
Automated Termination Analysis for Haskell:

From Term Rewriting to Programming Languages⋆

Jürgen Giesl, Stephan Swiderski, Peter Schneider–Kamp, and René Thiemann

LuFG Informatik 2, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany,
{giesl,swiderski,psk,thiemann}@informatik.rwth-aachen.de

Abstract. There are many powerful techniques for automated termi-
nation analysis of term rewriting. However, up to now they have hardly
been used for real programming languages. We present a new approach
which permits the application of existing techniques from term rewriting
in order to prove termination of programs in the functional language Has-

kell. In particular, we show how termination techniques for ordinary re-
writing can be used to handle those features of Haskell which are missing
in term rewriting (e.g., lazy evaluation, polymorphic types, and higher-
order functions). We implemented our results in the termination prover
AProVE and successfully evaluated them on existing Haskell-libraries.

1 Introduction

We show that termination techniques for term rewrite systems (TRSs) are also
useful for termination analysis of programming languages like Haskell. Of course,
any program can be translated into a TRS, but in general, it is not obvious how
to obtain TRSs suitable for existing automated termination techniques. Adapting
TRS-techniques for termination of Haskell is challenging for the following reasons:

• Haskell has a lazy evaluation strategy. However, most TRS-techniques ignore
such evaluation strategies and try to prove that all reductions terminate.

• Defining equations in Haskell are handled from top to bottom. In contrast
for TRSs, any rule may be used for rewriting.

• Haskell has polymorphic types, whereas TRSs are untyped.
• In Haskell-programs with infinite data objects, only certain functions are

terminating. But most TRS-methods try to prove termination of all terms.
• Haskell is a higher-order language, whereas most automatic termination tech-

niques for TRSs only handle first-order rewriting.

There are only few techniques for automated termination analysis of func-
tional programs. Methods for first-order languages with strict evaluation strategy
were developed in [5, 11, 17]. For higher-order languages, [1, 3, 18] study how to
ensure termination by typing and [16] defines a restricted language where all

⋆ Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1.
Extended version of a paper [9] which appeared in Proc. RTA ’06, Seattle, USA,
LNCS 4098, pp. 297-312, 2006.

evaluations terminate. A successful approach for automated termination proofs
for a small Haskell-like language was developed in [12]. (A related technique is
[4], which handles outermost evaluation of untyped first-order rewriting.) How-
ever, these are all “stand-alone” methods which do not allow the use of modern
termination techniques from term rewriting. In our approach we build upon the
method of [12], but we adapt it in order to make TRS-techniques applicable.1

We recapitulate Haskell in Sect. 2 and introduce our notion of “termination”.
To analyze termination, our method first generates a corresponding termination
graph (similar to the “termination tableaux” in [12]), cf. Sect. 3. But in contrast
to [12], then our method transforms the termination graph into dependency
pair problems which can be handled by existing techniques from term rewriting
(Sect. 4). Our approach in Sect. 4 can deal with any termination graph, whereas
[12] can only handle termination graphs of a special form (“without crossings”).
We implemented our technique in the termination prover AProVE [10], cf. Sect. 5.

2 Haskell

We now give the syntax and semantics for a subset of Haskell which only uses cer-
tain easy patterns and terms (without “λ”), and function definitions without con-
ditions. Any Haskell-program (without type classes and built-in data structures)2

can automatically be transformed into a program from this subset [15].3 For ex-
ample, in our implementation lambda abstractions are removed by replacing ev-
ery Haskell-term “\ t1...tn → t” with the free variables x1, ..., xm by “f x1 . . . xm”.
Here, f is a new function symbol with the defining equation f x1...xm t1...tn = t.

2.1 Syntax of Haskell

In our subset of Haskell, we only permit user-defined data structures such as

data Nats = Z | S Nats data List a = Nil | Cons a (List a)

These data-declarations introduce two type constructors Nats and List of arity
0 and 1, respectively. So Nats is a type and for every type τ , “List τ” is also a
type representing lists with elements of type τ . Moreover, there is a pre-defined
binary type constructor → for function types. Since Haskell’s type system is
polymorphic, it also has type variables like a which stand for any type.

For each type constructor like Nats, a data-declaration also introduces its
data constructors (e.g., Z and S) and the types of their arguments. Thus, Z has
arity 0 and is of type Nats and S has arity 1 and is of type Nats → Nats.

1 Alternatively, one could simulate Haskell’s evaluation strategy by context-sensitive

rewriting (CSR), cf. [6]. But termination of CSR is hard to analyze automatically.
2 See Sect. 5 for an extension to type classes and pre-defined data structures.
3 Of course, it would be possible to restrict ourselves to programs from an even smaller

“core”-Haskell subset. However, this would not simplify the subsequent termination
analysis any further. In contrast, the resulting programs would usually be less read-
able, which would make interactive termination proofs harder.

2

Apart from data-declarations, a program has function declarations. Here,
“from x” generates the infinite list of numbers starting with x and “take n xs”
returns the first n elements of xs. The type of from is “Nats → (List Nats)”
and take has type “Nats → (List a) → (List a)” where τ1 → τ2 → τ3 stands for
τ1 → (τ2 → τ3).

from x = Consx (from (S x)) takeZ xs = Nil
taken Nil = Nil
take (S n) (Cons x xs) = Cons x (taken xs)

In general, function declarations have the form “f ℓ1 . . . ℓn = r”. The function
symbols f on the “outermost” position of left-hand sides are called defined. So the
set of function symbols is the disjoint union of the (data) constructors and the
defined function symbols. All defining equations for f must have the same num-
ber of arguments n (called f ’s arity). The right-hand side r is an arbitrary term,
whereas ℓ1, . . . , ℓn are special terms, so-called patterns. Moreover, the left-hand
side must be linear, i.e., no variable may occur more than once in “f ℓ1 . . . ℓn”.

The set of terms is the smallest set containing all variables, function symbols,
and well-typed applications (t1 t2) for terms t1 and t2. As usual, “t1 t2 t3” stands
for “((t1 t2) t3)”. The set of patterns is the smallest set with all variables and
terms “c t1 . . . tn” where c is a constructor of arity n and t1, . . . , tn are patterns.

The positions of t are Pos(t) = {ε} if t is a variable or function symbol. Other-
wise, Pos(t1 t2) = {ε}∪{1 π | π∈Pos(t1)}∪{2 π | π∈Pos(t2)}. As usual, we de-
fine t|ε = t and (t1 t2)|i π = ti|π. The head of t is t|1n where n is the maximal num-
ber with 1n∈Pos(t). So the head of t= taken xs (i.e., “(taken) xs”) is t|11 = take.

2.2 Operational Semantics of Haskell

Given an underlying program, for any term t we define the position e(t) where the
next evaluation step has to take place due to Haskell’s outermost strategy. So in
most cases, e(t) is the top position ε. An exception are terms “f t1... tn tn+1... tm”
where arity(f) = n and m > n. Here, f is applied to too many arguments. Thus,
one considers the subterm “f t1 . . . tn” at position 1m−n to find the evaluation
position. The other exception is when one has to evaluate a subterm of f t1 . . . tn
in order to check whether a defining f -equation ℓ = r will then become applicable
on top position. We say that an equation ℓ = r from the program is feasible for
a term t and define the corresponding evaluation position eℓ(t) w.r.t. ℓ if either

(a) ℓ matches t (then we define eℓ(t) = ε), or

(b) for the leftmost outermost position π where head(ℓ|π) is a constructor and where

head(ℓ|π) 6=head(t|π), the symbol head(t|π) is defined or a variable. Then eℓ(t)=π.

Since Haskell considers the order of the program’s equations, t is evaluated below
the top (on position eℓ(t)) whenever (b) holds for the first feasible equation ℓ = r
(even if an evaluation with a subsequent defining equation would be possible at
top position). Thus, this is no ordinary leftmost outermost evaluation strategy.

3

Definition 1 (Evaluation Position e(t)). For any term t, we define

e(t) =

1m−n π, if t = f t1 . . . tn tn+1 . . . tm, f is defined, m > n = arity(f),
and π = e(f t1 . . . tn)

eℓ(t) π, if t = f t1 . . . tn, f is defined, n = arity(f), there are feasible
equations for t (the first is “ℓ=r”), eℓ(t) 6=ε, and π=e(t|eℓ(t))

ε, otherwise

If t= takeu (from m) and s= take (S n) (from m), then t|e(t) =u and s|e(s) = from m.
We now present Haskell’s operational semantics by defining the evaluation re-

lation →H. For any term t, it performs a rewrite step on position e(t) using the
first applicable defining equation of the program. So terms like “xZ” or “takeZ”
are normal forms: If the head of t is a variable or if a symbol is applied to too
few arguments, then e(t) = ε and no rule rewrites t at top position. Moreover,
a term s = f s1 . . . sm with a defined symbol f and m ≥ arity(f) is a normal
form if no equation in the program is feasible for s. If head(s|e(s)) is a defined
symbol g, then we call s an error term (i.e., then g is not “completely” defined).

For terms t = c t1 . . . tn with a constructor c of arity n, we also have e(t) = ε
and no rule rewrites t at top position. However, here we permit rewrite steps
below the top, i.e., t1, . . . , tn may be evaluated with →H. This corresponds to the
behavior of Haskell-interpreters like Hugs which evaluate terms until they can be
displayed as a string. To transform data objects into strings, Hugs uses a function
“show”. This function can be generated automatically for user-defined types by
adding “deriving Show” behind the data-declarations. This show-function would
transform every data object “c t1 . . . tn” into the string consisting of “c” and of
show t1, . . . , show tn. Thus, show would require that all arguments of a term
with a constructor head have to be evaluated.

