
Termination Analysis for Functional Programs

using Term Orderings

?

J�urgen Giesl

FB Informatik, Technische Hochschule Darmstadt,

Alexanderstr. 10, 64283 Darmstadt, Germany

Email: giesl@inferenzsysteme.informatik.th-darmstadt.de

Abstract. To prove the termination of a functional program there has

to be a well-founded ordering such that the arguments in each recursive

call are smaller than the corresponding inputs. In this paper we present

a procedure for automated termination proofs of functional programs. In

contrast to previously presented methods a suited well-founded ordering

does not have to be �xed in advance by the user, but can be synthesized

automatically.

For that purpose we use approaches developed in the area of term

rewriting systems for the automated generation of suited well-founded

term orderings. But unfortunately term orderings cannot be directly used

for termination proofs of functional programs which call other algorithms

in the arguments of their recursive calls. The reason is that while for

the termination of term rewriting systems orderings between terms are

needed, for functional programs we need orderings between objects of

algebraic data types. Our method solves this problem and enables term

orderings to be used for termination proofs of functional programs.

1 Introduction

Termination of algorithms is a central problem in software development and

formal methods for proving termination are essential for program veri�cation.

In this paper we develop a method for automated termination proofs of func-

tional programs. Of course due to the undecidability of the halting problem no

procedure can prove or disprove the termination of all algorithms.

Most work on the automation of termination proofs has been done in the

areas of term rewriting systems and logic programs (for surveys on these topics

see [Der87] and [SD93] resp.). Methods for termination proofs of functional pro-

grams have for instance been developed by R. S. Boyer and J S. Moore [BM79],

C. Walther [Wal88], [Wal94] and F. and H. R. Nielson [NN95]. The procedure of

Boyer and Moore has also been adapted for conditional rewrite systems [BL93].

But both the technique of Boyer and Moore and the methods for logic pro-

grams (e.g. [UV88], [Pl�u90], [SV91], [DSF93]) are only semi-automatic, i.e. for

every termination proof at least the main characteristics of the suited well-

founded ordering have to be given in advance by the user. The methods of

Walther and of Nielson and Nielson are fully automated, but they are restricted

to one single �xed ordering (resp. to lexicographic combinations of this ordering).

?

Appeared in Proceedings of the Second International Static Analysis Symposium,

Glasgow, Scotland, Springer{Verlag, LNCS 983, 1995.

To prove termination of term rewriting systems several methods for the au-

tomated synthesis of term orderings have been developed [Ste94]. For instance,

there exist procedures for the automated generation of Knuth-Bendix orderings

[Mar87], of polynomial orderings [Col75], [BCL87], [Ste94], [Gie95a] and of path

orderings [A��t85], [DF85], [DH93].

Our aim is to use these synthesis methods for automated termination proofs

of functional programs. Unfortunately, while term orderings can easily be used

for termination proofs of term rewriting systems, they cannot be directly applied

for termination proofs of functional programs, cf. Section 2.

After illustrating the disadvantages of straightforward solutions for this prob-

lem (Section 3) we develop a method which enables term orderings to be used

for functional programs in Section 4. Then procedures for the automated gen-

eration of the right term ordering can also be applied for termination proofs of

functional programs. The resulting method is more powerful than Walther's ap-

proach and has a higher degree of automation than the technique of Boyer and

Moore. It has been implemented and integrated within the induction theorem

proving system inka [BHHW86]. We introduce some re�nements of our method

in Section 5 and end up with a conclusion and an outlook on future work.

2 Functional Programs and Term Orderings

In this paper we regard an eager functional language with algebraic data types.

For the moment we restrict ourselves to non-parameterized types and to �rst

order functions only. In Section 5 we will indicate how to use our method for

polymorphic types and higher order functions.

2.1 Termination of Functional Programs

To prove the termination of a functional program we have to show that the

arguments in each recursive call are smaller than the corresponding inputs.

Every well-founded

1

relation can be used for this comparison.

As an example consider the algebraic data type tree for binary trees whose

objects are built with the constructors nil and cons. The nullary function nil

represents a leaf and cons(t

1

; t

2

) is the tree whose root has the direct subtrees

t

1

and t

2

. The following algorithm

2

transforms trees in a linear form such that

all left subtrees are leafs, cf. Figures 1 and 2.

function
atten (x : tree) : tree (

if x = nil then nil

if x = cons(nil; y) then cons(nil;
atten(y))

if x = cons(cons(u; v); w) then
atten(cons(u; cons(v; w)))

1

A relation � is well-founded i� there exists no in�nite descending chain t

1

� t

2

� : : :

2

To ease readability we have used a formulation of the algorithm without selectors

(or destructors), i.e. our language uses pattern matching (where the patterns should

be exhaustive).

u

u

u

u

@

@

@

@

@

@

�

�

�

�

�

�

�

�

etc.

u

u

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�
C

C

�

�

C

C

�

�
C

C

v

w

u

u

u

@

@

@

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�
C

C
�

�
C

C

�

�

C

C

u

v w

atten() :=
atten()

Fig. 1. Results computed by
atten. Fig. 2. Rotation of the tree.

To prove the termination of
atten we have to �nd a well-founded relation

� such that the inputs are always greater than the objects in the arguments of

the recursive calls, i.e. the termination hypotheses

cons(nil; y) � y; (1)

cons(cons(u; v); w) � cons(u; cons(v; w)) (2)

must hold for all instantiations of y; u; v; w by terms built with nil and cons.

