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Inferring Expected Runtimes of Probabilistic
Integer Programs Using Expected Sizes?
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Abstract. We present a novel modular approach to infer upper bounds
on the expected runtimes of probabilistic integer programs automatically.
To this end, it computes bounds on the runtimes of program parts and on
the sizes of their variables in an alternating way. To evaluate its power, we
implemented our approach in a new version of our open-source tool KoAT.

1 Introduction

There exist several approaches and tools for automatic complexity analysis of non-
probabilistic programs, e.g., [2–6, 8, 9, 18, 20, 21, 27, 28, 30, 34–36, 51, 57, 58].
While most of them rely on basic techniques like ranking functions (see, e.g.,
[6, 12–14, 17, 53]), they usually combine these basic techniques in sophisticated
ways. For example, in [18] we developed a modular approach for automated
complexity analysis of integer programs, based on an alternation between finding
symbolic runtime bounds for program parts and using them to infer bounds on
the sizes of variables in such parts. So each analysis step is restricted to a small
part of the program. The implementation of this approach in KoAT [18] (which is
integrated in AProVE [30]) is one of the leading tools for complexity analysis [31].

While there exist several adaptions of basic techniques like ranking functions
to probabilistic programs (e.g., [1, 11, 15, 16, 22–26, 29, 32, 37, 38, 48, 62]), most
of the sophisticated full approaches for complexity analysis have not been adapted
to probabilistic programs yet, and there are only few powerful tools available which
analyze the runtimes of probabilistic programs automatically [10, 50, 61, 62].

We study probabilistic integer programs (Sect. 2) and define suitable notions of
non-probabilistic and expected runtime and size bounds (Sect. 3). Then, we adapt
our modular approach for runtime and size analysis of [18] to probabilistic pro-
grams (Sect. 4 and 5). So such an adaption is not only possible for basic techniques
like ranking functions, but also for full approaches for complexity analysis.

For this adaption, several problems had to be solved. When computing
expected runtime or size bounds for new program parts, the main difficulty is to
determine when it is sound to use expected bounds on previous program parts and
when one has to use non-probabilistic bounds instead. Moreover, the semantics
of probabilistic programs is significantly different from classical integer programs.
Thus, the proofs of our techniques differ substantially from the ones in [18], e.g.,
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we have to use concepts from measure theory like ranking supermartingales.
In Sect. 6, we evaluate the implementation of our new approach in the tool

KoAT [18, 43] and compare with related work. We refer to [47] for an appendix
of our paper containing all proofs, preliminaries from probability and measure
theory, and an overview on the benchmark collection used in our evaluation.

2 Probabilistic Integer Programs

For any set M ⊆ R (with R = R ∪ {∞}) and w ∈ M , let M≥w = {v ∈ M |
v ≥ w ∨ v =∞}. For a set PV of program variables, we first introduce the kind
of bounds that our approach computes. Similar to [18], our bounds represent
weakly monotonically increasing functions from PV → R≥0. Such bounds have
the advantage that they can easily be “composed”, i.e., if f and g are both weakly
monotonically increasing upper bounds, then so is f ◦ g.

Definition 1 (Bounds). The set of bounds B is the smallest set with PV∪R≥0
⊆ B, and where b1, b2 ∈ B and v ∈ R≥1 imply b1 + b2, b1 · b2 ∈ B and vb1 ∈ B.

Our notion of probabilistic programs combines classical integer programs (as in,
e.g., [18]) and probabilistic control flow graphs (see, e.g., [1]). A state s is a
variable assignment s : V → Z for the (finite) set V of all variables in the program,
where PV ⊆ V, V \ PV is the set of temporary variables, and Σ is the set of all
states. For any s ∈ Σ, the state |s| is defined by |s| (x) = |s(x)| for all x ∈ V.
The set C of constraints is the smallest set containing e1 ≤ e2 for all polynomials
e1, e2 ∈ Z[V] and c1 ∧ c2 for all c1, c2 ∈ C. In addition to “≤”, in examples we
also use relations like “>”, which can be simulated by constraints (e.g., e1 > e2 is
equivalent to e2 + 1 ≤ e1 when regarding integers). We also allow the application
of states to arithmetic expressions e and constraints c. Then the number s(e) resp.
s(c) ∈ {t, f} results from evaluating the expression resp. the constraint when
substituting every variable x by s(x). So for bounds b ∈ B, we have |s| (b) ∈ R≥0.

In the transitions of a program, a program variable x ∈ PV can also be updated
by adding a value according to a bounded distribution function d : Σ → Dist(Z).
Here, for any state s, d(s) is the probability distribution of the values that are
added to x. As usual, a probability distribution on Z is a mapping pr : Z→ R with
pr(v) ∈ [0, 1] for all v ∈ Z and

∑
v∈Z pr(v) = 1. Let Dist(Z) be the set of distri-

butions pr whose expected value E(pr) =
∑
v∈Z v · pr(v) is well defined and finite,

i.e., Eabs(pr) =
∑
v∈Z |v| · pr(v) <∞. A distribution function d : Σ → Dist(Z)

is bounded if there is a finite bound E(d) ∈ B with Eabs(d(s)) ≤ |s| (E(d)) for
all s ∈ Σ. Let D denote the set of all bounded distribution functions (our
implementation supports Bernoulli, uniform, geometric, hypergeometric, and
binomial distributions, see [43] for details).

Definition 2 (PIP). (PV,L,GT , `0) is a probabilistic integer program with

1. a finite set of program variables PV ⊆ V
2. a finite non-empty set of program locations L
3. a finite non-empty set of general transitions GT . A general transition g is a

finite non-empty set of transitions t = (`, p, τ, η, `′), consisting of
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`0 `1 `2t0 ∈ g0

η(x) = x
η(y) = y

t1 ∈ g1

p = 1
2

η(x) = x− 1
τ = (x > 0) η(y) = y + x

t2 ∈ g1
p = 1

2
η(x) = x

τ = (x > 0) η(y) = y + x

t3 ∈ g2

η(x) = x
η(y) = y

t4 ∈ g3

η(x) = x
η(y) = y − 1
τ = (y > 0)

Fig. 1: PIP with non-deterministic and probabilistic branching

(a) the start and target locations `, `′ ∈ L of transition t,
(b) the probability p ≥ 0 that transition t is chosen when g is executed,
(c) the guard τ ∈ C of t, and
(d) the update function η : PV → Z[V]∪ D of t, mapping every program

variable to an update polynomial or a bounded distribution function.
All t ∈ g must have the same start location ` and the same guard τ . Thus,
we call them the start location and guard of g, and denote them by `g and τg.
Moreover, the probabilities p of the transitions in g must add up to 1.

