
Proving Innermost Normalisation Automatically

?

Thomas Arts

1

and J�urgen Giesl

2

1

Dept. of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht,

The Netherlands, E-mail: thomas@cs.ruu.nl

2

FB Informatik, TH Darmstadt, Alexanderstr. 10, 64283 Darmstadt, Germany,

E-mail: giesl@inferenzsysteme.informatik.th-darmstadt.de

Abstract. We present a technique to prove innermost normalisation

of term rewriting systems (TRSs) automatically. In contrast to previous

methods, our technique is able to prove innermost normalisation of TRSs

that are not terminating.

Our technique can also be used for termination proofs of all TRSs where

innermost normalisation implies termination, such as non-overlapping

TRSs or locally conuent overlay systems. In this way, termination of

many (also non-simply terminating) TRSs can be veri�ed automatically.

1 Introduction

Innermost rewriting, i.e. rewriting where only innermost redeces are contracted,

can be used to model call-by-value computation semantics. For that reason,

there has been an increasing interest in innermost normalisation (also called

innermost termination), i.e. in proving that the length of every innermost reduc-

tion is �nite. Techniques for proving innermost normalisation can for example

be utilized for termination proofs of functional programs (modelled by TRSs)

or of logic programs. (When transforming logic programs into TRSs, innermost

normalisation of the TRS implies termination of the logic program [AZ95].)

While both termination and innermost normalisation are undecidable prop-

erties [HL78], several techniques have been developed for proving termination

of TRSs automatically (e.g. path orderings [DH95, Ste95b], semantic interpre-

tations [Lan79, BL87, Ste94, Zan94, Gie95], transformation orderings [BL90,

Ste95a] etc. | for surveys see e.g. [Der87, Ste95b]). However, there has not been

any speci�c method for innermost normalisation, i.e. the only way to prove in-

nermost normalisation automatically was by showing termination of the TRS.

Therefore, none of the techniques could prove innermost normalisation of non-

terminating systems.

In the following we present a technique for innermost normalisation proofs.

For that purpose, in Sect. 2 we introduce a criterion for innermost normalisa-

tion. Subsequently, in Sect. 3 we develop a technique to check the requirements

of this criterion automatically. For every TRS, our technique generates a set of

constraints such that the existence of a well-founded ordering satisfying these

constraints is su�cient for innermost normalisation. Now standard techniques

?

Appeared in the Proceedings of the 8th International Conference on Rewriting Tech-

niques and Applications (RTA-97), Sitges, Spain, LNCS 1232, 1997. This work was

partially supported by the Deutsche Forschungsgemeinschaft under grant no. Wa

652/7-1 as part of the focus program \Deduktion".



developed for automated termination proofs of TRSs can be applied for the

generation of appropriate well-founded orderings. In this way, innermost nor-

malisation can be proved automatically. In Sect. 4 and 5 our technique is re�ned

further and in Sect. 6 we give a summary and comment on connections and

possible combinations with related approaches.

For several classes of TRSs, innermost normalisation already su�ces for ter-

mination [Gra95, Gra96]. Moreover, several modularity results exist for inner-

most normalisation [Kri95, Art96], which do not hold for termination. Therefore,

for those classes of TRSs termination can be proved by splitting the TRS and

proving innermost normalisation of the subsystems separately. The advantage

of this approach is that there are several interesting TRSs where a direct termi-

nation proof is not possible with the existing automatic techniques. However in

many of these examples, a suitable ordering satisfying the constraints generated

by our method can nevertheless be synthesized automatically. The reason is that

for many TRSs proving innermost normalisation automatically is essentially eas-

ier than proving termination. In this way, innermost normalisation (and thereby,

termination) of many also non-simply terminating systems can now be veri�ed

automatically. A collection of numerous examples where our technique proved

successful can be found in [AG96b].

2 A Criterion for Innermost Normalisation

In this section we introduce a new criterion for innermost normalisation. For

that purpose the notions of constructors and de�ned symbols (that are well-

known for the subclass of constructor systems) are extended to arbitrary TRSs.

In the following, the root of a term f(: : :) is the leading function symbol f .

De�nition 1 (De�ned Symbols and Constructors). LetR(F;R) be a TRS

(with the rules R over a signature F). Then D

R

= froot(l)jl ! r 2 Rg is the

set of the de�ned symbols of R and C

R

= F nD

R

is the set of constructors of

R. To stress the splitting of the signature we denote a TRS by R(D;C;R).

For example consider the following TRS, with the de�ned symbols f and g and

the constructors 0 and s.

f(g(x); s(0); y)! f(y; y; g(x))

g(s(x))! s(g(x))

g(0)! 0

In contrast to the existing approaches for termination proofs, which compare

left and right-hand sides of rules, in the following we only examine those subterms

that are responsible for starting new reductions. For that purpose we concentrate

on the subterms in the right-hand sides of rules that have a de�ned root symbol

(because these are the only terms a rewrite rule can ever be applied to).

More precisely, for every rule f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)] (where f and

g are de�ned symbols and C denotes some context), we compare the argument

tuple s

1

; : : : ; s

n

with the tuple t

1

; : : : ; t

m

. In order to avoid the handling of tuples,

for a formal de�nition we extend the signature of the TRS by a new special tuple

symbol F for every de�ned symbol f in D. Now instead of the tuples s

1

; : : : ; s

n

2



and t

1

; : : : ; t

m

we compare the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

). In this

paper we assume that the signature F consists of lower case function symbols

only and we denote the tuple symbols by the corresponding upper case symbols.

De�nition 2 (Dependency Pairs). LetR(D;C;R) be a TRS. If f(s

1

; : : : ; s

n

)

! C[g(t

1

; : : : ; t

m

)] is a rewrite rule of R with f; g 2 D, then hF (s

1

; : : : ; s

n

);

G(t

1

; : : : ; t

m

)i is a dependency pair of R.