In other words, we have to synthesize a well-founded ordering on terms (a

so-called term ordering) which satis�es the constraints (1) and (2). Techniques

for the automated generation of well-founded term orderings satisfying such con-

straints have been developed in the area of term rewriting systems. For instance,

termination of
atten can be proved with a polynomial ordering [Lan79], where

every n-ary function symbol is associated with an n-ary polynomial over the

natural numbers. Then a ground term t is greater than a ground term s with

respect to the polynomial ordering i� the number corresponding to t is greater

than the number corresponding to s. As all ground terms are associated with

natural numbers, polynomial orderings are well-founded.

Let nil be associated with the nullary polynomial 0 and let cons(x; y) be asso-

ciated with the polynomial 1+2x+y. Then cons(nil; y) corresponds to 1+y. As

1+ y > y holds for all instantiations of y with natural numbers, this polynomial

ordering satis�es the �rst constraint (1). Analogously, cons(cons(u; v); w) corre-

sponds to 3+4u+2v+w and cons(u; cons(v; w)) corresponds to 2+2u+2v+w.

As 3+4u+2v+w > 2+2u+2v+w is true for all natural numbers u; v; w, this

polynomial ordering also satis�es the second constraint (2). Therefore by using

this polynomial ordering the termination of
atten is proved.

2.2 The Problem with Term Orderings

Unfortunately it is not always possible to use term orderings in this easy way

for termination proofs of functional programs. Consider the following algorithm

function f (x : tree) : tree (

if x = nil then nil

if x = cons(u; v) then f(
atten(cons(u; v))).

Obviously the algorithm f is not terminating. For instance, evaluation of the

expression f(cons(nil; nil)) leads to the recursive call f(
atten(cons(nil; nil))). As

our functional language has eager semantics, the argument
atten(cons(nil; nil)) is

evaluated (which yields cons(nil; nil)) and then f is called again with the argument

cons(nil; nil).

Nevertheless there exists a well-founded term ordering � such that the input

term cons(u; v) is always greater than the term
atten(cons(u; v)) in the recursive

call. For instance, let t � s hold i� the leading function symbol of t is cons and

the leading function symbol of s is
atten. But the function f does not terminate

for inputs of the form cons(u; v). So the existence of a well-founded term ordering

such that input terms are greater than the terms in the corresponding recursive

calls is not su�cient for the termination of a functional program!

The reason for this problem is that in the recursive call of f another algorithm

atten is called. As
atten is de�ned by an algorithm (i.e.
atten is a so-called

de�ned function symbol), terms built with the function symbol
atten are eval-

uated further. But the above term ordering does not respect the semantics of

the algorithm
atten as
atten(cons(nil; nil)) and cons(nil; nil) are not equivalent

with respect to this ordering. So the direct use of arbitrary well-founded term

orderings for termination proofs of functional programs is unsound !

To prove the termination of a functional program, the inputs do not have to

be compared with the terms in the recursive calls, but with the data objects which

result from evaluating these terms. Hence, for termination proofs of functional

programs instead of an ordering on terms we need an ordering on the objects

of the algebraic data type (i.e. on terms like cons(nil; nil) which consist only of

constructors). So for the termination of f, we would have to �nd a well-founded

ordering on objects of the data type tree which satis�es the following termination

hypothesis if
atten is evaluated according to its algorithm.

cons(u; v) �
atten(cons(u; v))

We cannot directly use methods known from the area of term rewriting sys-

tems for the synthesis of such a term ordering, because the generated ordering

would not respect the semantics of the de�ned function symbol
atten.

Termination of functional programs can only be directly proved with term

orderings if the arguments of recursive calls contain no functions except con-

structors (as nil and cons), because terms built only with constructors cannot be

evaluated further.

3 Two Straightforward Solutions

In this section we comment on two straightforward solutions which would enable

the use of term orderings for termination proofs of functional programs. But

these solutions lead to termination criteria whose requirements are too strong,

i.e. with these solutions most termination proofs will fail.

3.1 Term Orderings Respecting the Semantics of Algorithms

A straightforward solution to enable the use of term orderings for functional

programs which call other algorithms is the restriction to term orderings which

respect the semantics of the called algorithms. Then di�erent terms which denote

the same data object (like
atten(cons(nil; nil)) and cons(nil; nil)) must be equiv-

alent with respect to these orderings. This termination criterion is sound, i.e.

with this restriction there obviously exists no well-founded term ordering such

that the input term cons(u; v) of f is greater than the term
atten(cons(u; v)) in

the recursive call.

But in general this restriction is too strong. Consider the following sorting

algorithm on lists of natural numbers. The objects of the data structure list

are built with the constructors empty and add, where add(n; x) represents the

insertion of n into the list x. The algorithm sort calls two other algorithms min

and rm, where min(x) computes the minimum of a list x and rm(n; x) removes all

occurrences of n from the list x (i.e. the algorithm sort also eliminates duplicates

in the list).

function sort (x : list) : list (

if x = empty then empty

if x 6= empty then add(min(x); sort(rm(min(x); x)))

Our aim is to use term orderings known from term rewriting systems for

termination proofs of algorithms. But none of these term orderings both respects

the semantics of min and rm and makes inputs greater than the corresponding

recursive calls of sort:

Termination of sort cannot be proved with a polynomial ordering which re-

spects the semantics of min and rm

3

. Virtually all other term orderings � used in

the area of term rewriting systems are simpli�cation orderings [Der79], [Ste94].