4. an initial location `0 ∈ L, where no transition has target location `0

PIPs allow for both probabilistic and non-deterministic branching and sam-
pling. Probabilistic branching is modeled by selecting a transition out of a
non-singleton general transition. Non-deterministic branching is represented by
several general transitions with the same start location and non-exclusive guards.
Probabilistic sampling is realized by update functions that map a program vari-
able to a bounded distribution function. Non-deterministic sampling is modeled
by updating a program variable with an expression containing temporary vari-
ables from V \ PV, whose values are non-deterministic (but can be restricted in
the guard). The set of initial general transitions GT0 ⊆ GT consists of all general
transitions with start location `0.

Example 3 (PIP). Consider the PIP in Fig. 1 with initial location `0 and the
program variables PV = {x, y}. Here, let p = 1 and τ = t if not stated ex-
plicitly. There are four general transitions: g0 = {t0}, g1 = {t1, t2}, g2 = {t3},
and g3 = {t4}, where g1 and g2 represent a non-deterministic branching. When
choosing the general transition g1, the transitions t1 and t2 encode a probabilistic
branching. If we modified the update η and the guard τ of t0 to η(x) = u ∈ V \PV
and τ = (u > 0), then x would be updated to a non-deterministically chosen
positive value. In contrast, if η(x) = GEO( 12 ), then t0 would update x by adding
a value sampled from the geometric distribution with parameter 1

2 .

In the following, we regard a fixed PIP P as in Def. 2. A configuration is a tuple
(`, t, s), with the current location ` ∈ L, the current state s ∈ Σ, and the transition
t that was evaluated last and led to the current configuration. Let T =

⋃
g∈GT g.

Then Conf = (L]{`⊥})×(T ]{tin, t⊥})×Σ is the set of all configurations, with a
special location `⊥ indicating the termination of a run, and special transitions tin
(used in the first configuration of a run) and t⊥ (for the configurations of the run
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after termination). The (virtual) general transition g⊥ = {t⊥} only contains t⊥.
A run of a PIP is an infinite sequence ϑ = c0 c1 · · · ∈ Confω. Let Runs = Confω

and let FPath = Conf∗ be the set of all finite paths of configurations.
In our setting, deterministic Markovian schedulers suffice to resolve all non-

determinism (see, e.g., [54, Prop. 6.2.1]). For c = (`, t, s) ∈ Conf, such a scheduler
S yields a pair S(c) = (g, s′) where g is the next general transition to be taken
(with ` = `g) and s′ chooses values for the temporary variables where s′(τg) = t
and s(x) = s′(x) for all x ∈ PV . If GT contains no such g, we get S(c) = (g⊥, s).

For each scheduler S and initial state s0, we first define a probability mass
function prS,s0 . For all c ∈ Conf, prS,s0(c) is the probability that a run starts in
c. Thus, prS,s0(c) = 1 if c = (`0, tin, s0) and prS,s0(c) = 0, otherwise. Moreover,
for all c′, c ∈ Conf, prS,s0(c′ → c) is the probability that the configuration c′ is
followed by the configuration c (see [47] for the formal definition of prS,s0).

For any f = c0 · · · cn ∈ FPath, let prS,s0(f) = prS,s0(c0) · prS,s0(c0 → c1) ·
. . . ·prS,s0(cn−1 → cn). We say that f is admissible for S and s0 if prS,s0(f) > 0.
A run ϑ is admissible if all its finite prefixes are admissible. A configuration
c ∈ Conf is admissible if there is some admissible finite path ending in c.

The semantics of PIPs can now be defined by giving a corresponding probabil-
ity space, which is obtained by a standard cylinder construction (see, e.g., [7, 60]).
Let PS,s0 denote the corresponding probability measure which lifts prS,s0 to
cylinder sets: For any f ∈ FPath, we have prS,s0(f) = PS,s0(Pref ) for the set
Pref of all runs with prefix f . So PS,s0(Θ) is the probability that a run from
Θ ⊆ Runs is obtained when using the scheduler S and starting in s0.

We denote the associated expected value operator by ES,s0 . So for any random
variable X : Runs→ N = N∪ {∞}, we have ES,s0(X) =

∑
n∈N n ·PS,s0(X = n).

For details on the preliminaries from probability theory we refer to [47].

3 Complexity Bounds

In Sect. 3.1, we first recapitulate the concepts of (non-probabilistic) runtime and
size bounds from [18]. Then we introduce expected runtime and size bounds in
Sect. 3.2 and connect them to their non-probabilistic counterparts.

3.1 Runtime and Size Bounds

Again, let P denote the PIP which we want to analyze. Def. 4 recapitulates the
notions of runtime and size bounds from [18] in our setting. Recall that bounds
from B do not contain temporary variables, i.e., we always try to infer bounds in
terms of the initial values of the program variables. Let sup∅ = 0, as all occurring
sets are subsets of R≥0, whose minimal element is 0.

Definition 4 (Runtime and Size Bounds [18]). RB : T → B is a runtime
bound and SB : T × V → B is a size bound if for all transitions t ∈ T , all
variables x ∈ V, all schedulers S, and all states s0 ∈ Σ, we have

|s0| (RB(t)) ≥ sup { |{i | ti = t}| | f = ( , t0, ) · · · ( , tn, ) ∧ prS,s0(f) > 0 } ,
|s0| (SB(t, x)) ≥ sup { |s(x)| | f = · · · ( , t, s) ∧ prS,s0(f) > 0 } .
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So RB(t) is a bound on the number of executions of t and SB(t, x) over-
approximates the greatest absolute value that x ∈ V takes after the application
of the transition t in any admissible finite path. Note that Def. 4 does not apply
to tin and t⊥, since they are not contained in T .

We call a tuple (RB,SB) a (non-probabilistic) bound pair. We will use such
non-probabilistic bound pairs for an initialization of expected bounds (Thm. 10)
and to compute improved expected runtime and size bounds in Sect. 4 and 5.

Example 5 (Bound Pair). The technique of [18] computes the following bound
pair for the PIP of Fig. 1 (by ignoring the probabilities of the transitions).

RB(t) =


1, if t = t0 or t = t3

x, if t = t1

∞, if t = t2 or t = t4

SB(t, x) =

{
x, if t ∈ {t0, t1, t2}
3 · x, if t ∈ {t3, t4}

SB(t, y) =

{
y, if t = t0

∞, if t ∈ {t1, t2, t3, t4}
Clearly, t0 and t3 can only be evaluated once. Since t1 decrements x and no
transition increments it, t1’s runtime is bounded by |s0| (x). However, t2 can
be executed arbitrarily often if s0(x) > 0. Thus, the runtimes of t2 and t4 are
unbounded (i.e., P is not terminating when regarding it as a non-probabilistic
program). SB(t, x) is finite for all transitions t, since x is never increased. In
contrast, the value of y can be arbitrarily large after all transitions but t0.

