
Proving Innermost Normalisation Automatically

?

Thomas Arts

1

and J�urgen Giesl

2

1

Dept. of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht,

The Netherlands, E-mail: thomas@cs.ruu.nl

2

FB Informatik, TH Darmstadt, Alexanderstr. 10, 64283 Darmstadt, Germany,

E-mail: giesl@inferenzsysteme.informatik.th-darmstadt.de

Abstract. We present a technique to prove innermost normalisation

of term rewriting systems (TRSs) automatically. In contrast to previous

methods, our technique is able to prove innermost normalisation of TRSs

that are not terminating.

Our technique can also be used for termination proofs of all TRSs where

innermost normalisation implies termination, such as non-overlapping

TRSs or locally conuent overlay systems. In this way, termination of

many (also non-simply terminating) TRSs can be veri�ed automatically.

1 Introduction

Innermost rewriting, i.e. rewriting where only innermost redeces are contracted,

can be used to model call-by-value computation semantics. For that reason,

there has been an increasing interest in innermost normalisation (also called

innermost termination), i.e. in proving that the length of every innermost reduc-

tion is �nite. Techniques for proving innermost normalisation can for example

be utilized for termination proofs of functional programs (modelled by TRSs)

or of logic programs. (When transforming logic programs into TRSs, innermost

normalisation of the TRS implies termination of the logic program [AZ95].)

While both termination and innermost normalisation are undecidable prop-

erties [HL78], several techniques have been developed for proving termination of

TRSs automatically (e.g. path orderings [Pla78, Der82, DH95, Ste95b], Knuth-

Bendix orderings [KB70, DKM90], semantic interpretations [Lan79, BL87, BL93,

Ste94, Zan94, Gie95b], transformation orderings [BD86, BL90, Ste95a] etc. |

for surveys see e.g. [Der87, Ste95b]). However, there has not been any speci�c

method for innermost normalisation, i.e. the only way to prove innermost nor-

malisation automatically was by showing termination of the TRS. Therefore,

none of the techniques could prove innermost normalisation of non-terminating

systems.

?

Technical Report IBN 96/39, Technische Hochschule Darmstadt. This is an extended

version of an article with the same title presented at RTA-97 [AG97b].

This work was partially supported by the Deutsche Forschungsgemeinschaft under

grant no. Wa 652/7-1 as part of the focus program \Deduktion".

In the following we present a technique for innermost normalisation proofs.

For that purpose, in Sect. 2 we introduce a criterion for innermost normalisa-

tion. Subsequently, in Sect. 3 we develop a technique to check the requirements

of this criterion automatically. For every TRS, our technique generates a set of

constraints such that the existence of a well-founded ordering satisfying these

constraints is su�cient for innermost normalisation. Now standard techniques

developed for automated termination proofs of TRSs can be applied for the

generation of appropriate well-founded orderings. In this way, innermost nor-

malisation can be proved automatically. In Sect. 4 and 5 our technique is re�ned

further and in Sect. 6 we give a summary and comment on connections and

possible combinations with related approaches.

For several classes of TRSs, innermost normalisation already su�ces for ter-

mination [Gra95, Gra96]. Moreover, several modularity results exist for inner-

most normalisation [Kri95, Art96], which do not hold for termination. Therefore,

for those classes of TRSs termination can be proved by splitting the TRS and

proving innermost normalisation of the subsystems separately. The advantage

of this approach is that there are several interesting TRSs where a direct termi-

nation proof is not possible with the existing automatic techniques. However in

many of these examples, a suitable ordering satisfying the constraints generated

by our method can nevertheless be synthesized automatically. The reason is that

for many TRSs proving innermost normalisation automatically is essentially eas-

ier than proving termination. In this way, innermost normalisation (and thereby,

termination) of many also non-simply terminating systems can now be veri�ed

automatically. A collection of numerous examples where our technique proved

successful can be found in Sect. 7 and Sect. 8.

2 A Criterion for Innermost Normalisation

In this section we introduce a new criterion for innermost normalisation. For

that purpose the notions of constructors and de�ned symbols (that are well-

known for the subclass of constructor systems) are extended to arbitrary TRSs.

In the following, the root of a term f(: : :) is the leading function symbol f .

De�nition1 (De�ned Symbols and Constructors). Let R(F;R) be a TRS

(with the rules R over a signature F). Then D

R

= froot(l)jl ! r 2 Rg is the

set of the de�ned symbols of R and C

R

= F nD

R

is the set of constructors of

R. To stress the splitting of the signature we denote a TRS by R(D;C;R).

For example consider the following TRS, with the de�ned symbols f and g and

the constructors 0 and s.

f(g(x); s(0); y) ! f(y; y; g(x))

g(s(x))! s(g(x))

g(0)! 0

In contrast to the existing approaches for termination proofs, which compare

left and right-hand sides of rules, in the following we only examine those subterms

2

that are responsible for starting new reductions. For that purpose we concentrate

on the subterms in the right-hand sides of rules that have a de�ned root symbol

(because these are the only terms a rewrite rule can ever be applied to).

More precisely, for every rule f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)] (where f and

g are de�ned symbols and C denotes some context), we compare the argument

tuple s

1

; : : : ; s

n

with the tuple t

1

; : : : ; t

m

. In order to avoid the handling of tuples,

for a formal de�nition we extend the signature of the TRS by a new special tuple

symbol F for every de�ned symbol f in D. Now instead of the tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

we compare the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

). In this

paper we assume that the signature F consists of lower case function symbols

only and we denote the tuple symbols by the corresponding upper case symbols.

De�nition2 (Dependency Pairs). Let R(D;C;R) be a TRS. If

f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ; t

m

)]

is a rewrite rule of R with f; g 2 D, then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i is a

dependency pair of R.

In the above example we obtain the following dependency pairs:

hF(g(x); s(0); y);F(y; y; g(x))i (1)

hF(g(x); s(0); y);G(x)i (2)

hG(s(x));G(x)i (3)

Using the concept of dependency pairs we can now develop a criterion for

innermost normalisation. Note that in our example, we have the following in�nite

(cycling) reduction. (Here, s0 abbreviates s(0) etc.)

f(gs0; s0; gs0)! f(gs0; gs0; gs0)! f(gs0; sg0; gs0)! f(gs0; s0; gs0)! : : :

However, this reduction is not an innermost reduction, because in the �rst re-

duction step the subterm gs0 is a redex and would have to be reduced �rst. It

turns out that although this TRS is not terminating, it is nevertheless innermost

normalising. In the following, innermost reductions are denoted by \

i

!".

Every in�nite reduction corresponds to an in�nite introduction of new rede-

ces. To trace these newly introduced redeces we consider special sequences of

dependency pairs, so-called chains. A sequence of dependency pairs is a chain

if there exists a substitution � such that for all consecutive pairs hs

j

; t

j

i and

hs

j+1

; t

j+1

i in the sequence we have t

j

� !

�

R

s

j+1

� (cf. [AG97a]). In this way,

the right-hand side of every dependency pair can be seen as the newly introduced

redex that should be traced and the reductions t

j

� !

�

R

s

j+1

� are necessary to

normalize the arguments of the redex that is traced. When regarding innermost

reductions, arguments of a redex should be in normal form before the redex is

contracted. Moreover, when concentrating on innermost reductions, the reduc-

tions of the arguments to normal form should also be innermost reductions. This

results in the following restricted notion of a chain.

3

De�nition3 (Innermost R-chains). Let R(D;C;R) be a TRS. A sequence

of dependency pairs hs

1

; t

1

i hs

2

; t

2

i : : : is called an innermost R-chain if there

exists a substitution �, such that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

�

holds for every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

We always assume that di�erent (occurrences of) dependency pairs have

disjoint sets of variables and we always regard substitutions whose domain may

be in�nite. Hence, in our example we have the innermost chain

hG(s(x

1

));G(x

1

)i hG(s(x

2

));G(x

2

)i hG(s(x

3

));G(x

3

)i

because G(x

1

)�

i

!

�

R

G(s(x

2

))� and G(x

2

)�

i

!

�

R

G(s(x

3

))� holds for the substitu-

tion � that replaces x

1

by s(s(x

3

)) and x

2

by s(x

3

). In fact any �nite sequence of

the dependency pair hG(s(x));G(x)i is an innermost chain. In the next section we

will demonstrate that the above TRS actually has no in�nite innermost chain.

The following theorem shows that the absence of in�nite innermost chains is a

(su�cient and necessary) criterion for innermost normalisation.

Theorem4 (Innermost Normalisation Criterion). A TRS R is innermost

normalising if and only if no in�nite innermost R-chain exists.

Proof. Su�cient Criterion

Let t be a term that starts an in�nite innermost reduction. Then the term t

contains a subterm

1

f

1

(u

1

) that starts an in�nite innermost reduction, but none

of the terms u

1

starts an in�nite innermost reduction, i.e. the terms u

1

are

innermost normalising.

Let us consider an in�nite innermost reduction starting with f

1

(u

1

). The ar-

guments u

1

are reduced innermost to normal form, say v

1

, and then a rewrite

rule f

1

(w

1

) ! r

1

is applied to f

1

(v

1

), i.e. a substitution �

1

exists such that

f

1

(v

1

) = f

1

(w

1

)�

1

i

!

R

r

1

�

1

. Hence, we have u

1

i

!

�

R

w

1

�

1

and the terms w

1

�

1

are in normal form.

Now the in�nite innermost reduction continues with r

1

�

1

, i.e. the term r

1

�

1

starts an in�nite innermost reduction, too. Thus, r

1

contains a subterm f

2

(u

2

),

i.e. r

1

= C[f

2

(u

2

)] for some context C, such that f

2

(u

2

)�

1

starts an in�nite

innermost reduction and u

2

�

1

are innermost normalising terms. The �rst depen-

dency pair of the in�nite innermost chain that we construct is hF

1

(w

1

); F

2

(u

2

)i

corresponding to the rewrite rule f

1

(w

1

)! C[f

2

(u

2

)].

The other dependency pairs of the in�nite innermost chain are determined in the

same way: Let hF

i�1

(w

i�1

); F

i

(u

i

)i be a dependency pair such that f

i

(u

i

)�

i�1

starts an in�nite innermost reduction and the terms u

i

�

i�1

are innermost nor-

malising. Again, in zero or more steps f

i

(u

i

)�

i�1

reduces innermost to f

i

(v

i

)

with v

i

normal forms. A rewrite rule f

i

(w

i

)! r

i

can be applied to f

i

(v

i

) such

that r

i

�

i

starts an in�nite innermost reduction for some substitution �

i

with

v

i

= w

i

�

i

.

1

We denote tuples of terms t

1

; : : : ; t

n

by t.

4

Similar to the observations above, since r

i

�

i

starts an in�nite innermost reduc-

tion, there must be a subterm f

i+1

(u

i+1

) in r

i

such that f

i+1

(u

i+1

)�

i

starts an

in�nite innermost reduction and u

i+1

�

i

are innermost normalising terms. This

results in the i-th dependency pair hF

i

(w

i

); F

i+1

(u

i+1

)i in the innermost chain.

In this way, one obtains the in�nite sequence

hF

1

(w

1

); F

2

(u

2

)i hF

2

(w

2

); F

3

(u

3

)i hF

3

(w

3

); F

4

(u

4

)i : : :

It remains to prove that this sequence is really an innermost R-chain.

Note that F

i

(u

i

�

i�1

)

i

!

�

R

F

i

(v

i

) where v

i

= w

i

�

i

and all terms w

i

�

i

and thus all

terms F

i

(w

i

)�

i

are normal forms. Since we assume that the variables of consecu-

tive dependency pairs are disjoint, we obtain one substitution � = �

1

��

2

��

3

�: : :

such that F

i

(u

i

)�

i

!

�

R

F

i

(w

i

)� for all i. Thus, this sequence is indeed an in�nite

innermost R-chain.

Necessary Criterion

We prove that any in�nite innermost R-chain can be transformed into an in�nite

innermost reduction. Assume there exists an in�nite innermost chain.

hF

1

(s

1

); F

2

(t

2

)i hF

2

(s

2

); F

3

(t

3

)i hF

3

(s

3

); F

4

(t

4

)i : : :

Hence, there must be a substitution � such that all F

j

(s

j

)� are in normal form

and such that

F

2

(t

2

)�

i

!

�

R

F

2

(s

2

)�; F

3

(t

3

)�

i

!

�

R

F

3

(s

3

)�; : : : ;

resp. f

j

(t

j

)�

i

!

�

R

f

j

(s

j

)�, as R contains no F

j

-rules for upper case symbols F

j

.

Note that every dependency pair hF (s); G(t)i corresponds to a rewrite rule

f(s) ! C[g(t)] for some context C. Since no redex occurs in s�, this reduc-

tion also follows the innermost strategy, i.e. f(s)�

i

!

R

C[g(t)]�. Therefore, we

obtain the following in�nite innermost reduction.

f

1

(s

1

)�

i

!

R

C

1

[f

2

(t

2

)]�

i

!

�

R

C

1

[f

2

(s

2

)]�

i

!

R

C

1

[C

2

[f

3

(t

3

)]]�

i

!