In the above example we obtain the following dependency pairs:

hF(g(x); s(0); y);F(y; y; g(x))i (1)

hF(g(x); s(0); y);G(x)i (2)

hG(s(x));G(x)i (3)

Using the concept of dependency pairs we can now develop a criterion for

innermost normalisation. Note that in our example, we have the following in�nite

(cycling) reduction. (Here, s0 abbreviates s(0) etc.)

f(gs0; s0; gs0)! f(gs0; gs0; gs0)! f(gs0; sg0; gs0)! f(gs0; s0; gs0)! : : :

However, this reduction is not an innermost reduction, because in the �rst re-

duction step the subterm gs0 is a redex and would have to be reduced �rst. It

turns out that although this TRS is not terminating, it is nevertheless innermost

normalising. In the following, innermost reductions are denoted by \

i

!".

Every in�nite reduction corresponds to an in�nite introduction of new rede-

ces. To trace these newly introduced redeces we consider special sequences of

dependency pairs, so-called chains. A sequence of dependency pairs is a chain

if there exists a substitution � such that for all consecutive pairs hs

j

; t

j

i and

hs

j+1

; t

j+1

i in the sequence we have t

j

� !

�

R

s

j+1

� (cf. [AG97]). In this way, the

right-hand side of every dependency pair can be seen as the newly introduced

redex that should be traced and the reductions t

j

� !

�

R

s

j+1

� are necessary to

normalize the arguments of the redex that is traced. When regarding innermost

reductions, arguments of a redex should be in normal form before the redex is

contracted. Moreover, when concentrating on innermost reductions, the reduc-

tions of the arguments to normal form should also be innermost reductions. This

results in the following restricted notion of a chain.

De�nition 3 (Innermost R-chains). Let R(D;C;R) be a TRS. A sequence

of dependency pairs hs

1

; t

1

i hs

2

; t

2

i : : : is called an innermost R-chain if there

exists a substitution �, such that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

�

holds for every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

We always assume that di�erent (occurrences of) dependency pairs have

disjoint sets of variables and we always regard substitutions whose domain may

be in�nite. Hence, in our example we have the innermost chain

hG(s(x

1

));G(x

1

)i hG(s(x

2

));G(x

2

)i hG(s(x

3

));G(x

3

)i

because G(x

1

)�

i

!

�

R

G(s(x

2

))� and G(x

2

)�

i

!

�

R

G(s(x

3

))� holds for the substitu-

tion � that replaces x

1

by s(s(x

3

)) and x

2

by s(x

3

). In fact any �nite sequence of

3



the dependency pair hG(s(x));G(x)i is an innermost chain. In the next section we

will demonstrate that the above TRS actually has no in�nite innermost chain.

The following theorem shows that the absence of in�nite innermost chains is a

(su�cient and necessary) criterion for innermost normalisation.

Theorem4 (Innermost Normalisation Criterion). A TRS R is innermost

normalising if and only if no in�nite innermost R-chain exists.

Proof. Su�cient Criterion

Let t be a term that starts an in�nite innermost reduction. Then the term t

contains a subterm

1

f

1

(u

1

) that starts an in�nite innermost reduction, but none

of the terms u

1

starts an in�nite innermost reduction, i.e. the terms u

1

are

innermost normalising.

Let us consider an in�nite innermost reduction starting with f

1

(u

1

). The ar-

guments u

1

are reduced innermost to normal form, say v

1

, and then a rewrite

rule f

1

(w

1

) ! r

1

is applied to f

1

(v

1

), i.e. a substitution �

1

exists such that

f

1

(v

1

) = f

1

(w

1

)�

1

i

!

R

r

1

�

1

. Hence, we have u

1

i

!

�

R

w

1

�

1

and the terms w

1

�

1

are in normal form.

Now the in�nite innermost reduction continues with r

1

�

1

, i.e. the term r

1

�

1

starts an in�nite innermost reduction, too. Thus, r

1

contains a subterm f

2

(u

2

),

i.e. r

1

= C[f

2

(u

2

)] for some context C, such that f

2

(u

2

)�

1

starts an in�nite

innermost reduction and u

2

�

1

are innermost normalising terms. The �rst depen-

dency pair of the in�nite innermost chain that we construct is hF

1

(w

1

); F

2

(u

2

)i

corresponding to the rewrite rule f

1

(w

1

)! C[f

2

(u

2

)].

The other dependency pairs of the in�nite innermost chain are determined in the

same way: Let hF

i�1

(w

i�1

); F

i

(u

i

)i be a dependency pair such that f

i

(u

i

)�

i�1

starts an in�nite innermost reduction and the terms u

i

�

i�1

are innermost nor-

malising. Again, in zero or more steps f

i

(u

i

)�

i�1

reduces innermost to f

i

(v

i

)

with v

i

normal forms. A rewrite rule f

i

(w

i

)! r

i

can be applied to f

i

(v

i

) such

that r

i

�

i

starts an in�nite innermost reduction for some substitution �

i

with

v

i

= w

i

�

i

.

Similar to the observations above, since r

i

�

i

starts an in�nite innermost reduc-

tion, there must be a subterm f

i+1

(u

i+1

) in r

i

such that f

i+1

(u

i+1

)�

i

starts an

in�nite innermost reduction and u

i+1

�

i

are innermost normalising terms. This

results in the i-th dependency pair hF

i

(w

i

); F

i+1

(u

i+1

)i in the innermost chain.

In this way, one obtains the in�nite sequence

hF

1

(w

1

); F

2

(u

2

)i hF

2

(w

2

); F

3

(u

3

)i hF

3

(w

3

); F

4

(u

4

)i : : :

It remains to prove that this sequence is really an innermost R-chain.