3.2 Expected Runtime and Size Bounds

We now define the expected runtime and size complexity of a PIP P.

Definition 6 (Expected Runtime Complexity, PAST [15]). For g ∈ GT ,
its runtime is the random variable R(g) where R : GT → Runs→ N with

R(g)( ( , t0, ) ( , t1, ) · · · ) = | {i | ti ∈ g} | .

For a scheduler S and s0 ∈ Σ, the expected runtime complexity of g ∈ GT is
ES,s0(R(g)) and the expected runtime complexity of P is

∑
g∈GT ES,s0(R(g)).

If P’s expected runtime complexity is finite for every scheduler S and every
initial state s0, then P is called positively almost surely terminating (PAST).

So R(g)(ϑ) is the number of executions of a transition from g in the run ϑ.
While non-probabilistic size bounds refer to pairs (t, x) of transitions t ∈ T and

variables x ∈ V (so-called result variables in [18]), we now introduce expected size
bounds for general result variables (g, `, x), which consist of a general transition
g, one of its target locations `, and a program variable x ∈ PV. So x must not
be a temporary variable (which represents non-probabilistic non-determinism),
since general result variables are used for expected size bounds.

Definition 7 (Expected Size Complexity). The set of general result vari-
ables is GRV = { (g, `, x) | g ∈ GT , x ∈ PV, ( , , , , `) ∈ g }. The size of α =
(g, `, x) ∈ GRV is the random variable S(α) where S : GRV → Runs→ N with

S(g, `, x) ( (`0, t0, s0) (`1, t1, s1) · · · ) = sup { |si(x)| | `i = ` ∧ ti ∈ g } .
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For a scheduler S and s0, the expected size complexity of α∈GRV is ES,s0(S(α)).

So for any run ϑ, S(g, `, x)(ϑ) is the greatest absolute value of x in location `,
whenever ` was entered with a transition from g. We now define bounds for the
expected runtime and size complexity which hold independent of the scheduler.

Definition 8 (Expected Runtime and Size Bounds).

• RBE : GT → B is an expected runtime bound if for all g ∈ GT , all schedulers
S, and all s0 ∈ Σ, we have |s0| (RBE(g)) ≥ ES,s0(R(g)).

• SBE : GRV → B is an expected size bound if for all α ∈ GRV, all schedulers
S, and all s0 ∈ Σ, we have |s0| (SBE(α)) ≥ ES,s0(S(α)).

• A pair (RBE,SBE) is called an expected bound pair.

Example 9 (Expected Runtime and Size Bounds). Our new techniques from
Sect. 4 and 5 will derive the following expected bounds for the PIP from Fig. 1.

RBE(g) =


1, if g∈{g0, g2}
2 · x, if g = g1

6 · x2 + 2 · y, if g = g3

SBE(g, , x) =


x, if g = g0

2 · x, if g = g1

3 · x, if g∈{g2, g3}
SBE(g0, `1, y) = y SBE(g2, `2, y) = 6 · x2 + 2 · y
SBE(g1, `1, y) = 6 · x2 + y SBE(g3, `2, y) = 12 · x2 + 4 · y

While the runtimes of t2 and t4 were unbounded in the non-probabilistic case
(Ex. 5), we obtain finite bounds on the expected runtimes of g1 = {t1, t2} and
g3 = {t4}. For example, we can expect x to be non-positive after at most |s0| (2·x)
iterations of g1. Based on the above expected runtime bounds, the expected
runtime complexity of the PIP is at most |s0| (RBE(g0) + . . . + RBE(g3)) =
|s0| (2 + 2 · x+ 2 · y + 6 · x2), i.e., it is in O(n2) where n is the maximal absolute
value of the program variables at the start of the program.

The following theorem shows that non-probabilistic bounds can be lifted to
expected bounds, since they do not only bound the expected value of R(g) resp.
S(α), but the whole distribution. As mentioned, all proofs can be found in [47].

Theorem 10 (Lifting Bounds). For a bound pair (RB,SB), (RBE,SBE)
with RBE(g) =

∑
t∈gRB(t) and SBE(g, `, x) =

∑
t=( , , , ,`)∈g SB(t, x) is an

expected bound pair.

Here, we over-approximate the maximum of SB(t, x) for t = ( , , , , `) ∈ g by
their sum. For asymptotic bounds, this does not affect precision, since max(f, g)
and f + g have the same asymptotic growth for any non-negative functions f, g.

Example 11 (Lifting of Bounds). When lifting the bound pair of Ex. 5 to expected
bounds according to Thm. 10, one would obtain RBE(g0) = RBE(g2) = 1 and
RBE(g1) = RBE(g3) = ∞. Moreover, SBE(g0, `1, x) = x, SBE(g1, `1, x) = 2 · x,
SBE(g2, `2, x) = SBE(g3, `2, x) = 3 · x, SBE(g0, `1, y) = y, and SBE(g, , y) =∞
whenever g 6= g0. Thus, with these lifted bounds one cannot show that P’s
expected runtime complexity is finite, i.e., they are substantially less precise than
the finite expected bounds from Ex. 9. Our approach will compute such finite
expected bounds by repeatedly improving the lifted bounds of Thm. 10.
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4 Computing Expected Runtime Bounds

We first present a new variant of probabilistic linear ranking functions in Sect. 4.1.
Based on this, in Sect. 4.2 we introduce our modular technique to infer expected
runtime bounds by using expected size bounds.

4.1 Probabilistic Linear Ranking Functions

For probabilistic programs, several techniques based on ranking supermartingales
have been developed. In this section, we define a class of probabilistic ranking
functions that will be suitable for our modular analysis.

We restrict ourselves to ranking functions r : L → R[PV]lin that map every
location to a linear polynomial (i.e., of at most degree 1) without temporary
variables. The linearity restriction is common to ease the automated inference of
ranking functions. Moreover, this restriction will be needed for the soundness of
our technique. Nevertheless, our approach of course also infers non-linear expected
runtimes (by combining the linear bounds obtained for different program parts).