As these orderings possess the subterm property (i.e. f(: : : t : : :) � t), simpli�ca-

tion orderings do not respect the semantics of the algorithm min. The reason is

that min(add(0; empty)) is evaluated to its subterm 0 and therefore these terms

cannot be equivalent with respect to a simpli�cation ordering.

3.2 Functional Programs as (Conditional) Term Rewriting Systems

Another straightforward solution for the termination proof of the algorithm sort

is to transform sort and the auxiliary algorithms min and rm into a term rewriting

system and to prove its termination instead.

Functional programs in our language can be regarded as a special type of

(conditional) term rewriting systems with an innermost evaluation strategy. But

due to their special form and due to this evaluation strategy it is possible to use

a di�erent approach for termination proofs of functional programs than it is

necessary for term rewriting systems. For instance, for functional programs it

3

A proof for this observation can be found in the appendix.

is su�cient to compare the input arguments with the arguments in the corre-

sponding recursive calls, while for term rewriting systems left and right hand

sides of all rules have to be compared (and moreover, the term ordering has to

be monotonic), cf. [Der87].

Therefore by the transformation of functional programs into a term rewriting

system we impose unnecessarily strong requirements for the termination proof.

For instance, with most of the commonly used

4

term orderings the termination

of the term rewriting system resulting from sort, min and rm cannot be proved.

The reason is that these orderings are monotonic and possess at least the non-

strict subterm property (i.e. f(: : : t : : :) � t). But as the obtained term rewriting

system contains the rule

sort(add(n; y)) ! add(: : : ; sort(rm(: : : ; add(n; y))));

it cannot be oriented by any of these term orderings.

We have illustrated that the direct use of arbitrary term orderings for ter-

mination proofs of algorithms is unsound and that the straightforward solutions

(i.e. the restriction to term orderings which respect the semantics of the al-

gorithms or the transformation of functional programs into a term rewriting

system) impose too strong requirements such that termination proofs often fail.

In the next section we present a di�erent, powerful method to enable the appli-

cation of term orderings for termination proofs of functional programs.

4 Elimination of De�ned Function Symbols

To prove the termination of sort we have to show that there exists a well-founded

ordering � on lists which satis�es the following termination hypothesis if the

de�ned functions rm and min are evaluated according to their algorithms.

x 6= empty ! x � rm(min(x); x) (3)

As demonstrated in Section 2 the application of methods for the synthesis

of well-founded term orderings is only possible if the termination hypotheses do

not contain de�ned function symbols (like rm and min). Therefore our aim is to

transform the termination hypothesis (3) into formulas without de�ned function

symbols.

The structure of our termination proof method is illustrated in Figure 3. We

have developed a calculus which eliminates de�ned function symbols. In this way

the termination hypotheses TH

0

of an algorithm are transformed into TH

1

, TH

2

etc. until we obtain a set of formulas TH

n

containing no de�ned function symbols

any more. This transformation is an abduction process [Pei31], i.e. TH

i+1

j= TH

i

4

In this paper we only refer to those term orderings that are amenable to automation.

There also exist classes of term orderings which can orient every terminating term

rewriting system (e.g. semantical path orderings [KL80] or transformation orderings

[BL90]). But the disadvantage of these powerful approaches is that up to now there

are only very few suggestions for their automated generation [Ste95].

TH

0

! TH

1

! TH

2

! : : : ! TH

n

* * * *

�

0

 �

1

 �

2

 : : : �

n

Fig. 3. Elimination of de�ned function symbols from termination hypotheses.

holds for all i. Therefore if a relation �

i+1

satis�es the constraints TH

i+1

, then

it also satis�es the constraints TH

i

(where de�ned function symbols must be

evaluated according to their algorithmic de�nitions).

The formulas TH

n

resulting from the transformation process contain no de-

�ned function symbols. Therefore we can now directly apply methods from the

area of term rewriting systems to generate a well-founded term ordering �

n

satisfying the constraints TH

n

. As TH

n

implies TH

0

, this ordering �

n

also sat-

is�es the termination hypotheses TH

0

of the algorithm. Therefore the existence

of a term ordering satisfying the resulting constraints TH

n

is su�cient for the

termination of the algorithm.

�

�

�

�

�

�

�

�

�

�

�9

?

? ?

�

�

�

�

�

�9

X

X

X

X

X

Xz

?

�

�	

@

@R

X

X

X

X

X

X

X

X

X

X

Xz

?

(3)

E

rm � rm

(9) (10) (11)

(14)(12) (13)

(5)

(8)

(6)

(20)

?

(22)

Fig. 4. Termination proof of sort.

The derivation tree in Figure 4 illustrates the transformation of the termina-

tion hypothesis (3) of sort. Every node in the tree is transformed into its succes-

sors by an application of one transformation rule. Leafs of the tree are formulas

that do not contain de�ned function symbols (and therefore no transformation

rule is applicable to them). As each transformation rule is an abduction step,

the formulas at the leafs imply the termination hypothesis at the root of the

tree. Therefore the existence of a well-founded term ordering satisfying the con-

straints at the leafs of the tree is su�cient for the termination of sort. In the

following our termination proof method is presented in three steps.