Definition 2 (Evaluation Relation →H). We have t →H s iff either

(1) t rewrites to s on the position e(t) using the first equation of the program
whose left-hand side matches t|e(t), or

(2) t = c t1 . . . tn for a constructor c of arity n, ti →H si for some 1 ≤ i ≤ n,
and s = c t1 . . . ti−1 si ti+1 . . . tn

For example, we have the infinite evaluation from m →H Consm (from (S m))
→H Cons m (Cons (S m) (from (S m))) →H . . . On the other hand, the following
evaluation is finite: take (S Z) (from m) →H take (S Z) (Cons m (from (S m))) →H

Consm(takeZ (from (S m))) →H Consm Nil.
The reason for permitting non-ground terms in Def. 1 and 2 is that our ter-

mination method in Sect. 3 evaluates Haskell symbolically. Here, variables stand
for arbitrary terminating terms. Def. 3 introduces our notion of termination.

Definition 3 (H-Termination). The set of H-terminating ground terms is the
smallest set of ground terms t with

(a) t does not start an infinite evaluation t →H . . . ,

4

(b) if t →∗
H

(f t1 . . . tn) for a defined function symbol f , n < arity(f), and the
term t′ is H-terminating, then (f t1 . . . tn t′) is also H-terminating, and

(c) if t→∗
H

(c t1 . . . tn) for a constructor c, then t1, . . . , tn are also H-terminating.

A term t is H-terminating iff tσ is H-terminating for all substitutions σ with
H-terminating ground terms (of the correct types). These substitutions σ may
also introduce new defined function symbols with arbitrary defining equations.

So a term is only H-terminating if all its applications to H-terminating terms
H-terminate, too. Thus, “from” is not H-terminating, as “from Z” has an infinite
evaluation. But “take u (from m)” is H-terminating: when instantiating u and m
by H-terminating ground terms, the resulting term has no infinite evaluation.

To illustrate that one may have to add defining equations to examine H-ter-
mination, consider the function nonterm of type Bool → (Bool → Bool) → Bool:

nonterm True x = True nonterm False x = nonterm (x True) x (1)

The term “nonterm False x” is not H-terminating: one obtains an infinite eval-
uation if one instantiates x by the function mapping all arguments to False. In
full Haskell, such functions can of course be represented by lambda terms and
indeed, “nontermFalse (\y → False)” starts an infinite evaluation.

3 From Haskell to Termination Graphs

Our goal is to prove H-termination of a start term t. By Def. 3, H-termination
of t implies that tσ is H-terminating for all substitutions σ with H-terminating
ground terms. Thus, t represents a (usually infinite) set of terms and we want to
prove that they are all H-terminating. Without loss of generality, we can restrict
ourselves to normal ground substitutions σ, i.e., substitutions where σ(x) is a
ground term in normal form w.r.t. →H for all variables x in t.

Regard the start term t = takeu (fromm). A naive approach would be to
consider the defining equations of all needed functions (i.e., take and from) as re-
write rules. However, this disregards Haskell’s lazy evaluation strategy. So due to
the non-terminating rule for “from”, we would fail to prove H-termination of t.

Therefore, our approach starts evaluating the start term a few steps. This
gives rise to a so-called termination graph. Instead of transforming defining
Haskell-equations into rewrite rules, we then transform the termination graph
into rewrite rules. The advantage is that the initial evaluation steps in this graph
take the evaluation strategy and the types of Haskell into account and therefore,
this is also reflected in the resulting rewrite rules.

To construct a termination graph for the start term t, we begin with the
graph containing only one single node, marked with t. Similar to [12], we then
apply expansion rules repeatedly to the leaves of the graph in order to extend it
by new nodes and edges. As usual, a leaf is a node with no outgoing edges. We
have obtained a termination graph for t if no expansion rule is applicable to its
leaves anymore. Afterwards, we try to prove H-termination of all terms occurring
in the termination graph, cf. Sect. 4. We now describe our five expansion rules
intuitively using Fig. 1. Their formal definition is given in Def. 4.

5

takeu (from m)

takeZ (from m)

Nil

take (S n) (from m)

take (S n) (Cons m (from (S m)))

Consm (taken (from (S m)))

m taken (from (S m))

n S m

m

[u/Z] [u/(S n)]

aCase

b

Eval

c

Eval

d

Eval

e

f

ParSplit

g
h

Ins

i j
ParSplit

k

Fig. 1. Termination graph for “take u (from m)”.

When constructing ter-
mination graphs, the goal
is to evaluate terms. How-
ever, t = takeu (from m)
cannot be evaluated with
→H, since it has a vari-
able u on its evaluation
position e(t). The evalua-
tion can only continue if
we know how u is going
to be instantiated. There-
fore, the first expansion
rule is called Case Analysis (or “Case”, for short). It adds new child nodes
where u is replaced by all terms of the form (c x1 . . . xn). Here, c is a constructor
of the appropriate type and x1, . . . , xn are fresh variables. The edges to these
children are labelled with the respective substitutions [u/(c x1 . . . xn)]. In our
example, u is a variable of type Nats. Therefore, the Case-rule adds two child
nodes b and c to our initial node a, where u is instantiated by Z and by (S n),
respectively. Since the children of a were generated by the Case-rule, we call
a a “Case-node”. Every node in the graph has the following property: If all
its children are marked with H-terminating terms, then the node itself is also
marked by a H-terminating term. Indeed, if the terms in nodes b and c are
H-terminating, then the term in node a is H-terminating as well.

Now the terms in nodes b and c can indeed be evaluated. Therefore, the
Evaluation-rule (“Eval”) adds the nodes d and e resulting from one evaluation
step with →H. Moreover, e is also an Eval -node, since its term can be evaluated
further to the term in node f. So the Case- and Eval -rule perform a form of
narrowing that respects the evaluation strategy and the types of Haskell.

The term Nil in node d cannot be evaluated and therefore, d is a leaf of the
termination graph. But the term “Consm (taken (from (S m)))” in node f may
be evaluated further. Whenever the head of a term is a constructor like Cons
or a variable,4 then evaluations can only take place on its arguments. We use a
Parameter Split-rule (“ParSplit”) which adds new child nodes with the argu-
ments of such terms. Thus, we obtain the nodes g and h. Again, H-termination
of the terms in g and h obviously implies H-termination of the term in node f.

The node g remains a leaf since its term m cannot be evaluated further for
any normal ground instantiation. For node h, we could continue by applying the
rules Case, Eval , and ParSplit as before. However, in order to obtain finite
graphs (instead of infinite trees), we also have an Instantiation-rule (“Ins”).
Since the term in node h is an instance of the term in node a, one can draw
an instantiation edge from the instantiated term to the more general term (i.e.,
from h to a). We depict instantiation edges by dashed lines. These are the only
edges which may point to already existing nodes (i.e., one obtains a tree if one
removes the instantiation edges from a termination graph).

4 The reason is that “x t1 . . . tn” H-terminates iff the terms t1, . . . , tn H-terminate.

6

To guarantee that the term in node h is H-terminating whenever the terms in
its child nodes are H-terminating, the Ins-rule has to ensure that one only uses
instantiations with H-terminating terms. In our example, the variables u and m
of node a are instantiated with the terms n and (S m), respectively. Therefore,
in addition to the child a, the node h gets two more children i and j marked
with n and (S m). Finally, the ParSplit-rule adds j’s child k, marked with m.

Now we consider a different start term, viz. “take”. If a defined function has
“too few” arguments, then by Def. 3 we have to apply it to additional H-ter-
minating arguments in order to examine H-termination. Therefore, we have a
Variable Expansion-rule (“VarExp”) which would add a child marked with
“take x” for a fresh variable x. Another application of VarExp gives “take x xs”.
The remaining termination graph is constructed by the rules discussed before.

Definition 4 (Termination Graph). Let G be a graph with a leaf marked
with the term t. We say that G can be expanded to G′ (denoted “ G ⇒ G′”) if
G′ results from G by adding new child nodes marked with the elements of ch(t)
and by adding edges from t to each element of ch(t). Only in the Ins-rule, we
also permit to add an edge to an already existing node, which may then lead to
cycles. All edges are marked by the identity substitution unless stated otherwise.

Eval: ch(t)={t̃}, if t = (f t1 . . . tn), f is a defined symbol, n≥arity(f), t→H t̃
Case: ch(t) = {tσ1, . . . , tσk}, if t = (f t1 . . . tn), f is a defined function symbol,

n ≥ arity(f), t|e(t) is a variable x of type “d τ1...τm” for a type constructor d,
the type constructor d has the data constructors ci of arity ni (where 1 ≤
i ≤ k), and σi = [x/(ci x1 . . . xni

)] for fresh pairwise different variables
x1, . . . , xni

. The edge from t to tσi is marked with the substitution σi.
VarExp: ch(t) = {t x}, if t = (f t1 . . . tn), f is a defined function symbol,

n < arity(f), x is a fresh variable
ParSplit: ch(t)={t1, ..., tn} if t=(c t1...tn), c is a constructor or variable, n>0

Ins: ch(t) = {s1, . . . , sm, t̃}, if t = (f t1 . . . tn), t is not an error term, f is a de-
fined symbol, n ≥ arity(f), t = t̃σ for some term t̃, σ = [x1/s1, . . . , xm/sm].
Moreover, either t̃ = (x y) for fresh variables x and y, or t̃ is an Eval-node,
or t̃ is a Case-node and all paths starting in t̃ reach an Eval-node or a leaf
with an error term after traversing only Case-nodes.5 The edge from t to t̃
is called an instantiation edge.
If the graph already contained a node marked with t̃, then we permit to re-
use this node in the Ins-rule. So in this case, instead of adding a new child
marked with t̃, one may add an edge from t to the already existing node t̃.

Let Gt be the graph with a single node marked with t and no edges. G is a
termination graph for t iff Gt ⇒

∗ G and G is in normal form w.r.t. ⇒.