Let expr,g,s denote the expected value of r after an execution of g ∈ GT in
state s ∈ Σ. Here, sη(x) is the expected value of x ∈ PV after performing the
update η in state s. So if η(x) ∈ D, then x’s expected value after the update
results from adding the expected value of the probability distribution η(x)(s):

expr,g,s =
∑

(`,p,τ,η,`′)∈g

p · sη(r(`′)) with sη(x) =

{
s(η(x)), if η(x) ∈ Z[V]

s(x) + E(η(x)(s)), if η(x) ∈ D

Definition 12 (PLRF). Let GT> ⊆ GTni ⊆ GT . Then r : L → R[PV]lin is a
probabilistic linear ranking function (PLRF) for GT> and GTni if for all g ∈
GTni \ GT> and c′ ∈ Conf there is a ./g,c′ ∈ {<,≥} such that for all finite
paths · · · c′ c that are admissible for some S and s0 ∈ Σ, and where c = (`, t, s)
(i.e., where t is the transition that is used in the step from c′ to c), we have:

Boundedness (a): If t ∈ g for a g ∈ GTni \ GT>, then s(r(`)) ./g,c′ 0.
Boundedness (b): If t ∈ g for a g ∈ GT>, then s(r(`)) ≥ 0.
Non-Increase: If ` = `g for a g ∈ GTni and s(τg) = t, then s(r(`)) ≥ expr,g,s.
Decrease: If ` = `g for a g ∈ GT> and s(τg) = t, then s(r(`))− 1 ≥ expr,g,s.

So if one is restricted to the sub-program with the non-increasing transitions
GTni, then r(`) is an upper bound on the expected number of applications of tran-
sitions from GT> when starting in `. Hence, a PLRF for GT> = GTni = GT would
imply that the program is PAST (see, e.g., [1, 16, 24, 25]). However, our PLRFs
differ from the standard notion of probabilistic ranking functions by considering
arbitrary subsets GTni ⊆ GT . This is needed for the modularity of our approach
which allows us to analyze program parts separately (e.g., GT \GTni is ignored when
inferring a PLRF). Thus, our “Boundedness” conditions differ slightly from the
corresponding conditions in other definitions. Condition (b) requires that g ∈ GT>
never leads to a configuration where r is negative. Condition (a) states that in
an admissible path where g = {t1, t2, . . .} ∈ GTni \ GT> is used for continuing in
configuration c′, if executing t1 in c′ makes r negative, then executing t2 must
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make r negative as well. Thus, such a g can never come before a general transition
from GT> in an admissible path and hence, g can be ignored when inferring upper
bounds on the runtime. This increases the power of our approach and it allows
us to consider only non-negative random variables in our correctness proofs.

We use SMT solvers to generate PLRFs automatically. Then for “Bounded-
ness”, we regard all s′ ∈ Σ with s′(τg) = t and require “Boundedness” for any
state s that is reachable from s′.

Example 13 (PLRFs). Consider again the PIP in Fig. 1 and the sets GT> =
GTni = {g1} and GT ′> = GT ′ni = {g3}, which correspond to its two loops.

The function r with r(`1) = 2 · x and r(`0) = r(`2) = 0 is a PLRF for
GT> = GTni: For every admissible configuration (`, t, s) with t ∈ g1 we have ` = `1
and s(r(`1)) = 2 · s(x) ≥ 0, since x was positive before (due to g1’s guard) and it
was either decreased by 1 or not changed by the update of t1 resp. t2. Hence r is
bounded. Moreover, for s1(x) = s(x− 1) = s(x)− 1 and s2(x) = s(x) we have:

expr,g,s = 1
2 · s1(r(`1)) + 1

2 · s2(r(`1)) = 2 · s(x)− 1 = s(r(`1))− 1

So r is decreasing on g1 and as GT> = GTni, also the non-increase property holds.
Similarly, r′ with r′(`2) = y and r′(`0) = r′(`1) = 0 is a PLRF for GT ′> = GT ′ni.

In our implementation, GT> is always a singleton and we let GTni ⊆ GT be a
cycle in the call graph where we find a PLRF for GT> ⊆ GTni. The next subsection
shows how we can then obtain an expected runtime bound for the overall program
by searching for suitable ranking functions repeatedly.

4.2 Inferring Expected Runtime Bounds

Our approach to infer expected runtime bounds is based on an underlying (non-
probabilistic) bound pair (RB,SB) which is computed by existing techniques (in
our implementation, we use [18]). To do so, we abstract the PIP to a standard
integer transition system by ignoring the probabilities of transitions and replacing
probabilistic with non-deterministic sampling (e.g., the update η(x) = GEO( 1

2 )
would be replaced by η(x) = x+ u with u ∈ V \PV , where u > 0 is added to the
guard). Of course, we usually have RB(t) =∞ for some transitions t.

We start with the expected bound pair (RBE,SBE) that is obtained by
lifting (RB,SB) as in Thm. 10. Afterwards, the expected runtime bound RBE is
improved repeatedly by applying the following Thm. 16 (and similarly, SBE is
improved repeatedly by applying Thm. 23 and 25 from Sect. 5). Our approach
alternates the improvement of RBE and SBE, and it uses expected size bounds
on “previous” transitions to improve expected runtime bounds, and vice versa.

To improve RBE, we generate a PLRF r for a part of the program. To obtain
a bound for the full program from r, one has to determine which transitions can
enter the program part and from which locations it can be entered.

Definition 14 (Entry Locations and Transitions). For GTni ⊆ GT and ` ∈
L, the entry transitions are ETGTni(`) = {g ∈ GT \ GTni | ∃t ∈ g. t = ( , , , , `)}.
Then the entry locations are all start locations of GTni whose entry transitions
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are not empty, i.e., ELGTni
= {` | ETGTni(`) 6= ∅ ∧ (`, , , , ) ∈

⋃
GTni}.1

Example 15 (Entry Locations and Transitions). For the PIP from Fig. 1 and
GTni = {g1}, we have ELGTni

= {`1} and ETGTni(`1) = {g0}. So the loop formed
by g1 is entered at location `1 and the general transition g0 has to be executed
before. Similarly, for GT ′ni = {g3} we have ELGT ′

ni
= {`2} and ETGT ′

ni
(`2) = {g2}.

Recall that if r is a PLRF for GT> ⊆ GTni, then in a program that is restricted
to GTni, r(`) is an upper bound on the expected number of executions of transitions
from GT> when starting in `. Since r(`) may contain negative coefficients, it is
not weakly monotonically increasing in general. To turn expressions e ∈ R[PV]
into bounds from B, let the over-approximation d·e replace all coefficients by
their absolute value. So for example, dx− ye = dx+ (−1) · ye = x+ y. Clearly,
we have |s| (dee) ≥ |s| (e) for all s ∈ Σ. Moreover, if e ∈ R[PV] then dee ∈ B.

