
AProVE: Proving and Disproving Termination of
Memory-Manipulating C Programs?

(Competition Contribution)

J. Hensel??, F. Emrich, F. Frohn, T. Ströder, and J. Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. AProVE is a system for automatic termination and complex-
ity analysis of C, Java, Haskell, Prolog, and several forms of rewrite sys-
tems. The new contributions in this version of AProVE are its capabili-
ties to prove non-termination of C programs and to handle recursive C
programs, even if these programs use pointer arithmetic combined with
direct memory accesses. Moreover, in addition to mathematical integers,
AProVE can now also handle fixed-width bitvector integers.

1 Verification Approach and Software Architecture

The focus of AProVE’s analysis for C programs lies on the connection between
memory addresses and their contents. To this end, AProVE employs symbolic exe-
cution and abstraction to obtain a finite symbolic execution graph from a C pro-
gram. This graph over-approximates all possible program executions and models
memory addresses and contents explicitly. However, all reasoning required to
construct this graph is reduced to first-order SMT solving on integers. During
the construction of the graph, AProVE proves that the original program does
not expose undefined behavior. For proving termination, the strongly connected
components (SCCs) of the graph are transformed to integer transition systems
(ITSs). Standard techniques can be used to analyze termination of these ITSs
and in case of success, this implies termination of the original program. For more
information on AProVE’s approach to prove termination of C programs, we refer
to [15]. Moreover, AProVE’s modular architecture allows to use the same back-
end to prove termination for several programming languages (cf. the figure be-
low). An overview on the use of AProVE for different languages is found in [10].

The approach of [15] is powerful for termination of C, but we need several
adaptions for non-termination, as both the symbolic execution graph and the re-

Java

C

Haskell

Prolog

Symbolic
Execution

Graph

ITS

Termination

Complexity

Non-Termination

Safety︸ ︷︷ ︸
Front-End

︸ ︷︷ ︸
Back-End

sulting ITSs are over-appro-
ximations. So in general,
non-termination of an ITS
does not imply non-termina-
tion of the original program.
However, there are many

? Supported by DFG grant GI 274/6-1.
?? Jury member. E-Mail: hensel@informatik.rwth-aachen.de



program instructions that are modeled precisely in the graph and in the resulting
ITSs. Therefore, to prove non-termination of the program, it suffices to find a
non-terminating lasso of the graph that does not contain any proper over-appro-
ximation. Here, a lasso is an SCC together with a path from the root of the graph
to the SCC. AProVE’s back-end does not consider that evaluation of ITSs may
only begin with designated “start terms” (in order to exclude spurious symbolic
execution paths). Thus, to prove non-termination of the resulting ITS, we use the
tool T2 [4] which takes such start terms into account. Moreover, we heuristically
add conditions to the ITS rules which restrict the possible values of the variables
(i.e., they yield an under-approximation of the ITS). Then, non-termination of
the under-approximated ITS implies non-termination of the program.

In addition, we implemented an alternative approach for non-termination
which uses our over-approximation of the program to detect candidates for non-
terminating executions. Afterwards, one still has to prove that the candidate
corresponds to an actual execution of the program. To this end, we build SMT
formulas for the cycles in the symbolic execution graph. They encode that those
program variables and memory contents which influence the control flow are not
changed when traversing the cycle. A model M1 of such a formula ϕ1 corresponds
to actual values where a loop in the program is not left. Then, this model needs
to be traced back to the initial state of the graph. For this, the path from the
initial state to the cycle is transformed into an SMT formula ϕ2, where the values
in the cycle are chosen according to the model M1. A model of ϕ2 yields concrete
input values for the initial state that lead to a non-terminating execution. This
approach is based on a previous technique in AProVE for proving non-termination
of Java programs [3]. Since both our approaches to prove non-termination are
orthogonal in power, these approaches are run in parallel in AProVE.

We also extended our graph construction of [15] to support recursive pro-
grams. To this end, we adapted our techniques developed for recursive Java
programs [2] to handle explicit (de)allocation of memory and pointer arithmetic.
(Compared to [2], a particular challenge is to infer and exploit information about
memory that is not reachable from program variables.) The nodes of the sym-
bolic execution graph are abstract states, which represent sets of concrete pro-

recursive call of f
B

first instruct. of f,
stack frames below

C
intersection
of C and R

I

first instruct. of fDfirst instruct. of f
A

return instr. of f
R

callabstraction

generalization

intersection
gram states.
To prove ter-
mination of
a function
f, we start with a state A whose program position is at f’s initial instruc-
tion. If A evaluates to a state B where f is called recursively, this yields a next
state C where a new stack frame at f’s initial instruction is added on top of the
stack of B (we refer to C as a “call state”). To ensure termination of the graph
construction, we perform call abstraction, which leads to a state D that results
from C by removing all lower stack frames except the top one. Our previous
state A is a generalization of D, i.e., all concrete states represented by D are
also represented by A. Thus, we do not need further symbolic execution for the
less general state D. However, whenever the initial state A evaluates to a return
state R where the function f terminates, we have to take into account that the

2



call of f in state C might lead to such a return state. Thus, for every pair of
a call state C and a return state R of f, we construct an intersection state I
which represents those states that result from C after completely executing the
call of f in its topmost stack frame. With this extension, the symbolic execution
graph construction of [15] can now also deal with recursion.