If one disregards Ins, then for each leaf there is at most one rule applicable.6

However, the Ins-rule introduces indeterminism. Instead of applying the Case-
rule on node a in Fig. 1, we could also apply Ins and generate an instantiation

5 This ensures that every cycle of the graph contains at least one Eval -node.
6 No rule is applicable to leaves with variables, constructors, or error terms.

7

edge to a new node with t̃ = (take u ys). Since the instantiation is [ys/(from m)],
node a would get an additional child node marked with the non-H-terminating
term (from m). Then our approach in Sect. 4 which tries to prove H-termination
of all terms in the termination graph would fail, whereas it succeeds for the graph
in Fig. 1. Therefore, in our implementation we developed a heuristic for construc-
ting termination graphs which tries to avoid unnecessary applications of Ins

(since applying Ins means that one has to prove H-termination of more terms).
An instantiation edge to t̃ = (x y) is needed to get termination graphs for

functions like tma which are applied to “too many” arguments in recursive calls.

tma (S m) = tma m m (2)

Here, tma has the type Nats → a. We obtain the termination graph in Fig. 2.
After applying Case and Eval , we result in “tmam m” in node d which is not
an instance of the start term “tma n” in node a. Of course, we could continue with

tma n

tmaZ tma (S m)

tma m m

tmam m

m

[n/Z] [n/(S m)]

x y

y

a

Case

b c

Eval

d

Ins

f

Ins

g

i

e

ParSplit

h

Fig. 2. Termination graph for “tma n”

Case and Eval infinitely often, but to
obtain a termination graph, at some
point we need to apply the Ins-rule.
Here, the only possibility is to regard
t = (tma m m) as an instance of the
term t̃ = (x y). Thus, we obtain an ins-
tantiation edge to the new node e. As
the instantiation is [x/(tma m), y/m],
we get additional child nodes f and g

marked with “tma m” and m, respectively. Now we can “close” the graph, since
“tmam” is an instance of the start term “tman” in node a. So the instantiation
edge to the special term (x y) is used to remove “superfluous” arguments (i.e., it
permits to go from “tma m m” in node d to “tmam” in node f). Thm. 5 shows
that by the expansion rules of Def. 4 one can always obtain normal forms.7

Theorem 5 (Existence of Termination Graphs). The relation ⇒ is nor-
malizing, i.e., for any term t there exists a termination graph.

4 From Termination Graphs to DP Problems

Now we present a method to prove H-termination of all terms in a termination
graph. To this end, we want to use existing techniques for termination analysis of
term rewriting. One of the most popular techniques for TRSs is the dependency
pair (DP) method [2]. In particular, the DP method can be formulated as a gen-
eral framework which permits the integration and combination of any termina-
tion technique for TRSs [7]. This DP framework operates on so-called DP prob-
lems (P ,R). Here, P and R are TRSs that may also have rules ℓ → r where r
contains extra variables not occurring in ℓ. P ’s rules are called dependency pairs.
The goal of the DP framework is to show that there is no infinite chain, i.e., no

7 All proofs can be found in the appendix.

8

infinite reduction s1σ1 →P t1σ1 →∗
R

s2σ2 →P t2σ2 →∗
R

. . . where si → ti ∈ P
and σi are substitutions. In this case, the DP problem (P ,R) is called finite. See
[7] for an overview on techniques to prove finiteness of DP problems.8

Instead of transforming termination graphs into TRSs, the information avail-
able in the termination graph can be better exploited if one transforms these
graphs into DP problems, cf. the end of this section. In this way, we also do
not have to impose any restrictions on the form of the termination graph (as
in [12] where one can only analyze certain start terms which lead to termina-
tion graphs “without crossings”). Then finiteness of the resulting DP problems
implies H-termination of all terms in the termination graph.

Note that termination graphs still contain higher-order terms (e.g., applica-
tions of variables to other terms like “x y” and partial applications like “takeu”).
Since most methods and tools for automated termination analysis only operate
on first-order TRSs, we translate higher-order terms into applicative first-order
terms containing just variables, constants, and a binary symbol ap for function
application. So terms like “x y”, “take u”, and “take u xs” are transformed into
the first-order terms ap(x, y), ap(take, u), and ap(ap(take, u), xs), respectively. As
shown in [8], the DP framework is well suited to prove termination of applicative
TRSs automatically. To ease readability, in the remainder we will not distinguish
anymore between higher-order and corresponding applicative first-order terms,
since the conversion between these two representations is obvious.

Recall that if a node in the termination graph is marked with a non-H-
terminating term, then one of its children is also marked with a non-H-termina-
ting term. Hence, every non-H-terminating term corresponds to an infinite path
in the termination graph. Since a termination graph only has finitely many nodes,
infinite paths have to end in a cycle. Thus, it suffices to prove H-termination for
all terms occurring in cycles resp. in strongly connected components (SCCs) of
the termination graph. Moreover, one can analyze H-termination separately for
each SCC. Here, an SCC is a maximal subgraph G′ of the termination graph
such that for all nodes n1 and n2 in G′ there is a non-empty path from n1 to n2

traversing only nodes of G′. (In particular, there must also be a non-empty path
from every node to itself in G′.) The termination graph for “takeu (from m)” in
Fig. 1 has just one SCC with the nodes a, c, e, f, h. The following definition is
needed to extract dependency pairs from SCCs of the termination graph.

Definition 6 (DP Path). Let G′ be an SCC of a termination graph containing
a path from a node marked with s to a node marked with t. We say that this path
is a DP path if it does not traverse instantiation edges, if s has an incoming
instantiation edge in G′, and if t has an outgoing instantiation edge in G′.

So in Fig. 1, the only DP path is a, c, e, f, h. Since every infinite path has
to traverse instantiation edges infinitely often, it also has to traverse DP paths

8 In the DP literature, one usually does not regard rules with extra variables on right-
hand sides, but almost all existing termination techniques for DPs can also be used
for such rules. (For example, finiteness of such DP problems can often be proved by
eliminating the extra variables by suitable argument filterings [2].)

9

infinitely often. Therefore, we generate a dependency pair for each DP path. If
there is no infinite chain with these dependency pairs, then no term corresponds
to an infinite path, i.e., then all terms in the graph are H-terminating.

More precisely, whenever there is a DP path from a node marked with s to a
node marked with t and the edges of the path are marked with σ1, . . . , σm, then
we generate the dependency pair sσ1 . . . σm → t. In Fig. 1, the first edge of the
DP path is labelled with the substitution [u/(S n)] and all remaining edges are
labelled with the identity. Thus, we generate the dependency pair

take (S n) (from m) → taken (from (S m)). (3)

The resulting DP problem is (P ,R) where P = {(3)} and R = ∅.9 Automated
termination tools can easily show that this DP problem is finite. Hence, the start
term “takeu (from m)” is H-terminating in the original Haskell-program.

Similarly, finiteness of the DP problem ({tma (S m) → tma m}, ∅) for the
start term “tman” from Fig. 2 is also easy to prove automatically.

A slightly more challenging example is obtained by replacing the last take-
rule by the following two rules, where p computes the predecesor function.

take (S n) (Cons x xs) = Consx (take (p (S n)) xs) p (S x) = x (4)

Consm (take (p (S n)) (from (S m))) to a

m take (p (S n)) (from (S m))

p (S n) S m

n m

f
ParSplit

g h
Ins

i
Eval

j
ParSplit

k l

Fig. 3. Subtree at node f of Fig. 1

Now the resulting termination graph can
be obtained from the graph in Fig. 1 by
replacing the subgraph starting with node
f by the subgraph in Fig. 3.

We want to construct an infinite chain
whenever the termination graph contains
a non-H-terminating term. In this case,
there also exists a DP path with first node s such that s is not H-terminating. So
there is a normal ground substitution σ where sσ is not H-terminating either.
There must be a DP path from s to a term t labelled with the substitutions
σ1, . . . , σm such that σ is an instance of σ1 . . . σm and such that tσ is also not
H-terminating. So the first step of the desired corresponding infinite chain is
sσ →P tσ. The node t has an outgoing instantiation edge to a node t̃ which
starts another DP path. So to continue the construction of the infinite chain in
the same way, we now need a non-H-terminating instantiation of t̃ with a nor-
mal ground substitution. Obviously, t̃ matches t by some matcher τ . But while
t̃τσ is not H-terminating, the substitution τσ is not necessarily a normal ground
substitution. The reason is that t and hence τ may contain defined symbols.

This is also the case in our example. The only DP path is a, c, e, f, h

which would result in the dependency pair take (S n) (from m) → t with t =
take (p (S n)) (from (S m)). Now t has an instantiation edge to node a with t̃ =
takeu (from m). The matcher is τ = [u/(p (S n)), m/(S m)]. So τ(u) is not normal.

In this example, the problem can be avoided by already evaluating the right-
hand sides of dependency pairs as much as possible. So instead of a dependency

9 Def. 11 will explain how to generate R in general.

10

pair sσ1 . . . σm → t we now generate the dependency pair sσ1 . . . σm → ev(t).
For a node marked with t, ev(t) is the term reachable from t by traversing
only Eval -nodes. So in our example ev(p (S n)) = n, since node i is an Eval -
node with an edge to node k. Moreover, ev(t) can also evaluate subterms of t
if t is a ParSplit-node with a constructor as head or an Ins-node without an
instantiation edge to the special node “x y”. We obtain ev(S m) = S m for node
j and ev(take (p (S n)) (from (S m))) = taken (from (S m)) for node h. Thus, the
resulting DP problem is again (P ,R) with P = {(3)} and R = ∅.