In Section 4.1 we de�ne our two main inference rules, viz. the estimation and

the generalization rule. To apply the estimation rule we need so-called estimation

inequalities and strictness predicates and Section 4.2 illustrates how they can be

computed automatically. While all other steps of our transformation process are

purely syntactical, in the last step we consider the semantics to eliminate the

introduced strictness predicates again, cf. Section 4.3.

4.1 Estimation and Generalization

The termination hypothesis (3) of sort contains two de�ned function symbols

rm and min. The central idea of our termination procedure is the estimation of

de�ned function symbols by new unde�ned function symbols. Therefore rm is

replaced by a new unde�ned function symbol rm and we demand that the result

of rm is always greater or equal than the result of rm, i.e. we demand

rm(n; x) � rm(n; x): (4)

In contrast to rm the unde�ned function symbol rm has no �xed semantics. In

the following we transform the termination hypothesis (3) into inequalities which

contain unde�ned function symbols like rm, but no de�ned function symbols like

rm. If these resulting inequalities are satis�ed by a well-founded term ordering,

then the termination of sort is proved.

Assume for the moment that we know a set of so-called estimation inequalities

E

rm � rm

(without de�ned function symbols) which imply (4). Then demanding

x � rm(min(x); x) (5)

and E

rm � rm

is su�cient for the non-strict

5

version of the termination hypothesis,

i.e.

x � rm(min(x); x) � rm(min(x); x):

To ensure the original strict inequality we have to demand that under the condi-

tion x 6= empty inequality (5) has to be strict or rm(min(x); x) � rm(min(x); x)

has to be true.

Assume also that we know a so-called strictness predicate �

rm � rm

(which is

de�ned by an algorithm) that returns true i� the result of rm is strictly greater

than the result of rm. Then �

rm � rm

(min(x); x) indicates whether the estimation of

rm(min(x); x) by rm(min(x); x) is strict. Therefore we can replace the termination

hypothesis (3) of sort by (5), E

rm
� rm

and the formula

x 6= empty ! x � rm(min(x); x) _ �

rm � rm

(min(x); x): (6)

The transformation of (3) into (5), E

rm � rm

and (6) corresponds to the step

from the root of the derivation tree in Figure 4 to its direct successors. It is

an abduction step, because (5), E

rm � rm

and (6) are su�cient for the termination

hypothesis (3). For this transformation we have used the following estimation

rule to estimate a de�ned function symbol g:

5

In this paper we use the word \strict" to distinguish inequalities built with � from

those built with �. This should not be confused with the use of the word \strict" in

semantics.

'! t � g(q

1

; : : : ; q

n

)

t � �g(q

1

; : : : ; q

n

)

E

�g�g

'! t � �g(q

1

; : : : ; q

n

) _ �

�g�g

(q

1

; : : : ; q

n

)

(7)

This rule

6

embodies a main principle of our transformation: For a termina-

tion hypothesis '! t � s we ensure that the non-strict unconditional inequality

t � s holds. The advantage of omitting the condition ' (which contains seman-

tical information) is that de�ned function symbols in t � s can be eliminated

by repeated application of purely syntactical inference rules (like the estimation

rule). A semantical inference rule which considers the condition ' and the se-

mantics of strictness predicates is only necessary to guarantee that one of the

estimation steps in the derivation is strict (see Section 4.3 for the handling of

formulas like (6)).

The resulting formulas (5) and (6) still contain de�ned function symbols. To

eliminate the de�ned function symbol min from formula (5) we could again use

the technique of estimation and replace min by a new unde�ned function symbol

min. But apart from estimation there exists another (obvious) method for the

elimination of the de�ned function symbol min, viz. replacing the term min(x)

by a new variable y. In this way, (5) is transformed into

x � rm(y; x): (8)

This generalization is also an abduction step, because if (8) holds for all

y, then (5) must hold as well. As (8) contains no de�ned function symbols, this

inequality corresponds to a leaf in the derivation tree. Hence, we have introduced

two rules for the elimination of de�ned function symbols, viz. estimation and

generalization.

4.2 Estimation Inequalities and Strictness Predicates

In this section we show how to compute estimation inequalities and strictness

predicates which are needed for the estimation technique of Section 4.1. The

estimation inequalities E

rm � rm

have to guarantee that rm is really an upper bound

for rm and the strictness predicate �

rm � rm

has to indicate whether this estimation

is strict.

4.2.1 Estimation Inequalities

The function rm is de�ned by the following algorithm which removes all occur-

rences of a number from a list of natural numbers.

6

We also need an estimation rule for non-strict inequalities t � g(: : :) which only

contains the �rst two consequences of (7).

function rm (n : nat, x : list) : list (

if x = empty then empty

if x = add(n; y) then rm(n; y)

if x = add(m; y) ^ m 6= n then add(m; rm(n; y))

To compute E

rm
� rm

we consider each case of rm separately. Instead of rm(n; x) �

rm(n; x) we therefore demand (again omitting conditions (like m 6= n) in non-

strict inequalities)

rm(n; empty) � empty; (9)

rm(n; add(n; y)) � rm(n; y); (10)

rm(n; add(m; y)) � add(m; rm(n; y)): (11)

We cannot de�ne E

rm
� rm

= f(9); (10); (11)g as the inequalities (10) and (11) still

contain the de�ned function symbol rm. De�ned function symbols occurring in

such formulas have to be eliminated by estimation or generalization again.

But the problem here is that rm itself appears in the inequalities (10) and

(11). Therefore we cannot use the (non-strict version of the) estimation rule (7)

for the estimation of rm, because we do not know the estimation inequalities

E

rm
� rm

yet.