To turn dr(`)e into a bound for the full program, one has to take into account
how often the sub-program with the transitions GTni is reached via an entry
transition h ∈ ETGTni(`) for some ` ∈ ELGTni . This can be over-approximated
by
∑
t=( , , , ,`)∈hRB(t), which is an upper bound on the number of times that

transitions in h to the entry location ` of GTni are applied in a full program run.
The bound dr(`)e is expressed in terms of the program variables at the entry

location ` of GTni. To obtain a bound in terms of the variables at the start of the
program, one has to take into account which value a program variable x may have
when the sub-program GTni is reached. For every entry transition h ∈ ETGTni(`),
this value can be over-approximated by SBE(h, `, x). Thus, we have to instan-
tiate each variable x in dr(`)e by SBE(h, `, x). Let SBE(h, `, ·) : PV → B be
the mapping with SBE(h, `, ·)(x) = SBE(h, `, x). Hence, SBE(h, `, ·)(dr(`)e) over-
approximates the expected number of applications of GT> if GTni is entered in loca-
tion `, where this bound is expressed in terms of the input variables of the program.
Here, weak monotonic increase of dr(`)e ensures that instantiating its variables by
an over-approximation of their size yields an over-approximation of the runtime.

Theorem 16 (Expected Runtime Bounds). Let (RBE,SBE) be an expected
bound pair, RB a (non-probabilistic) runtime bound, and r a PLRF for GT> ⊆
GTni ⊆ GT . Then RB′E : GT → B is an expected runtime bound where

RB′E(g) =


∑

`∈ELGTni

h∈ETGTni
(`)

(
∑

t=( , , , ,`)∈h
RB(t)) · (SBE(h, `, ·) (dr(`)e)) , if g ∈ GT>

RBE(g), if g 6∈ GT>

Example 17 (Expected Runtime Bounds). For the PIP from Fig. 1, our approach
starts with (RBE,SBE) from Ex. 11 which results from lifting the bound pair from
Ex. 5. To improve the bound RBE(g1) =∞, we use the PLRF r for GT> = GTni =
{g1} from Ex. 13. By Ex. 15, we have ELGTni = {`1} and ETGTni(`1) = {g0} with
g0 = {t0}, whose runtime bound is RB(t0) = 1, see Ex. 5. Using the expected
size bound SBE(g0, `1, x) = x from Ex. 9, Thm. 16 yields

RB′E(g1) = RB(t0) · SBE(g0, `1, ·) (dr(`1)e) = 1 · 2 · x = 2 · x.
1 For a set of sets like GTni,

⋃
GTni denotes their union, i.e.,

⋃
GTni =

⋃
g∈GTni

g.
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To improve RBE(g3), we use the PLRF r′ for GT ′> = GT ′ni = {g3} from Ex. 13. As
ELGT ′

ni
= {`2} and ETGT ′

ni
(`2) = {g2} by Ex. 15, where g2 = {t3} and RB(t3) = 1

(Ex. 5), with the bound SBE(g2, `2, y) = 6 · x2 + 2 · y from Ex. 9, Thm. 16 yields

RB′E(g3) = RB(t3) · SBE(g2, `2, ·) (dr′(`2)e) = 1 · SBE(g2, `2, y) = 6 · x2 + 2 · y.

So based on the expected size bounds of Ex. 9, we have shown how to compute
the expected runtime bounds of Ex. 9 automatically.

Similar to [18], our approach relies on combining bounds that one has com-
puted earlier in order to derive new bounds. Here, bounds may be combined
linearly, bounds may be multiplied, and bounds may even be substituted into
other bounds. But in contrast to [18], sometimes one may combine expected
bounds that were computed earlier and sometimes it is only sound to combine
non-probabilistic bounds: If a new bound is computed by linear combinations of
earlier bounds, then it is sound to use the “expected versions” of these earlier
bounds. However, if two bounds are multiplied, then it is in general not sound to
use their “expected versions”. Thus, it would be unsound to use the expected run-
time bounds RBE(h) instead of the non-probabilistic bounds

∑
t=( , , , ,`)∈hRB(t)

on the entry transitions in Thm. 16 (a counterexample is given in [47]).2

In general, if bounds b1, . . . , bn are substituted into another bound b, then it
is sound to use “expected versions” of the bounds b1, . . . , bn if b is concave, see,
e.g., [10, 11, 40]. Since bounds from B do not contain negative coefficients, we
obtain that a finite3 bound b ∈ B is concave iff it is a linear polynomial (see [47]).

Thus, in Thm. 16 we may substitute expected size bounds SBE(h, `, x) into
dr(`)e, since we restricted ourselves to linear ranking functions r and hence, dr(`)e
is also linear. Note that in contrast to [11], where a notion of concavity was used
to analyze probabilistic term rewriting, a multilinear expression like x · y is not
concave when regarding both arguments simultaneously. Hence, it is unsound to
use such ranking functions in Thm. 16. See [47] for a counterexample to show
why substituting expected bounds into a non-linear bound is incorrect in general.

5 Computing Expected Size Bounds

We first compute local bounds for one application of a transition (Sect. 5.1).
To turn them into global bounds, we encode the data flow of a PIP in a graph.
Sect. 5.2 then presents our technique to compute expected size bounds.

5.1 Local Change Bounds and General Result Variable Graph

We first compute a bound on the expected change of a variable during an
update. More precisely, for every general result variable (g, `, x) we define a
bound CBE(g, `, x) on the change of the variable x that we can expect in one

2 An exception is the special case where r(`) is constant. Then, our implementation
indeed uses the expected bound RBE(h) instead of

∑
t=( , , , ,`)∈hRB(t) [47].

3 A bound is finite if it does not contain ∞. We always simplify expressions and thus,
a bound like 0 ·∞ is also finite, because it simplifies to 0, as usual in measure theory.
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execution of the general transition g when reaching location `. So we consider
all t = ( , p, , η, `) ∈ g and the expected difference between the current value
of x and its update η(x). However, for η(x) ∈ Z[V], η(x)− x is not necessarily
from B because it may contain negative coefficients. Thus, we use the over-
approximation dη(x)− xe (where we always simplify expressions before applying
d·e, e.g., dx− xe = d0e = 0). Moreover, dη(x)− xe may contain temporary
variables. Let tvt : V → B instantiate all temporary variables by the largest
possible value they can have after evaluating the transition t. Hence, we then use
tvt(dη(x)− xe) instead. For tvt, we have to use the underlying non-probabilistic
size bound SB for the program (since the scheduler determines the values of
temporary variables by non-deterministic (non-probabilistic) choice). If x is
updated according to a bounded distribution function d ∈ D, then as in Sect. 2,
let E(d) ∈ B denote a finite bound on d, i.e., Eabs(d(s)) ≤ |s| (E(d)) for all s ∈ Σ.

