T (Σ) is the set of ground
terms. For a term t, V(t) and Σ(t) denote the variables and function symbols
occurring in t. Now T (Σ,V) represents computation states and G ⊆ T (Σ,V).

By Thm. 4, Live(I,→, G) is equivalent to SN(I,→G), if NF(I) ⊆ G. To verify
liveness, we want to prove SN(I,→G) by approaches for termination proofs of
ordinary TRSs. However, depending on the form of G, different techniques are
required. In the remainder we restrict ourselves to sets G of the following form:

G = {t | t does not contain an instance of p} for some term p.

In other words, G contains all terms which cannot be written as C[pσ] for any
context C and substitution σ. As before, t →G u holds iff t →R u and t /∈ G. So
a term t may be reduced whenever it contains an instance of the term p.

A typical example of a liveness property is that eventually all processes re-
questing a resource are granted access to the resource (see Sect. 5.3). If a process
waiting for the resource is represented by the unary function symbol old and if
terms are used to denote the state of the whole network, then we would define
G = {t | t does not contain an instance of old(x)}. Now Live(I,→R, G) means
that eventually one reaches a term without the symbol old.

However, for arbitrary terms and TRSs, the notion →G is not very useful: if
there is a symbol f of arity > 1 or if p contains a variable x (i.e., if p can be
written as C[x] for some context C), then termination of →G implies termination
of the full rewrite relation →R. The reason is that any infinite reduction t1 →R

t2 →R · · · gives rise to an infinite reduction f(t1, p, . . .) →R f(t2, p, . . .) →R · · · or
C[t1] →R C[t2] →R · · · where in both cases none of the terms is in G. Therefore
we concentrate on the particular case of top rewrite systems in which there is a
designated symbol top. (These TRSs can be regarded as special forms of typed
rewrite systems [11].)

Definition 5 (Top Rewrite System). Let Σ be a signature and let top /∈ Σ
be a new unary function symbol. A term t ∈ T (Σ ∪ {top},V) is a top term if
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its root is top and top does not occur below the root. Let Ttop denote the set of
all ground top terms. A TRS R over the signature Σ ∪ {top} is a top rewrite
system iff for all rules l → r ∈ R either

– l and r are top terms (in this case, we speak of a top rule) or
– l and r do not contain the symbol top (then we have a non-top rule)

Top rewrite systems typically suffice to model networks of processes, since the
whole network is represented by a top term [6]. Clearly, in top rewrite systems,
top terms can only be reduced to top terms again. In such systems we consider
liveness properties Live(Ttop,→R, G). So we want to prove that every maximal
reduction of ground top terms contains a term without an instance of p.

Example 6 (Simple liveness example). Consider the following two-rule TRS R.

top(c) → top(c) f(x) → x

Clearly, R is not terminating and we even have infinite reductions within Ttop:

top(f(f(c))) →R top(f(c)) →R top(c) →R top(c) →R . . .

However, in every reduction one eventually reaches a term without f. Hence, if
p = f(x), then the liveness property is fulfilled for all ground top terms. Note
that for Σ = {c, f}, we have NF(Ttop) = ∅ and thus, NF(Ttop) ⊆ G. Hence, by
Thm. 4 it is sufficient to verify that →G is terminating on Ttop. Indeed, the above
reduction is not possible with →G, since top(c) is a normal form w.r.t. →G.

4 Liveness and Termination

In this section we investigate the correspondence between liveness and termina-
tion in the framework of term rewriting. As in the previous section, we consider
liveness properties Live(Ttop,→R, G) for top rewrite systems R where G consists
of those terms that do not contain instances of some subterm p. Provided that
NF(Ttop) ⊆ G, by Thm. 4 the liveness property is equivalent to SN(Ttop,→G).

Our aim is to prove termination of →G on Ttop by means of termination of
TRSs. In this way one can use all existing techniques for termination proofs of
term rewrite systems (including future developments) in order to prove liveness
properties. A first step into this direction was taken in [6], where the termination
proof technique of dependency pairs was used to verify certain liveness properties
of telecommunication processes. However, now our aim is to develop an approach
to connect liveness and termination in general.

Given a TRS R and a term p, we define a TRS L(R, p) such that L(R, p)
terminates (on all terms) if and only if SN(Ttop,→G). A transformation where the
‘only if’-direction holds is called sound and if the ‘if’-direction holds, it is called
complete. The existence of the sound and complete transformation L(R, p) shows
that for rewrite relations, liveness and termination are essentially equivalent.