Note that F

i

(u

i

�

i�1

)

i

!

�

R

F

i

(v

i

) where v

i

= w

i

�

i

and all terms w

i

�

i

and thus

all terms F

i

(w

i

)�

i

are normal forms. Since we assume that the variables of

consecutive dependency pairs are disjoint, we obtain one substitution � = �

1

�

�

2

��

3

� : : : such that F

i

(u

i

)�

i

!

�

R

F

i

(w

i

)� for all i. Thus, this sequence is indeed

an in�nite innermost R-chain.

1

We denote tuples of terms t

1

; : : : ; t

n

by t.

4



Necessary Criterion

We prove that any in�nite innermostR-chain can be transformed into an in�nite

innermost reduction. Assume there exists an in�nite innermost chain.

hF

1

(s

1

); F

2

(t

2

)i hF

2

(s

2

); F

3

(t

3

)i hF

3

(s

3

); F

4

(t

4

)i : : :

Hence, there must be a substitution � such that all F

j

(s

j

)� are in normal form

and such that

F

2

(t

2

)�

i

!

�

R

F

2

(s

2

)�; F

3

(t

3

)�

i

!

�

R

F

3

(s

3

)�; : : : ;

resp. f

j

(t

j

)�

i

!

�

R

f

j

(s

j

)�, as R contains no F

j

-rules for upper case symbols F

j

.

Note that every dependency pair hF (s); G(t)i corresponds to a rewrite rule

f(s) ! C[g(t)] for some context C. Since no redex occurs in s�, this reduc-

tion also follows the innermost strategy, i.e. f(s)�

i

!

R

C[g(t)]�. Therefore, we

obtain the following in�nite innermost reduction.

f

1

(s

1

)�

i

!

R

C

1

[f

2

(t

2

)]�

i

!

�

R

C

1

[f

2

(s

2

)]�

i

!

R

C

1

[C

2

[f

3

(t

3

)]]�

i

!

�

R

: : :
ut

3 Automation of Innermost Normalisation Proofs

The advantage of our innermost normalisation criterion is that it is particularly

well suited for automation. In this section we present a method for proving

the absence of in�nite innermost chains automatically. For this automation we

assume the TRSs to be �nite, such that only �nitely many dependency pairs

need to be considered.

Assume that there is a sequence hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : of dependency pairs

and a substitution � such that all terms s

j

� are in normal form and such that

t

j

� reduces innermost to s

j+1

� for all j. Then to prove that this sequence is

�nite, it su�ces to �nd a well-founded

2

quasi-ordering % such that

s

1

� � t

1

� % s

2

� � t

2

� % s

3

� � t

3

� : : : (4)

In other words, we search for a quasi-ordering such that terms in dependency

pairs are decreasing and terms in between dependency pairs are weakly decreas-

ing. The reason for only demanding the weak inequalities t

j

� % s

j+1

� is that

the terms t

j

� and s

j+1

� are often identical.

To automate this search for a suitable ordering we now present a procedure

which, given a TRS, generates a set of constraints which are su�cient for (4).

Then standard techniques developed for termination proofs of TRSs can be used

to synthesize a well-founded quasi-ordering satisfying these constraints.

In the following we restrict ourselves to quasi-orderings where both % and �

are closed under substitution. To ensure that all dependency pairs are decreasing,

we demand s � t for all dependency pairs hs; ti. In our example this results in

the following constraints, cf. (1), (2), (3):

F(g(x); s(0); y) � F(y; y; g(x)); F(g(x); s(0); y) � G(x); G(s(x)) � G(x): (5)

Moreover, we have to ensure t

j

� % s

j+1

� whenever t

j

�

i

!

�

R

s

j+1

� holds. For

that purpose we demand the constraints l%r for all those rules l ! r that can

2

A quasi-ordering % is a reexive and transitive relation and % is called well-founded

if its strict part � is well founded.

5



be used in an innermost reduction of t

j

�. Note that as all terms s

j

� are normal,

� is a normal substitution (i.e. it instantiates all variables with normal forms).

Hence, for the dependency pairs (2) and (3) we directly obtain that no rule can

ever be used to reduce a normal instantiation of G(x) (because G is no de�ned

symbol). The only dependency pair whose right-hand side can be reduced if its

variables are instantiated with normal forms is (1), because this is a dependency

pair with de�ned symbols in the right-hand side. As the only de�ned symbol in

F(y; y; g(x)) is g, the only rules that may be applied on normal instantiations of

this term are the two g-rules of the TRS. Since these g-rules can never introduce

a new redex with root symbol f, these two g-rules are the only rules that can be

used to reduce any normal instantiation of F(y; y; g(x)). Hence, in this example

we only have to demand that these rules should be weakly decreasing.

g(s(x))% s(g(x)); g(0)%0 (6)

In general, to determine the usable rules, i.e. (a superset of) those rules that

may possibly be used in a reduction of a normal instantiation of t, we proceed

as follows. If t contains a de�ned symbol f , then all f -rules are usable and

furthermore, all rules that are usable for right-hand sides of f -rules are also

usable for t.