Definition 18 (Expected Local Change Bound). Let SB be a size bound.
Then CBE : GRV → B with CBE(g, `, x) =

∑
t=( ,p, ,η,`)∈g

p · cht(η(x), x), where

cht(η(x), x) =

{
E(d), if η(x) = d ∈ D
tvt(dη(x)− xe), otherwise

and tvt(y) =

{
SB(t, y), if y /∈ PV
y, if y ∈ PV

Example 19 (CBE). For the PIP of Fig. 1, we have CBE(g0, , ) = CBE(g2, , ) =
CBE(g3, `2, x) = 0, since the respective updates are identities. Moreover,

CBE(g1, `1, x) = 1
2 · d(x− 1)− xe+ 1

2 · dx− xe = 1
2 · 1 + 1

2 · 0 = 1
2 .

In a similar way, we obtain CBE(g1, `1, y) = x and CBE(g3, `2, y) = 1.

The following theorem shows that for any admissible configuration in a state
s′, CBE(g, `, x) is an upper bound on the expected value of |s(x)− s′(x)| if s is
the next state obtained when applying g in state s′ to reach location `.

Theorem 20 (Soundness of CBE). For any (g, `, x) ∈ GRV, scheduler S,
s0 ∈ Σ, and admissible configuration c′ = ( , , s′), we have

|s′| (CBE(g, `, x)) ≥
∑

c=(`,t,s)∈Conf, t∈g
prS,s0(c′ → c) · |s(x)− s′(x)|.

To obtain global bounds from the local bounds CBE(g, `, x), we construct a
general result variable graph which encodes the data flow between variables. Let
pre(g) = ET∅(`g) be the the set of pre-transitions of g which lead into g’s start
location `g. Moreover, for α = (g, `, x) ∈ GRV let its active variables actV(α)
consist of all variables occurring in the bound x+ CBE(α) for α’s expected size.

Definition 21 (General Result Variable Graph). The general result vari-
able graph has the set of nodes GRV and the set of edges GRVE, where

GRVE = { ((g′, `′, x′), (g, `, x)) | g′ ∈ pre(g) ∧ `′ = `g ∧ x′ ∈ actV(g, `, x) }.

Example 22 (General Result Variable Graph). The general result variable
graph for the PIP of Fig. 1 is shown below. For CBE from Ex. 19, we have
actV(g1, `1, x) = {x}, as x+ CBE(α) = x+ 1

2 contains no variable except x.
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(g0, `1, x)

(g1, `1, x)

(g2, `2, x)

(g3, `2, x)

(g1, `1, y)

(g2, `2, y)

(g3, `2, y)

(g0, `1, y)
Similarly, actV(g1, `1, y) = {x, y}, as x and

y are contained in y+CBE(g1, `1, y) = y+x. For
all other α ∈ GRV , we have actV( , , x) = {x}
and actV( , , y) = {y}. As pre(g1) = {g0, g1},
the graph captures the dependence of (g1, `1, x)
on (g0, `1, x) and (g1, `1, x), and of (g1, `1, y) on
(g0, `1, x), (g0, `1, y), (g1, `1, x), and (g1, `1, y).
The other edges are obtained in a similar way.

5.2 Inferring Expected Size Bounds

We now compute global expected size bounds for the general result variables by
considering the SCCs of the general result variable graph separately. As usual,
an SCC is a maximal subgraph with a path from each node to every other node.
An SCC is trivial if it consists of a single node without an edge to itself. We first
handle trivial SCCs in Sect. 5.2.1 and consider non-trivial SCCs in Sect. 5.2.2.

5.2.1 Inferring Expected Size Bounds for Trivial SCCs By Thm. 20,
x+ CBE(g, `, x) is a local bound on the expected value of x after applying g once
in order to enter `. However, this bound is formulated in terms of the values of
the variables immediately before applying g. We now want to compute global
bounds in terms of the initial values of the variables at the start of the program.

If g is initial (i.e., g ∈ GT0 since g starts in the initial location `0), then
x+ CBE(g, `, x) is already a global bound, as the values of the variables before
the application of g are the initial values of the variables at the program start.

Otherwise, the variables y occurring in the local bound x+ CBE(g, `, x) have
to be replaced by the values that they can take in a full program run before
applying the transition g. Thus, we have to consider all transitions h ∈ pre(g)
and instantiate every variable y by the maximum of the values that y can have
after applying h. Here, we again over-approximate the maximum by the sum.

If CBE(g, `, x) is concave (i.e., a linear polynomial), then we can instantiate
its variables by expected size bounds SBE(h, `g, y). However, this is unsound if
CBE(g, `, x) is not linear, i.e., not concave (see [47] for a counterexample). So in
this case, we have to use non-probabilistic bounds SB(t, y) instead.

As in Sect. 4.2, we use an underlying non-probabilistic bound pair (RB,SB)
and start with the expected pair (RBE,SBE) obtained by lifting (RB,SB) ac-
cording to Thm. 10. While Thm. 16 improves RBE, we now improve SBE. Here,
the SCCs of the general result variable graph should be treated in topological
order, since then one may first improve SBE for result variables corresponding to
pre(g), and use that when improving SBE for result variables of the form (g, , ).

Theorem 23 (Expected Size Bounds for Trivial SCCs). Let SBE be an
expected size bound, SB a (non-probabilistic) size bound, and let α = (g, `, x)
form a trivial SCC of the general result variable graph. Let sizeαE and sizeα be
mappings from PV → B with sizeαE(y) =

∑
h∈pre(g) SBE(h, `g, y) and sizeα(y) =∑

h∈pre(g), t=( , , , ,`g)∈h SB(t, y). Then SB′E : GRV → B is an expected size bound,
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where SB′E(β) = SBE(β) for β 6= α and

SB′E(α) =


x+ CBE(α), if g ∈ GT0
sizeαE(x+ CBE(α)), if g 6∈ GT0, CBE(α) is linear

sizeαE(x) + sizeα(CBE(α)), if g 6∈ GT0, CBE(α) is not linear

Example 24 (SBE for Trivial SCCs). The general result variable graph in Ex. 22
contains 4 trivial SCCs formed by αx = (g0, `1, x), αy = (g0, `1, y), βx = (g2, `2, x),
and βy = (g2, `2, y). For all these general result variables, the expected local
change bound CBE is 0 (see Ex. 19). Thus, it is linear. Since g0 ∈ GT0, Thm. 23
yields SB′E(αx) = x+ CBE(αx) = x and SB′E(αy) = y + CBE(αy) = y.