�

R

: : :

ut

3 Automation of Innermost Normalisation Proofs

The advantage of our innermost normalisation criterion is that it is particularly

well suited for automation. In this section we present a method for proving

the absence of in�nite innermost chains automatically. For this automation we

assume the TRSs to be �nite, such that only �nitely many dependency pairs

need to be considered.

Assume that there is a sequence hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : of dependency pairs

and a substitution � such that all terms s

j

� are in normal form and such that

5

t

j

� reduces innermost to s

j+1

� for all j. Then to prove that this sequence is

�nite, it su�ces to �nd a well-founded

2

quasi-ordering % such that

s

1

� � t

1

� % s

2

� � t

2

� % s

3

� � t

3

� : : : (4)

In other words, we search for a quasi-ordering such that terms in dependency

pairs are decreasing and terms in between dependency pairs are weakly decreas-

ing. The reason for only demanding the weak inequalities t

j

� % s

j+1

� is that

the terms t

j

� and s

j+1

� are often identical.

To automate this search for a suitable ordering we now present a procedure

which, given a TRS, generates a set of constraints which are su�cient for (4).

Then standard techniques developed for termination proofs of TRSs can be used

to synthesize a well-founded quasi-ordering satisfying these constraints.

In the following we restrict ourselves to quasi-orderings where both % and �

are closed under substitution. To ensure that all dependency pairs are decreasing,

we demand s � t for all dependency pairs hs; ti. In our example this results in

the following constraints, cf. (1), (2), (3):

F(g(x); s(0); y) � F(y; y; g(x)); F(g(x); s(0); y) � G(x); G(s(x)) � G(x): (5)

Moreover, we have to ensure t

j

� % s

j+1

� whenever t

j

�

i

!

�

R

s

j+1

� holds. For

that purpose we demand the constraints l% r for all those rules l ! r that can

be used in an innermost reduction of t

j

�. Note that as all terms s

j

� are normal,

� is a normal substitution (i.e. it instantiates all variables with normal forms).

Hence, for the dependency pairs (2) and (3) we directly obtain that no rule can

ever be used to reduce a normal instantiation of G(x) (because G is no de�ned

symbol). The only dependency pair whose right-hand side can be reduced if its

variables are instantiated with normal forms is (1), because this is a dependency

pair with de�ned symbols in the right-hand side. As the only de�ned symbol in

F(y; y; g(x)) is g, the only rules that may be applied on normal instantiations of

this term are the two g-rules of the TRS. Since these g-rules can never introduce

a new redex with root symbol f, these two g-rules are the only rules that can be

used to reduce any normal instantiation of F(y; y; g(x)). Hence, in this example

we only have to demand that these rules should be weakly decreasing.

g(s(x))% s(g(x)); g(0)%0 (6)

In general, to determine the usable rules, i.e. (a superset of) those rules that

may possibly be used in a reduction of a normal instantiation of t, we proceed

as follows. If t contains a de�ned symbol f , then all f-rules are usable and

furthermore, all rules that are usable for right-hand sides of f-rules are also

usable for t.

De�nition5 (Usable Rules). Let R(D;C;R) be a TRS. For any f 2 D let

Rls(f) = ff(s) ! rjf(s) ! r in Rg. For any term t, U(t) is the smallest subset

of R such that

2

A quasi-ordering % is a reexive and transitive relation and % is called well-founded

if its strict part � is well founded.

6

� U(x) = ;,

� U(f(t

1

; : : : ; t

n

)) =

8

<

:

Rls(f) [

S

l!r2Rls(f)

U(r) [U(t

1

) [: : :[U(t

n

)

if f 2 D

U(t

1

) [: : :[U(t

n

) if f 62 D

Hence, we have U(F(y; y; g(x))) = Rls(g) = fg(s(x))! s(g(x)); g(0)! 0g:

So the constraints (6) ensure that whenever F(y; y; g(x)) is instantiated by

a normal substitution �, then reductions can only decrease the value of the

subterm g(x)�. However, we have to guarantee that the value of the whole term

F(y; y; g(x)) is weakly decreasing if an instantiation of g(x) is replaced by a

smaller term. For that purpose, we demand that F(y; y; g(x)) must be weakly

monotonic on the position of its subterm g(x), i.e. we also have to demand the

following constraint:

x

1

%x

2

) F(y; y; x

1

)%F(y; y; x

2

): (7)

To ease the formalization we only compute such monotonicity constraints for the

tuple symbols and for all other (lower case) symbols we demand weak monotonic-

ity in all of their arguments. In general, we obtain the following procedure for

the generation of constraints.

Theorem6 (Proving Innermost Normalisation). Let R be a TRS and let

% be a well-founded quasi-ordering where both % and � are closed under sub-

stitution. If % is weakly monotonic on all symbols apart from the tuple symbols

and if % satis�es the following constraints for all dependency pairs hs; ti

(a) s � t,

(b) l% r for all usable rules l! r in U(t),

(c) x

1

% y

1

^ : : : ^ x

n

% y

n

) C[x

1

; : : : ; x

n

]%C[y

1

; : : : ; y

n

], where C is a context

without de�ned symbols and f

1

; : : : ; f

n

are de�ned symbols such that t =

C[f

1

(u

1

); : : : ; f

n

(u

n

)],

then R is innermost normalising.

Proof. Suppose hs

1

; t

1

ihs

2

; t

2

i : : : is an in�nite innermost R-chain. Then there ex-

ists a substitution � such that s

j

� is in normal form and t

j

� reduces innermost

to s

j+1

� for all j. Hence, � replaces all variables by normal forms and therefore,

the only rules that can be applied in this reduction are the usable rules U(t

j

).

All usable rules are weakly decreasing and the terms t

j

are weakly monotonic on

those positions where they are applied. (This also holds for reductions in u

i

, be-

cause all lower case symbols are weakly monotonic.) Hence, we have t

j

�% s

j+1

�.

This results in an in�nite decreasing sequence s

1

� � t

1

�% s

2

� � t

2

�% : : : which

is a contradiction to the well-foundedness of % . Thus, no in�nite innermost R-

chain exists and by Thm. 4, the TRS is innermost normalising. ut

Hence, in our example to prove innermost normalisation it is su�cient to �nd

a well-founded quasi-ordering satisfying the constraints in (5), (6), and (7). For

that purpose one may for instance use the well-known technique of synthesizing

7

polynomial orderings [Lan79]. For example, these constraints are ful�lled by the

polynomial ordering where the constant 0 is mapped to the number 0, s(x)

is mapped to x + 1, g(x) is mapped to x + 2, F(x; y; z) is mapped to (x �

y)

2

+ 1, and G(x) is mapped to x. Methods to synthesize polynomial orderings

automatically have for instance been developed in [Ste94, Gie95b]. Note that for

our technique we do not require the quasi-ordering to be weakly monotonic on

tuple symbols. The only monotonicity constraint in our example is (7), which

is obviously satis�ed as F(x; y; z) is mapped to a polynomial which is weakly

monotonic

3

in its third argument z. However, this polynomial is not weakly

monotonic in x or y.

In this way, innermost normalisation of our example can be proved auto-

matically, i.e. this technique allows the application of standard techniques for

innermost normalisation proofs, even if the TRS is not terminating. Moreover,

using the results of [Gra95], Thm. 6 can also be applied for proving termination

of TRSs that are non-overlapping (or for locally conuent overlay systems).

As an example regard the following TRS by T. Kolbe where quot(x; y; z) is

used to compute 1+

�

x�y

z

�

, if x � y and z 6= 0 (i.e. quot(x; y; y) computes

j

x

y

k

).

quot(0; s(y); s(z))! 0

quot(s(x); s(y); z)! quot(x; y; z)

quot(x; 0; s(z))! s(quot(x; s(z); s(z)))

A problem with virtually all automatic approaches for termination proofs is

that they are restricted to simpli�cation orderings [Der79, Ste95b] and therefore

can only prove termination of TRS that are simply terminating. However, there

are numerous relevant and important terminating TRSs where simpli�cation

orderings fail. For instance, the above system is not simply terminating (the left-

hand side of the last rule is embedded in the right-hand side if z is instantiated

with 0).

Nevertheless, with our technique we can prove innermost normalisation and

therefore termination of this system automatically. As quot is the only de�ned

symbol of this system, we obtain the following dependency pairs (where Q de-

notes the tuple symbol for quot).

hQ(s(x); s(y); z);Q(x; y; z)i (8)

hQ(x; 0; s(z));Q(x; s(z); s(z))i (9)

Note that in this example there are no usable rules, as in the right-hand sides

of the dependency pairs no de�ned symbols occur. Hence, due to Thm. 6 we

only have to �nd a well-founded quasi-ordering such that both dependency pairs

3

When using polynomial interpretations, the monotonicity constraint (c) of Thm.

6 can also be represented as an inequality. For instance, if F is mapped to some

polynomial [F], then instead of (7) one could demand that the partial derivative of

[F](y; y; x) with respect to x should be non-negative, i.e.

@[F](y;y;x)

@x

� 0, cf. [Gie95b].

If one uses other techniques (e.g. path orderings) which can only generate monotonic

orderings, then of course one may drop the monotonicity constraint (c).

8

are decreasing. These constraints are for instance satis�ed by the polynomial

ordering where 0 is mapped to the number 0, s(x) is mapped to x + 1, and

Q(x; y; z) is mapped to x + (x � y + z)

2

. Hence, innermost normalisation and

thereby also termination of this TRS is proved (as it is non-overlapping). Note

that again we bene�t from the fact that the tuple symbol Q need not be weakly

monotonic in its arguments. Therefore an interpretation like the polynomial

x + (x � y + z)

2

may be used, which is not weakly monotonic in any of its

arguments. In fact, if the set of usable rules is empty, the quasi-ordering need

not even be weakly monotonic for any symbol.

4 A Re�nement using Innermost Dependency Graphs

While the method of Thm. 6 can be very successfully used for both innermost

normalisation and termination proofs, in this section we introduce a re�nement

of this approach, i.e. we show how the constraints obtained can be weakened. By

this weakening, the (automatic) search for a suitable quasi-ordering satisfying

these constraints can be eased signi�cantly.

In order to ensure that every possible in�nite innermost chain would result in

an in�nite decreasing sequence of terms, in the preceding section we demanded

s � t for all dependency pairs hs; ti. However, in many examples it is su�cient

if just some of the dependency pairs are decreasing.

For instance, in the quot-example up to now we demanded that both de-

pendency pairs (8) and (9) had to be decreasing. However, two occurrences

of the dependency pair (9) can never follow each other in a chain, because

Q(x

1

; s(z

1

); s(z

1

))� can never reduce to any instantiation of Q(x

2

; 0; s(z

2

)). The

reason is that the second arguments s(z

1

) resp. 0 of these two terms have di�er-

ent constructor root symbols. Hence, any possible in�nite chain would contain

in�nitely many occurrences of the other dependency pair (8). Therefore it is

su�cient if (8) is decreasing and if (9) is just weakly decreasing. In this way, we

obtain the following (weakened) constraints.

Q(s(x); s(y); z) � Q(x; y; z) (10)

Q(x; 0; s(z)) % Q(x; s(z); s(z)) (11)

In general, to determine those dependency pairs which may possibly follow

each other in innermost chains, we de�ne the following graph

4

.

De�nition7 (Innermost Dependency Graph). The innermost dependency

graph of a TRS R is a directed graph whose nodes are the dependency pairs and

4

Note that the conditions in Def. 7 are weaker than the conditions in the de�nition

of innermost chains (Def. 3): Instead of using one \global" substitution � for all

dependency pairs, now one may use di�erent \local" substitutions �. Moreover, we

only demand that these � should be normal substitutions and that v� must be

normal (but s� does not have to be in normal form any more). The reason for this

weakening is that the conditions of Def. 7 are more suitable for automation.

9

there is an arc from hs; ti to hv; wi if there exists a normal substitution � such

that t�

i

!

�

R

v� and v� is a normal form.

(8) (9)

Fig. 1. Innermost Dependency graph of the quot TRS

For instance, in the innermost dependency graph for the quot example there

are arcs from (8) to itself and to (9), and there is an arc from (9) to (8) (but not

to itself).

Now any in�nite innermost chain corresponds to a cycle in the innermost

dependency graph. Hence, it is su�cient that s � t holds for at least one depen-

dency pair on every cycle and that s% t holds for the other dependency pairs on

the cycles.

Theorem8 (Proving IN with Innermost Dependency Graphs). Let R

be a TRS and let % be a well-founded quasi-ordering where both % and � are

closed under substitution. If % is weakly monotonic on all symbols apart from

the tuple symbols, if % satis�es the following constraints for all dependency pairs

hs; ti on a cycle in the innermost dependency graph

(a) s% t,

(b) l% r for all usable rules l ! r in U(t),

(c) x

1

% y

1

^ : : :^ x

n

% y

n

) C[x

1

; : : : ; x

n

]%C[y

1

; : : : ; y

n

], where C is a context

without de�ned symbols and f

1

; : : : ; f

n

are de�ned symbols such that t =

C[f

1

(u

1

); : : : ; f

n

(u

n

)],

and if s � t holds for at least one dependency pair hs; ti on each cycle in the

innermost dependency graph, then R is innermost normalising.