We solve this problem by constructing E

rm � rm

inductively with respect to

the computation ordering

7

of rm. The base case of this inductive construction

corresponds to the non-recursive case of rm. Inequality (9) ensures that in the

base case rm is an upper bound for rm.

In the second case of rm we have to ensure that inequality (10) holds, i.e. for

inputs of the form (n; add(n; y)) the result of rm must be greater or equal than

the result of rm. As induction hypothesis we can now use that this estimation is

already correct for the arguments (n; y), i.e. rm(n; y) � rm(n; y) holds. Then it

is su�cient for (10) if

rm(n; add(n; y)) � rm(n; y) (12)

is true. Therefore we can replace (10) by inequality (12) which does not contain

de�ned function symbols.

So to eliminate the de�ned function symbol rm from (10) we use the (non-

strict version of the) estimation rule (7) and due to an inductive argument we

can omit the second consequence (E

rm � rm

) of this inference rule.

In the third case of rm we proceed in an analogous way, because for the

transformation of (11) we can again use the induction hypothesis rm(n; y) �

rm(n; y). In this way we obtain the inequality

rm(n; add(m; y)) � add(m; rm(n; y)): (13)

7

The computation ordering >

g

of an n-ary algorithm g is de�ned as (t

1

; : : : ; t

n

) >

g

(s

1

; : : : ; s

n

) i� the evaluation of the expression g(t

1

; : : : ; t

n

) leads to the recursive

call g(s

1

; : : : ; s

n

).

To imply (11), the right hand side of (13) would have to be greater or equal

than the right hand side of (11). But (13) and the induction hypothesis are not

su�cient for (11), because the induction hypothesis rm(n; y) � rm(n; y) does

not imply add(m; rm(: : :)) � add(m; rm(: : :))! Therefore additionally we have to

demand that the result of add should also be decreasing if the second argument

of add is decreasing. In other words, add should be monotonic in its second

argument, i.e. in addition to (13) we demand the constraint

u � v ! add(m;u) � add(m; v): (14)

This problem always appears when estimating a de�ned function symbol

which is not the leading function symbol. For the estimation of a function symbol

which appears within a term at a position p we therefore have to extend the

estimation rule (7) by a consequence which demands that the term is monotonic

in the position p. Subsequently any de�ned function symbols in monotonicity

formulas like (14) must be eliminated by generalization.

Now we have �nished our inductive construction of E

rm � rm

(as illustrated in

Figure 4) and obtain

E

rm � rm

= frm(n; empty) � empty; (9)

rm(n; add(n; y)) � rm(n; y); (12)

rm(n; add(m; y)) � add(m; rm(n; y)); (13)

u � v ! add(m;u) � add(m; v)g: (14)

So in general estimation inequalities E

�g�g

are computed in the following way:

1. For each case \if ' then r" of the algorithm g we construct the formula

�g(: : :) � r.

2. Then the de�ned function symbols in �g(: : :) � r are eliminated by estima-

tion or generalization. When g itself is estimated we can omit the second

consequence (E

�g�g

) of the (non-strict version of the) estimation rule (7).

The construction of E

rm � rm

by induction with respect to the computation

ordering of rm is only sound, if this computation ordering is well-founded (i.e. if

rm is terminating). So before proving the termination of sort we must have proved

the termination of rm. Therefore we always demand that (apart from recursive

calls) algorithms only call other algorithms whose termination has been veri�ed

before, i.e. we exclude mutually recursive algorithms.

4.2.2 Strictness Predicates

The algorithm for the strictness predicate �

rm
� rm

is also constructed by induction

with respect to the computation ordering of rm. The predicate �

rm � rm

(n; x) has to

return true i� rm(n; x) is strictly greater than rm(n; x). By an analysis according

to the cases of the algorithm rm one obtains the following cases for the algorithm

�

rm � rm

:

if x = empty then rm(n; empty) � empty, (15)

if x = add(n; y) then rm(n; add(n; y)) � rm(n; y), (16)

if x = add(m; y) ^ m 6= n then rm(n; add(m; y)) � add(m; rm(n; y)). (17)

But the inequalities (16) and (17) still contain the de�ned function symbol

rm. Therefore we eliminate this de�ned function symbol by estimation again. So

inequality (16) from the second case is transformed into (12), E

rm � rm

and

if x = add(n; y) then rm(n; add(n; y)) � rm(n; y) _ �

rm � rm

(n; y). (18)

We construct �

rm � rm

inductively, i.e. when de�ning �

rm � rm

(n; add(n; y)) we

use the induction hypothesis that �

rm
� rm

(n; y) is already correctly de�ned. This

results in the recursive call �

rm
� rm

(n; y).

Note that (12) is already included in E

rm � rm

. Therefore as long as E

rm � rm

holds

we only have to consider the third consequence of the estimation rule and replace

(16) by (18). We proceed in the same way for the third case (17) and obtain the

following strictness predicate algorithm.

predicate �

rm � rm

(n : nat, x : list) (

if x = empty then rm(n; empty) � empty

if x = add(n; y) then rm(n; add(n; y)) � rm(n; y) _ �

rm � rm

(n; y)

if x = add(m;y) ^ m 6= n then rm(n; add(m;y)) � add(m; rm(n; y)) _ �

rm
� rm

(n; y)

In general strictness predicate algorithms �

�g�g

are constructed as follows:

1. For each case \if ' then r" of the algorithm g we construct a case \if '

then �g(: : :) � r".