De�nition 5 (Usable Rules). Let R(D;C;R) be a TRS. For any f 2 D let

Rls(f) = ff(s) ! rjf(s) ! r in Rg. For any term t, U(t) is the smallest subset

of R such that

� U(x) = ;,

� U(f(t

1

; : : : ; t

n

)) =

8

<

:

Rls(f) [

S

l!r2Rls(f)

U(r) [ U(t

1

) [ : : : [ U(t

n

)

if f 2 D

U(t

1

) [ : : : [ U(t

n

) if f 62 D

Hence, we have U(F(y; y; g(x))) = Rls(g) = fg(s(x))! s(g(x)); g(0)! 0g:

So the constraints (6) ensure that whenever F(y; y; g(x)) is instantiated by

a normal substitution �, then reductions can only decrease the value of the

subterm g(x)�. However, we have to guarantee that the value of the whole term

F(y; y; g(x)) is weakly decreasing if an instantiation of g(x) is replaced by a

smaller term. For that purpose, we demand that F(y; y; g(x)) must be weakly

monotonic on the position of its subterm g(x), i.e. we also have to demand the

following constraint:

x

1

%x

2

) F(y; y; x

1

)%F(y; y; x

2

): (7)

To ease the formalization we only compute such monotonicity constraints for

the tuple symbols and for all other (lower case) symbols we demand weak mono-

tonicity in all of their arguments. In general, we obtain the following procedure

for the generation of constraints.

Theorem6 (Proving Innermost Normalisation). Let R be a TRS and let

% be a well-founded quasi-ordering where both % and � are closed under sub-

stitution. If % is weakly monotonic on all symbols apart from the tuple symbols

and if % satis�es the following constraints for all dependency pairs hs; ti

6



(a) s � t,

(b) l%r for all usable rules l ! r in U(t),

(c) x

1

%y

1

^ : : : ^x

n

%y

n

) C[x

1

; : : : ;x

n

]%C[y

1

; : : : ;y

n

]; if t = C[f

1

(u

1

) ; : : : ;f

n

(u

n

)],

where C is a context without de�ned symbols and f

1

; : : : ;f

n

are de�ned symbols,

then R is innermost normalising.

Proof. Suppose hs

1

; t

1

ihs

2

; t

2

i : : : is an in�nite innermostR-chain. Then there ex-

ists a substitution � such that s

j

� is in normal form and t

j

� reduces innermost

to s

j+1

� for all j. Hence, � replaces all variables by normal forms and therefore,

the only rules that can be applied in this reduction are the usable rules U(t

j

).

All usable rules are weakly decreasing and the terms t

j

are weakly monotonic on

those positions where they are applied. (This also holds for reductions in u

i

, be-

cause all lower case symbols are weakly monotonic.) Hence, we have t

j

�%s

j+1

�.

This results in an in�nite decreasing sequence s

1

� � t

1

�%s

2

� � t

2

�% : : : which

is a contradiction to the well-foundedness of % . Thus, no in�nite innermost R-

chain exists and by Thm. 4, the TRS is innermost normalising. ut

Hence, in our example to prove innermost normalisation it is su�cient to �nd

a well-founded quasi-ordering satisfying the constraints in (5), (6), and (7). For

that purpose one may for instance use the well-known technique of synthesizing

polynomial orderings [Lan79]. For example, these constraints are ful�lled by the

polynomial ordering where the constant 0 is mapped to the number 0, s(x) is

mapped to x+1, g(x) is mapped to x+2, F(x; y; z) is mapped to (x�y)

2

+1, and

G(x) is mapped to x. Methods to synthesize polynomial orderings automatically

have for instance been developed in [Ste94, Gie95]. Note that for our technique we

do not require the quasi-ordering to be weakly monotonic on tuple symbols. The

only monotonicity constraint in our example is (7), which is obviously satis�ed

as F(x; y; z) is mapped to a polynomial which is weakly monotonic

3

in its third

argument z. However, this polynomial is not weakly monotonic in x or y.

In this way, innermost normalisation of our example can be proved auto-

matically, i.e. this technique allows the application of standard techniques for

innermost normalisation proofs, even if the TRS is not terminating. Moreover,

using the results of [Gra95], Thm. 6 can also be applied for proving termination

of TRSs that are non-overlapping (or for locally conuent overlay systems).

As an example regard the following TRS by T. Kolbe where quot(x; y; z) is

used to compute 1+

�

x�y

z

�

, if x � y and z 6= 0 (i.e. quot(x; y; y) computes

j

x

y

k

).

quot(0; s(y); s(z))! 0

quot(s(x); s(y); z)! quot(x; y; z)

quot(x; 0; s(z))! s(quot(x; s(z); s(z)))

3

When using polynomial interpretations, the monotonicity constraint (c) of Thm.

6 can also be represented as an inequality. For instance, if F is mapped to some

polynomial [F], then instead of (7) one could demand that the partial derivative of

[F](y; y; x) with respect to x should be non-negative, i.e.

@[F](y;y;x)

@x

� 0, cf. [Gie95].

If one uses other techniques (e.g. path orderings) which can only generate monotonic

orderings, then of course one may drop the monotonicity constraint (c).

7



A problem with virtually all automatic approaches for termination proofs is

that they are restricted to simpli�cation orderings [Der79, Ste95b] and therefore

can only prove termination of TRS that are simply terminating. However, there

are numerous relevant and important terminating TRSs where simpli�cation

orderings fail. For instance, the above system is not simply terminating (the left-

hand side of the last rule is embedded in the right-hand side if z is instantiated

with 0).

Nevertheless, with our technique we can prove innermost normalisation and

therefore termination of this system automatically. As quot is the only de�ned

symbol of this system, we obtain the following dependency pairs (where Q de-

notes the tuple symbol for quot).

hQ(s(x); s(y); z);Q(x; y; z)i (8)

hQ(x; 0; s(z));Q(x; s(z); s(z))i (9)

Note that in this example there are no usable rules, as in the right-hand sides

of the dependency pairs no de�ned symbols occur. Hence, due to Thm. 6 we

only have to �nd a well-founded quasi-ordering such that both dependency pairs

are decreasing. These constraints are for instance satis�ed by the polynomial

ordering where 0 is mapped to the number 0, s(x) is mapped to x + 1, and

Q(x; y; z) is mapped to x + (x � y + z)

2

. Hence, innermost normalisation and

thereby also termination of this TRS is proved (as it is non-overlapping). Note

that again we bene�t from the fact that the tuple symbol Q need not be weakly

monotonic in its arguments. Therefore an interpretation like the polynomial

x + (x � y + z)

2

may be used, which is not weakly monotonic in any of its

arguments. In fact, if the set of usable rules is empty, the quasi-ordering need

not even be weakly monotonic for any symbol.