The construction of L(R, p) is motivated by an existing transformation [7, 8]
which was developed for a completely different purpose (termination of context-
sensitive rewriting). We introduce a number of new function symbols resulting in
an extended signature ΣG. Here, proper(t) checks whether t is a ground term over
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the original signature Σ (Lemma 9) and match(p, t) checks in addition whether
p matches t (Lemma 10). In this case, proper(t) and match(p, t) reduce to ok(t).
To ease the formulation of the match-rules, we restrict ourselves to linear terms
p, i.e., a variable occurs at most once in p. Moreover, for every variable x in p
we introduce a fresh constant denoted by the corresponding upper-case letter X .
We write p for the ground term obtained by replacing every variable in p by its
corresponding fresh constant and in this way, it suffices to handle ground terms
p in the match-rules. The new symbol check investigates whether its argument
is a ground term over Σ which contains an instance of p (Lemma 11). In this
case, check(t) reduces to found(t) and to find the instance of p, check may be
propagated downwards through the term until one reaches the instance of p.

Finally, active(t) denotes that t may be reduced, since it contains an instance
of p. Therefore, active may be propagated downwards to any desired redex of
the term. After the reduction step, active is replaced by mark which is then
propagated upwards to the top of the term. Now one checks whether the resulting
term still contains an instance of p and none of the newly introduced function
symbols. To this end, mark is replaced by check. If an instance of p is found,
check is turned into found and found is propagated to the top of the term where
it is replaced by active again. The TRS L(R, p) has been designed in such a
way that infinite reductions are only possible if this process is repeated infinitely
often and Lemmata 12–14 investigate L(R, p)’s behavior formally.

Definition 7 (L(R, p)). Let R be a top rewrite system over Σ∪{top} with top /∈
Σ and let p ∈ T (Σ,V) be linear. The TRS L(R, p) over the signature ΣG = Σ ∪
{top, match, active, mark, check, proper, start, found, ok} ∪ {X |x ∈ V(p)} consists
of the following rules for all non-top rules l → r ∈ R, all top rules top(t) →
top(u) ∈ R, all f ∈ Σ of arity n > 0 and 1 ≤ i ≤ n, and all constants c ∈ ΣG:

active(l) → mark(r)
top(active(t)) → top(mark(u))
top(mark(x)) → top(check(x)) (1)

check(f(x1, .., xn)) → f(proper(x1), .., check(xi), .., proper(xn))
check(x) → start(match(p, x))

match(f(x1, .., xn), f(y1, .., yn)) → f(match(x1, y1), .., match(xn, yn)), if f ∈ Σ(p)
match(c, c) → ok(c), if c ∈ Σ(p)
match(c, x) → proper(x), if c /∈ Σ and c ∈ Σ(p)

proper(c) → ok(c), if c ∈ Σ
proper(f(x1, . . . , xn)) → f(proper(x1), . . . , proper(xn))
f(ok(x1), . . . , ok(xn)) → ok(f(x1, . . . , xn))

start(ok(x)) → found(x)
f(ok(x1), .., found(xi), .., ok(xn)) → found(f(x1, .., xn))

top(found(x)) → top(active(x)) (2)
active(f(x1, . . . , xi, . . . , xn)) → f(x1, . . . , active(xi), . . . , xn)
f(x1, . . . , mark(xi), . . . , xn) → mark(f(x1, . . . , xn))

Example 8 (Transformation of simple liveness example). Recall the TRS from
Ex. 6 again. Here, the transformation yields the following TRS L(R, p).
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active(f(x)) → mark(x) proper(c) → ok(c)
top(active(c)) → top(mark(c)) proper(f(x)) → f(proper(x))
top(mark(x)) → top(check(x)) f(ok(x)) → ok(f(x))

check(f(x)) → f(check(x)) start(ok(x)) → found(x)
check(x) → start(match(f(X), x)) f(found(x)) → found(f(x))

match(f(x), f(y)) → f(match(x, y)) top(found(x)) → top(active(x))
match(X, x) → proper(x) active(f(x)) → f(active(x))

f(mark(x)) → mark(f(x))

Note that it is really necessary to introduce the symbol proper and to check
whether the whole term does not contain any new symbols from ΣG \ Σ. If
the proper-rules were removed, all remaining proper-terms were replaced by their
arguments, and in f(ok(x1), . . . , found(xi), . . . , ok(xn)) → found(f(x1, . . . , xn)),
the terms ok(xi) were replaced by xi, then the transformation would not be
complete any more. As a counterexample, regard Σ = {a, b, f} and the TRS

top(f(b, x, y)) → top(f(y, y, y))

top(f(x, y, z)) → top(f(b, b, b))

top(a) → top(b)

and let p = a. The TRS satisfies the liveness property since for any ground top
term, after at most two steps one reaches a term without a (one obtains either
top(b) or top(f(b, b, b))). However, with the modified transformation we would
get the following non-terminating cyclic reduction where u is the term found(b):

top(mark(f(u, u, u))) → top(check(f(u, u, u))) →
top(f(u, check(u), u)) → top(found(f(b, check(u), u))) →
top(active(f(b, check(u), u))) → top(mark(f(u, u, u))) → . . .