Proof. Every possible in�nite innermost R-chain corresponds to an in�nite path

in the innermost dependency graph. This in�nite path traverses at least one

cycle in�nitely many times. Note that s � t holds for one dependency pair hs; ti

on this cycle and that this dependency pair must occur in�nitely often in the

in�nite innermost chain. As we may assume, without loss of generality, that all

other dependency pairs in an in�nite innermost chain are also on cycles in the

innermost dependency graph, similar to the proof of Thm. 6 we again obtain an

in�nite sequence of inequalities of which in�nitely many inequalities are strict.

This is a contradiction to the well-foundedness of % . Thus, no in�nite innermost

R-chain exists and by Thm. 4, the TRS is innermost normalising. ut

10

Hence, in the quot example the constraints (10) and (11) are in fact su�cient

for innermost normalisation. A suitable quasi-ordering satisfying these weakened

constraints can easily be synthesized (for instance, one could use the polynomial

interpretation where 0 and s are interpreted as usual and where Q(x; y; z) is

mapped to x). This example demonstrates that this weakening of the constraints

often enables the use of much simpler orderings (e.g. now we can use a linear,

weakly monotonic polynomial ordering whereas for the original constraints of

Sect. 3 we needed a non-weakly monotonic polynomial of degree 2).

However, for an automation of Thm. 8 we have to construct the innermost

dependency graph. Unfortunately, this cannot be done automatically, since for

two terms t and v it is undecidable whether there exists a normal substitution

� such that t� reduces innermost to a normal form v�. Hence, we can only

approximate this graph by computing a supergraph containing the innermost

dependency graph. Note that t� may only reduce to v� for some normal substi-

tution �, if either t has a de�ned root symbol or if both t and v have the same

constructor root symbol. Let cap(t) denote the result of replacing all subterms

in t with a de�ned root symbol by di�erent fresh variables. Then t� may only

reduce to v� if cap(t) and v are uni�able. Moreover, the most general uni�er

(mgu) of cap(t) and v must be a normal substitution.

Theorem9 (Computing Innermost Dependency Graphs). Let R be a

TRS. If t� !

�

R

v� holds for some normal substitution � such that v� is a

normal form, then cap(t) and v unify and their mgu is a normal substitution.

Proof. By induction on the structure of t we show that if a normal substitution

� and a normal term u exists such that t� !

�

R

u, then there exists a normal

substitution � (whose domain only includes variables that were newly introduced

in the construction of cap(t)) such that

5

cap(t)�� = u. Thus in particular, if

t� !

�

R

v�, we have cap(t)�� = v� (= v�� , because the variables of v� do not

occur in the domain of �). Hence, cap(t) and v unify. Moreover, for the mgu �

of cap(t) and v, there exists a substitution � with �� = �� . As both � and �

are normal, � must be a normal substitution, too.

If t is a variable, then t� is in normal form for any normal substitution �,

hence t� equals u. Moreover, we have cap(t) = t. So cap(t)� = u, i.e. in this

case � is the empty substitution.

If the root symbol of t is de�ned, then cap(t) = x for some fresh variable x.

Let � replace x by u. Then we have cap(t)�� = cap(t)� = u and � is normal.

If t = c(t

1

; : : : ; t

k

) for some constructor c 2 C, then u has to be of the

form c(u

1

; : : : ; u

k

) and t

i

� !

�

R

u

i

holds for all i. By the induction hypothesis we

obtain that normal substitutions �

i

exist such that cap(t

i

)��

i

= u

i

for all i. Note

that those variables in cap(t

i

) that were introduced by cap are disjoint from the

newly introduced variables in cap(t

j

) (for i 6= j). Hence, if � = �

1

� : : :� �

k

, then

for all i we have cap(t

i

)�� = u

i

resp. cap(t)�� = c(cap(t

1

); : : : ;cap(t

k

))�� =

c(u

1

; : : : ; u

k

) = u and again, � is normal. ut

5

Here, \t��" is de�ned as \(t�)�", i.e. � is applied �rst.

11

Now an approximation of the innermost dependency graph is computed by

drawing an arc from hs; ti to hv; wi if cap(t) and v unify (using a normalmgu �).

In this way we can compute the innermost dependency graph in the quot example

automatically. There are also examples where the innermost dependency graph

does not contain any cycles.

f(x; g(x))! f(1; g(x))

g(1) ! g(0)

In this example, the �rst dependency pair hF(x; g(x));F(1; g(x))i does not oc-

cur on a cycle in the innermost dependency graph, although cap(F(1; g(x))) =

F(1; y) uni�es with F(x; g(x)) using a mgu that replaces x by 1 and y by g(1).

However, g(1) is not a normal form and hence, this mgu is not a normal substi-

tution. The second dependency pair hG(1);G(0)i cannot occur on a cycle either,

since G(0) does not unify with G(1). Hence, using the re�ned technique of Thm.

8 we obtain no constraint at all, i.e. innermost normalisation can be proved by

only computing the (approximation of) the innermost dependency graph.

5 Computing Dependency Graphs by Narrowing

To perform innermost normalisation proofs according to the method of Thm. 8

we have to compute a graph containing the innermost dependency graph. How-

ever, for some examples the approximation presented in the preceding section is

too rough. For instance, let us replace the last rule of the quot system by the

following three rules.

quot(x; 0; s(z))! s(quot(x; z + s(0); s(z)))

0+ y ! y

s(x) + y ! s(x+ y)

Now instead of dependency pair (9) we obtain

hQ(x; 0; s(z));Q(x; z + s(0); s(z))i: (12)

Note that in our approximation of the innermost dependency graph there would

be an arc from (12) to itself, because after replacing z + s(0) by a new variable,

the right- and the left-hand side of (12) obviously unify (and the mgu is normal).

Hence, due to Thm. 8 we would have to �nd an ordering such that (12) is strictly

decreasing. But then no linear or weakly monotonic polynomial ordering satis�es

all resulting inequalities in this example.

However, in the real innermost dependency graph, there is no arc from (12)

to itself, because, similar to the original dependency pair (9), there is no substi-

tution � such that (z + s(0))� reduces to 0. Hence, there is no cycle consisting

of (12) only and therefore it is su�cient if (12) is just weakly decreasing. In this

way, the simple (linear) polynomial ordering of the last section would also satisfy

the constraints resulting from this example (if the tuple symbol PLUS(x; y) is

mapped to x). Therefore to ease the innermost normalisation (resp. termination)

12

proof of this example we need a method to compute a better approximation of

the innermost dependency graph.

Hence, we present a better technique to determine whether for two terms t

and v there exists a normal substitution � such that t� reduces innermost to the

normal form v�. For this purpose we use narrowing (cf. e.g. [Hul80]).

De�nition10 (Narrowing). Let R be a TRS. A term t narrows to a term q

(denoted by t

R

q), if there exists a nonvariable position p in t, � is the most

general uni�er of tj

p

and l for some rewrite rule l ! r of R, and q = t�[r�]

p

.

(Here, the variables of l ! r must have been renamed to fresh variables.)

To �nd out whether t�

i

!

�

R

v� holds for some normal substitution �, up

to now we checked whether cap(t) is uni�able with v. However, in those cases

where t itself is not already uni�able with v (i.e. in those cases where at least one

rule ofR is needed to reduce t� to v�), instead of examining t and v we may �rst

perform all possible narrowing steps on t (resulting in new terms t

1

; : : : ; t

n

). Now

it su�ces to check whether t

k

� reduces innermost to v� for one k 2 f1; : : : ; ng.

For example, to �nd out whether Q(x; z + s(0); s(z))�

i

!

�

R

Q(x

2

; 0; s(z

2

))�

holds for some normal substitution � we �rst compute all terms that Q(: : : z +

s(0) : : :) narrows to. Here, z + s(0) is the only nonvariable subterm which is

uni�able with a left-hand side of a rule. Hence, we only have

Q(: : : z + s(0) : : :)

R

Q(: : : s(0) : : :) by the �rst + rule, and

Q(: : : z + s(0) : : :)

R

Q(: : : s(x+ s(0)) : : :) by the second + rule.

Note that any term t can only be narrowed in one step to �nitely many terms

t

1

; : : : ; t

n

(up to variable renaming) and these terms t

1

; : : : ; t

n

can easily be

computed automatically.

In our example, now it su�ces to check whether a normal substitution �

exists such that Q(: : : s(0) : : :)� or Q(: : : s(x+ s(0)) : : :)� reduces innermost to a

normal form Q(: : :0 : : :)�. For that purpose we can use the technique presented

in Thm. 9. This technique immediately proves that such a substitution cannot

exist because neither s(0) nor cap(s(x+ s(0))) unify with the subterm 0.

Of course instead of using the technique of Thm. 9 on the obtained terms,

we could also apply narrowing again and replace Q(: : : s(x + s(0)) : : :) by those

terms it narrows to. In general, to determine whether t�

i

!

�

R

v� holds for some

normal substitution � one can apply an arbitrary number of narrowing steps to t.

Subsequently, the method of Thm. 9 is applied to test whether after application

of cap one of the resulting terms is uni�able with v (using a normal mgu).

By the use of narrowing we obtain a method to compute much better ap-

proximations of innermost dependency graphs. For instance, if in our example

we perform at least one narrowing step, then we can determine that the depen-

dency pair (12) does not form a cycle in the innermost dependency graph and

then termination can again be veri�ed using a linear, weakly monotonic polyno-

mial ordering. The following theorem proves the soundness of this approach.

13

Theorem11 (Computing Dependency Graphs by Narrowing). Let R

be a TRS and let t; v be terms with disjoint sets of variables. If there exists

a normal substitution � such that t�

i

!

�

R

v� and v� is a normal form, then

� t and v are uni�able, or

� there exists a term q and a normal substitution � such that t

R

q,

q�

i

!

�

R

v� and v� is a normal form.

Proof. The proof is done by induction on the length of the reduction t�

i

!

�

R

v�.

If the length is zero, then t and v unify. Otherwise we have t�

i

!

R

t

0

i

!

�

R

v� for

some term t

0

. As � is a normal substitution, the reduction t�

i

!

R

t

0

cannot take

place \in �". Hence, t contains some subterm f(u) such that a rule l ! r has

been applied to f(u)�. In other words, l matches f(u)� (i.e. l� = f(u)�, where �

is a normal substitution, because for innermost reductions the terms u must be

in normal form). Hence, the reduction has the following form: t� = t�[f(u)�]

p

=

t�[l�]

p

i

!

R

t�[r�]

p

= t

0

: Similar to Def. 10 we assume that the variables of l! r

have been renamed to fresh ones. Then �� is a uni�er of l and f(u) and hence,

there also exists a mgu �. By the de�nition of most general uni�ers there must

also be a substitution � such that �� = �� . Here, � is a normal substitution

because both � and � are normal. As the variables of t and v are disjoint, we

can assume that � never introduces any variables from v. Thus, we may de�ne

� to be like � for the variables of v, i.e. v� = v� is a normal form.

Let q be the term t�[r�]

p

. Then t

R

q holds by the de�nition of narrowing.

Moreover we have q� = t�� [r��]

p

= t��[r��]

p

= t�[r�]

p

= t

0

i

!

�

R

v� = v�: ut

6 Conclusion and Related Work

We have introduced a technique to automate innermost normalisation proofs

of term rewriting systems. For that purpose we have developed a new criterion

for innermost normalisation which is based on the concept of dependency pairs.

To automate the checking of this criterion, a set of constraints is synthesized

for each TRS and standard techniques developed for termination proofs can be

used to generate a well-founded ordering satisfying these constraints. If such an

ordering can be found, then innermost normalisation of the system is proved.

Our approach is the �rst automatic method which can also prove innermost

normalisation of systems that are not terminating. Moreover, our technique can

also very successfully be used for termination proofs of non-overlapping systems,

because for those systems innermost normalisation is already su�cient for ter-

mination. We implemented our technique for the generation of constraints and a

large collection of TRSs of which innermost normalisation resp. termination has

been proved automatically can be found in Sect. 7 and Sect. 8. These examples

include well-known non-simply terminating challenge problems from literature

as well as many practically relevant TRSs from di�erent areas of computer sci-

ence (such as arithmetical operations, several sorting algorithms, a reachability

algorithm on graphs, a TRS for substitutions in the lambda calculus etc.).

14

The concept of dependency pairs has been introduced in [Art96] and a �rst

automation of this concept can be found in [AG96b]. However, these approaches

were restricted to non-overlapping constructor systems without nested recursion,

whereas in the present paper we dealt with arbitrary rewrite systems. Moreover,

in contrast to these �rst approaches, in this paper we developed a complete cri-

terion for innermost normalisation and proved its soundness in a short and easy

way (while the corresponding proof in [Art96] was based on semantic labelling

[Zan95]). Finally, the introduction of innermost dependency graphs led to a con-

siderably more powerful technique than the method proposed in [AG96b].