2. Then the de�ned function symbols in �g(: : :) � r are eliminated by esti-

mation or generalization. When using estimation we can omit all conse-

quences of the estimation rule (7) except the third one.

This construction of strictness predicate algorithms is sound, i.e. if the es-

timation inequalities E

rm � rm

hold, then for each number n and each list x the

strictness predicate �

rm
� rm

(n; x) de�ned by the above algorithm returns true i�

rm(n; x) � rm(n; x) holds.

4.3 Elimination of Strictness Predicates

By estimation and generalization of de�ned function symbols we have trans-

formed the termination hypothesis (3) of sort into inequality (8), the estimation

inequalities E

rm � rm

and the formula

x 6= empty ! x � rm(min(x); x) _ �

rm
� rm

(min(x); x); (6)

cf. Figure 4. While (8) and E

rm � rm

contain no de�ned function symbols, formula

(6) contains the strictness predicate �

rm � rm

which is de�ned by an algorithm.

In order to complete the transformation of the termination hypothesis (3) into

inequalities without de�ned function symbols we now have to eliminate the strict-

ness predicate �

rm � rm

from (6).

For that purpose we omit one part of the disjunction, i.e. instead of (6) we

demand one of the following two constraints:

x 6= empty ! x � rm(min(x); x) or (19)

x 6= empty ! �

rm � rm

(min(x); x): (20)

Formula (19) does not contain a strictness predicate. So the de�ned function

symbol min can be eliminated by estimation or generalization. But if we trans-

form (6) into (19) the termination proof of sort will fail. The reason is that there

exists no well-founded ordering satisfying the constraints E

rm � rm

and (19)

8

.

So instead of omitting the second part of the disjunction in (6) we should

rather omit the �rst part and replace (6) by (20). As (20) contains the de�ned

strictness predicate �

rm � rm

we now have to transform (20) into inequalities with-

out �

rm � rm

that are su�cient for (20). For that purpose we choose some of the

inequalities occurring in the algorithm �

rm � rm

, i.e. inequalities from

rm(n; empty) � empty; (21)

rm(n; add(n; y)) � rm(n; y); (22)

rm(n; add(m; y)) � add(m; rm(n; y)): (23)

To minimize the number of resulting constraints we should select a minimal

subset of these inequalities which is su�cient for (20). For instance, (20) is

implied by inequality (22) from the second case of �

rm � rm

.

Essentially, the reason is that every non-empty list x contains its minimum.

Therefore when evaluating �

rm � rm

(min(x); x), after a �nite number of recursive

calls �

rm � rm

will be called with a list which begins with its minimum. Then the

condition of the second case will be satis�ed and therefore �

rm � rm

returns true if

(22) is true.

Di�erent to the syntactical inference rules presented in the preceding sections

we now had to consider the semantics of the strictness predicate �

rm
� rm

. To

eliminate strictness predicates we have to prove that certain inequalities (like

(22)) are su�cient for formulas like x 6= empty ! �

rm � rm

(: : :). To perform such

proofs automatically we make use of an induction theorem proving system (e.g.

those described in [BM79], [BHHW86], [BHHS90]).

So to eliminate the de�ned strictness predicate �

�g�g

from a formula of the

form '! t � s _ �

�g�g

(: : :) we proceed as follows:

8

A proof for this observation can be found in the appendix.

1. Either we replace the formula by '! t � s

2. or we replace it by a minimal set of inequalities from the algorithm �

�g�g

that is su�cient for '! �

�g�g

(: : :).

By replacing (6) with (22) we have �nished the transformation of sort's ter-

mination hypothesis into inequalities without de�ned function symbols, i.e. we

have constructed the derivation tree in Figure 4. To prove sort's termination we

now have to �nd a well-founded term ordering that satis�es the constraints (8),

(9), (12), (13), (14), (22) at the leafs of the tree.

For instance, the above constraints are satis�ed by a polynomial ordering

where empty is associated with 0, add(n; x) is associated with the polynomial

x+1 and rm(n; x) is associated with the polynomial x. Therefore the termination

of sort is proved.

For the synthesis of such well-founded term orderings we apply procedures

which are used in the area of term rewriting systems, cf. Section 1. For instance,

the algorithm ofG. E. Collins [Col75] can decide whether there exists a real poly-

nomial ordering of a given degree which satis�es a set of constraints. A procedure

to generate polynomial orderings using an e�cient, incomplete modi�cation of

Collins' algorithm has been presented in [Gie95a].

5 Comments and Re�nements

To enable the use of term orderings for termination proofs of functional pro-

grams de�ned function symbols in the recursive calls have to be eliminated. This

elimination proceeds in three steps. First, de�ned function symbols g in the

termination hypotheses are generalized or estimated by new unde�ned function

symbols �g (Section 4.1). To guarantee that �g is an upper bound for g we have to

demand estimation inequalities E

�g�g

. By the estimation of a function symbol g

we also obtain a formula containing the strictness predicate �

�g�g

. This predicate

indicates whether the result of �g is strictly greater than the result of g (Section

4.2). Finally the (de�ned) strictness predicate has to be eliminated (using an

induction theorem proving system) (Section 4.3).

Of course the more powerful the used induction theorem proving system

is, the more algorithms can be proved terminating by our method. However we

tested our method on more than 100 examples and noticed that for about 90% of

the algorithms the required proofs can already be accomplished by case analysis

and propositional reasoning only (i.e. no induction proofs are needed for them).