4 A Re�nement using Innermost Dependency Graphs

While the method of Thm. 6 can be very successfully used for both innermost

normalisation and termination proofs, in this section we introduce a re�nement

of this approach, i.e. we show how the constraints obtained can be weakened. By

this weakening, the (automatic) search for a suitable quasi-ordering satisfying

these constraints can be eased signi�cantly.

In order to ensure that every possible in�nite innermost chain would result in

an in�nite decreasing sequence of terms, in the preceding section we demanded

s � t for all dependency pairs hs; ti. However, in many examples it is su�cient

if just some of the dependency pairs are decreasing.

For instance, in the quot-example up to now we demanded that both de-

pendency pairs (8) and (9) had to be decreasing. However, two occurrences

of the dependency pair (9) can never follow each other in a chain, because

Q(x

1

; s(z

1

); s(z

1

))� can never reduce to any instantiation of Q(x

2

; 0; s(z

2

)). The

reason is that the second arguments s(z

1

) resp. 0 of these two terms have di�er-

ent constructor root symbols. Hence, any possible in�nite chain would contain

in�nitely many occurrences of the other dependency pair (8). Therefore it is

8



su�cient if (8) is decreasing and if (9) is just weakly decreasing. In this way, we

obtain the following (weakened) constraints.

Q(s(x); s(y); z) � Q(x; y; z) (10)

Q(x; 0; s(z)) % Q(x; s(z); s(z)) (11)

In general, to determine those dependency pairs which may possibly follow

each other in innermost chains, we de�ne the following graph

4

.

De�nition 7 (Innermost Dependency Graph). The innermost dependency

graph of a TRS R is a directed graph whose nodes are the dependency pairs and

there is an arc from hs; ti to hv; wi if there exists a normal substitution � such

that t�

i

!

�

R

v� and v� is a normal form.

For instance, in the innermost dependency graph for the quot example there

are arcs from (8) to itself and to (9), and there is an arc from (9) to (8) (but not

to itself).

Now any in�nite innermost chain corresponds to a cycle in the innermost

dependency graph. Hence, it is su�cient that s � t holds for at least one depen-

dency pair on every cycle and that s% t holds for the other dependency pairs on

the cycles.

Theorem8 (Proving IN with Innermost Dependency Graphs). Let R

be a TRS and let % be a well-founded quasi-ordering where both % and � are

closed under substitution. If % is weakly monotonic on all symbols apart from

the tuple symbols, if % satis�es the following constraints for all dependency pairs

hs; ti on a cycle in the innermost dependency graph

(a) s% t,

(b) l%r for all usable rules l ! r in U(t),

(c) x

1

%y

1

^ : : : ^x

n

%y

n

) C[x

1

; : : : ;x

n

]%C[y

1

; : : : ;y

n

]; if t = C[f

1

(u

1

) ; : : : ;f

n

(u

n

)],

where C is a context without de�ned symbols and f

1

; : : : ;f

n

are de�ned symbols,

and if s � t holds for at least one dependency pair hs; ti on each cycle in the

innermost dependency graph, then R is innermost normalising.

Proof. Every possible in�nite innermost R-chain corresponds to an in�nite path

in the innermost dependency graph. This in�nite path traverses at least one

cycle in�nitely many times. Note that s � t holds for one dependency pair hs; ti

on this cycle and that this dependency pair must occur in�nitely often in the

in�nite innermost chain. As we may assume, without loss of generality, that all

other dependency pairs in an in�nite innermost chain are also on cycles in the

4

Note that the conditions in Def. 7 are weaker than the conditions in the de�nition

of innermost chains (Def. 3): Instead of using one \global" substitution � for all

dependency pairs, now one may use di�erent \local" substitutions �. Moreover, we

only demand that these � should be normal substitutions and that v� must be

normal (but s� does not have to be in normal form any more). The reason for this

weakening is that the conditions of Def. 7 are more suitable for automation.

9



innermost dependency graph, similar to the proof of Thm. 6 we again obtain an

in�nite sequence of inequalities of which in�nitely many inequalities are strict.

This is a contradiction to the well-foundedness of % . Thus, no in�nite innermost

R-chain exists and by Thm. 4, the TRS is innermost normalising. ut

Hence, in the quot example the constraints (10) and (11) are in fact su�cient

for innermost normalisation. A suitable quasi-ordering satisfying these weakened

constraints can easily be synthesized (for instance, one could use the polynomial

interpretation where 0 and s are interpreted as usual and where Q(x; y; z) is

mapped to x). This example demonstrates that this weakening of the constraints

often enables the use of much simpler orderings (e.g. now we can use a linear,

weakly monotonic polynomial ordering whereas for the original constraints of

Sect. 3 we needed a non-weakly monotonic polynomial of degree 2).

However, for an automation of Thm. 8 we have to construct the innermost

dependency graph. Unfortunately, this cannot be done automatically, since for

two terms t and v it is undecidable whether there exists a normal substitution

� such that t� reduces innermost to a normal form v�. Hence, we can only

approximate this graph by computing a supergraph containing the innermost

dependency graph. Note that t� may only reduce to v� for some normal substi-

tution �, if either t has a de�ned root symbol or if both t and v have the same

constructor root symbol. Let cap(t) denote the result of replacing all subterms

in t with a de�ned root symbol by di�erent fresh variables. Then t� may only

reduce to v� if cap(t) and v are uni�able. Moreover, the most general uni�er

(mgu) of cap(t) and v must be a normal substitution.