Dependency pairs have a connection to semantic labelling [Zan95] (resp. to

self -labelling [MOZ96]). However, compared to semantic labelling the depen-

dency pair approach is better suited for automation, because here one does not

have to �nd an appropriate semantic interpretation. At �rst sight, there also

seems to be a similarity between innermost chains and innermost forward clo-

sures [LM78, DH95], but it turns out that these approaches are fundamentally

di�erent. While forward closures restrict the application of rules (to that part of

a term created by previous rewrites), the dependency pair approach restricts the

examination of terms (to those subterms that may possibly be reduced further).

So in contrast to innermost chains, innermost forward closures are reductions.

Moreover, while the dependency pair approach is very well suited for automation,

we do not know of any approach to automate the forward closure approach.

As our technique can only be applied for termination proofs if the TRS

is non-overlapping (or at least an overlay system with joinable critical pairs),

in [AG97a] we also showed how dependency pairs can be used for termination

proofs of arbitrary TRSs. However, as long as the system is non-overlapping,

it is always advantageous to prove innermost normalisation only (instead of

termination). For instance, termination of the quot system can easily be proved

with the technique introduced in the present paper, whereas the constraints

generated by the method of [AG97a] are not satis�ed by any quasi-ordering which

is amenable to automation (i.e. by any total or quasi-simpli�cation ordering).

Most previous methods developed for automatic termination proofs are based

on simpli�cation orderings. For non-overlapping systems, these methods should

always be combined with our technique, because there are many examples where

direct termination proofs using the standard methods fail, but these methods

can nevertheless synthesize an ordering satisfying the constraints resulting from

our technique. Moreover, whenever a direct termination proof is possible with

a simpli�cation ordering, then this simpli�cation ordering also satis�es the con-

straints resulting from our technique. The only other approach for automated

termination proofs of non-simply terminating systems is a technique for gener-

ating transformation orderings [BL90] by Steinbach [Ste95a]. Several examples

which can automatically be proved terminating by our technique, but where

Steinbach's approach fails, can be found in Sect. 8.

15

7 Examples of Innermost Normalisation Proofs

In this section and the next section a collection of examples is listed that demon-

strates the power of the described method.

The examples in this section are term rewriting systems that are not termi-

nating. Thus all methods based on proving termination fail in proving innermost

normalisation of these term rewriting systems. It is shown how our method can

automatically derive innermost normalisation of these term rewriting systems.

The examples in the next section are term rewriting systems for which inner-

most normalisation su�ces to guarantee termination by the results of Gramlich

[Gra95, Gra96]. Many of these examples are term rewriting systems that are not

simply terminating. Therefore, their termination cannot be shown by most other

automatic methods. However, by our approach they can be proved terminating.

For proving termination of the examples, our technique �rst transforms the

TRS into a set of constraints. Three kinds of such constraints can be distin-

guished: For each usable rewrite rule l ! r we obtain an inequality l% r and for

each dependency pair hs; ti on a cycle of the innermost dependency graph we

obtain the inequality s% t. Furthermore, for each cycle one of these inequalities

must be strict, i.e. s � t. Third, for each such dependency pair hs; ti we must

demand that t must be weakly monotonic on all positions p where the root of

tj

p

is de�ned. We perform narrowing to obtain a better approximation of the

innermost dependency graph, therefore we also mention the number of narrow-

ing steps required for each example under consideration (unless narrowing is not

needed).

After having obtained the constraints, a well-founded quasi-ordering is gen-

erated, which is weakly monotonic for all symbols apart from the tuple symbols

and which satis�es these constraints. In the following collection of examples we

use two di�erent methods for that purpose.

The �rst approach is the well-known approach of synthesizing polynomial

orderings [Lan79]. Several techniques exist to derive polynomial interpretations

automatically, e.g. [Ste94, Gie95b]. In contrast to the use of polynomial orderings

for direct termination proofs, we can use polynomial interpretations with weakly

monotonic polynomials (and tuple symbols may be mapped to polynomials that

are not even weakly monotonic on all arguments). For instance, we may map

a binary function symbol f(x; y) to the polynomial x + 1 which is not strictly

monotonic in its second argument. Moreover, we can map any function symbol

to a constant.

The second approach is based on path orderings (e.g. recursive or lexico-

graphic path orderings) [Pla78, Der82, DH95, Ste95b]. Path orderings are sim-

pli�cation orderings that are easily generated automatically. Note that path

orderings are always strictly monotonic, whereas in our method we only need

a weakly monotonic ordering. For that reason, before synthesizing a suitable

path ordering some of the arguments of function symbols may be eliminated.

More precisely, any function symbol f can be replaced by a function symbol f

of smaller arity. For instance, the second argument of a binary function f may

be eliminated. In that case every term f(t; s) in the inequalities is replaced by

16

f(t). By comparing terms resulting from this replacement (instead of the origi-

nal terms) we can take advantage of the fact that f does not have to be strictly

monotonic in its second argument.

Moreover, we also allow the possibility that a function symbol may be mapped

to one of its arguments. So a binary symbol f could also be mapped to its �rst

argument. Thus, any term f(t; s) in the inequalities would be replaced by t.

Note that there exist only �nitely many (and only few) di�erent possibilities

to eliminate arguments of function symbols. Therefore, all these possibilities can

be checked automatically.

7.1 First Running Example

For the �rst example of this paper

f(g(x); s(0); y)! f(y; y; g(x))

g(s(x))! s(g(x))

g(0)! 0

only one dependency pair is on a cycle of the innermost dependency graph, viz.

hG(s(x));G(x)i. Since no de�ned symbols occur in G(x), there are no usable rules.

Therefore, the only constraint on the ordering is given by

G(s(x)) � G(x)

which is easily satis�ed by the recursive path ordering.

7.2 Toyama Example

The most famous example of a TRS that is innermost normalising, but not

terminating, is the following system from [Toy87].

f(0; 1; x)! f(x; x; x)

g(x; y) ! x

g(x; y) ! y

The TRS has only one dependency pair, viz. hF(0; 1; x);F(x; x; x)i. This depen-

dency pair does not occur on a cycle of the innermost dependency graph, since

F(x

1

; x

1

; x

1

) does not unify with F(0; 1; x

2

). Thus, no inequalities are generated

and therefore the TRS is innermost normalising.

7.3 Variations on the Toyama Example, Version 1

The following modi�cation of the Toyama example

f(g(x; y); x; z)! f(z; z; z)

g(x; y) ! x

g(x; y) ! y

is not a constructor system, since the subterm g(x; y) occurs in the left-hand

side of the �rst rule. Again the innermost dependency graph does not contain

any cycles and hence, this TRS is innermost normalising.

17

7.4 Variations on the Toyama Example, Version 2

The TRS

f(g(x); x; y)! f(y; y; g(y))

g(g(x)) ! g(x)

is no constructor system either. The dependency pair hF(g(x); x; y);F(y; y; g(y))i

cannot occur in an in�nite innermost chain, since cap(F(y

1

; y

1

; g(y

1

))) does not

unify with F(g(x

2

); x

2

; y

2

). Hence, we only obtain the constraint

G(g(x)) � G(x)

as there are no usable rules. As this constraint is satis�ed by the recursive path

ordering, the TRS is innermost normalising.

7.5 Narrowing, Version 1

In the following variant of the Toyama example

f(0; 1; x)! f(g(x; x); x; x)

g(x; y) ! x

g(x; y) ! y

we need one narrowing step to determine that there are no cycles in the innermost

dependency graph (because f(g(x; x); x; x) narrows to f(x; x; x)). Hence, this TRS

is also innermost normalising.

7.6 Narrowing, Version 2

Consider the following TRS

x+ 0 ! x

x+ s(y) ! s(x+ y)

f(0; s(0); x)! f(x; x+ x; x)

g(x; y) ! x

g(x; y) ! y

which is not terminating as can be seen by the in�nite reduction

f(0; s(0); g(0; s(0)))! f(g(0; s(0)); g(0; s(0)) + g(0; s(0)); g(0; s(0)))

! f(0; g(0; s(0)) + g(0; s(0)); g(0; s(0)))

! f(0; s(0) + g(0; s(0)); g(0; s(0)))

! f(0; s(0) + 0; g(0; s(0)))

! f(0; s(0); g(0; s(0)))

! : : :

Innermost normalisation of this TRS can be proved if the innermost dependency

graph is computed using narrowing. The right projection of the dependency

pair hF(0; s(0); x);F(x; x+ x; x)i narrows to both F(0; 0; 0) and F(s(y); s(s(y) +

18

y); s(y)), which are not uni�able with the left projection of this dependency pair.

Therefore, the only generated inequality for this TRS is

PLUS(x; s(y)) � PLUS(x; y)

which is satis�ed by the recursive path ordering. Hence, this TRS is proved

innermost normalising.

7.7 Narrowing, Version 3

The following modi�cation of the above TRS

x+ 0 ! x

x+ s(y) ! s(x+ y)

double(x) ! x+ x

f(0; s(0); x)! f(x; double(x); x)

g(x; y) ! x

g(x; y) ! y

is also non-terminating. Similar to the example above, we now need two narrow-

ing steps to derive that the dependency pair

hF(0; s(0); x);F(x; double(x); x)i

does not occur on a cycle in the innermost dependency graph. The generated

inequality is therefore the same as for the above example, which is satis�ed by

the recursive path ordering. Hence, this TRS is proved innermost normalising.

7.8 Non-Normal Most General Uni�er

The following TRS

f(x; g(x))! f(1; g(x))

g(1) ! g(0)

is obviously not terminating as f(1; g(1)) can be reduced to itself.

The dependency pair

hF(x; g(x));F(1; g(x))i

does not occur on a cycle of the innermost dependency graph, because cap(F(1;

g(x

1

))) = F(1; y) and the mgu of F(1; y) and F(x

2

; g(x

2

)) is not a normal substi-

tution. (It replaces y by g(1).) Obviously, the other dependency pair hG(1);G(0)i

cannot occur on a cycle either. Thus, there are no cycles in the innermost de-

pendency graph. Hence, the TRS is innermost normalising.

19

7.9 Innermost Chains of Arbitrary Finite Length

The following non-terminating TRS has an innermost chain of any �nite length,

but it has no in�nite innermost chain, hence it is innermost normalising.

h(x; z) ! f(x; s(x); z)

f(x; y; g(x; y))! h(0; g(x; y))

g(0; y) ! 0

g(x; s(y)) ! g(x; y)

An in�nite reduction is given by

h(0; g(0; s(0))! f(0; s(0); g(0; s(0)))! h(0; g(0; s(0))! : : :

The inequality resulting from the dependency pair on the only cycle in the

innermost dependency graph is

G(x; s(y)) � G(x; y):

(The reason is that the most general uni�er of cap(F(x

1

; s(x

1

); z

1

)) and F(x

2

; y

2

;

g(x

2

; y

2

)) is not normal.)

There are no usable rules. Thus, innermost normalisation is easily proved by

the polynomial interpretation that maps s(y) to y + 1 and G(x; y) to y.

7.10 Negative Coe�cients

The following non-terminating TRS has two dependency pairs on a cycle of the

innermost dependency graph, but it has no in�nite innermost chain. Hence, it is

innermost normalising.

h(0; x) ! f(0; x; x)

f(0; 1; x)! h(x; x)

g(x; y) ! x

g(x; y) ! y

An in�nite reduction is given by

f(0; 1; g(0; 1))! h(g(0; 1); g(0; 1))

! h(0; g(0; 1))

! f(0; g(0; 1); g(0; 1))

! f(0; 1; g(0; 1)) ! : : :

The inequalities resulting from the dependency pairs on a cycle in the inner-

most dependency graph are

H(0; x) % F(0; x; x)

F(0; 1; x) � H(x; x)

and there are no usable rules. These inequalities are satis�ed by the polynomial

interpretation where 0 and 1 are interpreted as usual and where H(x; y) and

F(x; y; z) are both mapped to (x� y)

2

.

Note that the constraints obtained in this example are not satis�ed by any

weakly monotonic total well-founded quasi-ordering. For that reason we used a

polynomial ordering with negative coe�cients.

20

7.11 Drosten example

A conuent and innermost normalising TRS that is not terminating was given

by Drosten [Dro89].

f(0; 1; x) ! f(x; x; x)

f(x; y; z) ! 2

0 ! 2

1 ! 2

g(x; x; y)! y

g(x; y; y) ! x

As there exists no cycle in the innermost dependency graph, the TRS is inner-

most normalising.

8 Examples of Termination Proofs

In this section a collection of non-overlapping resp. of locally conuent over-

lay systems is proved terminating by our technique. For these TRSs innermost

normalisation implies termination. Therefore, applying our technique to prove

innermost normalisation to these TRSs results in an automatic approach for ter-

mination proofs. In particular, this collection also includes several systems that

are not simply terminating, cf. [Der79, Ste95b].