By treating SCCs in topological order, when handling βx, βy, we can assume
that we already have SBE(αx) = x, SBE(αy) = y and SBE(g1, `1, x) = 2 · x,
SBE(g1, `1, y) = 6 · x2 + y (see Ex. 9) for the result variables corresponding to
pre(g2) = {g0, g1}. We will explain in Sect. 5.2.2 how to compute such expected
size bounds for non-trivial SCCs. Hence, by Thm. 23 we obtain SB′E(βx) =

sizeβx

E (x+CBE(βx)) = SBE(αx)+SBE(g1, `1, x) = 3 ·x and SB′E(βy) = size
βy

E (y+
CBE(βy)) = SBE(αy) + SBE(g1, `1, y) = 6 · x2 + 2 · y.

5.2.2 Inferring Expected Size Bounds for Non-Trivial SCCs Now we
handle non-trivial SCCs C of the general result variable graph. An upper bound
for the expected size of a variable x when entering C is obtained from SBE(β)
for all general result variables β = ( , , x) which have an edge to C.

To turn CBE(g, `, x) into a global bound, as in Thm. 23 its variables y have
to be instantiated by the values size(g,`,x)(y) that they can take in a full program
run before applying a transition from g. Thus, size(g,`,x)(CBE(g, `, x)) is a global
bound on the expected change resulting from one application of g. To obtain
an upper bound for the whole SCC C, we add up these global bounds for all
(g, , x) ∈ C and take into account how often the general transitions in the SCC
are expected to be executed, i.e., we multiply with their expected runtime bound
RBE(g). So while in Thm. 16 we improve RBE using expected size bounds for
previous transitions, we now improve SBE(C) using expected runtime bounds
for the transitions in C and expected size bounds for previous transitions.

Theorem 25 (Expected Size Bounds for Non-Trivial SCCs). Let (RBE,
SBE) be an expected bound pair, (RB,SB) a (non-probabilistic) bound pair, and
let C ⊆ GRV form a non-trivial SCC of the general result variable graph where
GTC = {g ∈ GT | (g, , ) ∈ C}. Then SB′E is an expected size bound:

SB′E(α) =


∑

(β,α)∈GRVE, β /∈C, α∈C, β=( , ,x) SBE(β) +∑
g∈GTC

RBE(g) · (
∑

α′=(g, ,x)∈C
sizeα

′
(CBE (α′))), if α = ( , , x) ∈ C

SBE(α), otherwise

Here we really have to use the non-probabilistic size bound sizeα
′

instead of
sizeα

′

E , even if CBE(α′) is linear, i.e., concave. Otherwise we would multiply the
expected values of two random variables which are not independent.

Example 26 (SBE for Non-Trivial SCCs). The general result variable graph in
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Ex. 22 contains 4 non-trivial SCCs formed by α′x = (g1, `1, x), α′y = (g1, `1, y),
β′x = (g3, `2, x), and β′y = (g3, `2, y). By the results on SBE, RBE, CBE, and SB
from Ex. 24, 17, 19, and 5, Thm. 25 yields the expected size bound in Ex. 9:

SB′E(α′x) = SBE(αx) +RBE(g1) · sizeα
′
x(CBE(α′x)) = x+ 2 · x · 12 = 2 · x

SB′E(α′y) = SBE(αy) +RBE(g1) · sizeα
′
y (CBE(α′y)) = y + 2 · x · sizeα

′
y (x)

= y + 2 · x ·
∑
i∈{0,1,2} SB(ti, x) = 6 · x2 + y

SB′E(β′x) = SBE(βx) +RBE(g3) · sizeβ
′
x(CBE(β′x)) = 3 · x+ (6x2 + 2y) · 0 = 3 · x

SB′E(β′y) = SBE(βy) +RBE(g3) · sizeβ
′
y (CBE(β′y)) = 6 · x2 + 2 · y + (6x2 + 2y) · 1

= 12 · x2 + 4 · y

6 Related Work, Implementation, and Conclusion

Related Work Our approach adapts techniques from [18] to probabilistic programs.
As explained in Sect. 1, this adaption is not at all trivial (see our proofs in [47]).

There has been a lot of work on proving PAST and inferring bounds on
expected runtimes using supermartingales, e.g., [1, 11, 15, 16, 22–25, 29, 32, 48, 62].
While these techniques infer one (lexicographic) ranking supermartingale to
analyze the complete program, our approach deals with information flow between
different program parts and analyzes them separately.

There is also work on modular analysis of almost sure termination (AST)
[1, 25, 26, 37, 38, 48], i.e., termination with probability 1. This differs from our
results, since AST is compositional, in contrast to PAST (see, e.g., [41, 42]).

A fundamentally different approach to ranking supermartingales (i.e., to
forward-reasoning) is backward-reasoning by so-called expectation transformers,
see, e.g., [10, 41, 42, 44–46, 50, 52, 61]. In this orthogonal reasoning, [10, 41, 42, 52]
consider the connection of the expected runtime and size. While expectation
transformers apply backward- instead of forward-reasoning, their correctness can
also be justified using supermartingales. More precisely, Park induction for upper
bounds on the expected runtime via expectation transformers essentially ensures
that a certain stochastic process is a supermartingale (see [33] for details).

To the best of our knowledge, the only available tools for the inference of upper
bounds on the expected runtimes of probabilistic programs are [10, 50, 61, 62].
The tool of [61] deals with data types and higher order functions in probabilistic
ML programs and does not support programs whose complexity depends on
(possibly negative) integers (see [55]). Furthermore, the tool of [48] focuses on
proving or refuting (P)AST of probabilistic programs for so-called Prob-solvable
loops, which do not allow for nested or sequential loops or non-determinism. So
both [61] and [48] are orthogonal to our work. We discuss [10, 50, 62] below.

Implementation We implemented our analysis in a new version of our tool KoAT
[18]. KoAT is an open-source tool written in OCaml, which can also be downloaded
as a Docker image and accessed via a web interface [43].

Given a PIP, the analysis proceeds as in Alg. 1. The preprocessing in Line 1
adds invariants to guards (using APRON [39] to generate (non-probabilistic)
invariants), unfolds transitions [19], and removes unreachable locations, transitions
with probability 0, and transitions with unsatisfiable guards (using Z3 [49]).
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Input: PIP (PV,L,GT , `0)
1 preprocess the PIP
2 (RB,SB)← perform non-probabilistic analysis using [18]
3 (RBE,SBE)← lift (RB,SB) to an expected bound pair with Thm. 10
4 repeat
5 for all SCCs C of the general result variable graph in topological order do
6 if C = {α} is trivial then SB′

E ← improve SBE for C by Thm. 23
7 else SB′

E ← improve SBE for C by Thm. 25
8 for all α ∈ C do SBE(α)← min{SBE(α),SB′

E(α)}
9 for all general transitions g ∈ GT do

10 RB′
E ← improve RBE for GT> = {g} by Thm. 16

11 RBE(g)← min{RBE(g),RB′
E(g)}

12 until no bound is improved anymore
Output:

∑
g∈GT RBE(g)

Algorithm 1: Overall approach to infer bounds on expected runtimes

We start by a non-probabilistic analysis and lift the resulting bounds to an
initial expected bound pair (Lines 2 and 3). Afterwards, we first try to improve
the expected size bounds using Thm. 23 and 25, and then we attempt to improve
the expected runtime bounds using Thm. 16 (if we find a PLRF using Z3). To
determine the “minimum” of the previous and the new bound, we use a heuristic
which compares polynomial bounds by their degree. While we over-approximated
the maximum of expressions by their sum to ease readability in this paper, KoAT
also uses bounds containing “min” and “max” to increase precision.