To see how ev(t) must be defined for ParSplit-nodes where head(t) is a
variable, we regard the function nonterm again, cf. (1). In the termination graph
for the start term “nonterm b x”, we obtain a DP path from the node with
the start term to a node with “nonterm (xTrue)x” labelled with the substi-
tution [b/False]. So the resulting DP problem only contains the dependency pair
“nontermFalsex → ev(nonterm (xTrue)x)”. If we would define ev(xTrue) =
xTrue, then ev would not modify the term “nonterm (xTrue)x”. But then the
resulting DP problem would be finite and one could falsely prove H-termination.
(The reason is that the DP problem contains no rule to transform any instance
of “xTrue” to False.) But as discussed in Sect. 3, x can be instantiated by ar-
bitrary H-terminating functions and then, “xTrue” can evaluate to any term.
Therefore, ev must replace terms like “xTrue” by fresh variables. Similarly, if t
is an Ins-node with an instantiation edge to the node “x y”, then we also define
ev(t) to be a fresh variable. The reason for this will become clear in the sequel,
cf. Footnote 11.

Definition 7 (ev). Let G be a termination graph with a node t.10 Then

ev(t)=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

t, if t is a leaf, a Case-node, or a VarExp-node

x, for a fresh variable x if either

t is a ParSplit-node where head(t) is a variable or

t is an Ins-node with an instantiation edge to “x y”

ev(t̃), if t is an Eval-node with child t̃
t̃[x1/ev(t1), . . . , xn/ev(tn)], if t = t̃[x1/t1, . . . , xn/tn] and either

t is an Ins-node with the children t1, . . . , tn, t̃ or

t is a ParSplit-node, and t̃ = (c x1 . . . xn) for a constructor c

Our goal was to construct an infinite chain whenever s is the first node in a
DP path and sσ is not H-terminating for a normal ground substitution σ. As
discussed before, there is a DP path from s to t such that the chain starts with
sσ →P ev(t)σ and such that tσ and hence ev(t)σ is also not H-terminating. The
node t has an instantiation edge to some node t̃. Thus t = t̃[x1/t1, . . . , xn/tn]
and ev(t) = t̃[x1/ev(t1), . . . , xn/ev(tn)]. In order to continue the construc-
tion of the infinite chain, we need a non-H-terminating instantiation of t̃ with
a normal ground substitution. Clearly, if t̃ is instantiated by the substitution
[x1/ev(t1)σ, . . . , xn/ev(tn)σ], then it is again not H-terminating. However, the
substitution [x1/ev(t1)σ, . . . , xn/ev(tn)σ] is not necessarily normal. The prob-
lem is that ev does not perform those evaluations that correspond to instan-

10 To simplify the presentation, we identify nodes with the terms they are labelled with.

11

tiation edges and to edges from Case-nodes. Therefore, we now generate DP
problems which do not just contain dependency pairs P , but they also contain
all rules R which might be needed to evaluate ev(ti)σ further. Then we obtain
sσ →P ev(t)σ →∗

R
t̃σ′ for a normal ground substitution σ′. Since t̃ is again the

first node in a DP path, now this construction of the chain can be continued in
the same way infinitely many times. Hence, we obtain an infinite chain.

p (S n)

p (S Z) p (S (S x))

Z S (p (S x))

p (S x)

x

[n/Z] [n/(S x)]

iCase

m

Eval

n

Eval

o p

ParSplit

q
Ins

r

Fig. 4. Subtree at node i of Fig. 3

As an example, we replace the equation for
p in (4) by the following two defining equations:

p (S Z) = Z p (S x) = S (p x) (5)

In the termination graph for “takeu (from m)”
from Fig. 1 and 3, the node i would now be
replaced by the subtree in Fig. 4. So i is now a
Case-node. Thus, instead of (3) we obtain the
dependency pair

take (S n) (from m) → take (p (S n)) (from (S m)), (6)

since now ev does not modify its right-hand side anymore (i.e., ev(p (S n)) =
p (S n)). Hence, now the resulting DP problem must contain all rules R that
might be used to evaluate p (S n) when instantiated by σ.

So for any term t, we want to detect rules that might be needed to eval-
uate ev(t)σ further for normal ground substitutions σ. To this end, we first
compute the set con(t) of those terms that are reachable from t, but where
the computation of ev stopped. So con(t) contains all terms which might give
rise to further continuing evaluations that are not captured by ev. To compute
con(t), we traverse all paths starting in t. If we reach a Case-node s, we stop
traversing this path and insert s into con(t). Moreover, if we traverse an in-
stantiation edge to some node t̃, we also stop and insert t̃ into con(t). So in
the example of Fig. 4, we obtain con(p (S n)) = {p (S n)}, since i is now a Case-
node. If we started with the term t = take (S n) (from m) in node c, then we would
reach the Case-node i and the node a which is reachable via an instantiation
edge. So con(t) = {p (S n), takeu (fromm)}. Finally, con also stops at VarExp-
nodes (they are in normal form w.r.t. →H), at ParSplit-nodes whose head is a
variable and at Ins-nodes with an instantiation edge to “x y” (since ev already
“approximates” their result by fresh variables).11

11 The special treatment of Ins-nodes t = t1 t2 with an instantiation edge to “x y”
was not considered in the definitions of ev and con in [9]. If they were handled like
ordinary Ins-nodes, then we would obtain ev(t) = ev(t1) ev(t2). But then con(t1)
and con(t2) could be empty although “ev(t1)σ ev(t2)σ” can be evaluated further
for a normal ground substitution σ.

As an example, consider the termination graph resulting from the non-terminating
program with the defining equations “f Z z = f (id z Z) z” and “id x = x”.

12

Definition 8 (con). Let G be a termination graph with a node t. Then

con(t) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

∅, if t is a leaf, a VarExp-node, a ParSplit-node with variable head,

or an Ins-node with instantiation edge to “x y”

{t}, if t is a Case-node

{t̃} ∪ con(t1) ∪ . . . ∪ con(tn), if t is an Ins-node with the

children t1, . . . , tn, t̃ and an instantiation edge from t to t̃
S

t′child of t con(t′), otherwise

Now we can define how to extract a DP problem dpG′ from every SCC
G′ of the termination graph. As mentioned, we generate a dependency pair
sσ1 . . . σm → ev(t) for every DP path from s to t labelled with σ1, . . . , σm in G′.
If t = t̃[x1/t1, . . . , xn/tn] has an instantiation edge to t̃, then the resulting DP
problem must contain all rules that can be used reduce the terms in con(t1) ∪
. . .∪con(tn). For any term s, let rl(s) be the rules that can be used to reduce sσ
for normal ground substitutions σ. We will give the definition of rl afterwards.

Definition 9 (dp). For a termination graph containing an SCC G′, we define
dpG′ = (P ,R). Here, P and R are the smallest sets such that

• “sσ1 . . . σm → ev(t)” ∈ P and
• rl(q) ⊆ R,

whenever G′ contains a DP path from s to t labelled with σ1, . . . , σm, t = t̃[x1/t1,
. . . , xn/tn] has an instantiation edge to t̃, and q ∈ con(t1) ∪ . . . ∪ con(tn).

In our example with the start term “takeu (from m)” and the p-equations
from (5), the termination graph in Fig. 1, 3, and 4 has two SCCs G1 (consisting
of the nodes a, c, e, f, h) and G2 (consisting of i, n, p, q). Finiteness of the two
DP problems dpG1

and dpG2
can be proved independently. The SCC G1 only has

the DP path from a to h leading to the dependency pair (6). So we obtain dpG1
=

({(6)},R1) where R1 contains rl(q) for all q ∈ con(p (S n)) = {p (S n)}. Thus,
R1 = rl(p (S n)). The SCC G2 only has the DP path from i to q. Hence, dpG2

=
(P2,R2) where P2 consists of the dependency pair “p (S (S x)) → p (S x)” (since
ev(p (S x)) = p (S x)) and R2 contains rl(q) for all q ∈ con(x) = ∅, i.e., R2 = ∅.
Thus, finiteness of dpG2

can easily be proved automatically.
For every term s, we now show how to extract a set of rules rl(s) such

that every evaluation of sσ for a normal ground substitution σ corresponds to

f x z

f Z z

f (id z Z) z

id z Z x y

yid z Z

z

[x/Z]

Case

Eval

Ins

Ins ParSplit

Eval

From the DP path, we obtain the dependency pair
“f Z z → ev(f (id z Z) z)”, where ev(f (id z Z) z) =
f ev(id z Z) z. With our current definition, ev(id z Z)
is a fresh variable and therefore, the dependency pair is
“f Z z → f x z” which gives rise to an infinite chain.

But if we treated “id z Z” as an ordinary Ins-node,
we would get ev(id z Z) = ev(id z) ev(Z) = z Z and
the dependency pair would be “f Z z → f (z Z) z”.
The resulting DP problem would contain no rules, since
con(id z)∪ con(Z) = ∅. So then we could falsely prove
H-termination of f.

13

a reduction with rl(s).12 The only expansion rules which transform terms into
“equal” ones are Eval and Case. This leads to the following definition.

Definition 10 (Rule Path). A path from a node marked with s to a node
marked with t is a rule path if s and all other nodes on the path except t are
Eval - or Case-nodes and t is no Eval - or Case-node. So t may also be a leaf.

In Fig. 4, there are two rule paths starting in node i. The first one is i, m, o

(since o is a leaf) and the other is i, n, p (since p is a ParSplit-node).
While DP paths give rise to dependency pairs, rule paths give rise to rules.

Therefore, if there is a rule path from s to t labelled with σ1, . . . , σm, then rl(s)
contains the rule sσ1 . . . σm → ev(t). In addition, rl(s) must also contain all
rules required to evaluate ev(t) further, i.e., all rules in rl(q) for q ∈ con(t).13

Definition 11 (rl). For a node labelled with s, rl(s) is the smallest set with

• “sσ1 . . . σm → ev(t)” ∈ rl(s) and
• rl(q) ⊆ rl(s),

whenever there is rule path from s to t labelled with σ1, . . . , σm, and q ∈ con(t).