As mentioned in Sect. 1, in contrast to termination there exist several mod-

ularity results for innermost normalisation, e.g. [Kri95, Art96]. In particular, we

can use the following result for hierarchical combinations, cf. [AG96b]. A TRS

is a hierarchical combination of two subsystems if de�ned symbols of the �rst

system occur as constructors in the second system, but not vice versa. If R is

such a hierarchical combination of R

0

with R

1

and if the subsystem R

0

is in-

nermost normalising, then one does not have to consider all dependency pairs of

R, but it su�ces to examine only those dependency pairs hF (: : :); G(: : :)i where

f and g are de�ned symbols of R

1

. In this way it is possible to prove innermost

normalisation of hierarchical combinations by successively proving innermost

normalisation of each subsystem and by de�ning R

0

to consist of those subsys-

tems whose innermost normalisation has already been proved before. (In other

words, one only has to prove that there exists no in�nite innermost chain con-

sisting of dependency pairs of R

1

.) The justi�cation for this approach is the

following theorem.

Theorem12 (IN of Hierarchical Combinations). Let R(D

0

[D

1

; C;R) be

a hierarchical combination of R

0

(D

0

; C;R

0

) and R

1

(D

1

; C [D

0

; R

1

). If R

0

is

innermost normalising, then any in�nite innermost R-chain consists of depen-

dency pairs of R

1

only.

Proof. Assume there exists an in�nite innermost R-chain in which an R

0

de-

pendency pair occurs. By the de�nition of a hierarchical combination, then all

dependency pairs in this chain are dependency pairs of R

0

. For any innermost

21

chain, there is a substitution � such that all s

j

� are in normal form and such that

t

j

�

i

!

�

s

j+1

� holds for all consecutive pairs hs

j

; t

j

i, hs

j+1

; t

j+1

i in the sequence.

Since no de�ned symbols of R

1

occur in t

j

for any j and since all de�ned

symbols ofR

1

that occur in � occur in normal forms, any reduction t

j

�

i

!

�

s

j+1

�

can only use rules from R

0

. Therefore this sequence of dependency pairs is also

an (in�nite) innermost R

0

-chain. But due to Thm. 4 this is a contradiction to

the fact that R

0

is innermost normalising. ut

This modularity result will be used in several of the following examples.

However, in most of the examples innermost normalisation can also be proved

without application of the modularity result. In those of the following examples

where the modularity result is applied, the TRSs are presented as two sets of

rewrite rules. The upper system always denotes R

0

, whereas the bottom rules

denote R

1

. In the examples, termination of R

0

is always easy to show (either by

applying our method again or by standard techniques, i.e. R

0

is usually simply

terminating).

First, our technique is used to prove termination of all examples of [AG96a]

(Ex. 8.1 - 8.14). While the method of [AG96a, AG96b] was only applicable to

a restricted class of constructor systems (without nested recursion), the present

technique can be used for termination proofs of arbitrary locally conuent over-

lay systems. Therefore, subsequently we mention several examples that are no

constructor systems or have nested recursion, but where our technique can nev-

ertheless prove termination.

In this paper we have presented a method for innermost normalisation which

can also be used for termination proofs if the TRS is non-overlapping or at least

a locally conuent overlay system. In [AG97a] however, we have also developed

a method for termination proofs of arbitrary TRSs (i.e. there, they do not have

to be locally conuent overlay systems). Termination of the examples 8.15 -

8.27 can also be proved by the method of [AG96c, AG97a]. However, as inner-

most normalisation is essentially easier to prove than termination, when using

the method of the present paper, we often obtain considerably less constraints

than when using the technique of [AG97a]. For that reason, termination of the

Examples 8.31 - 8.35 cannot be shown automatically by the method of [AG97a]

whereas with the technique of the present paper we can prove innermost normal-

isation (and thereby termination) automatically. On the other hand, there are

also (overlapping) TRSs, where the method of [AG97a] can prove termination,

but the method of the present paper cannot be used for that purpose, because

for these systems innermost normalisation is not su�cient for termination.

8.1 Division, Version 1

This is the running example of the article [AG96b], which is not simply termi-

nating.

minus(x; 0)! x

22

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

In the termination proof of this example one can apply the modularity result

of Thm. 12. Then termination of R

0

(the �rst two minus rules) is easily proved

(either by our approach or directly by the recursive path ordering, for example).

For innermost normalisation of R it now su�ces to show that there is no

in�nite innermost chain of dependency pairs of R

1

. For these dependency pairs

ofR

1

, the subtraction rules are the usable rules and there is one dependency pair

on a cycle of the innermost dependency graph. This results in the constraints

Q(s(x); s(y)) � Q(minus(x; y); s(y))

x

1

%x

2

) Q(x

1

; s(y))%Q(x

2

; s(y))

minus(x; 0) % x

minus(s(x); s(y)) % minus(x; y):

By mapping minus(x; y) to x, the recursive path ordering satis�es the de-

mands on the ordering.

With the other approach, of polynomials, a suitable quasi-ordering is also

found automatically. The normal ordering on the natural numbers together with

the following interpretation of the function symbols satis�es the inequalities: the

function symbol 0 is mapped to the number 0, s(x) is mapped to x + 1, and

Q(x; y) and minus(x; y) are mapped to x.

These orderings could also be used for the innermost normalisation proof if

the modularity result would not be applied. Then one would obtain the addi-

tional constraint MINUS(s(x); s(y)) � MINUS(x; y).

8.2 Division, Version 2

This TRS for division uses di�erent minus-rules. Again, it is not simply termi-

nating.

pred(s(x))! x

minus(x; 0)! x

minus(x; s(y)) ! pred(minus(x; y))

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

Again the TRS R

0

is terminating (which can either be proved by our method or

by the recursive path ordering). The inequality obtained from the dependency

pair of R

1

is

Q(s(x); s(y)) � Q(minus(x; y); s(y)):

23

The �rst three rules of the TRS are the usable rules, resulting in the three

inequalities

pred(s(x)) % x

minus(x; 0) % x

minus(x; s(y)) % pred(minus(x; y))

and the demand that Q(x; s(y)) should be weakly monotonic in x.

Synthesizing a suitable ordering is as easy as it was for the previous example,

since we just have to map minus(x; y) to x and pred(x) to x. The demands on

the ordering are then satis�ed by the recursive path ordering. (As for most of

the following examples, innermost normalisation could also be proved without

using the modularity result.)

8.3 Division, Version 3

This TRS for division uses again di�erent minus-rules. Similar to the preceding

examples it is not simply terminating. We always use functions like if

minus

to

encode conditions and to ensure that conditions are evaluated �rst (to true or to

false) and that the corresponding result is evaluated afterwards. Hence, the �rst

argument of if

minus

is the condition that has to be tested and the other arguments

are the original arguments of minus. Further evaluation is only possible after the

condition has been reduced to true or to false.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y)) ! le(x; y)

minus(0; y)! 0

minus(s(x); y)! if

minus

(le(s(x); y); s(x); y)

if

minus

(true; s(x); y)! 0

if

minus

(false; s(x); y)! s(minus(x; y))

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

The subsystem R

0

is terminating (this can be proved by our technique again).

The constraints generated for the dependency pairs of R

1

are

Q(s(x); s(y)) � Q(minus(x; y); s(y))

x

1

%x

2

) Q(x

1

; s(y))%Q(x

2

; s(y))

plus l% r for all rules of R

0

(as all of these rules are usable).

By the following mapping

minus(x; y) 7! x

if

minus

(b; x; y) 7! x

the inequalities are satis�ed by the recursive path ordering.

24

8.4 Remainder, Version 1 - 3

Similar to the TRSs for division, we also obtain three versions of the following

TRS which again are not simply terminating. We only present one of them.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

mod(0; y)! 0

mod(s(x); 0)! 0

mod(s(x); s(y))! if

mod

(le(y; x); s(x); s(y))

if

mod

(true; s(x); s(y))! mod(minus(x; y); s(y))

if

mod

(false; s(x); s(y))! s(x)

The TRS R

0

is terminating. This can be proved by the recursive path ordering

or by our technique. The constraints generated for R

1

are

MOD(s(x); s(y)) % IF

mod

(le(y; x); s(x); s(y))

IF

mod

(true; s(x); s(y)) � MOD(minus(x; y); s(y))

x

1

%x

2

) IF

mod

(x

1

; s(x); s(y))% IF

mod

(x

2

; s(x); s(y))

x

1

%x

2

) MOD(x

1

; s(y))%MOD(x

2

; s(y))

plus l% r for all rules of R

0

.

By mapping minus(x; y), MOD(x; y), and IF

mod

(b; x; y) to x, the interpreted

inequalities are satis�ed by the recursive path ordering.

8.5 Greatest Common Divisor, Version 1 - 3

There are also three versions of the following TRS for the computation of the

gcd, which are not simply terminating. Again, we only present one of them.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

pred(s(x))! x

minus(x; 0)! x

minus(x; s(y))! pred(minus(x; y))

gcd(0; y)! 0

25

gcd(s(x); 0)! 0

gcd(s(x); s(y)) ! if

gcd

(le(y; x); s(x); s(y))

if

gcd

(true; s(x); s(y)) ! gcd(minus(x; y); s(y))

if

gcd

(false; s(x); s(y)) ! gcd(minus(y; x); s(x))

(Of course we also could have switched the ordering of the arguments in the

right-hand side of the last rule. But this version here is even more di�cult:

Termination of the corresponding algorithm cannot be proved by the method of

[Wal94], because this method cannot deal with permutations of arguments.)

Termination of R

0

can be proved by our approach. The constraints for in-

nermost normalisation (from the dependency pairs of R

1

) are

GCD(s(x); s(y)) % IF

gcd

(le(y; x); s(x); s(y))

IF

gcd

(true; s(x); s(y)) � GCD(minus(x; y); s(y))

IF

gcd

(false; s(x); s(y)) � GCD(minus(y; x); s(x))

plus some monotonicity demands and l% r for all rules of R

0

.

A suitable mapping is given by

pred(x) 7! x

minus(x; y) 7! x

IF

gcd

(b; x; y) 7! IF

gcd

(x; y):

The interpreted inequalities are satis�ed by the recursive path ordering.

This example was taken from [BM79] resp. [Wal91]. A variant of this exam-

ple could be proved terminating using Steinbach's method for the automated

generation of transformation orderings [Ste95a], but there the rules for le and

minus were missing.

8.6 Logarithm, Version 1

The following TRS computes the dual logarithm.

half(0)! 0

half(s(s(x)))! s(half(x))

log(0)! 0

log(s(s(x)))! s(log(s(half(x))))

The TRS R

0

is terminating (as proved by the recursive path ordering or by our

approach). To prove innermost normalisation of the whole system we obtain the

inequality

LOG(s(s(x))) � LOG(s(half(x)))

from the dependency pair of R

1

as well as a monotonicity condition and l% r for

the (usable) half-rules.

A mapping for the function symbols is not needed since the inequalities are

satis�ed by the recursive path ordering. (Termination of the original system can

also be proved using the recursive path ordering.)

26

8.7 Logarithm, Version 2 - 4

The following TRS again computes the dual logarithm, but instead of half we

now use the function quot. Depending on which version of quot we use, we obtain

three di�erent versions of the TRS (all of which are not simply terminating, since

the quot TRS already was not simply terminating).

minus(x; 0)! x

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

log(0)! 0

log(s(s(x)))! s(log(s(quot(x; s(s(0))))))

For innermost normalisation we obtain the constraints

LOG(s(s(x))) � LOG(s(quot(x; s(s(0)))))

x

1

%x

2

) LOG(s(x

1

))%LOG(s(x

2

))

from the dependency pair of R

1

and l% r for all rules of R

0

(varying with the

di�erent versions of R

0

we use).

The interpretation to derive a quasi-ordering that satis�es all inequalities is

given by: quot(x; y) and minus(x; y) are mapped to x.

8.8 Eliminating Duplicates

The following TRS eliminates duplicates from a list. To represent lists we use

the constructors nil and add, where nil represents the empty list and add(n; x)

represents the insertion of n into the list x. The function rm is used to eliminate

all occurrences of an element from a list.

eq(0; 0)! true

eq(0; s(x))! false

eq(s(x); 0)! false

eq(s(x); s(y)) ! eq(x; y)

rm(n; nil)! nil

rm(n; add(m;x))! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x))! rm(n; x)

if

rm

(false; n; add(m;x))! add(m; rm(n; x))

purge(nil)! nil

purge(add(n; x))! add(n; purge(rm(n; x)))

27

Termination of R

0

can be proved with our approach by considering this subsys-

tem as a combination of the eq rules and the other rules. For R

1

we obtain the

constraint

PURGE(add(n; x)) � PURGE(rm(n; x)):

Moreover, PURGE must be (weakly) monotonic on its argument and l% r must

holds for all rules of R

0

.

A suitable mapping is

rm(n; x) 7! x

if

rm

(b; x; y) 7! y

With this interpretation the inequalities are satis�ed by the recursive path or-

dering.

This example comes from [Wal91] and a similar example was mentioned in

[Ste95a], but in Steinbach's version the rules for eq and if

rm

were missing.

If in the right-hand side of the last rule, add(n; purge(rm(n; x))), the n would

be replaced by a term containing add(n; x) then we would obtain a non-simply

terminating TRS, but termination could still be proved with our technique in

the same way.