To prove soundness and completeness of our transformation, we need several
auxiliary lemmata about reductions with L(R, p). The first lemma states that
proper really checks whether its argument does not contain symbols from ΣG\Σ.

Lemma 9 (Reducing proper). For t ∈ T (ΣG) we have proper(t) →+
L(R,p) ok(u)

if and only if t, u ∈ T (Σ) and t = u.

Proof. The proof is identical to the one in [7, Lemma 2] and [8]. ⊓⊔

Now we show that match(p, t) checks whether p matches t and t ∈ T (Σ).

Lemma 10 (Reducing match). Let p ∈ T (Σ,V), let q ∈ T (Σ(p),V) be linear,
and let t ∈ T (ΣG). We have match(q, t) →+

L(R,p) ok(u) iff t = u ∈ T (Σ) and

qσ = t for some σ.

Proof. The ‘if’-direction is an easy induction on the structure of the term t, see
[9]. The ‘only if’-direction is proved by induction on the length of the reduction.
If the first reduction step is in t, then match(q, t) →L(R,p) match(q, t′) →+

L(R,p)

ok(u) for a term t′ with t →L(R,p) t′. The induction hypothesis states t′ = u ∈
T (Σ) and qσ = t′. Note that t′ ∈ T (Σ) implies t = t′ which proves the lemma.

6



Otherwise, the first reduction step is on the root position (since q is in
normal form). If q is a variable, then q obviously matches t and we obtain
match(q, t) →L(R,p) proper(t) →+

L(R,p) ok(u) and t = u ∈ T (Σ) by Lemma 9.

If q is a constant c, then a root reduction is only possible if t = c. We obtain
match(q, t) = match(q, c) →L(R,p) ok(c). So in this case the lemma also holds.

Finally, if q = f(q1, . . . , qn), for a root reduction we have t = f(t1, . . . , tn).
Then match(q, t) = match(f(q1, . . . , qn), f(t1, . . . , tn)) = f(match(q1, t1), . . . ,
match(qn, tn)) →+

L(R,p) ok(u). To reduce f(. . .) to ok(. . .), all arguments of f

must reduce to ok-terms. Hence, match(qi, ti) →+
L(R,p) ok(ui) for all i where

these reductions are shorter than the reduction match(q, t) →+
L(R,p) ok(u). The

induction hypothesis implies ti = ui ∈ T (Σ) and that there are substitutions
σi with qiσi = ti. Since q is linear, we can combine these σi to one σ such that
qσ = t. Moreover, this implies u = f(u1, . . . , un) which proves the lemma. ⊓⊔

Based on the previous two lemmata, one can show that check works properly,
i.e., it checks whether its argument is a term from T (Σ) containing an instance
of p. The proof is similar to the one of Lemma 10 and can be found in [9].

Lemma 11 (Reducing check). Let p ∈ T (Σ,V) be linear and t ∈ T (ΣG). We
have check(t) →+

L(R,p) found(u) iff t = u ∈ T (Σ) and t contains a subterm pσ.

Lemma 12 shows that the top-rules (1), (2) are applied in an alternating way.

Lemma 12 (Reducing active and check). For all t, u ∈ T (ΣG) we have

(a) active(t) 6→+
L(R,p) found(u) and active(t) 6→+

L(R,p) ok(u)

(b) check(t) 6→+
L(R,p) mark(u) and proper(t) 6→+

L(R,p) mark(u)

Proof. For (a), by induction on n ∈ IN, we show that there is no reduction
from active(t) to found(u) or to ok(u) of length n. If the first reduction step
is in t, then the claim follows from the induction hypothesis. Otherwise, the
reduction starts with a root step. This first step cannot be active(t) →L(R,p)

mark(u), since the root symbol mark can never be reduced again. Hence, we must
have t = f(t1, . . . , ti, . . . , tn) and active(t) = active(f(t1, . . . , ti, . . . , tn)) →L(R,p)

f(t1, . . . , active(ti), . . . , tn). In order to rewrite this term to a found- or ok-term,
in particular active(ti) must be rewritten to a found- or ok-term which contradicts
the induction hypothesis. For the (similar) proof of (b), we refer to [9]. ⊓⊔

We now prove that the top-rules are crucial for L(R, p)’s termination behavior.

Lemma 13. Let L′(R, p) = L(R, p) \ {(1), (2)}. Then L′(R, p) is terminating.

Proof. Termination of L′(R, p) can be proved by the recursive path order [5]
using the precedence active > check > match > proper > start > f > ok >
found > mark for all f ∈ Σ ∪ {X |x ∈ V(p)}. ⊓⊔

Before relating L(R, p) and →G, we study the connection of L(R, p) and →R.