For the start term “takeu (from m)” and the p-equations from (5), we ob-
tained the DP problem dpG1

= ({6}, rl(p (S n))). Here, rl(p (S n)) consists of

p (S Z) → Z (due to the rule path from i to o) (7)

p (S (S x)) → S (p (S x)) (due to the rule path from i to p), (8)

as ev does not modify the right-hand sides of (7) and (8). Moreover, the require-
ment “rl(q) ⊆ rl(p (S n)) for all q ∈ con(Z) and all q ∈ con(S (p (S x)))” does not
add further rules. The reason is that con(Z)=∅ and con(S (p (S x)))={p (S n)}.
Now finiteness of dpG1

= ({6}, {(7), (8)}) is also easy to show automatically.
Finally, consider the following program which leads to the graph in Fig. 5.

f x = applyToZero f applyToZerox = xZ

This example shows that one also has to traverse edges resulting from VarExp

when constructing dependency pairs. Otherwise one would falsely prove H-termi-
nation. Since the only DP path goes from node a to f, we obtain the DP problem
({f x → f y},R) with R = rl(y) = ∅. This problem is not finite (and indeed, “f x”
is not H-terminating). In contrast, the definition of rl stops at VarExp-nodes.

12 More precisely, sσ →∗

H q implies sσ →∗

rl(s) q′ for a term q′ which is “at least as
evaluated” as q (i.e., one can evaluate q further to q′ if one also permits evaluation
steps below or beside the evaluation position).

13 So if t = t̃[x1/t1, . . . , xn/tn] has an instantiation edge to t̃, then here we also include
all rules of rl(t̃), since con(t) = {t̃} ∪ con(t1) ∪ . . . ∪ con(tn). In contrast, for the
definition of dp in Def. 9 we only regard the rules rl(q) for q ∈ con(t1)∪. . .∪con(tn),
whereas the evaluations of t̃ are captured by the dependency pairs.

14

f x

applyToZero f applyToZerox

f xZ

f y Z

y

a
Eval

b

Ins

c

Eval

d
VarExp

e

ParSplit

Ins
f g

h

Fig. 5. Termination graph for “f x”

The example also illustrates that rl and dp
handle instantiation edges differently, cf. Foot-
note 13. Since there is a rule path from a to b, we
would obtain rl(f x) = {f x → applyToZero f} ∪
rl(applyToZerox), since con(applyToZero f) =
applyToZerox. So for the construction of rl we
also have to include the rules resulting from
nodes like c which are only reachable by instan-
tiation edges.14 We obtain rl(applyToZerox) =
{applyToZerox → z}, since ev(xZ) = z for a fresh variable z. The following
theorem states the soundness of our approach.

Theorem 12 (Soundness). Let G be termination graph. If the DP problem
dpG′ is finite for all SCCs G′ of G, then all nodes t in G are H-terminating.15

While we transform termination graphs into DP problems, it would also be
possible to transform termination graphs into TRSs instead and then prove ter-
mination of the resulting TRSs. However, this approach has several disadvanta-
ges. For example, if the termination graph contains a VarExp-node or a Par-

Split-node with a variable as head, then we would result in rules with extra va-
riables on right-hand sides and thus, the resulting TRSs would never be termi-
nating. In contrast, a DP problem (P ,R) with extra variables in P and R can
still be finite, since dependency pairs from P are only applied on top positions
in chains and since R need not be terminating for finite DP problems (P ,R).

5 Extensions, Implementation, and Experiments

We presented a technique for automated termination analysis of Haskell which
works in three steps: First, it generates a termination graph for the given start
term. Then it extracts DP problems from the termination graph. Finally, one uses
existing methods from term rewriting to prove finiteness of these DP problems.

To ease readability, we did not regard Haskell’s type classes and built-in data
structures in the preceding sections. However, our approach easily extends to
these concepts [15]. To deal with type classes, we use an additional Case-rule in
the construction of termination graphs, which instantiates type variables by all
instances of the corresponding type class. Built-in data structures like Haskell’s
lists and tuples simply correspond to user-defined types with a different syntax.
To deal with integers, we transform them into a notation with the constructors
Pos and Neg (which take arguments of type Nats) and provide pre-defined rewrite
rules for integer operations like addition, subtraction, etc. Floating-point num-
bers can be handled in a similar way (e.g., by representing them as fractions).

14 This is different in the definition of dp. Otherwise, we would have R = rl(y)∪rl(f x).
15 Instead of dpG′ = (P ,R), for H-termination it suffices to prove finiteness of (P♯,R).

Here, P♯ results from P by replacing each rule f(t1, ..., tn) → g(s1, ..., sm) in P by
f ♯(t1, ..., tn)→g♯(s1, ..., sm), where f ♯ and g♯ are fresh “tuple” function symbols [2].

15

We implemented our approach in the termination prover AProVE [10]. It ac-
cepts the full Haskell 98 language defined in [13] and we successfully evaluated our
implementation with standard Haskell-libraries from the Hugs-distribution such
as Prelude, Monad, List, FiniteMap, etc. To access the implementation via a web
interface and for details on our experiments see http://aprove.informatik.

rwth-aachen.de/eval/Haskell/.
We conjecture that term rewriting techniques are also suitable for termination

analysis of other kinds of programming languages. In [14], we recently adapted
the dependency pair method in order to prove termination of logic programming
languages like Prolog. In future work, we intend to examine the use of TRS-
techniques for imperative programming languages as well.

References

1. A. Abel. Termination checking with types. RAIRO - Theoretical Informatics and

Applications, 38(4):277–319, 2004.
2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133–178, 2000.
3. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termi-

nation of recursive definitions. Math. Structures in Comp. Sc., 14(1):1–45, 2004.
4. O. Fissore, I. Gnaedig, and H. Kirchner. Outermost ground termination. In Proc.

WRLA ’02, ENTCS 71, 2002.
5. J. Giesl. Termination analysis for functional programs using term orderings. In

Proc. SAS’ 95, LNCS 983, pages 154–171, 1995.
6. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive

rewrite systems. Journal of Functional Programming, 14(4):379–427, 2004.
7. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:

Combining techniques for automated termination proofs. In Proc. LPAR ’04, LNAI
3452, pages 301–331, 2005.

8. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In Proc. FroCoS ’05, LNAI 3717, pp. 216-231, 2005.

9. J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated Termi-
nation Analysis for Haskell: From Term Rewriting to Programming Languages. In
Proc. RTA ’06, LNCS, 2006. To appear.

10. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. In Proc. IJCAR ’06, LNAI, 2006. To appear.

11. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. In Proc. POPL ’01, pages 81–92. ACM Press, 2001.

12. S. E. Panitz and M. Schmidt-Schauss. TEA: Automatically proving termination
of programs in a non-strict higher-order functional language. In Proc. SAS ’97,
LNCS 1302, pages 345–360, 1997.

13. S. Peyton Jones (ed.). Haskell 98 Languages and Libraries: The revised report.
Cambridge University Press, 2003.

14. P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated ter-
mination analysis for logic programs by term rewriting. In Proc. LOPSTR ’06,
LNCS, 2006. To appear.

15. S. Swiderski. Terminierungsanalyse von Haskellprogrammen. Diploma Thesis,
RWTH Aachen, 2005. See http://aprove.informatik.rwth-aachen.de/eval/Haskell/.

16

16. A. Telford and D. Turner. Ensuring termination in ESFP. Journal of Universal

Computer Science, 6(4):474–488, 2000.
17. C. Walther. On proving the termination of algorithms by machine. Artificial

Intelligence, 71(1):101–157, 1994.
18. H. Xi. Dependent types for program termination verification. Higher-Order and

Symbolic Computation, 15(1):91–131, 2002.

17

A Proofs

Theorem 5 (Existence of Termination Graphs). The relation ⇒ is nor-
malizing, i.e., for any term t, there exists a termination graph.

Proof. We first construct a graph G in normal form w.r.t. ⇒ which contains
nodes marked with “f x1 . . . xn” for all defined symbols f where the xi are pair-
wise fresh variables and arity(f) = n. Then, by performing suitable expansion
steps and by adding instantiation edges to these nodes, the graph Gt (which only
consists of one node which is marked with t) can be transformed into normal
form. Here, in the end all nodes which are not reachable from t are removed.

To construct G, we start with the nodes “f x1 . . . xn” for all defined symbols
f . Currently, these nodes are not reached by any edges. By performing Case-
and Eval -steps, we obtain paths from “f x1 . . . xn” to all right-hand sides of
f -rules. Then we apply the following procedure: We apply ParSplit until we
end up with leaves of the form “g s1 . . . sk” for defined symbols g. If k = arity(g),
then we can add an instantiation edge to the already existing node “g x1 . . . xk”
and continue this process with the nodes s1, . . . , sk (i.e., we apply ParSplit

again until we reach leaves with a defined symbol as head). If k < arity(g),
then we perform a number of VarExp-steps to obtain a term where the number
of arguments of g is arity(g). If k > arity(g), then we perform Ins-steps with
instantiation edges to the node “x y” until we obtain a term where the number
of arguments of g is arity(g). ⊓⊔

To prove the soundness theorem of our approach (Thm. 12), we need a lemma
about the semantics of ev, con, and rl (Lemma 18) and a lemma about the
semantics of dp (Lemma 20). To describe the semantics of ev, con, and rl, we
use the following relation ⇒H, which also permits reductions on positions beside
or below the evaluation position.

Definition 13 (⇒H). We have t ⇒H s iff t rewrites to s on a position π which
is not strictly above e(t) using the first equation of the program whose left-hand
side matches t|π.