8.9 Selection Sort

This TRS from [Wal94] is obviously not simply terminating. The TRS can be

used to sort a list by repeatedly replacing the minimum of the list by the head

of the list. It uses replace(n;m; x) to replace the leftmost occurrence of n in the

list x by m.

eq(0; 0)! true

eq(0; s(x))! false

eq(s(x); 0)! false

eq(s(x); s(y)) ! eq(x; y)

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y)) ! le(x; y)

min(add(0; nil))! 0

min(add(s(n); nil))! s(n)

min(add(n; add(m;x)))! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x)))! min(add(n; x))

if

min

(false; add(n; add(m;x)))! min(add(m;x))

replace(n;m; nil)! nil

replace(n;m; add(k; x))! if

replace

(eq(n; k); n;m; add(k; x))

if

replace

(true; n;m; add(k; x))! add(m;x)

28

if

replace

(false; n;m; add(k; x))! add(k; replace(n;m; x))

selsort(nil)! nil

selsort(add(n; x))! if

selsort

(eq(n;min(add(n; x))); add(n; x))

if

selsort

(true; add(n; x))! add(n; selsort(x))

if

selsort

(false; add(n; x))! add(min(add(n; x));

selsort(replace(min(add(n; x)); n; x)))

The TRS R

0

is innermost normalising (resp. terminating) as can be proved

by application of our technique. To complete the innermost normalisation proof

we obtain the following inequalities for R

1

SELSORT(add(n; x)) % IF

selsort

(eq(n;min(add(n; x))); add(n; x))

IF

selsort

(true; add(n; x)) � SELSORT(x)

IF

selsort

(false; add(n; x)) � SELSORT(replace(min(add(n; x)); n; x)):

Moreover, we have to demand l% r for all rules of R

0

, as all these rules are usable

and we obtain the following monotonicity constraints

x

1

%x

2

) IF

selsort

(x

1

; add(n; x))% IF

selsort

(x

2

; add(n; x))

x

1

%x

2

) SELSORT(x

1

)%SELSORT(x

2

)

A suitable mapping is given by

add(n; x) 7! add(x)

s(n) 7! s

eq(x; y) 7! eq

le(x; y) 7! le

if

min

(b; x) 7! if

min

(x)

replace(x; y; z) 7! z

if

replace

(b; x; y; z) 7! z

IF

selsort

(b; x) 7! x:

Then the resulting inequalities are satis�ed by the recursive path ordering (where

add must be greater than SELSORT in the precedence).

While for all of the preceding examples, innermost normalisation could also

be proved without using the modularity result of Thm. 12, in this example the

given ordering would not satisfy the constraints resulting from the innermost

normalisation proof of the whole system. However, if the �rst two min-rules were

replaced by min(add(n; nil))! element(n), then a similar ordering (without the

mapping s(n) 7! s) would satisfy the constraints obtained for the whole TRS.

29

8.10 Minimum Sort

This TRS can be used to sort a list x by repeatedly removing the minimum of it.

For that purpose elements of x are shifted into the second argument of minsort,

until the minimum of the list is reached. Then the function rm is used to eliminate

all occurrences of the minimum and �nally minsort is called recursively on the

remaining list. Hence, minsort does not only sort a list but it also eliminates

duplicates. (Of course, the corresponding version of minsort where duplicates are

not eliminated could also be proved terminating with our method.)

eq(0; 0)! true

eq(0; s(x))! false

eq(s(x); 0)! false

eq(s(x); s(y)) ! eq(x; y)

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y)) ! le(x; y)

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

min(add(n; nil))! n

min(add(n; add(m;x)))! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x)))! min(add(n; x))

if

min

(false; add(n; add(m;x)))! min(add(m;x))

rm(n; nil)! nil

rm(n; add(m;x))! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x))! rm(n; x)

if

rm

(false; n; add(m;x))! add(m; rm(n; x))

minsort(nil; nil)! nil

minsort(add(n; x); y)! if

minsort

(eq(n;min(add(n; x))); add(n; x); y)

if

minsort

(true; add(n; x); y)! add(n;minsort(app(rm(n; x); y); nil))

if

minsort

(false; add(n; x); y)! minsort(x; add(n; y))

As in the other examples, the TRS R

0

can be proved terminating by recur-

sively applying our technique. For R

1

we obtain the following inequalities

MINSORT(add(n; x); y) � IF

minsort

(eq(n;min(add(n; x))); add(n; x); y)

IF

minsort

(true; add(n; x); y) % MINSORT(app(rm(n; x); y); nil)

IF

minsort

(false; add(n; x); y) % MINSORT(x; add(n; y))

30

and the following monotonicity constraints (where we neglect monotonicity de-

mands for positions which have a de�ned symbol above them).

x

1

%x

2

) IF

minsort

(x

1

; add(n; x); y)% IF

minsort

(x

2

; add(n; x); y)

x

1

%x

2

) MINSORT(x

1

; nil)%MINSORT(x

2

; nil)

Moreover, l% r must hold for all rules of R

0

.

The synthesized ordering is a (weakly monotonic) polynomial ordering where

false, true, 0, nil, eq and le are mapped to 0, s(x) is mapped to x+1, min(x) and

if

min

(b; x) are mapped to x, add(n; x) is mapped to n+x+1, app(x; y) is mapped

to x+ y, rm(n; x) and if

rm

(b; n; x) are mapped to x, MINSORT(x; y) is mapped

to (x+ y)

2

+ 2x+ y + 1 and IF

minsort

(b; x; y) is mapped to (x+ y)

2

+ 2x+ y.

This example is inspired by an algorithm from [BM79] and [Wal94]. In the

corresponding example from [Ste95a] the rules for le, eq, if

rm

, and if

min

were

missing.

8.11 Quicksort

The following TRS is used to sort a list by the well-known quicksort-algorithm.

It uses the functions low(n; x) and high(n; x) which return the sublist of x con-

taining only the elements smaller or equal (resp. larger) then n.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y)) ! le(x; y)

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

low(n; nil)! nil

low(n; add(m;x))! if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x))! add(m; low(n; x))

if

low

(false; n; add(m;x))! low(n; x)

high(n; nil)! nil

high(n; add(m;x))! if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x))! high(n; x)

if

high

(false; n; add(m;x))! add(m; high(n; x))

quicksort(nil)! nil

quicksort(add(n; x))! app(quicksort(low(n; x));

add(n; quicksort(high(n; x))))

The TRS R

0

can be proved terminating by our approach. For R

1

we obtain

l% r for all rules of R

0

(except the app-rules because they are not usable),

31

QUICKSORTmust be weakly monotonic on its argument, and we have to demand

the following constraints.

QUICKSORT(add(n; x)) � QUICKSORT(low(n; x))

QUICKSORT(add(n; x)) � QUICKSORT(high(n; x))

A suitable mapping is

low(n; x) 7! x

high(n; x) 7! x

if

low

(b; n; x) 7! x

if

high

(b; n; x) 7! x:

This interpretation and the recursive path ordering satisfy the demands on the

ordering.

Steinbach could prove termination of a corresponding example with trans-

formation orderings [Ste95a], but in his example the rules for le, if

low

, if

high

, and

app were omitted.

If in the right-hand side of the last rule,

app(quicksort(low(n; x)); add(n; quicksort(high(n; x))));

one of the n's was replaced by a term containing add(n; x) then we would obtain

a non-simply terminating TRS. With our method, termination could still be

proved in the same way.

8.12 Permutation of Lists

This example is a TRS from [Wal94] to compute a permutation of a list. For

instance, shu�e([1; 2; 3; 4; 5]) reduces to [1; 5; 2; 4;3].

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

reverse(nil)! nil

reverse(add(n; x))! app(reverse(x); add(n; nil))

shu�e(nil)! nil

shu�e(add(n; x))! add(n; shu�e(reverse(x)))

Termination of R

0

, the �rst four rules, can easily be proved by the recursive

path ordering or by our technique. For innermost normalisation we obtain the

constraint

SHUFFLE(add(n; x)) � SHUFFLE(reverse(x));

SHUFFLE must be weakly monotonic, and l% r must hold for all rules of R

0

.

A suitable (polynomial) interpretation is: nil is mapped to 0, add(n; x) is

mapped to x+ 1, SHUFFLE(x) and reverse(x) are mapped to x and app(x; y) is

mapped to x+ y.

32

8.13 Reachability on Directed Graphs

To check whether there is a path from the node x to the node y in a directed

graph g, the term reach(x; y; g; �) must be reducible to true with the rules of the

TRS of this example from [Gie95a]. The fourth argument of reach is used to

store edges that have already been examined but that are not included in the

actual solution path. If an edge from u to v (with x 6= u) is found, then it is

rejected at �rst. If an edge from x to v (with v 6= y) is found then one either

searches for further edges beginning in x (then one will never need the edge from

x to v again) or one tries to �nd a path from v to y and now all edges that were

rejected before have to be considered again.

The function union is used to unite two graphs. The constructor � denotes

the empty graph and edge(x; y; g) represents the graph g extended by an edge

from x to y. Nodes are labelled with natural numbers.

eq(0; 0)! true

eq(0; s(x))! false

eq(s(x); 0)! false

eq(s(x); s(y)) ! eq(x; y)

or(true; y)! true

or(false; y)! y

union(�; h)! h

union(edge(x; y; i); h)! edge(x; y; union(i; h))

reach(x; y; �; h)! false

reach(x; y; edge(u; v; i); h)! if

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

if

reach 1

(true; x; y; edge(u; v; i); h)! if

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

if

reach 2

(true; x; y; edge(u; v; i); h)! true

if

reach 2

(false; x; y; edge(u; v; i); h)! or(reach(x; y; i; h);

reach(v; y; union(i; h); �))

if

reach 1

(false; x; y; edge(u; v; i); h)! reach(x; y; i; edge(u; v; h))

The TRS R

0

can be proved innermost normalising (and terminating) very

easily, e.g. by our technique. For R

1

we obtain

REACH(x; y; edge(u; v; i); h) % IF

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

IF

reach 1

(true; x; y; edge(u; v; i); h) % IF

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

IF

reach 2

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; h)

IF

reach 2

(false; x; y; edge(u; v; i); h) � REACH(v; y; union(i; h); �)

IF

reach 1

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; edge(u; v; h));

several (weak) monotonicity conditions, and l% r for all rules of R

0

except the

or-rules (because these rules are not usable).

33

A mapping to polynomials results in a suitable ordering. The interpretation

is: eq(x; y), true, false, �, 0, and s(x) are mapped to 0, edge(x; y; g) is mapped

to g + 2, union(g; h) is mapped to g + h, REACH(x; y; g; h) is mapped to (g +

h)

2

+ 2g + h + 2, IF

reach 1

(b; x; y; g; h) is mapped to (g + h)

2

+ 2g + h + 1, and

IF

reach 2

(b; x; y; g; h) is mapped to (g + h)

2

+ 2g + h.

8.14 Comparison of Binary Trees

This TRS is used to �nd out if one binary tree has less leaves than another

one. It uses a function concat(x; y) to replace the rightmost leaf of x by y. Here,

cons(u; v) is used to built a new tree with the two direct subtrees u and v.

concat(leaf; y)! y

concat(cons(u; v); y) ! cons(u; concat(v; y))

less leaves(x; leaf)! false

less leaves(leaf; cons(w; z))! true

less leaves(cons(u; v); cons(w; z))! less leaves(concat(u; v); concat(w; z))

The two rules of R

0

are easily proved terminating. For R

1

we obtain

LESS LEAVES(cons(u; v); cons(w;z)) � LESS LEAVES(concat(u; v); concat(w; z)):

Moreover, the concat-rules must be weakly decreasing and less leaves must be

weakly monotonic on both arguments.

A suitable (polynomial) interpretation is: leaf is mapped to 0, cons(u; v) is

mapped to 1 + u+ v, concat(u; v) is mapped to u+ v, and LESS LEAVES(x; y)

is mapped to x.

If concat(w; z) in the second argument of less leaves (in the right-hand side of

the last rule) would be replaced by an appropriate argument, we would obtain

a non-simply terminating TRS whose termination could be proved in the same

way.

8.15 Average of Naturals

The following overlay system, which computes the average of two numbers

[DH95], is locally conuent and therefore innermost normalisation su�ces for

proving termination.

average(s(x); y)! average(x; s(y))

average(x; s(s(s(y)))) ! s(average(s(x); y))

average(0; 0)! 0

average(0; s(0))! 0

average(0; s(s(0)))! s(0)

34

For proving innermost normalisation of this TRS we have to �nd a well-

founded ordering satisfying the constraints

AVERAGE(s(x); y) � AVERAGE(x; s(y))

AVERAGE(x; s(s(s(y)))) � AVERAGE(s(x); y)):

(There are no usable rules.)

In this way, termination of this TRS is easily proved by mapping s(x) to

x+ 1, and AVERAGE(x; y) to 2x+ y.

8.16 Plus and Times

The following TRS [DH95] is again a locally conuent overlay system. To ease

readability we use an in�x notation for + and �.

x+ 0! x

0+ x! x

x+ s(y) ! s(x+ y)

s(x) + y ! s(x+ y)

x� 0! 0

x� s(y) ! (x� y) + x

The constraints for innermost normalisation of R

0

are

PLUS(x; s(y)) � PLUS(x; y)

PLUS(s(x); y) � PLUS(x; y)

which are satis�ed by the recursive path ordering.