Lemma 14. Let t, u ∈ T (Σ). Then we have active(t) →+
L(R,p) mark(u) iff

t →R u and top(active(t)) →+
L(R,p) top(mark(u)) iff top(t) →R top(u).
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Proof. The ‘if’-direction is easy by induction on t. For the ‘only if’-direction, we
prove that active(t) →+

L(R,p) mark(u) implies t →R u by induction on the length

of the reduction. The proof that top(active(t)) →+
L(R,p) top(mark(u)) implies

top(t) →R top(u) is analogous [9]. Since t ∈ T (Σ), the first reduction step must
be on the root position. If active(t) →L(R,p) mark(u) on root position, then t = lσ
and u = rσ for a rule l → r ∈ R and thus, t →R u. Otherwise, t = f(t1, . . . , tn)
and active(t) = active(f(t1, . . . , tn)) →L(R,p) f(t1, . . . , active(ti), . . . , tn) →+

L(R,p)

mark(u). Thus, active(ti) →+
L(R,p) mark(ui) and u = f(t1, . . . , ui, . . . , tn). The

induction hypothesis implies ti →R ui and hence, t →R u. ⊓⊔

Theorem 15 (Soundness and Completeness). Let R be a top rewrite sys-
tem over Σ∪{top} with top /∈ Σ and let p ∈ T (Σ,V) be linear. The TRS L(R, p)
is terminating (on all terms) iff the relation →G is terminating on Ttop.

Proof. We first show the ‘only if’-direction. If →G does not terminate on Ttop

then there is an infinite reduction top(t1) →G top(t2) →G . . . where t1, t2, . . . ∈
T (Σ). By Lemma 14 we have top(active(ti)) →+

L(R,p) top(mark(ti+1)). Lemma

11 implies check(ti+1) →
+
L(R,p) found(ti+1), since each ti+1 contains an instance

of p. So we obtain the following contradiction to the termination of L(R, p).

top(active(t1)) →
+
L(R,p) top(mark(t2)) →L(R,p) top(check(t2)) →+

L(R,p)

top(found(t2)) →L(R,p) top(active(t2)) →
+
L(R,p) . . .

For the ‘if’-direction assume that L(R, p) is not terminating. By type in-
troduction [11] one can show that there exists an infinite L(R, p)-reduction of
ground top terms. Due to Lemma 13 the reduction contains infinitely many ap-
plications of the rules (1) and (2). These rules must be applied in alternating
order, since active(t) can never reduce to found(u) and check(t) can never reduce
to mark(u) by Lemma 12. So the reduction has the following form where all
reductions with the rules (1) and (2) are displayed.

. . . →∗

L(R,p) top(mark(t1)) →L(R,p) top(check(t1)) →+
L(R,p)

top(found(u1)) →L(R,p) top(active(u1)) →
+
L(R,p)

top(mark(t2)) →L(R,p) top(check(t2)) →+
L(R,p)

top(found(u2)) →L(R,p) top(active(u2)) →
+
L(R,p) . . .

By Lemma 11 we have ti = ui ∈ T (Σ) and that ti contains an instance of
p. Lemma 14 implies top(ui) →R top(ti+1). Together, we obtain top(t1) →G

top(t2) →G . . . in contradiction to the termination of →G on Ttop. ⊓⊔

By Thm. 15, one can now use existing techniques for termination proofs of
TRSs to verify liveness of systems like Ex. 6. For instance, termination of the
transformed TRS from Ex. 8 is easy to show with dependency pairs [2], cf. [9].

5 Proving Liveness

In Sect. 5.1 we present a sound transformation which is more suitable for mecha-
nizing liveness proofs than the complete transformation from Sect. 4. The reason
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is that for this new transformation, termination of the transformed TRS is much
easier to show. On the other hand, the approach in this section is incomplete,
i.e., it cannot succeed for all examples. Subsequently, in Sect. 5.2 we introduce an
automatic preprocessing technique based on semantic labelling [12] to simplify
these termination proofs further. In this way, rewriting techniques can be used
to mechanize the verification of liveness properties. To illustrate the use of our
approach, in Sect. 5.3 we show how to verify liveness properties of a network of
processes with a shared resource and of a token ring protocol.

5.1 A Sound Transformation for Liveness

To obtain a simple sound transformation, the idea is to introduce only one new
symbol check. A new occurrence of check is created in every application of a top
rule. If check finds an instantiation of p then check may be removed. Otherwise,
check remains in the term where it may block further reductions.

Definition 16 (LS(R, p)). For a top rewrite system R over Σ ∪ {top} with
top /∈ Σ and p ∈ T (Σ,V), let LS(R, p) consist of the following rules.

l → r for all non-top rules l → r in R
top(t) → top(check(u)) for all top rules top(t) → top(u)

check(f(x1, .., xn)) → f(x1, .., check(xi), .., xn) for f ∈Σ of arity n≥1, i = 1, .., n

check(p) → p

Example 17 (Simple example revisited). To illustrate the transformation, recon-
sider the system from Ex. 6. Here, LS(R, f(x)) is the following TRS whose ter-
mination can be proved by dependency pairs and the recursive path order.

top(c) → top(check(c)) (3)

f(x) → x (4)

check(f(x)) → f(check(x)) (5)

check(f(x)) → f(x) (6)

Now we show that this transformation is indeed sound. In other words, the
above termination proof verifies the liveness property of our example.