Finally, while up to now we assumed the program variables to range over
mathematical integers Z, we now developed an extension which also allows to
handle fixed-width bitvector integers, cf. [11]. So our technique for termination
analysis of C programs now covers both byte-accurate pointer arithmetic and bit-
precise modeling of integers. To this end, we express relations between bitvectors
by corresponding relations on Z. In this way, we can use standard SMT solving
over Z for all steps needed to construct the symbolic execution graph. Moreover,
this allows us to obtain ITSs over Z from these graphs, and to use standard
approaches for termination analysis of these ITSs.

2 Strengths and Weaknesses

Our approach is particularly powerful when the control flow depends on rela-
tions between addresses and memory contents. In addition, AProVE also proves
absence of undefined behavior while many other termination analyzers just as-
sume memory safety when analyzing C programs. AProVE’s participation at for-
mer editions of SV-COMP and at the annual Termination Competition1 shows
the applicability of our approach to termination analysis of real-world program-
ming languages: AProVE won most categories related to termination of C, Java,
Haskell, Prolog, and to termination or runtime complexity of rewriting.

The downside of our approach is that it often takes long to construct symbolic
execution graphs and that AProVE cannot give any meaningful answer before
this construction is finished. Thus, AProVE’s runtime is often higher than that of
other tools. Moreover, our approach is currently limited to programs operating on
integers and pointers (including arrays) but without struct types. For struct

types, a main challenge for future work is to extend our approach to handle
recursive data types in combination with explicit low-level pointer arithmetic.

3 Setup and Configuration

Since the setup of AProVE has not changed much during the last years, this
section is mainly a recapitulation of the corresponding section in [14]. AProVE is
developed in the “Programming Languages and Verification” group headed by
Jürgen Giesl at RWTH Aachen University. On the website [1], AProVE can be
obtained as a command-line tool or as a plug-in for the popular Eclipse software
development environment [8]. In this way, AProVE can already be applied during
program construction. Moreover, AProVE can be accessed directly via a web
interface as well. The website [1] also contains a list of external tools used by
AProVE and a list of present and past contributors.

1 http://www.termination-portal.org/wiki/Termination_Competition

3



The particular version for analyzing C programs according to the SV-COMP
format can be downloaded from the following URL. AProVE only participates in
the category “Termination”. Thus, in this version of AProVE, we disabled some
checks for memory safety, since it was agreed that only memory safe programs
will be included in the termination category of SV-COMP.

http://aprove.informatik.rwth-aachen.de/eval/Pointer/AProVE2017.zip

All files from this archive must be extracted into one folder. AProVE is im-
plemented in Java and needs a Java 8 Runtime Environment. To avoid handling
the intricacies of C, we analyze programs in the intermediate representation of
the LLVM compilation framework [12] and AProVE requires the Clang compiler
[5] (version ≥ 3.5) to translate C to LLVM. To solve the search problems in the
back-end, AProVE uses T2 and it applies the satisfiability checkers Z3 [6], Yices
[7], and MiniSAT [9] in parallel (our archive contains all these tools). As a de-
pendency of T2, Mono [13] (version ≥ 4.0) needs to be installed. Extending the
path environment is necessary so that AProVE can find these programs. AProVE
can be invoked using the wrapper script aprove.py in the BenchExec tool.

References

1. AProVE. http://aprove.informatik.rwth-aachen.de/.
2. M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs of recursive

Java Bytecode programs by term rewriting. RTA ’11, pp. 155–170.
3. M. Brockschmidt, T. Ströder, C. Otto, J. Giesl. Automated detection of non-termi-

nation and NullPointerExceptions for Java Bytecode. FoVeOOS ’11, pp. 123–141.
4. M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. T2: Temporal

property verification. TACAS ’16, pp. 387–393.
5. Clang. http://clang.llvm.org.
6. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. TACAS ’08, pp. 337–340.
7. B. Dutertre and L. de Moura. The Yices SMT solver, 2006. Tool paper at http:

//yices.csl.sri.com/tool-paper.pdf.
8. Eclipse. http://www.eclipse.org/.
9. N. Eén and N. Sörensson. An extensible SAT-solver. SAT ’03, pp. 502–518.

10. J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. An-
alyzing program termination and complexity automatically with AProVE. Journal
of Automated Reasoning, 58(1):3–31, 2017.

11. J. Hensel, J. Giesl, F. Frohn, and T. Ströder. Proving termination of programs
with bitvector arithmetic by symbolic execution. SEFM ’16, pp. 234–252.

12. C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. CGO ’04, pp. 55–88.

13. Mono. http://www.mono-project.com/.
14. T. Ströder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl. AProVE: Termination and

memory safety of C programs (competition contrib.). TACAS ’15, pp. 417–419.
15. T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, P. Schneider-

Kamp, and C. Aschermann. Automatically proving termination and memory safety
for programs with pointer arithmetic. Journal of Automated Reasoning, 58(1):33–
65, 2017.

4