Theorem9 (Computing Innermost Dependency Graphs). Let R be a

TRS. If t� !

�

R

v� holds for some normal substitution � such that v� is a

normal form, then cap(t) and v unify and their mgu is a normal substitution.

Proof. By induction on the structure of t we show that if a normal substitution

� and a normal term u exists such that t� !

�

R

u, then there exists a normal

substitution � (whose domain only includes variables that were newly introduced

in the construction of cap(t) ) such that

5

cap(t)�� = u. Thus in particular, if

t� !

�

R

v�, we have cap(t)�� = v� (= v�� , because the variables of v� do not

occur in the domain of �). Hence, cap(t) and v unify. Moreover, for the mgu �

of cap(t) and v, there exists a substitution � with �� = �� . As both � and �

are normal, � must be a normal substitution, too.

If t is a variable, then t� is in normal form for any normal substitution �,

hence t� equals u. Moreover, we have cap(t) = t. So cap(t)� = u, i.e. in this

case � is the empty substitution.

If the root symbol of t is de�ned, then cap(t) = x for some fresh variable x.

Let � replace x by u. Then we have cap(t)�� = cap(t)� = u and � is normal.

If t = c(t

1

; : : : ; t

k

) for some constructor c 2 C, then u has to be of the

form c(u

1

; : : : ; u

k

) and t

i

� !

�

R

u

i

holds for all i. By the induction hypothesis we

obtain that normal substitutions �

i

exist such that cap(t

i

)��

i

= u

i

for all i. Note

5

Here, \t��" is de�ned as \(t�)�", i.e. � is applied �rst.

10



that those variables in cap(t

i

) that were introduced by cap are disjoint from the

newly introduced variables in cap(t

j

) (for i 6= j). Hence, if � = �

1

� : : :� �

k

, then

for all i we have cap(t

i

)�� = u

i

resp. cap(t)�� = c(cap(t

1

); : : : ;cap(t

k

))�� =

c(u

1

; : : : ; u

k

) = u and again, � is normal. ut

Now an approximation of the innermost dependency graph is computed by

drawing an arc from hs; ti to hv; wi if cap(t) and v unify (using a normal mgu �).

In this way we can compute the innermost dependency graph in the quot example

automatically. There are also examples where the innermost dependency graph

does not contain any cycles.

f(x; g(x)) ! f(1; g(x))

g(1) ! g(0)

In this example, the �rst dependency pair hF(x; g(x));F(1; g(x))i does not oc-

cur on a cycle in the innermost dependency graph, although cap(F(1; g(x))) =

F(1; y) uni�es with F(x; g(x)) using a mgu that replaces x by 1 and y by g(1).

However, g(1) is not a normal form and hence, this mgu is not a normal substi-

tution. The second dependency pair hG(1);G(0)i cannot occur on a cycle either,

since G(0) does not unify with G(1). Hence, using the re�ned technique of Thm.

8 we obtain no constraint at all, i.e. innermost normalisation can be proved by

only computing the (approximation of) the innermost dependency graph.

5 Computing Dependency Graphs by Narrowing

To perform innermost normalisation proofs according to the method of Thm. 8

we have to compute a graph containing the innermost dependency graph. How-

ever, for some examples the approximation presented in the preceding section is

too rough. For instance, let us replace the last rule of the quot system by the

following three rules.

quot(x; 0; s(z))! s(quot(x; z + s(0); s(z)))

0+ y ! y

s(x) + y ! s(x+ y)

Now instead of dependency pair (9) we obtain

hQ(x; 0; s(z));Q(x; z + s(0); s(z))i: (12)

Note that in our approximation of the innermost dependency graph there would

be an arc from (12) to itself, because after replacing z + s(0) by a new variable,

the right- and the left-hand side of (12) obviously unify (and the mgu is normal).

Hence, due to Thm. 8 we would have to �nd an ordering such that (12) is strictly

decreasing. But then no linear or weakly monotonic polynomial ordering satis�es

all resulting inequalities in this example.

However, in the real innermost dependency graph, there is no arc from (12)

to itself, because, similar to the original dependency pair (9), there is no substi-

tution � such that (z + s(0))� reduces to 0. Hence, there is no cycle consisting

of (12) only and therefore it is su�cient if (12) is just weakly decreasing. In this

way, the simple (linear) polynomial ordering of the last section would also satisfy

11



the constraints resulting from this example (if the tuple symbol PLUS(x; y) is

mapped to x). Therefore to ease the innermost normalisation (resp. termination)

proof of this example we need a method to compute a better approximation of

the innermost dependency graph.

Hence, we present a better technique to determine whether for two terms t

and v there exists a normal substitution � such that t� reduces innermost to the

normal form v�. For this purpose we use narrowing (cf. e.g. [Hul80]).

De�nition 10 (Narrowing). Let R be a TRS. A term t narrows to a term q

(denoted by t 

R

q), if there exists a nonvariable position p in t, � is the most

general uni�er of tj

p

and l for some rewrite rule l ! r of R, and q = t�[r�]

p

.

(Here, the variables of l ! r must have been renamed to fresh variables.)

To �nd out whether t�

i

!

�

R

v� holds for some normal substitution �, up

to now we checked whether cap(t) is uni�able with v. However, in those cases

where t itself is not already uni�able with v (i.e. in those cases where at least one

rule of R is needed to reduce t� to v�), instead of examining t and v we may �rst

perform all possible narrowing steps on t (resulting in new terms t

1

; : : : ; t

n

). Now

it su�ces to check whether t

k

� reduces innermost to v� for one k 2 f1; : : : ; ng.