Theorem 18 (Soundness). Let R be a top rewrite system over Σ∪{top} with
top /∈ Σ, let p ∈ T (Σ,V), and let G = {t | t does not contain an instance of p }.
If LS(R, p) is terminating then there is no infinite →G-reduction of top terms.

Proof. Assume there is an infinite →G-reduction of top terms top(t1) →G top(t2)
→G . . . Since top does not occur in p, every ti has the form Ci[pσi] for some con-
text Ci and substitution σi. To prove the theorem, we show that top(ti) →

+
LS(R,p)

top(ti+1) for every i, by which we obtain an infinite LS(R, p)-reduction.
If top(ti) →R top(ti+1) by the application of a non-top rule l → r then we

also have top(ti) →LS(R,p) top(ti+1) since l → r is also contained in LS(R, p).
Otherwise, top(ti) →R top(ti+1) by a top rule top(t) → top(u). Hence, ti = tσ
and ti+1 = uσ for some σ. Since LS(R, p) contains the rules check(f(x1, . . . , xn))
→ f(x1, . . . , check(xi), . . . , xn) for all f with arity ≥ 1, we obtain

9



top(ti) = top(tσ) →LS(R,p) top(check(uσ)) = top(check(Ci+1[pσi+1]))
→∗

LS(R,p) top(Ci+1[check(p)σi+1])

→LS(R,p) top(Ci+1[pσi+1]) = top(ti+1) ⊓⊔

Example 19 (Sound transformation is not complete). However, this transforma-
tion is incomplete as can be shown by the following top rewrite system R

top(f(x, b)) → top(f(b, b)) a → b

where Σ = {a, b, f} and p = a. In this example, normal forms do not contain a

any more and every infinite reduction of top terms reaches the term top(f(b, b))
which does not contain the symbol a either. Hence, the liveness property holds.
However, LS(R, p) admits the following infinite reduction:

top(f(b, b))→ top(check(f(b, b)))→ top(f(check(b), b))→ top(check(f(b, b)))→ ...

Thus, the transformation of Def. 16 is incomplete, because even if check remains
in a term, this does not necessarily block further (infinite) reductions.

5.2 A Preprocessing Procedure for Verifying Liveness

The aim of our sound transformation from Def. 16 is to simplify (and possibly
automate) the termination proofs which are required in order to show liveness
properties. Since the TRSs resulting from our transformation have a particular
form, we now present a method to preprocess such TRSs. This preprocessing
is especially designed for this form of TRSs and in this way, their termination
proofs can often be simplified significantly. The method consists of four steps
which can be performed automatically:

(a) First one deletes rules which cannot cause non-termination.
(b) Then one applies the well-known transformation technique of semantic la-

belling [12] with a particularly chosen model and labelling. (This restricted
form of semantic labelling can be done automatically.)

(c) Then one again deletes rules which cannot cause non-termination.
(d) Finally one uses an existing automatic technique (e.g., the recursive path

order or dependency pairs) to prove termination of the resulting TRS.

To delete rules in Step (a) and (c) we use the following lemma. For a function
symbol f ∈ Σ and a term t ∈ T (Σ,V), let #f (t) be the number of f -symbols
occurring in t. For ∅ 6= Σ′ ⊆ Σ let #Σ′(t) =

∑
f∈Σ′ #f (t).

Lemma 20. Let R be a TRS such that

– R is non-duplicating, i.e., for every rule l → r, no variable occurs more
often in r than in l, and

– #Σ′(l) ≥ #Σ′(r) for all rules l → r in R

for some Σ′ ⊆ Σ. Let R′ consist of those rules l → r from R which satisfy
#Σ′(l) > #Σ′(r). Then R is terminating if and only if R \ R′ is terminating.

Proof. The ‘only if’-part holds since R \ R′ ⊆ R. For the ‘if’-part assume that
R \ R′ is terminating and that we have an infinite R-reduction. Due to the
conditions of the lemma we have #Σ′(t) ≥ #Σ′(u) for every step t →R u and
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#Σ′(t) > #Σ′(u) for every step t →R′ u. Hence, due to well-foundedness of the
natural numbers, the infinite R-reduction contains only finitely many R′-steps.
After removing the finite initial part containing all these R′-steps, the remaining
part is an infinite R \ R′-reduction, which gives a contradiction. ⊓⊔

The application of Lemma 20 is easily automated as follows: for all sets Σ′ ⊆
Σ with |Σ′| ≤ n for some (small) n ∈ IN, it is checked whether #Σ′(l) ≥ #Σ′(r)
for all rules l → r. If so, then all rules l → r satisfying #Σ′(l) > #Σ′(r) are
removed. This process is repeated until no rule can be removed any more.