The following lemma shows that ⇒H allows us to simulate all reductions that
are performed by the function ev.

Lemma 14 (Simulation of ev by ⇒H). Let G be a termination graph and
let σ be a substitution. If tσ ⇒∗

H
ev(t)σ holds for all ParSplit- and Ins-nodes

t where ev(t) is a fresh variable, then tσ ⇒∗
H

ev(t)σ holds for all nodes t of the
termination graph G.

Proof. We use induction on the edge-relation of G where we remove all instanti-
ation edges. This relation is well founded, since after the removal of the instan-
tiation edges, G is an acyclic graph. We only have to consider the cases where
ev(t) 6= t and where ev(t) is not a fresh variable.

18

If t is an Eval -node with child t̃, then we have tσ →H t̃σ and thus, tσ ⇒H t̃σ.
By the induction hypothesis we obtain t̃σ ⇒∗

H
ev(t̃)σ and hence tσ ⇒H t̃σ ⇒∗

H

ev(t̃)σ = ev(t)σ.
If t = (c t1 . . . tn) is a ParSplit-node with a constructor as head, then we

directly obtain the result from the induction hypotheses for the children ti:

tσ = (c t1σ . . . tnσ) ⇒∗
H (c ev(t1)σ . . . ev(tn)σ) = ev(t)σ

Finally, if t = t̃[x1/t1, . . . , xn/tn] is an Ins-node with an instantiation edge
to an Eval - or Case-node t̃, then we proceed in a similar way by using the
induction hypotheses for the ti:

tσ = t̃[x1/t1, . . . , xn/tn]σ

= t̃σ[x1/t1σ, . . . , xn/tnσ]

⇒∗
H

t̃σ[x1/ev(t1)σ, . . . , xn/ev(tn)σ]

= t̃[x1/ev(t1), . . . , xn/ev(tn)]σ

= ev(t)σ

⊓⊔

Lemma 18 about the semantics of ev, con, and rl shows a kind of converse
to Lemma 14, i.e., how to simulate reductions with →H by ev, con, and rl.
Essentially, our goal is to show that if t is a node in the termination graph and
there is a reduction tσ →∗

H
q, then we also have ev(t)σ →∗

S

s∈con(t) rl(s) q′ for

some term q′ with q ⇒∗
H

q′.
Since the rules

⋃

s∈con(t) rl(s) do not take σ into account, this does not
hold in general if the terms introduced by σ are evaluated in the reduction
tσ →∗

H
q. A possibility would be to restrict ourselves to normal substitutions

σ, i.e., to substitutions where σ(x) is in normal form w.r.t. →H for all variables
x. However, to ease the proof of Lemma 18, we consider a slightly larger class
of substitutions. We only require that σ is evaluated enough in the reduction
tσ →∗

H
q. This means that in this reduction we do not evaluate those terms

introduced by σ which may have a non-functional type. (Terms with functional
type may lead to future evaluations when supplied with an argument. However,
this does not lead to any problems for our desired lemma, because ev replaces
such subterms by fresh variables.)

We formalize this concept in the two following definitions. Here, drop replaces
all non-functional terms by fresh variables, except those terms whose head is
already a constructor.

Definition 15 (drop, undrop). We define a function drop from terms to terms
as follows:

– drop(t) = t, if t has a functional type (i.e., an instance of the type a → b)
– drop(c t1 . . . tn) = c drop(t1) . . . drop(tn), if c is a constructor of arity n
– drop(t) = xt, otherwise; here xt is some fresh variable

19

We define undrop as the inverse function of drop, i.e., undrop is the substitution
which replaces every variable xt by t. For any substitution σ, let σdrop be the
substitution with σdrop(x) = drop(σ(x)) for all variables x. (Here, we allow
substitutions with infinite domains.)

For example, if we have a data type

data D a = C (a → a) | E a | G a a

and a defined function f of type a, then we obtain drop(f) = xf , drop(E f) = E xf ,
drop(C f) = C f (since here, the subterm f has type a → a), and drop(G f) = G f
(since here, “G f” has the functional type a → D a).

Now we define that a substitution is evaluated enough for a reduction if
this reduction could also be performed when replacing all terms introduced by
the substitution (except constructors and terms of functional type) by fresh
variables. The constructors cannot be replaced since they are needed for pattern
matching. The terms of functional types cannot be replaced either since they
can be substituted for variables in the heads of subterms (i.e., for variables x
in subterms of the form “x t1 . . . tn” and they can be further evaluated when
supplied with suitable arguments t1 . . . tn).

Definition 16 (Evaluated Enough). We say that a substitution σ is eval-
uated enough in a (possibly infinite) reduction tσ →H t1 →H t2 →H . . . iff
tσdrop →H s1 →H s2 →H . . . and ti = undrop(si) for all i.

An evaluated enough substitution may introduce terms of functional type
which may be evaluated further during a reduction. We have to ensure that
such an evaluation only happens if this is required in order to obtain again
a subterm with a constructor as head. Otherwise, tσ →∗

H
q does not imply

ev(t)σ →∗
S

s∈con(t) rl(s) q′ for some term q′ with q ⇒∗
H

q′. The reason is that t

could be a variable x at a leaf of the termination graph and σ could instantiate
x by a term of functional type which is then reduced to q.

Therefore, we restrict ourselves to so-called necessary reductions tσ →∗
H

q.
These reductions are needed in order to facilitate pattern matching. The idea of
necessary reductions is the following restriction: “if one performs reductions at
all, then one has to evaluate until the head is a constructor”.

Definition 17 (Necessary Reduction). We say that a reduction t →∗
H

s is
necessary iff t = s or both s = (c s1 . . . sn) for some constructor c of arity n and

– t = c t1 . . . tn and all reductions ti →
∗
H

si are necessary or
– t = (f t1 . . . tk) →∗

H
(g l1 . . . lm) →H (c r1 . . . rn) for some defined symbol g

and all reductions ri →
∗
H

si are necessary.

Note that whenever t starts a necessary reduction of length greater than zero,
then t has a base type, since t can be reduced to (c s1 . . . sn) for some constructor
c of arity n.

Now we can prove the desired lemma which states the needed properties of
ev, con, and rl.

20

Lemma 18 (Properties of ev, con, and rl). Let G be a termination graph
and let t be a node in G. Let tσ →∗

H
q be a necessary reduction where σ is

evaluated enough. Then we have16

(a) ev(t)σ →∗
S

s∈con(t) rl(s) q′ for some term q′ with q ⇒∗
H

q′

(b) If t is a Case- or Eval -node and if tσ 6= q, then there is a rule path from
t to some term t̂ which is labelled by the substitutions σ1, . . . , σm such that
σ = σ1 . . . σmτ and ev(t̂)τ →∗

S

s∈con(t̂) rl(s) q′ for some substitution τ and

some term q′ with q ⇒∗
H

q′.

Proof. The lemma is proved by induction. The induction relation is obtained
using the lexicographic combination of the length of the reduction tσ →∗

H
q and

the edge relation of the graph which results from G by removing all outgoing
edges of Eval -nodes. (Due to the condition on the Ins-rule in Def. 4, after
removing these edges, the remaining graph is acyclic. Hence, the edge-relation
is well founded.) In other words, as induction hypothesis we may assume that
the lemma holds for all terms t̃ where the corresponding reduction t̃σ →∗

H
q is

shorter or where the reduction has the same length but t̃ is a child of the original
term t where t is not an Eval -node.

We first consider the case where tσ = q. Here, we choose q′ = ev(t)σ and
by Lemma 14 we obtain q = tσ ⇒∗

H
ev(t)σ = q′. Thus (a) is fulfilled and (b) is

trivially true. So, in the remainder of the proof we assume that tσ 6= q and as the
reduction is necessary, we know that the head of q is a constructor. We perform
case analysis according to the expansion rule applied to generate t’s children.

Leaf

If t is a leaf then t is either an error term, a constructor, or a variable x. In
the first two cases, tσ cannot be reduced with →H and hence, we obtain tσ = q
which is a contradiction. In the last case we also have tσ = q, as the reduction is
necessary and as σ is evaluated enough. Hence, drop(tσ) = drop(xσ) = xσdrop =
tσdrop →∗

H
q′ for some term q′ with undrop(q′) = q.

To prove that tσ = q also holds in the last case, we show the following
claim for arbitrary terms s, p, and p′: if s →∗

H
p is a necessary reduction and

drop(s) →∗
H

p′ with undrop(p′) = p, then s = p. Then we use this result for
s = tσ, p = q, and p′ = q′. We perform induction on s:

• If s has a functional type then we obtain s = p by the definition of necessary
reductions.

• If s = (c s1 . . . sn) for some constructor c of arity n, then p = (c p1 . . . pn)
where si →

∗
H

pi are necessary reductions. We have drop(s) = (c drop(s1) . . .
drop(sn)) →∗

H
(c drop(p′1) . . . drop(p′n)) = p′ where p = undrop(p′) =

(c undrop(p′1) . . . undrop(p′n)). Since drop(si) →∗
H

p′i and undrop(p′i) = pi,
the induction hypothesis implies si = pi and hence, s = p.

16 Here, σ may have to be extended to the fresh variables in ev(t) or ev(t̂) that do not
occur in t.

21

• Otherwise, we have drop(s) = xs. From drop(s) →∗
H

p′ we conclude p′ = xs.
Hence, p = undrop(p′) = undrop(xs) = s.

Eval

If t is an Eval -node with child t̃, then ev(t) = ev(t̃), con(t) = con(t̃), and
t →H t̃.