For example, to �nd out whether Q(x; z + s(0); s(z))�

i

!

�

R

Q(x

2

; 0; s(z

2

))�

holds for some normal substitution � we �rst compute all terms that Q(: : : z +

s(0) : : :) narrows to. Here, z + s(0) is the only nonvariable subterm which is

uni�able with a left-hand side of a rule. Hence, we only have

Q(: : : z + s(0) : : :) 

R

Q(: : : s(0) : : :) by the �rst + rule, and

Q(: : : z + s(0) : : :) 

R

Q(: : : s(x+ s(0)) : : :) by the second + rule.

Note that any term t can only be narrowed in one step to �nitely many terms

t

1

; : : : ; t

n

(up to variable renaming) and these terms t

1

; : : : ; t

n

can easily be

computed automatically.

In our example, now it su�ces to check whether a normal substitution �

exists such that Q(: : : s(0) : : :)� or Q(: : : s(x+ s(0)) : : :)� reduces innermost to a

normal form Q(: : : 0 : : :)�. For that purpose we can use the technique presented

in Thm. 9. This technique immediately proves that such a substitution cannot

exist because neither s(0) nor cap(s(x+ s(0))) unify with the subterm 0.

Of course instead of using the technique of Thm. 9 on the obtained terms,

we could also apply narrowing again and replace Q(: : : s(x + s(0)) : : :) by those

terms it narrows to. In general, to determine whether t�

i

!

�

R

v� holds for some

normal substitution � one can apply an arbitrary number of narrowing steps to t.

Subsequently, the method of Thm. 9 is applied to test whether after application

of cap one of the resulting terms is uni�able with v (using a normal mgu).

By the use of narrowing we obtain a method to compute much better ap-

proximations of innermost dependency graphs. For instance, if in our example

we perform at least one narrowing step, then we can determine that the depen-

dency pair (12) does not form a cycle in the innermost dependency graph and

then termination can again be veri�ed using a linear, weakly monotonic polyno-

mial ordering. The following theorem proves the soundness of this approach.

12



Theorem11 (Computing Dependency Graphs by Narrowing). Let R

be a TRS and let t; v be terms with disjoint sets of variables. If there exists

a normal substitution � such that t�

i

!

�

R

v� and v� is a normal form, then

� t and v are uni�able, or

� there exists a term q and a normal substitution � such that t 

R

q,

q�

i

!

�

R

v� and v� is a normal form.

Proof. The proof is done by induction on the length of the reduction t�

i

!

�

R

v�.

If the length is zero, then t and v unify. Otherwise we have t�

i

!

R

t

0

i

!

�

R

v� for

some term t

0

. As � is a normal substitution, the reduction t�

i

!

R

t

0

cannot take

place \in �". Hence, t contains some subterm f(u) such that a rule l ! r has

been applied to f(u)�. In other words, l matches f(u)� (i.e. l� = f(u)�, where �

is a normal substitution, because for innermost reductions the terms u must be

in normal form). Hence, the reduction has the following form: t� = t�[f(u)�]

p

=

t�[l�]

p

i

!

R

t�[r�]

p

= t

0

: Similar to Def. 10 we assume that the variables of l ! r

have been renamed to fresh ones. Then �� is a uni�er of l and f(u) and hence,

there also exists a mgu �. By the de�nition of most general uni�ers there must

also be a substitution � such that �� = �� . Here, � is a normal substitution

because both � and � are normal. As the variables of t and v are disjoint, we

can assume that � never introduces any variables from v. Thus, we may de�ne

� to be like � for the variables of v, i.e. v� = v� is a normal form.

Let q be the term t�[r�]

p

. Then t 

R

q holds by the de�nition of narrowing.

Moreover we have q� = t�� [r�� ]

p

= t��[r��]

p

= t�[r�]

p

= t

0

i

!

�

R

v� = v�: ut

6 Conclusion and Related Work

We have introduced a technique to automate innermost normalisation proofs

of term rewriting systems. For that purpose we have developed a new criterion

for innermost normalisation which is based on the concept of dependency pairs.

To automate the checking of this criterion, a set of constraints is synthesized

for each TRS and standard techniques developed for termination proofs can be

used to generate a well-founded ordering satisfying these constraints. If such an

ordering can be found, then innermost normalisation of the system is proved.

Our approach is the �rst automatic method which can also prove innermost

normalisation of systems that are not terminating. Moreover, our technique can

also very successfully be used for termination proofs of non-overlapping systems,

because for those systems innermost normalisation is already su�cient for ter-

mination. We implemented our technique for the generation of constraints and

a large collection of TRSs of which innermost normalisation resp. termination

has been proved automatically can be found in [AG96b]. These examples include

well-known non-simply terminating challenge problems from literature as well as

many practically relevant TRSs from di�erent areas of computer science (such

as arithmetical operations, several sorting algorithms, a reachability algorithm

on graphs, a TRS for substitutions in the lambda calculus etc.).

13



The concept of dependency pairs has been introduced in [Art96] and a �rst

automation of this concept can be found in [AG96a]. However, these approaches

were restricted to non-overlapping constructor systems without nested recursion,

whereas in the present paper we dealt with arbitrary rewrite systems. Moreover,

in contrast to these �rst approaches, in this paper we developed a complete cri-

terion for innermost normalisation and proved its soundness in a short and easy

way (while the corresponding proof in [Art96] was based on semantic labelling

[Zan95]). Finally, the introduction of innermost dependency graphs led to a con-

siderably more powerful technique than the method proposed in [AG96a].