As a first example, we apply Lemma 20 to the TRS from Ex. 17. By counting
the occurrences of f, we note that the number of f-symbols strictly decreases in
Rule (4) and it remains the same in all other rules. Hence, due to Lemma 20 we
can drop this rule when proving termination of the TRS. It turns out that in
this case repetition of this process does not succeed in removing more rules.

In our termination procedure, in Step (b) we apply a particular instance of
semantic labelling [12]. Before describing this instance we briefly explain how
semantic labelling works as a tool to prove termination of a TRS R over the
signature Σ: One starts by choosing a model for the TRS R. Thus, one defines
a non-empty carrier set M and for every function symbol f ∈ Σ of arity n, an
interpretation fM : Mn → M is chosen. As usual, every variable assignment
α : V → M can be extended to terms from T (Σ,V) by inductively defining
α(f(t1, . . . , tn)) = fM (α(t1), . . . , α(tn)). The interpretation is a model for R if
α(l) = α(r) for every rule l → r in R and every variable assignment α : V → M .

Using this model, the TRS R over the signature Σ is transformed into a
labelled TRS R over the labelled signature Σ. Here, every function symbol f ∈ Σ
of arity n may be labelled by n elements from M , i.e., Σ = {fa1,...,an

| f ∈ Σ, n =
arity(f), ai ∈ M} where the arity of fa1,...,an

is the same as the arity of f . For any
variable assignment α : V → M , we define a function labα : T (Σ,V) → T (Σ,V)
which labels every function symbol by the interpretations of its arguments:

labα(x) = x, for x ∈ V
labα(f(t1, . . . , tn)) = fα(t1),...,α(tn)(labα(t1), . . . , labα(tn))

Now the TRS R is defined to consist of all rules labα(l) → labα(r) for all variable
assignments α : V → M and all rules l → r in R. The main theorem of semantic
labelling states that R is terminating if and only if R is terminating.

In general, semantic labelling permits a lot of freedom and is hard to auto-
mate, since one may choose arbitrary models. Moreover, in full semantic labelling
one may also use arbitrary labellings. However, we will restrict ourselves to the
case where M = {0, 1}. Now there are only finitely many possibilities for the
interpretations fM in the model. This means that with this restriction the ter-
mination method consisting of the steps (a) - (d) is fully decidable.

To improve efficiency and to avoid checking all possibilities of a two-element
model for semantic labelling, we now propose heuristics for choosing the inter-
pretations fM in such a model. These heuristics are adapted to the special form
of TRSs resulting from our transformation in Def. 16 when verifying liveness
properties. The main objective is that we want to distinguish between terms

11



that contain instances of p and terms that do not. Therefore, our aim is to in-
terpret the former terms by 0 and the latter terms by 1. Since the intention of
check is that an occurrence of p should be found, check(x) will be interpreted
as the constant function 0. Since top only occurs at the top, for top(x) we may
also choose a constant function. Having these objectives in mind, we arrive at
the following heuristic for choosing the operations fM in the model M = {0, 1}:

– topM (x) = checkM (x) = fM (x1, . . . , xn) = 0 for x = 0, 1, where f is the root
symbol of p;

– cM = 1 for every constant c, except if p = c;
– fM (x1, . . . , xn) = min(x1, . . . , xn) for all other symbols f as long as this does

not conflict with the model requirement α(l) = α(r). In particular, for the
remaining unary symbols f one tries to choose fM (x) = x.

Applying these heuristics to our example results in the following interpretation:

topM (x) = checkM (x) = fM (x) = 0 for x ∈ M = {0, 1} and cM = 1

One checks that this is a model for the TRS. Here it is essential that we first
removed Rule (4), since fM (x) = 0 6= x if x = 1. The labelling results in the TRS

top1(c) → top0(check1(c))
check0(fi(x)) → f0(checki(x)) for i ∈ {0, 1}
check0(fi(x)) → fi(x) for i ∈ {0, 1}

In Step (c) of our termination procedure, we apply Lemma 20 again. By
counting the occurrences of top1, we can drop the first rule. By counting f1,
the second rule can be removed if i is 1, and by counting check0 we can delete
the third rule. So the remaining TRS just contains the rule check0(f0(x)) →
f0(check0(x)) whose termination is trivial to prove by the recursive path order.

This example indicates that preprocessing a TRS according to Steps (a) -
(c) often simplifies the termination proof considerably. For the original TRS of
Ex. 17, one needs dependency pairs for the termination proof, whereas after the
transformation a very simple recursive path order is sufficient.