Since every evaluation of tσ has to start with this evaluation step, we have the
reduction tσ →H t̃σ →∗

H
q where the reduction of t̃σ →∗

H
q is shorter than the re-

duction of tσ to q. Moreover, the reduction fulfills the requirements of Lemma 18:
By Def. 17, it is obvious that the reduction is necessary. As σ is evaluated enough
in the original reduction, we obtain tσdrop →∗

H
p where undrop(p) = q. The first

step in this reduction is tσdrop →H t̃σdrop and then t̃σdrop is further reduced to
p. Thus, we may conclude t̃σdrop →∗

H
p which proves that σ is evaluated enough

in the reduction of t̃σ →∗
H

q. Hence, we can use the induction hypotheses for (a)
and (b).

By the induction hypothesis for (a) we have

(a) ev(t̃)σ →∗
S

s∈con(t̃) rl(s) q′ and thus, ev(t)σ →∗
S

s∈con(t) rl(s) q′

for some term q′ with q ⇒∗
H

q′.
Next we prove (b). If t̃ is no Case- or Eval -node, then the edge from t to

t̃ is a rule path. So by defining t̂ = t̃ and τ = σ, (b) follows from the induction
hypothesis for (a). Thus, here we need (a) in order to prove (b).

Otherwise, if t̃ is a Case- or Eval -node, then we know that the head of t̃ is
defined. As the reduction tσ →∗

H
q is necessary, the head of q is a constructor and

thus, we have t̃σ 6= q. By the induction hypothesis for (b) there is a rule path
from t̃ to t̂ satisfying the conditions in (b). Then there is also a corresponding
rule path from t to t̂, which proves (b).

Case

If t is a Case-node, then ev(t) = t and con(t) = {t}. Moreover, t|e(t) is a variable
x. As σ is evaluated enough, the term σ(x) must be of the form “c t1 . . . tn” for
some constructor c of arity n.

One of the children of t is tδ with δ = {x/(c x1 . . . xn)} for fresh variables
x1, . . . , xn. Let σ′ be like σ, but on these fresh variables we define σ′(xi) = ti for
all i. Then we have σ = δσ′. Thus, tσ = tδσ′ →∗

H
q is a necessary reduction. We

obtain tδ σ′
drop = tδ σdrop [x1/drop(t1), . . . , xn/drop(tn)] = tσdrop. Therefore,

since σ is evaluated enough in the original reduction tσ →∗
H

q, σ′ is evaluated
enough in the reduction tδ σ′ →∗

H
q.

Since tδ is smaller than t (it is the child of t) and since the reduction has
the same length, the induction hypothesis for (b) now implies that there is a
rule path from tδ to some term t̂ which is labelled by σ1, . . . , σm such that
σ′ = σ1 . . . σmτ and ev(t̂)τ →∗

S

s∈con(t̂) rl(s) q′ for some term q′ with q ⇒∗
H

q′.

Hence, there is also a rule path from t to t̂ which is labelled by δ, σ1, . . . , σm

such that σ = δσ′ = δσ1 . . . σmτ which proves (b).

22

Note that the rule “tδσ1 . . . σm → ev(t̂)” is contained in rl(t) and that rl(s) ⊆
rl(t) for all s ∈ con(t̂). Hence, we can now prove (a):

ev(t)σ = tσ = tδσ1 . . . σmτ →rl(t) ev(t̂)τ →∗

rl(t) q′.

Thus, here we need (b) in order to prove (a).

VarExp

If t is a VarExp-node then tσ has a functional type and therefore tσ = q which
is a contradiction.

ParSplit , where head(t) is a constructor

Now we have t = (c t1 . . . tn) and q = (c q1 . . . qn) with tiσ →∗
H

qi for all i.
As tσ 6= q and as the original reduction is necessary, the arity of c must be
n. By Def. 17, all the reductions tiσ →∗

H
qi are necessary. Moreover, tσdrop =

(c t1σdrop . . . tnσdrop) →∗
H

(c p1 . . . pn) where undrop(pi) = qi for all i. This
implies that σ is evaluated enough in every reduction tiσ →∗

H
qi as tiσdrop →∗

H
pi.

We have ev(t) = (c ev(t1) . . . ev(tn)) and con(t) = con(t1)∪. . .∪con(tn). Since
the reductions tiσ →∗

H
qi have at most the same length as the reduction from tσ

to q and since ti is smaller than t (it is a child of t), the induction hypothesis
implies

(a) ev(t)σ = (c ev(t1)σ . . . ev(tn)σ) →∗
S

s∈con(t1)∪...∪con(tn)=con(t) rl(s) c q′1 . . . q′n

for terms q′i with qi ⇒∗
H

q′i. By defining q′ = (c q′1 . . . q′n) we therefore obtain
q ⇒∗

H
q′, as desired.

ParSplit , where head(t) is a variable

Now we have ev(t) = x for a fresh variable x. By extending σ such that σ(x) = q,
we obtain

(a) ev(t)σ = xσ = q →∗
S

s∈con(t) rl(s) q.

Ins

If t is an Ins-node, then we have t = t̃[x1/t1, . . . , xn/tn]. If t̃ = (x y) then ev(t)
is a fresh variable and we proceed as in the previous case. Otherwise, due to the
condition on the Ins-rule in Def. 4, t̃ is an Eval - or a Case-node. Without loss
of generality, we assume that x1, . . . , xn are fresh variables not occurring in t or
in the domain of σ. Then we obtain tσ = t̃σ[x1/t1σ, . . . , xn/tnσ] →∗

H
q.

Now instead of the above reduction, we start with first evaluating the sub-
terms tiσ “as much as ever needed in the reduction tσ →∗

H
q”. In this way,

each tiσ is evaluated to a term si. For a precise definition of si, consider the
reduction t̃σ[x1/t1σ, . . . , xn/tnσ] →∗

H
q. Initially we choose si = tiσ. If the above

reduction is also possible with t̃σ[x1/drop(s1), . . . , xn/drop(sn)] (yielding a term
p with undrop(p) = q), then we have found our final terms si. Note that then

23

the substitution σ [x1/s1, . . . , xn/sn] is evaluated enough in this reduction. Oth-
erwise, at some point the evaluation of t̃σ[x1/drop(s1), . . . , xn/drop(sn)] gets
stuck as we have to evaluate a variable xr that was introduced by applying
drop on some si. Then we replace si by evaluating it further. More precisely,
instead of xr, the reduction requires a term of base type with a constructor as
head. In the original reduction, we were able to continue the evaluation. There-
fore, the term r must be reducible to a term of the form (c l1 . . . lk). Then, we
replace the subterm r of si by (c l1 . . . lk) and can continue behind the point
where we got stuck before. The reason is that for the old definition of si we
got drop(si) = C[drop(r)] = C[xr], but for the new definition of si we ob-
tain drop(si) = C[drop(c l1 . . . lk)] = C[c drop(l1) . . . drop(lk)] and hence the
required constructor c is present. In this way we re-define every si until the con-
structors that are necessary for the reduction are present in each si. Note that
by construction the reductions tiσ →∗

H
si are all necessary according to Def. 17.

Furthermore, as σ was evaluated enough to reduce tσ →∗
H

q and as this reduction
includes all reductions tiσ →∗

H
si, the substitution σ is evaluated enough in the

reduction tiσ →∗
H

si, too. The length of the reduction tiσ →∗
H

si obviously has
at most the same length as the original reduction tσ →∗

H
q. Thus, we can apply

the induction hypothesis for these reductions as every ti is a child of t.
Note that in this way we also obtain the necessary reduction t̃σ[x1/s1, . . . ,

xn/sn] →∗
H

q′ for a term q′ with q ⇒∗
H

q′, where the reduction t̃σ[x1/s1, ..., xn/sn]
→∗

H
q′ has at most the same length as the original reduction tσ →∗

H
q. The

substitution σ [x1/s1, . . . , xn/sn] is evaluated enough by construction.17

For every reduction tiσ →∗
H

si the induction hypothesis (a) implies

ev(ti)σ →∗
S

s∈con(ti)
rl(s) s′i for some terms s′i with si ⇒

∗
H

s′i. (9)

Moreover, a further reduction of si to s′i does not destroy the above proper-
ties, i.e., for the substitution σ′ = σ [x1/s′1, . . . , xn/s′n] we still have t̃σ′ →∗

H
q′′

for a term q′′ with

q ⇒∗
H q′′. (10)

Again, the reduction t̃σ′ →∗
H

q′′ is necessary, it has at most the same length as
the original reduction tσ →∗

H
q, and the substitution σ′ is evaluated enough.

Note that the reduction t̃σ′ →∗
H

q′′ has length greater zero, as head(q) =
head(q′′) is a constructor and head(t̃) is defined. As t̃ is an Eval - or a Case-
node we use induction hypothesis (b) for the child t̃ of t. We obtain a node t̂ and
a substitution τ such that there is a rule path from t̃ to t̂ labelled by substitutions
σ′

1, . . . , σ
′
m where σ′ = σ′

1 . . . σ′
mτ and

ev(t̂)τ →∗
S

s∈con(t̂) rl(s) q′ for some term q′ with q′′ ⇒∗
H

q′. (11)

17 Note that we cannot guarantee q = q′. As an example consider the rules f = d

and g x = C x x and the terms t = (g f), t̃ = (g x1), and q = (C d f). Then the
construction forces us to first evaluate t1 = f to s1 = d. Thus, t̃[x1/s1] = (g d). But
then the final result q′ is (C d d) which is further evaluated than q.

24

So the rule t̃σ′
1 . . . σ′

m → ev(t̂) is included in rl(t̃). As rl(s) ⊆ rl(t̃) for all
s ∈ con(t̂) we can now prove the desired statement (a).

ev(t)σ = t̃σ[x1/ev(t1)σ, . . . , xn/ev(tn)σ]
→∗

S

s∈con(t1)∪...∪con(tn) rl(s) t̃σ[x1/s′1, . . . , xn/s′n] by (9)

= t̃σ′

= t̃σ′
1 . . . σ′

mτ
→

rl(t̃) ev(t̂)τ

→∗

rl(t̃)
q′ by (11)

Thus, ev(t)σ →∗
S

s∈con(t) rl(s) q′. Note that we again needed (b) to prove (a).