The transformation of termination hypotheses into formulas without de�ned

function symbols terminates as the number of de�ned function symbols is de-

creasing. Therefore derivation trees only contain paths of �nite length. But our

termination procedure contains two choice points: First, de�ned function sym-

bols can be eliminated by estimation or by generalization. Second, for disjunc-

tions like (6) one has to decide which part of the disjunction to omit. Moreover,

there may be more than one minimal su�cient set of inequalities for the elimina-

tion of strictness predicates. So there can be several di�erent derivation trees for

one termination hypothesis. But as the number of derivation trees for one termi-

nation hypothesis is also �nite (and small), we can backtrack if no well-founded

term ordering satisfying the constraints at the leafs can be found. To improve

the e�ciency of our method, we have also developed heuristics for choosing the

\right" derivation tree [Gie95b]. These heuristics have proved successful in prac-

tice. An alternative method for termination proofs with user provided orderings

which avoids such choice points is presented in [Gie95c].

Our method can easily be extended to algorithms with several formal pa-

rameters. For that purpose we introduce a new unde�ned function symbol �

and instead of two tuples (t

1

; : : : ; t

n

) and (s

1

; : : : ; s

n

) we compare the terms

�(t

1

; : : : ; t

n

) and �(s

1

; : : : ; s

n

). So for instance for the termination proof of the

algorithm rm we have to demand �(n; add(n; y)) � �(n; y) and m 6= n !

�(n; add(m; y)) � �(n; y).

The presented technique also works for polymorphic types, as type constants

(like list) may of course also be parameterized with type variables (e.g. �list with

the constructors empty : �list and add : �� �list ! �list).

For termination analysis of higher order functional programs we suggest to

integrate our method into the type inference system presented by Nielson and

Nielson [NN95]. In their system functional types have an annotation to dis-

tinguish total functions from probably partial ones. To prove termination of a

recursive function, they use a rule which infers the annotated type of the function

under the assumption that the recursive calls of the function are terminating.

For the application of this rule one has to verify that recursive calls are only

applied to smaller arguments.

For that purpose Nielson and Nielson use (lexicographic combinations of)

a �xed ordering that cannot deal with functions which call other algorithms in

their recursive calls. But instead one could use our technique and thereby obtain

a powerful, fully automated procedure for termination analysis of higher order

functional programs.

6 Conclusion and Further Work

We have presented a method for automated termination proofs of functional

programs which uses approaches known from the area of term rewriting systems

to generate term orderings automatically. As demonstrated in Section 2 and

3 due to the de�ned function symbols in recursive calls a direct use of term

orderings for termination proofs of functional programs is not possible. Therefore

in Section 4 and 5 we have developed a method to eliminate de�ned function

symbols from the termination hypotheses of an algorithm.

Our method has been implemented within the induction theorem proving

system inka [BHHW86] (using a procedure for the automated generation of

polynomial orderings [Gie95a]) and proved successful on several examples. For

instance, it can fully automatically prove the termination of all 60 algorithms

from the database of [Wal88], [Wal94] and of all 82 algorithms from [BM79]

(where one algorithm (greatest.factor) must be slightly modi�ed). In all other

methods for termination proofs of functional programs (e.g. [BM79], [Wal94],

[NN95]) the orderings for proving termination are either �xed or have to be

provided in advance by the user while in our method the right ordering can be

synthesized automatically.

For the computation of estimation inequalities we had to exclude mutually

recursive algorithms, but we plan to extend our method to mutual recursion in

the future. Moreover, we intend to examine whether our method can also be used

for an analysis of partial functions resp. functions which do not always terminate.

Further work will also include termination proofs for functional languages with

lazy semantics.

A Proofs

Observation 1 Termination of sort cannot be proved with a polynomial order-

ing which respects the semantics of min and rm.

Proof:

Evaluation of min(add(0; x)) yields the result 0 for all lists x. Therefore if the

polynomial ordering respects the semantics of min, then min(add(0; x)) must

correspond to the same number for all x.

If min is associated with a non-constant polynomial, then it can only map a

�nite number of di�erent arguments to the same value. So there exists only a

�nite number of lists (say k) that correspond to di�erent numbers. But a call of

sort can lead to more than k subsequent recursive calls. Therefore the number

corresponding to the list in the recursive call cannot always be smaller than the

number corresponding to the input list.

If min is associated with a constant and if the polynomial ordering respects

the semantics of rm, then it can be shown that all lists must be associated with

the same number so that input and recursive call of sort are equivalent with

respect to this ordering. 2

Observation 2 There exists no well-founded ordering satisfying the constraints

E

rm
� rm

and (19).

Proof:

For each number n the following inequalities hold:

add(n; empty) � rm(min(add(n; empty)); add(n; empty)); because of (19)

� add(n; rm(min(add(n; empty)); empty)); because of (13)

� add(n; empty); because of (9) and (14).

2

Acknowledgements

I would like to thank J�urgen Brauburger, Stefan Gerberding, Thomas Kolbe,

Martin Protzen, Christoph Walther and the referees for helpful suggestions.

References

[A��t85] H. A��t-Kaci. An Algorithm for Finding a Minimal Recursive Path Ordering.

RAIRO, 19(4):359-382, 1985.

[BL90] F. Bellegarde & P. Lescanne. Termination by Completion. Applicable Alge-

bra in Engineering, Communication and Computing, 1:79-96, 1990.