5.3 Two Case Studies of Liveness

To demonstrate the applicability of our approach, we regard two case studies.
The first one is motivated by verification problems of protocols similar to the
bakery protocol [10]. We describe a network of processes which want to gain access
to a shared resource. The processes waiting for the resource are served one after
another. Since the maximal size of the waiting line is fixed, a new process can
only enter the waiting line if a process in the current line has been “served”
(i.e., if it has been granted access to the resource). The maximal length n of the
waiting line is arbitrary, and we will show that the liveness property holds for all
n ∈ IN. Hence, techniques like classical model checking are not applicable here.

The processes in the line are served on a “first in - first out” basis (this
corresponds to the serving of clients in a shop). So at the front end of the waiting
line, a process may be served, where serving is denoted by a constant serve. If a
process is served, its place in the line is replaced by a free place, denoted by free.
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If the place in front of some process is free, this process may take the free place,
creating a free place on its original position. If the line has a free place at its back
end, a new process new may enter the waiting line, taking over the position of
the free place. Apart from new processes represented by new we also consider old
processes represented by old, which were already in the line initially. We want
to verify the liveness property that eventually all old processes will be served.
To model protocols with TRSs, we represent the state of the whole network by
a top term. Introducing the symbol top at the back end of the waiting line, this
network is described by the following top rewrite system R:

top(free(x)) → top(new(x)) new(serve) → free(serve)
new(free(x)) → free(new(x)) old(serve) → free(serve)
old(free(x)) → free(old(x))

Note that the above TRS admits infinite reductions of top terms. For instance,

top(new(serve)) →R top(free(serve)) →R top(new(serve)) →R . . .

describes that the protocol for serving processes and for letting new processes en-
ter may go on forever. But we will prove that after finitely many steps one reaches
a term without the symbol old, i.e., eventually all old processes are served. In
our terminology this liveness property is represented by Live(Ttop,→R, G) where
G = {t | t does not contain an instance of old(x)}. Note that this liveness prop-
erty does not hold for various variations of this system. For instance, if processes
are allowed to swap by new(old(x)) → old(new(x)), or if new processes are always
allowed to line up by top(x) → top(new(x)), then liveness is destroyed.

Since top(serve) is the only ground top term that is in normal form, we
conclude that NF(Ttop) ⊆ G. Hence by Thm. 4 the required liveness property is
equivalent to SN(Ttop,→G). To prove this termination property of →G, according
to Thm. 18 we may prove termination of the TRS LS(R, p):

top(free(x)) → top(check(new(x))) (7)

new(free(x)) → free(new(x)) (8)

old(free(x)) → free(old(x)) (9)

new(serve) → free(serve) (10)

old(serve) → free(serve) (11)

check(free(x)) → free(check(x)) (12)

check(new(x)) → new(check(x)) (13)

check(old(x)) → old(check(x)) (14)

check(old(x)) → old(x) (15)

While standard techniques for automated termination proofs of TRSs do not
succeed for this TRS, with the preprocessing steps (a) - (c) termination can
easily be shown automatically.

According to (a), we first delete rules which do not influence termination. By
counting the occurrences of old, with Lemma 20 we can remove Rule (11). Then
in Step (b), we apply the heuristics for semantic labelling and arrive at

topM (x) = checkM (x) = oldM (x) = 0, newM (x) = freeM (x) = x, serveM = 1

for x ∈ M = {0, 1}. Indeed this is a model for the TRS. For that purpose, we
had to remove Rule (11) since oldM (serveM ) = 0 6= 1 = freeM (serveM ). The
corresponding labelled TRS R is
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top
i
(freei(x))→ top

0
(checki(newi(x))) (7i) checki(freei(x))→ free0(checki(x)) (12i)

newi(freei(x))→ freei(newi(x)) (8i) checki(newi(x))→new0(checki(x)) (13i)
oldi(freei(x))→ free0(oldi(x)) (9i) check0(oldi(x))→old0(checki(x)) (14i)
new1(serve)→ free1(serve) (10) check0(oldi(x))→oldi(x), (15i)

for i ∈ {0, 1}. It remains to prove termination of this TRS of 15 rules. According
to Step (c) we repeatedly apply Lemma 20. By consecutively choosing Σ′ = {f}
for f being top1, old1, new1, free1, free0, and check0, the rules (71), (141), (10) and
(131), (91) and (121), (70), and finally (150) and (151) are removed. Termination
of the remaining system consisting of the rules (80), (81), (90), (120), (130), and
(140) is easily proved by the recursive path order, using a precedence satisfying
check0 > old0 > free0, check0 > new0 > free0, and new1 > free1. Hence, the
liveness property of this example can be proved automatically.