For R

1

we obtain

TIMES(x; s(y)) � TIMES(x; y)

which is also satis�ed by the recursive path ordering.

8.17 Addition with Nested Recursion

The following (non-overlapping) TRS for addition from [Ste95a] has nested re-

cursion.

0+ y ! y

s(x) + 0! s(x)

s(x) + s(y)! s(s(x) + (y + 0))

The `natural' polynomial interpretation (where + is mapped to the addition)

maps left and right-hand sides of the rules to the same numbers. Therefore

this polynomial ordering cannot be used for a direct termination proof, but it

nevertheless satis�es the constraints generated by our method. (Here all rules

are usable.) In this way, innermost normalisation (and thereby, termination) can

easily be proved.

35

8.18 Multiplication and Addition

The following (non-overlapping) system is taken from [Der87, p. 101].

x� (y + 1)! (x� (y + (1� 0))) + x

x� 1! x

x+ 0! x

x� 0! 0

The only inequalities resulting from a dependency pair on a cycle of the

innermost dependency graph is

TIMES(x; y + 1) � TIMES(x; y + (1� 0))

and all rules are usable (hence, we have to demand l% r for all rules). Moreover,

TIMES must be weakly monotonic on its second argument.

This system is not simply terminating (and in [Der87] it is used to illustrate

the use of the semantic path ordering). However, with our method termination of

this example can be proved automatically. The constraints obtained are satis�ed

by the natural polynomial ordering, where TIMES(x; y) is mapped to y.

8.19 Nested Recursion 1

The following non-overlapping system was introduced in [Gie96, `nest2'] as an

example for a small TRS with nested recursion where all simpli�cation orderings

fail.

f(0; y)! 0

f(s(x); y)! f(f(x; y); y)

With our approach, however, an automated innermost normalisation (and

hence, termination) proof is directly possible. For instance, we may use a poly-

nomial ordering where 0 and s are interpreted as usual and both f(x; y) and

F(x; y) are mapped to x.

8.20 Nested Recursion 2

This system (by Christoph Walther), which is similar to the preceding one, has

been examined in [Ste95a].

f(0)! s(0)

f(s(0))! s(0)

f(s(s(x)))! f(f(s(x)))

The constraints resulting from our technique are satis�ed by the polynomial

ordering, where f(x) is mapped to the constant 1, F(x) is mapped to x, and

where 0 and s are interpreted as usual.

36

8.21 Nested Recursion 3

As an example of a string rewriting system with minimal ordinal !

!

associated

to it, Hans Zantema and Maria Ferreira presented the following TRS [FZ93].

f(g(x))! g(f(f(x)))

f(h(x))! h(g(x))

The inequalities corresponding to this system, except for the inequalities corre-

sponding to the two rules (as both of them are usable), are

F(g(x)) � F(f(x))

F(g(x)) � F(x)

and F must be weakly monotonic.

All constraints are satis�ed by the polynomial interpretation mapping f(x)

and F(x) to x, h(x) to 0 and g(x) to x+ 1.

8.22 A System which is not left-linear

The following TRS, originally from Geerling [Gee91], cannot be proved terminat-

ing by the recursive path ordering (but one needs a generalization of the recursive

path ordering as de�ned in [Fer95]). It is also very easily proved terminating by

the automatic technique described in this paper.

f(s(x); y; y)! f(y; x; s(x))

The mapping of F(x; y; z) to x+ y satis�es the inequality obtained by the tech-

nique.

8.23 Determining Cycles in Innermost Dependency Graphs 1

The following system is from [Ste95a].

f(a; b)! f(a; c)

f(c; d)! f(b; d)

With our method, the termination proof for this system is trivial, because its

innermost dependency graph does not contain any cycles. This can easily be

determined automatically, as F(a; c) does not unify with F(a; b) or F(c; d), neither

does F(b; d) unify with F(a; b) or F(c; d).

37

8.24 Determining Cycles in Innermost Dependency Graphs 2

Another example in which the innermost dependency graph plays an important

role is a TRS introduced in [FZ95] to demonstrate the technique of `dummy

elimination'.

f(g(x))! f(a(g(g(f(x))); g(f(x))))

Since F(a(: : :)) does not unify with F(g(x)), the only inequality to satisfy is

F(g(x)) � F(x)

which is easily satis�ed by the recursive path ordering.

8.25 A TRS which is not totally terminating 1

The most famous example of a TRS that is terminating, but not totally termi-

nating is the following [Der87].

f(a)! f(b)

g(b)! g(a)

With our approach, innermost normalisation (resp. termination) of this sys-

tem is again obvious, because the innermost dependency graph does not contain

any cycles (as F(b) does not unify with F(a) and G(a) does not unify with G(b)).

Hence, innermost normalisation is proved.

8.26 A TRS which is not totally terminating 2

A TRS introduced in [Fer95] as an example of a TRS that is not totally terminat-

ing and in particular for which the recursive path ordering and the Knuth-Bendix

ordering cannot be used to prove termination, is given by:

p(f(f(x)))! q(f(g(x)))

p(g(g(x)))! q(g(f(x)))

q(f(f(x)))! p(f(g(x)))

q(g(g(x)))! p(g(f(x)))

Termination is trivially concluded from the fact that there are no cycles in the

innermost dependency graph.

38

8.27 Reversing Lists

The following system is a slight variant of a TRS proposed in [HH82, `brev']. Here,

\x.l" represents the insertion of an element x in front of the list l and \x.y.l"

abbreviates \x.(y.l)". Given a list x.l, the function rev calls two other functions

rev1 and rev2, where rev1(x; l) returns the last element of x.l and rev2(x; l)

returns the reversed list rev(x.l) without its �rst element. Hence, rev(rev2(y; l))

returns the list y.l without its last element. Note that this system is mutually

recursive and that mutually recursive functions also occur nested.

rev1(0; nil)! 0

rev1(s(x); nil)! s(x)

rev1(x; y.l)! rev1(y; l)

rev(nil)! nil

rev(x.l)! rev1(x; l).rev2(x; l)

rev2(x; nil)! nil

rev2(x; y.l)! rev(x.rev(rev2(y; l)))

Termination of R

0

is easily proved (e.g. by the recursive path ordering or by

our technique). For innermost normalisation the resulting inequalities from the

dependency pairs of R

1

are

REV(x.l) � REV2(x; l)

REV2(x; y.l) % REV(x.rev(rev2(y; l)))

REV2(x; y.l) % REV(rev2(y; l))

REV2(x; y.l) � REV2(y; l);

l% r for all rules and a monotonicity condition. These constraints are satis�ed by

a polynomial ordering, where nil is mapped to 0, x.l is mapped to l+1, rev(l) is

mapped to l, the symbols rev1(x; l), 0, and s(x) are all mapped to the constant 0,

and rev2(x; l) is mapped to l. The tuple symbol REV(l) is mapped to the identity

and REV2(x; l) is mapped to l.

8.28 Even and Odd

The following (non-simply terminating) TRS can be used to compute whether

a natural number is even resp. odd. More precisely, evenodd(t; 0) reduces to true

if t is even and evenodd(t; s(0)) reduces to true if t is odd. (In other words, the

second argument of evenodd determines whether evenodd computes the \even" or

the \odd" function. Such rewrite systems are often obtained when transforming

mutually recursive functions into one function without mutual recursion, cf.

[Gie96].)

39

not(true)! false

not(false)! true

evenodd(x; 0)! not(evenodd(x; s(0)))

evenodd(0; s(0))! false

evenodd(s(x); s(0))! evenodd(x; 0)

We obtain the following constraints for innermost normalisation (and hence,

termination) of R.

EVENODD(x; 0) % EVENODD(x; s(0))

EVENODD(s(x); s(0)) � EVENODD(x; 0)

By mapping EVENODD(x; y) to x, the recursive path ordering satis�es these

constraints.

8.29 Modularity, Version 1

The following example demonstrates the usefulness of modularity results.

f(c(x; s(y))) ! f(c(s(x); y))

g(c(s(x); y))! g(c(x; s(y)))

Modularity results (such as Thm. 12 or a result from [MT91] stating that

completeness is modular for constructor systems with disjoint sets of de�ned

symbols) allow us to prove innermost normalisation (and thereby, termination)

of both rules separately. So we may use di�erent well-founded orderings for the

constraint

F(c(x; s(y))) � F(c(s(x); y))

and the constraint

G(c(x; s(y))) � G(c(s(x); y))

(i.e. one time we can map c(x; y) to y and one time we can map it to x). In this

way, the termination proof of this system is trivial.

8.30 Modularity, Version 2

A second example for which it really matters that di�erent orderings may be

found for di�erent parts of the TRS is the following TRS

f(s(x)) ! f(x)

g(0.y) ! g(y)

g(s(x).y) ! s(x)

h(x.y) ! h(g(x.y)):

40

By using the modularity result of Thm. 12, innermost normalisation of the TRS

f(s(x)) ! f(x)

g(0.y) ! g(y)

g(s(x).y) ! s(x)

has to be proved �rst, which is easily established. It remains to prove that no

in�nite innermost chain consisting of the dependency pair

hH(x.y);H(g(x.y))i

exists. This is proved by �nding a suitable ordering satisfying the inequalities

g(0.y) % g(y)

g(s(x).y) % s(x)

H(x.y) � H(g(x.y)):

A suitable well-founded quasi-ordering satisfying these inequalities is given by a

polynomial interpretation, where g(x) and s(x) are mapped to 0, x.y is mapped

to 1 and H(x) is mapped to x. Hence, by using the modularity result, the

TRS can be proved innermost normalising automatically. Since the TRS is non-

overlapping, termination of this TRS is thereby proved.

8.31 Second Running Example

The second example of this paper

quot(0; s(y); s(z)) ! 0

quot(s(x); s(y); z) ! quot(x; y; z)

quot(x; 0; s(z)) ! s(quot(x; s(z); s(z)))

is a non-simply terminating TRS. As is explained in Sect. 4 the only two demands

on the ordering are given by

Q(s(x); s(y); z) � Q(x; y; z) and

Q(x; 0; s(z)) % Q(x; s(z); s(z)):

The mapping of Q(x; y; z) to x and the recursive path ordering satisfy these

demands.

Termination of this system cannot be proved automatically using the method

of [AG97a], as the constraints generated by the technique of [AG97a] are not

satis�ed by any total or quasi-simpli�cation ordering. The reason is that in

the latter method there is no concept of usable rules and that this method is

restricted to weakly monotonic orderings.

41

8.32 Second Running Example with Plus Rules

Changing the last rule of the above example such that s(z) is computed by

adding 1 to z results in the TRS

0+ y ! y

s(x) + y ! s(x+ y)

quot(0; s(y); s(z))! 0

quot(s(x); s(y); z) ! quot(x; y; z)

quot(x; 0; s(z))! s(quot(x; z + s(0); s(z))):

This TRS is, as the previous one, not simply terminating. By performing one

narrowing step on the term QUOT(x; z+ s(0); s(z)) we obtain that there is only

one cycle in the approximation of the innermost dependency graph. The only

usable rules are the rules for addition. Therefore, the only inequalities to solve

are

0+ y % y

s(x) + y % s(x+ y)

PLUS(s(x); y) � PLUS(x; y)

QUOT(s(x); s(y); z) � QUOT(x; y; z)

QUOT(x; 0; s(z)) % QUOT(x; z + s(0); s(z))

By mapping QUOT(x; y; z) to x these inequalities are satis�ed by the recursive

path ordering. Hence, the TRS is terminating.

8.33 A non-totally terminating TRS

The following example is from [Ste95a].

f(x; x)! f(a; b)

b! c

This TRS is not totally terminating (and the constraints generated by the

method of [AG97a] are not satis�ed by any total well-founded quasi-ordering).

However, with our method innermost normalisation (and thereby, termination)

can easily be proved. The reason is that after applying one narrowing step to

f(a; b) we obtain f(a; c) which is not uni�able with f(x; x). Hence, there is no

cycle in the innermost dependency graph.

8.34 Intervals of Natural Numbers

The following TRS from [Ste95a]

intlist(nil)! nil

intlist(x.y) ! s(x).intlist(y)

int(0; 0)! 0.nil

int(0; s(y)) ! 0.int(s(0); s(y))

int(s(x); 0)! nil

int(s(x); s(y)) ! intlist(int(x; y))

42

is non-overlapping, too. No narrowing is needed to obtain that there are only two

cycles in the dependency graph. Furthermore, we obtain that the set of usable

rules is empty. The generated inequalities are

INTLIST(x.y) � INTLIST(y)

INT(0; s(y)) % INT(s(0); s(y))

INT(s(x); s(y)) � INT(x; y):

By mapping INT(x; y) to y these inequalities are satis�ed by the recursive path

ordering. Thus, the TRS is terminating. Again, termination of this system cannot

be proved automatically using the method of [AG97a].