Dependency pairs have a connection to semantic labelling [Zan95] (resp. to

self -labelling [MOZ96]). However, compared to semantic labelling the depen-

dency pair approach is better suited for automation, because here one does not

have to �nd an appropriate semantic interpretation. At �rst sight, there also

seems to be a similarity between innermost chains and innermost forward clo-

sures [LM78, DH95], but it turns out that these approaches are fundamentally

di�erent. While forward closures restrict the application of rules (to that part of

a term created by previous rewrites), the dependency pair approach restricts the

examination of terms (to those subterms that may possibly be reduced further).

So in contrast to innermost chains, innermost forward closures are reductions.

Moreover, while the dependency pair approach is very well suited for automation,

we do not know of any approach to automate the forward closure approach.

As our technique can only be applied for termination proofs if the TRS

is non-overlapping (or at least an overlay system with joinable critical pairs),

in [AG97] we also showed how dependency pairs can be used for termination

proofs of arbitrary TRSs. However, as long as the system is non-overlapping,

it is always advantageous to prove innermost normalisation only (instead of

termination). For instance, termination of the quot system can easily be proved

with the technique introduced in the present paper, whereas the constraints

generated by the method of [AG97] are not satis�ed by any quasi-ordering which

is amenable to automation (i.e. by any total or quasi-simpli�cation ordering).

Most previous methods developed for automatic termination proofs are based

on simpli�cation orderings. For non-overlapping systems, these methods should

always be combined with our technique, because there are many examples where

direct termination proofs using the standard methods fail, but these methods can

nevertheless synthesize an ordering satisfying the constraints resulting from our

technique. Moreover, whenever a direct termination proof is possible with a sim-

pli�cation ordering, then this simpli�cation ordering also satis�es the constraints

resulting from our technique. The only other approach for automated termina-

tion proofs of non-simply terminating systems is a technique for generating trans-

formation orderings [BL90] by Steinbach [Ste95a]. Several examples which can

automatically be proved terminating by our technique, but where Steinbach's

approach fails, can be found in the full version of this paper [AG96b].

Acknowledgements.We would like to thank Hans Zantema, Aart Middeldorp, Tho-

mas Kolbe, and the referees for constructive criticism and many helpful comments.

14



References

[AG96a] T. Arts and J. Giesl. Termination of constructor systems. In Proceedings of

RTA-96, LNCS 1103, pages 63{77, 1996.

[AG96b] T. Arts and J. Giesl. Proving innermost normalisation automatically. Tech.

Report IBN 96/39, TH Darmstadt, 1996. http://kirmes.inferenzsysteme.

informatik.th-darmstadt.de/~reports/notes/ibn-96-39.ps

[AG97] T. Arts and J. Giesl. Automatically proving termination where simpli�ca-

tion orderings fail. In Proceedings of CAAP'97, LNCS, 1997.

[Art96] T. Arts. Termination by absence of in�nite chains of dependency pairs. In

Proceedings of CAAP'96, LNCS 1059, pages 196{210, 1996.

[AZ95] T. Arts and H. Zantema. Termination of logic programs using semantic

uni�cation. In Proceedings of LoPSTr'95, LNCS 1048, pages 219{233, 1995.

[BL87] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by poly-

nomial interpretations and its implementation. Science of Computer Pro-

gramming, 9:137{159, 1987.

[BL90] F. Bellegarde and P. Lescanne. Termination by completion. Applicable Al-

gebra in Engineering, Communication and Computing, 1:79{96, 1990.

[Der79] N. Dershowitz. A note on simpli�cation orderings. Information Processing

Letters, 9(5):212{215, 1979.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,

3(1 and 2):69{116, 1987.

[DH95] N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer

Science, 142(2):179{207, 1995.

[Gie95] J. Giesl. Generating polynomial orderings for termination proofs. In Pro-

ceedings of RTA-95, LNCS 914, pages 426{431, 1995.

[Gra95] B. Gramlich. Abstract relations between restricted termination and conu-

ence properties of rewrite systems. Fundam. Informaticae, 24:3{23, 1995.

[Gra96] B. Gramlich. On proving termination by innermost termination. In Pro-

ceedings of RTA-96, LNCS 1103, pages 93{107, 1996.

[HL78] G. Huet and D. Lankford. On the uniform halting problem for term rewrit-

ing systems. Technical Report 283, INRIA, Le Chesnay, France, 1978.

[Hul80] J.M. Hullot. Canonical forms and uni�cation. In Proceedings of CADE-5,

LNCS 87, pages 318{334, 1980.

[Kri95] M.R.K. Krishna Rao. Modular proofs for completeness of hierarchical term

rewriting systems. Theoretical Computer Science, 151:487{512, 1995.

[Lan79] D.S. Lankford. On proving term rewriting systems are Noetherian. Technical

Report Memo MTP-3, Louisiana Technical University, Ruston, LA, 1979.

[LM78] D.S. Lankford and D.R. Musser. A �nite termination criterion, 1978.

[MOZ96] A. Middeldorp, H. Ohsaki, and H. Zantema. Transforming termination by

self-labelling. In Proceedings of CADE-13, LNCS 1104, pages 373{387, 1996.

[Ste94] J. Steinbach. Generating polynomial orderings. Inf. Pr. Let., 49:85{93, 1994.

[Ste95a] J. Steinbach. Automatic termination proofs with transformation orderings.

In Proceedings of RTA-95, LNCS 914, pages 11{25, 1995.

[Ste95b] J. Steinbach. Simpli�cation orderings: history of results. Fundamenta Infor-

maticae, 24:47{87, 1995.

[Zan94] H. Zantema. Termination of term rewriting: interpretation and type elimi-

nation. Journal of Symbolic Computation, 17:23{50, 1994.

[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Funda-

menta Informaticae, 24:89{105, 1995.

15