[BCL87] A. Ben Cherifa & P. Lescanne. Termination of Rewriting Systems by Poly-

nomial Interpretations and its Implementation. Science of Computer Pro-

gramming, 9(2):137-159, 1987.

[BL93] E. Bevers & J. Lewi. Proving Termination of (Conditional) Rewrite Sys-

tems. Acta Informatica, 30:537-568, 1993.

[BHHW86] S. Biundo, B. Hummel, D. Hutter & C. Walther. The Karlsruhe Induction

Theorem Proving System. In Proceedings of the 8th International Confer-

ence on Automated Deduction, Oxford, England, 1986.

[BM79] R. S. Boyer & J S. Moore. A Computational Logic. Academic Press, 1979.

[BHHS90] A. Bundy, F. van Harmelen, C. Horn & A. Smaill. The oyster-clam Sys-

tem. In Proceedings of the 10th International Conference on Automated

Deduction, Kaiserslautern, Germany, 1990.

[Col75] G. E. Collins. Quanti�er Elimination for Real Closed Fields by Cylindrical

Algebraic Decomposition. In Proceedings of the Second GI Conference on

Automata Theory and Formal Languages, Kaiserslautern, Germany, 1975.

[DSF93] S. Decorte, D. De Schreye & M. Fabris. Automatic Inference of Norms: A

Missing Link in Automatic Termination Analysis. In Proceedings of the

International Logic Programming Symposium, Vancouver, Canada, 1993.

[DF85] D. Detlefs & R. Forgaard. A Procedure for Automatically Proving the Ter-

mination of a Set of Rewrite Rules. In Proceedings of the First International

Conference on Rewriting Techniques and Applications, Dijon, France, 1985.

[Der79] N. Dershowitz. A Note on Simpli�cation Orderings. Information Processing

Letters, 9(5):212-215, 1979.

[Der87] N. Dershowitz. Termination of Rewriting. Journal of Symbolic Computa-

tion, 3(1, 2):69-115, 1987.

[DH93] N. Dershowitz & C. Hoot. Topics in Termination. In Proceedings of the

5th International Conference on Rewriting Techniques and Applications,

Montreal, Canada, 1993.

[Gie95a] J. Giesl. Generating Polynomial Orderings for Termination Proofs. In Pro-

ceedings of the 6th International Conference on Rewriting Techniques and

Applications, Kaiserslautern, Germany, 1995.

[Gie95b] J. Giesl. Automatisierung von Terminierungsbeweisen f�ur rekursiv de�nier-

te Algorithmen. Doctoral Dissertation, Technische Hochschule Darmstadt,

Germany, 1995.

[Gie95c] J. Giesl. Automated Termination Proofs with Measure Functions. In Pro-

ceedings of the 19th Annual German Conference on Arti�cial Intelligence,

Bielefeld, Germany, 1995.

[KL80] S. Kamin & J.-J. Levy. Two Generalizations of the Recursive Path Order-

ing. Unpublished Note, Department of Computer Science, University of

Illinois, Urbana, IL, 1980.

[Lan79] D. S. Lankford. On Proving Term Rewriting Systems are Noetherian. Tech-

nical Report Memo MTP-3, Mathematics Department, Louisiana Technical

University, 1979.

[Mar87] U. Martin. How to choose Weights in the Knuth-Bendix Ordering. In Pro-

ceedings of the Second International Conference on Rewriting Techniques

and Applications, Bordeaux, France, 1987.

[NN95] F. Nielson & H. R. Nielson. Termination Analysis based on Operational

Semantics. Technical Report, Aarhus University, Denmark, 1995. Available

from http://www.daimi.aau.dk/~fn/Papers/PB492.ps.Z.

[Pei31] C. S. Peirce. Collected Papers of C. Sanders Peirce, vol. 2. Hartshorne et

al. (eds.), Harvard University Press, Cambridge, MA, 1931.

[Pl�u90] L. Pl�umer. Termination Proofs for Logic Programs. Springer{Verlag, 1990.

[SD93] D. De Schreye & S. Decorte. Termination of Logic Programs: The Never-

Ending Story. Technical Report Compulog II, D 8.1.1, K. U. Leuven, Bel-

gium, 1993.

[SV91] K. Sohn & A. van Gelder. Termination Detection in Logic Programs using

Argument Sizes. In Proceedings of the 10th ACM Symposium on Principles

of Database Systems, Denver, Colorado, 1991.

[Ste94] J. Steinbach. Termination of Rewriting | Extensions, Comparison and

Automatic Generation of Simpli�cation Orderings. Doctoral Dissertation,

Universit�at Kaiserslautern, Germany, 1994.

[Ste95] J. Steinbach. Automatic Termination Proofs with Transformation Order-

ings. In Proceedings of the 6th International Conference on Rewriting Tech-

niques and Applications, Kaiserslautern, Germany, 1995.

[UV88] J. D. Ullman & A. van Gelder. E�cient Tests for Top-Down Termination

of Logical Rules. Journal of the ACM, 35(2):345-373, 1988.

[Wal88] C. Walther. Argument-Bounded Algorithms as as Basis for Automated Ter-

mination Proofs. In Proceedings of the 9th International Conference on Au-

tomated Deduction, Argonne, IL, 1988.

[Wal94] C. Walther. On Proving the Termination of Algorithms by Machine. Arti-

�cial Intelligence, 71(1):101-157, 1994.