8.35 Renaming in the Lambda Calculus

The following system is a variation of an algorithm from [MA96]. The purpose

of the function ren(x; y; t) is to replace every free occurrence of the variable x

in the term t by the variable y. If the substitution of x by y should be applied

to a lambda term lambda(z; t) (which represents �z:t), then we �rst apply an

�-conversion step to lambda(z; t), i.e. we rename z to a new variable (which is

di�erent from x or y and which does not occur in lambda(z; t)). Subsequently,

the renaming of x to y is applied to the resulting term. For that reason in this

TRS there is a nested recursive call of the function ren.

Variables are represented by var(l) where l is a list of terms. Therefore, the

variable var(x.y.lambda(z; t).nil) is distinct from x and y and from all variables

occurring in lambda(z; t).

and(true; y)! y

and(false; y)! false

eq(nil; nil)! true

eq(t.l; nil)! false

eq(nil; t.l)! false

eq(t.l; t

0

.l

0

)! and(eq(t; t

0

); eq(l; l

0

))

eq(var(l); var(l

0

))! eq(l; l

0

)

eq(var(l); apply(t; s))! false

eq(var(l); lambda(x; t))! false

eq(apply(t; s); var(l))! false

eq(apply(t; s); apply(t

0

; s

0

))! and(eq(t; t

0

); eq(s; s

0

))

eq(apply(t; s); lambda(x; t))! false

eq(lambda(x; t); var(l))! false

eq(lambda(x; t); apply(t; s))! false

eq(lambda(x; t); lambda(x

0

; t

0

))! and(eq(x; x

0

); eq(t; t

0

))

43

if(true; var(k); var(l

0

))! var(k)

if(false; var(k); var(l

0

))! var(l

0

)

ren(var(l); var(k); var(l

0

))! if(eq(l; l

0

); var(k); var(l

0

))

ren(x; y; apply(t; s))! apply(ren(x; y; t); ren(x; y; s))

ren(x; y; lambda(z; t))! lambda(var(x.y.lambda(z; t).nil);

ren(x; y; ren(z; var(x.y.lambda(z; t).nil); t)))

Termination of R

0

can for instance be proved by the recursive path ordering

(or by our technique). To complete the innermost normalisation proof, we obtain

the following constraints for R

1

.

REN(x; y; apply(t; s)) � REN(x; y; t)

REN(x; y; apply(t; s)) � REN(x; y; s)

REN(x; y; lambda(z; t)) � REN(z; var(x.y.lambda(z; t).nil); t)

REN(x; y; lambda(z; t)) � REN(x; y; ren(z; var(x.y.lambda(z; t).nil); t))

Moreover, REN must be weakly monotonic on its third argument and l% r must

hold for all rules of the TRS (as all rules are usable).

A well-founded ordering satisfying these constraints can easily be synthesized

automatically. For instance, one can use the following polynomial interpretation

where REN(x; y; t) is mapped to t, ren(x; y; t) is also mapped to t, lambda(x; t)

is mapped to t + 1, apply(t; s) is mapped to t + s + 1, and(x; y) is mapped to

y, and where nil, var(l), true, false, eq(t; s), and if(x; y; z) are all mapped to the

constant 0.

This TRS is non-simply terminating because the left-hand side of the last rule

is embedded in its right-hand side. Since the TRS is a locally conuent overlay

system, innermost normalisation su�ces for termination. Note that the modu-

larity result of Thm. 12 is essential for this termination proof. If termination of

the whole system would have to be proved at once, then the resulting inequalities

would not be satis�ed by any polynomial or path ordering. For that reason the

method of [AG97a] (for termination instead of innermost normalisation) cannot

handle this example automatically.

Acknowledgements

We would like to thank Hans Zantema, Aart Middeldorp, Thomas Kolbe, and

the referees for constructive criticism and many helpful comments.

References

[AG96a] T. Arts and J. Giesl. Termination of constructor systems. Technical Re-

port UU-CS-1996-07, Utrecht University, PO box 80.089, 3508 TB Utrecht,

February 1996. http://www.cs.ruu.nl/.

44

[AG96b] T. Arts and J. Giesl. Termination of constructor systems. In H. Ganzinger,

editor, Proceedings of the 7th International Conference on Rewriting Tech-

niques and Applications, RTA-96, volume 1103 of Lecture Notes in Computer

Science, pages 63{77, New Brunswick, NJ, USA, July 1996. Springer Verlag,

Berlin.

[AG96c] T. Arts and J. Giesl. Automatically proving termination where simpli�cation

orderings fail. Technical Report UU-CS-1996-44, Utrecht University, October

1996. http://www.cs.ruu.nl/.

[AG97a] T. Arts and J. Giesl. Automatically proving termination where simpli�cation

orderings fail. In M. Dauchet, editor, Proceedings of the 22nd International

Colloquium on Trees in Algebra and Programming, CAAP'97, Lecture Notes

in Computer Science, Lille, France, April 1997. Springer Verlag, Berlin.

[AG97b] T. Arts and J. Giesl. Proving Innermost Normalisation Automatically. In

Proceedings of the 8th International Conference on Rewriting Techniques and

Applications, RTA-97, Lecture Notes in Computer Science, Sitges, Spain,

June 1997. Springer Verlag, Berlin.

[Art96] T. Arts. Termination by absence of in�nite chains of dependency pairs.

In H. Kirchner, editor, Proceedings of the 21st International Colloquium

on Trees in Algebra and Programming, CAAP'96, volume 1059 of Lecture

Notes in Computer Science, pages 196{210, Link�oping, Sweden, April 1996.

Springer Verlag, Berlin.

[AZ95] T. Arts and H. Zantema. Termination of logic programs using semantic uni-

�cation. In M. Proietti, editor, Proceedings of the 5th International Work-

shop on Logic Program Synthesis and Transformation, volume 1048 of Lec-

ture Notes in Computer Science, pages 219{233, Utrecht, September 1995.

Springer Verlag, Berlin.

[BD86] L. Bachmair and N. Dershowitz. Commutation, transformation and termi-

nation. In J.H. Siekmann, editor, Proceedings of the 8th International Con-

ference on Automated Deduction, volume 230 of Lecture Notes in Computer

Science, pages 5{20, Oxford, England, July 1986. Springer Verlag, Berlin.

[BL87] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by poly-

nomial interpretations and its implementation. Science of Computer Pro-

gramming, 9:137{159, 1987.

[BL90] F. Bellegarde and P. Lescanne. Termination by completion. Applicable Al-

gebra in Engineering, Communication and Computing, 1:79{96, 1990.

[BL93] E. Bevers and J. Lewi. Proving termination of (conditional) rewrite systems.

Acta Informatica, 30:537{568, 1993.

[BM79] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

[Der79] N. Dershowitz. A note on simpli�cation orderings. Information Processing

Letters, 9(5):212{215, 1979.

[Der82] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer

Science, 17:279{301, 1982.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,

3(1 and 2):69{116, 1987.

[DH95] N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer

Science, 142(2):179{207, 1995.

[DKM90] J. Dick, J. Kalmus, and U. Martin. Automating the Knuth Bendix ordering.

Acta Informatica, 28:95{119, 1990.

[Dro89] K. Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung

algebraischer Spezi�kationen. Springer, Berlin, 1989. In German.

45

[Fer95] M. Ferreira. Termination of Term Rewriting,Well-foundedness, Totality and

Transformations. PhD thesis, Utrecht University, PO Box 80.089, 3508 TB

Utrecht, The Netherlands, 1995.

[FZ93] M. Ferreira and H. Zantema. Total termination of term rewriting. In

C. Kirchner, editor, Proceedings of the 5th Conference on Rewrite Techniques

and Applications, RTA-93, volume 690 of Lecture Notes in Computer Science,

pages 213{227, Montreal, Canada, June 1993. Springer Verlag, Berlin.

[FZ95] M. Ferreira and H. Zantema. Dummy elimination: making termination eas-

ier. In H. Reichel, editor, Proceedings of the 10th International Conference

on Fundamentals of Computation Theory, FCT'95, volume 965 of Lecture

Notes in Computer Science, pages 243{252, Dresden, Germany, August 1995.

Springer Verlag, Berlin.

[Gee91] M. Geerling. Termination of term rewriting systems. Master's thesis, Utrecht

University, PO Box 80.089, 3508 TB Utrecht, The Netherlands, 1991.

[Gie95a] J. Giesl. Automatisierung von Terminierungsbeweisen f�ur rekursiv de�nierte

Algorithmen. PhD thesis, Technische Hochschule Darmstadt, Germany, Jan-

uary 1995. In German.

[Gie95b] J. Giesl. Generating polynomial orderings for termination proofs. In

J. Hsiang, editor, Proceedings of the 6th International Conference on Rewrit-

ing Techniques and Applications, RTA-95, volume 914 of Lecture Notes in

Computer Science, pages 426{431, Kaiserslautern, Germany, April 1995.

Springer Verlag, Berlin.

[Gie96] J. Giesl. Termination of nested and mutually recursive algorithms. Journal

of Automated Reasoning, 1996. To appear.

[Gra95] B. Gramlich. Abstract relations between restricted termination and conu-

ence properties of rewrite systems. Fundamenta Informaticae, 24:3{23, 1995.

[Gra96] B. Gramlich. On proving termination by innermost termination. In

H. Ganzinger, editor, Proceedings of the 7th International Conference on

Rewriting Techniques and Applications, RTA-96, volume 1103 of Lecture

Notes in Computer Science, pages 93{107, New Brunswick, NJ, USA, July

1996. Springer Verlag, Berlin.

[HH82] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with

constructors. Journal of Computer and System Sciences, 25:239{299, 1982.

[HL78] G. Huet and D. Lankford. On the uniform halting problem for term rewriting

systems. Technical Report 283, INRIA, Le Chesnay, France, 1978.

[Hul80] J.M. Hullot. Canonical forms and uni�cation. In W. Bibel and R. Kowalski,

editors, Proceedings of the 5th International Conference on Automated De-

duction, volume 87 of Lecture Notes in Computer Science, pages 318{334,

Les Arcs, France, July 1980. Springer Verlag, Berlin.

[KB70] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras.

Computational problems in abstract algebra, pages 263{297, 1970.

[Kri95] M.R.K. Krishna Rao. Modular proofs for completeness of hierarchical term

rewriting systems. Theoretical Computer Science, 151:487{512, 1995.

[Lan79] D.S. Lankford. On proving term rewriting systems are Noetherian. Technical

Report Memo MTP-3, Louisiana Technical University, Ruston, LA, 1979.

[LM78] D.S. Lankford and D.R. Musser. A �nite termination criterion, 1978.

[MA96] D. McAllester and K. Arkoudas. Walther recursion. In M.A. McRobbie

and J.K. Slaney, editors, Proceedings of the 13th International Conference

on Automated Deduction, CADE-13, volume 1104 of Lecture Notes in Com-

46

puter Science, pages 643{657, New Brunswick, NJ, USA, July/August 1996.

Springer Verlag, Berlin.

[MOZ96] A. Middeldorp, H. Ohsaki, and H. Zantema. Transforming termination by

self-labelling. In M.A. McRobbie and J.K. Slaney, editors, Proceedings of the

13th International Conference on Automated Deduction, CADE-13, volume

1104 of Lecture Notes in Computer Science, pages 373{387, New Brunswick,

NJ, USA, July/August 1996. Springer Verlag, Berlin.

[MT91] A. Middeldorp and Y. Toyama. Completeness of combinations of construc-

tor systems. In R.V. Book, editor, Proceedings of the 4th International Con-

ference on Rewriting Techniques and Applications, RTA-91, volume 488 of

Lecture Notes in Computer Science, pages 188{199, Como, Italy, April 1991.

Springer Verlag, Berlin.

[Pla78] D. A. Plaisted. A recursively de�ned ordering for proving termination of term

rewriting systems. Technical Report R-78-943, Department of Computer

Science, University of Illinois, Urbana-Champaign, IL, 1978.

[Ste94] J. Steinbach. Generating polynomial orderings. Information Processing Let-

ters, 49:85{93, 1994.

[Ste95a] J. Steinbach. Automatic termination proofs with transformation orderings.

In J. Hsiang, editor, Proceedings of the 6th International Conference on

Rewriting Techniques and Applications, RTA-95, volume 914 of Lecture Notes

in Computer Science, pages 11{25, Kaiserslautern, Germany, April 1995.

Springer Verlag, Berlin. Long version also appeared as Technical Report

SR-92-23, Universit�at Kaiserslautern, Germany, 1992.

[Ste95b] J. Steinbach. Simpli�cation orderings: history of results. Fundamenta Infor-

maticae, 24:47{87, 1995.

[Toy87] Y. Toyama. Counterexamples to the termination for the direct sum of term

rewriting systems. Information Processing Letters, 25:141{143, 1987.

[Wal91] C. Walther. Automatisierung von Terminierungsbeweisen. Vieweg Verlag,

Braunschweig, 1991.

[Wal94] C. Walther. On proving the termination of algorithms by machine. Arti�cial

Intelligence, 71(1):101{157, 1994.

[Zan94] H. Zantema. Termination of term rewriting: interpretation and type elimi-

nation. Journal of Symbolic Computation, 17:23{50, 1994.

[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Funda-

menta Informaticae, 24:89{105, 1995.

47