As desired, we have
q ⇒∗

H
q′′ by (10)

⇒∗
H

q′ by (11)

⊓⊔

Now we can prove the lemma about the semantics of dp. It states the desired
connection between the DP problems obtained with dp and the termination of
the nodes in the termination graph. More precisely, it shows that every non-H-
terminating node corresponds to an infinite path in the termination graph and
that the rules in a DP problem can be used for the step from the last node of a
DP path to the first node in the next DP path.

In order to simplify the proof we introduce a new relation →֒H which we
use instead of H-termination. The advantage is that then we can use the notion
of “evaluated enough substitutions” for →֒H-reductions which is not directly
possible for H-termination.

Definition 19 (→֒H). We define s →֒H t iff

(a) s →H t,
(b) s = (f s1 . . . sn) for a defined function symbol f with n < arity(f)

and t = (f s1 . . . sn t′) for an H-terminating term t′, or
(c) s = (c t1 . . . tn) for a constructor c and t = ti for some i.

By Def. 3 it is easy to see that a ground term is not H-terminating iff it starts
an infinite →֒H-reduction. For a non-ground term t one can only conclude that
t terminates w.r.t. →֒H if t is H-terminating, but not vice versa.

Lemma 20 (Properties of dp). Let G be a termination graph and let s be a
node in G. Let σ be a substitution such that sσ starts an infinite →֒H-reduction,
where σ is evaluated enough in this →֒H-reduction and where σ(x) is terminating
w.r.t. →֒H for all variables x. Then there is a path (possibly of length zero)
from s to an Ins-node t = t̃[x1/t1, . . . , xn/tn] labelled with σ1, . . . , σm and an
instantiation edge from t to a node t̃ such that

– σ = σ1 . . . σmτ for some substitution τ such that tτ is not →֒H-terminating18

18 Again, σ may have to be extended to fresh variables x in t that do not occur in s.

25

– ev(t)τ >ε−→∗
R

t̃µ for R =
⋃

s∈con(t1)∪...∪con(tn) rl(s) such that t̃µ starts an
infinite →֒H-reduction and µ is a substitution which is evaluated enough in
this →֒H-reduction and all µ(x) are terminating w.r.t. →֒H.

Proof. The lemma is proved by induction on the edge-relation in the graph ob-
tained from G by removing all instantiation edges. In other words, as induction
hypothesis we may assume that the lemma holds for all children of the origi-
nal term s (except those which are only reachable via instantiation edges). We
perform case analysis according to the expansion rule applied on s.

Leaf

If s is a leaf, then s is an error term, a constructor, or a variable x. In the first
two cases, sσ is a normal form w.r.t. →֒H. In the last case, the term sσ = σ(x)
is terminating w.r.t. →֒H by the requirements on σ. Hence, sσ cannot start an
infinite →֒H-reduction which gives a contradiction.

Eval

If s is an Eval -node with child s̃, then we have s →H s̃ and thus, the infinite →֒H-
reduction of sσ has to start with sσ →֒H s̃σ. Hence, s̃σ is also not terminating
w.r.t. →֒H and σ is evaluated enough in the infinite →֒H-reduction. Since s̃ is
smaller than s (it is the child of s), the induction hypothesis implies the lemma.

Case

If s is a Case-node, then s|e(s) is a variable x. As σ is evaluated enough and as
we have an infinite →֒H-reduction, σ(x) must be of the form (c s1 . . . sn) for a
constructor c.

One of the children of s is sδ with δ = {x/(c x1 . . . xn)} for fresh variables
x1, . . . , xn. So we have σ = δσ′ for the substitution σ′ with σ′(xi) = si. Then
we obtain sσ = sδσ′, i.e., sδσ′ also starts an infinite →֒H-reduction. We argue
in the same way as for Case-nodes in the proof of Lemma 18 to show that σ′ is
evaluated enough in the infinite →֒H-reduction of sδσ′.

Since sδ is smaller than s (it is the child of s), the lemma is implied by the
induction hypothesis.

VarExp

If s is a VarExp-node, then the infinite →֒H-reduction starts with sσ →֒H sσ s′

for some H-terminating term s′. Recall that H-termination implies termination
w.r.t. →֒H. Hence, s′ cannot start an infinite →֒H-reduction and w.l.o.g. we as-
sume that s′ is evaluated “as much as ever needed in the infinite reduction of
sσ s′”, cf. the proof of Lemma 18 for Ins-nodes. (Alternatively, one can also
replace s′ by its normal form w.r.t. →H.) Let “s x” be the child of s. Then we
extend σ to the fresh variable x by defining σ(x) = s′. Thus, (s x)σ is not termi-
nating w.r.t. →֒H and “s x” is smaller than s (it is the child of s). Moreover, by
construction σ remains evaluated enough in the infinite reduction of “s x” and

26

instantiates all variables with terms that terminate w.r.t. →֒H. Thus, the lemma
follows from the induction hypothesis.

ParSplit

Now we have s = (c s1 . . . sn) for a constructor c or s = (x s1 . . . sn) for a
variable x. Since sσ is not terminating w.r.t. →֒H, there must be a si such that
siσ is not terminating w.r.t. →֒H either. Since si is smaller than s (it is the child
of s), the lemma again follows from the induction hypothesis.

Ins

Now we have s = s̃[x1/s1, . . . , xn/sn] and the children of s are s1, . . . , sn and s̃.
We first regard the case that there is an 1 ≤ i ≤ n where siσ starts an infinite

→֒H-reduction. Since si is smaller than s (it is the child of s), the lemma again
follows from the induction hypothesis. Note that if s̃ = (x1 x2) then we always
are in this case. The reason is the same as in the ParSplit-case where the head
is a variable: If both s1σ and s2σ are terminating w.r.t. →֒H, then this is also
the case for (s1σ s2σ) = sσ.

Now we regard the case where all siσ are terminating w.r.t. →֒H. We know
s̃ 6= (x1 x2) and hence ev(s) = s̃[x1/ev(s1), . . . , xn/ev(sn)]. Let t = s, ti = si,
t̃ = s̃, and τ = σ. Without loss of generality, we assume that x1, . . . , xn are
fresh variables not occurring in t or in the domain of τ = σ. Then sσ = tτ =
t̃τ [x1/t1τ, . . . , xn/tnτ] starts an infinite →֒H-reduction. Clearly, we also have an
infinite →֒H-reduction for any term which results from t̃τ [x1/t1τ, . . . , xn/tnτ] by
first reducing tiτ “as much as ever needed in the infinite reduction”, cf. the proof
of Lemma 18 in case of Ins-nodes. In this way, each tiτ evaluates to a term qi.

By construction, the reduction tiτ →∗
H

qi is necessary and τ is evaluated
enough. Hence, Lemma 18 (a) implies ev(ti)τ →∗

S

s∈con(ti)
rl(s) q′i for some term

q′i with qi ⇒
∗
H

q′i.
Let µ be like τ , but on the variables x1, . . . , xn we define µ(xi) = q′i. Then

again, t̃µ starts an infinite →֒H-reduction. Moreover, by construction µ is evalu-
ated enough and terminating w.r.t. →֒H. ⊓⊔

Finally, we can prove the main soundness theorem for our approach. Here,
ε
→ denotes a rewrite step at top position and

>ε
−→ denotes a rewrite step which

is strictly below the top position.

Theorem 12 (Soundness). Let G be a termination graph. If the DP problem
dpG′ is finite for all SCCs G′ of G, then all nodes t in G are H-terminating.
More precisely, if there is a non-H-terminating node in G, then there exists an
SCC G′ with a DP problem dpG′ = (P ,R) such that there is an infinite reduction
of the form

s1
ε
→P t1

>ε
−→∗

R s2
ε
→P t2

>ε
−→∗

R . . .

This implies that there is also an infinite reduction of the form

s1
ε→P♯ t1

>ε−→∗
R s2

ε→P♯ t2
>ε−→∗

R . . .

27

In other words, the DP problem (P♯,R) is not finite either.

Proof. If t is not H-terminating, then there is a substitution σ with H-terminating
terms such that tσ is a non-H-terminating ground term and thus, a non-→֒H-
terminating ground term. As σ(x) is H-terminating for all x, we may assume
that σ is a normal substitution (i.e., σ(x) is a normal form w.r.t. →H for all
variables x). Then, σ is evaluated enough in every →H-reduction and also in
every →֒H-reduction. As H-termination implies termination w.r.t. →֒H, we also
know that σ(x) is terminating w.r.t. →֒H for all variables x.

By Lemma 20 there is an infinite path in G. Since G is finite, this path must
end in some SCC G′. We regard the infinite tail of this path which only traverses
nodes and edges of G′. By Lemma 20, there must be an infinite sequence of nodes
s1, t1, s2, t2, . . . and substitutions σ1, σ2, σ3, . . . such that for all i

– the path from si to ti is a DP path in G′ labelled with σi
1, . . . , σ

i
mi

(thus P contains the rule siσi
1 . . . σi

mi
→ ev(ti))

– siσi is not terminating w.r.t. →֒H

– σi = σi
1 . . . σi

mi
τ i for substitutions τ i

– ev(ti)τ i >ε−→∗
R

si+1σi+1

Thus, we have

s1σ1 = s1σ1
1 . . . σ1

m1
τ1 ε

→P ev(t1)τ1 >ε
−→∗

R

s2σ2 = s2σ2
1 . . . σ2

m2
τ2 ε→P ev(t2)τ2 >ε−→∗

R

s3σ3 . . .

⊓⊔

28