As a second case study we consider the following protocol on a ring of pro-
cesses (similar to a token ring protocol). Every process is in one of the three
states sent, rec (received), or no (nothing). Initially at least one of the processes
is in state rec which means that it has received a message (token). Now the
protocol is defined as follows:

If a process is in state rec then it may send its message to its right
neighbor which then will be in state rec, while the process itself then will
be in state sent.

Clearly, at least one process will always be in state rec, and this procedure can
go on forever; we will prove that eventually no process will be in state no. This
means that eventually all processes have received the message; a typical liveness
property to be proved. The requirement NF(I) ⊆ G and in fact NF(I) = ∅ (for
I consisting of all configurations containing rec) is easily seen to hold on the
protocol level. According to Thm. 4, for proving the desired liveness property it
suffices to show SN(I,→G). The protocol is encoded by unary symbols sent, rec,
and no, where the right neighbor of each of these symbols corresponds to the
root of its argument. To obtain a ring topology we add a unary symbol top and
a constant bot. For a symbol with the argument bot, its right neighbor is defined
to be the symbol just below top. So again the state of the whole ring network is
represented by a top-term top(f1(. . . (fn(bot)) . . .)). Here the size n of the ring
is arbitrary. In order to pass messages from the bot-process n to the top-process
1, an auxiliary unary symbol up is introduced.

rec(rec(x)) → sent(rec(x)) (16)
rec(sent(x)) → sent(rec(x)) (17)

rec(no(x)) → sent(rec(x)) (18)
rec(bot) → up(sent(bot)) (19)

rec(up(x)) → up(rec(x)) (20)

sent(up(x)) → up(sent(x)) (21)
no(up(x)) → up(no(x)) (22)

top(rec(up(x))) → top(rec(x)) (23)
top(sent(up(x))) → top(rec(x)) (24)

top(no(up(x))) → top(rec(x)) (25)

Now we prove that every infinite top reduction reaches a term without no, prov-
ing the desired liveness property. Applying Thm. 18 for p = no(x), this can be
done by proving termination of LS(R, p), which consists of Rules (16) - (22) and

top(rec(up(x))) → top(check(rec(x))) (23a)
top(sent(up(x))) → top(check(rec(x))) (24a)

check(sent(x)) → sent(check(x)) (27)
check(rec(x)) → rec(check(x)) (28)
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top(no(up(x))) → top(check(rec(x))) (25a)
check(up(x)) → up(check(x)) (26)

check(no(x)) → no(check(x)) (29)
check(no(x)) → no(x) (30)

Termination is easily proved completely automatically according to our heuris-
tics: by respectively choosing Σ′ to be {no} and {rec, up} in Lemma 20, the rules
(16), (18), (23a), and (25a) can be removed. After applying labelling according to
our heuristics a TRS is obtained for which termination is proved automatically
by applying Lemma 20 and the recursive path order, cf. [9].

6 Conclusion and Further Research

We showed how to relate liveness and termination of TRSs and presented a sound
and complete transformation such that liveness holds iff the transformed TRS
is terminating. By a simpler sound transformation and by refining termination
techniques for TRSs we developed an approach to verify liveness mechanically.

Our results can be refined in several ways. For instance, instead of one unary
top symbol one can regard several top symbols of arbitrary arity and one can
extend the framework to liveness w.r.t. several terms p1, . . . , pn instead of just
one p. Such refinements and further examples of liveness properties verified by
our method can be found in [9]. For example, we show liveness in a network with
several waiting lines of processes which want to gain access to a shared resource.
This problem is considerably more difficult than the waiting line protocol in
Sect. 5.3, since liveness only holds if the lines are synchronized in a suitable way.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Inf. Pr. Lett., 21:181–185, 1985.
2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133–178, 2000.
3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambr. Univ. Pr., 1998.
4. A. Bouajjani. Languages, rewriting systems, and verification of infinite-state sys-

tems. In Proc. ICALP ’01, volume 2076 of LNCS, pages 24–39, 2001.
5. N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3:69–116, 1987.
6. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appli-

cable Algebra in Engineering, Communication and Comp., 12(1,2):39–72, 2001.
7. J. Giesl and A. Middeldorp. Transforming context-sensitive rewrite systems. In

Proc. 10th RTA, volume 1631 of Lecture Notes in Comp. Sc., pages 271–285, 1999.
8. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive

rewrite systems. Journal of Functional Programming, 2003. To appear. Preliminary
extended version in Technical Report AIB-2002-02, RWTH Aachen, Germany.

9. J. Giesl and H. Zantema. Liveness in rewriting. Technical Report AIB-2002-11,
RWTH Aachen, Germany, 2002. http://aib.informatik.rwth-aachen.de.

10. L. Lamport. A new solution to Dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):453–455, 1974.

11. H. Zantema. Termination of term rewriting: Interpretation and type elimination.
Journal of Symbolic Computation, 17:23–50, 1994.

12. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta
Informaticae, 24:89–105, 1995.

15