This alternating modular computation of expected size and runtime bounds is
repeated so that one can benefit from improved expected runtime bounds when
computing expected size bounds and vice versa. We abort this improvement of
expected bounds in Alg. 1 if they are all finite (or when reaching a timeout).

To assess the power of our approach, we performed an experimental evaluation
of our implementation in KoAT. We did not compare with the tool of [62], since
[62] expects the program to be annotated with already computed invariants. But
for many of the examples in our experiments, the invariant generation tool [56]
used by [62] did not find invariants strong enough to enable a meaningful analysis
(and we could not apply APRON [39] due to the different semantics of invariants).

Instead, we compare KoAT with the tools Absynth [50] and eco-imp [10] which
are both based on a conceptionally different backward-reasoning approach. We ran
the tools on all 39 examples from Absynth’s evaluation in [50] (except recursive,
which contains non-tail-recursion and thus cannot be encoded as a PIP), and on
the 8 additional examples from the artifact of [50]. Moreover, our collection has
29 additional benchmarks: 14 examples that illustrate different aspects of PIPs, 5
PIPs based on examples from [50] where we removed assumptions, and 10 PIPs
based on benchmarks from the TPDB [59] where some transitions were enriched
with probabilistic behavior. The TPDB is a collection of typical programs used in
the annual Termination and Complexity Competition [31]. We ran the experiments
on an iMac with an Intel i5-2500S CPU and 12 GB of RAM under macOS Sierra
for Absynth and NixOS 20.03 for KoAT and eco-imp. A timeout of 5 minutes per
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Bound KoAT Absynth eco-imp

O(1) 6 6 6

O(n) 32 32 29

O(n2) 3 8 9

O(n>2) 0 0 0

EXP 0 0 0

∞ 5 0 2

TO 0 0 0

Fig. 2: Results on benchmarks from [50]

Bound KoAT Absynth eco-imp

O(1) 2 1 2

O(n) 10 3 6

O(n2) 12 1 6

O(n>2) 2 0 0

EXP 1 0 0

∞ 2 15 12

TO 0 9 3

Fig. 3: Results on our new benchmarks

example was applied for all tools. The average runtime of successful runs was
4.26 s for KoAT, 3.53 s for Absynth, and just 0.93 s for eco-imp.

Fig. 2 and 3 show the generated asymptotic bounds, where n is the maximal
absolute value of the program variables at the program start. Here, “∞” indicates
that no finite time bound could be computed and “TO” means “timeout”. The
detailed asymptotic results of all tools on all examples can be found in [43, 47].

Absynth and eco-imp slightly outperform KoAT on the examples from Absynth’s
collection, while KoAT is considerably stronger than both tools on the additional
benchmarks. In particular, Absynth and eco-imp outperform our approach on
examples with nested probabilistic loops. While our modular approach can
analyze inner loops separately when searching for probabilistic ranking functions,
Thm. 16 then requires non-probabilistic time bounds for all transitions entering
the inner loop. But these bounds may be infinite if the outer loop has probabilistic
behavior itself. Moreover, in contrast to our work and [10], the approach of [50]
does not require weakly monotonic bounds.

On the other hand, KoAT is superior to Absynth and eco-imp on large exam-
ples with many loops, where only a few transitions have probabilistic behavior
(this might correspond to the typical application of randomization in practical
programming). Here, we benefit from the modularity of our approach which treats
loops independently and combines their bounds afterwards. Absynth and eco-imp
also fail for our leading example of Fig. 1, while KoAT infers a quadratic bound.
Hence, the tools have particular strengths on orthogonal kinds of examples.

KoAT’s source code is available at https://github.com/aprove-developers/
KoAT2-Releases/tree/probabilistic. To obtain a KoAT artifact, see https://
aprove-developers.github.io/ExpectedUpperBounds/ for a static binary and Dock-
er image. This web site also provides all examples from our evaluation, detailed
outputs of our experiments, and a web interface to run KoAT directly online.

Conclusion We presented a new modular approach to infer upper bounds on the
expected runtimes of probabilistic integer programs. To this end, non-probabilistic
and expected runtime and size bounds on parts of the program are computed in
an alternating fashion and then combined to an overall expected runtime bound.
In the evaluation, our tool KoAT succeeded on 91% of all examples, while the
main other related tools (Absynth and eco-imp) only inferred finite bounds for
68% resp. 77% of the examples. In future work, it would be interesting to consider
a modular combination of these tools (resp. of their underlying approaches).
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[14] Ben-Amram, A.M., Doménech, J.J., Genaim, S.: Multiphase-linear ranking
functions and their relation to recurrent sets. In: Proc. SAS ’19. LNCS, vol.
11822, pp. 459–480 (2019), https://doi.org/10.1007/978-3-030-32304-2 22

https://doi.org/10.1145/3158122
https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1145/2499937.2499943
https://doi.org/10.1145/2499937.2499943
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.4230/LIPIcs.RTA.2013.55
https://doi.org/10.4230/LIPIcs.RTA.2013.55
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3428240
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/2629488
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-030-32304-2_22


18 Fabian Meyer, Marcel Hark, and Jürgen Giesl

[15] Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Proc.
RTA ’05. LNCS, vol. 3467, pp. 323–337 (2005), https://doi.org/10.1007/
978-3-540-32033-3 24

[16] Bournez, O., Garnier, F.: Proving positive almost sure termination under
strategies. In: Proc. RTA ’06. LNCS, vol. 4098, pp. 357–371 (2006), https:
//doi.org/10.1007/11805618 27

[17] Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In:
Proc. CAV ’05. LNCS, vol. 3576, pp. 491–504 (2005), https://doi.org/10.
1007/11513988 48

[18] Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing
runtime and size complexity of integer programs. ACM Trans. Program.
Lang. Syst. 38(4) (2016), https://doi.org/10.1145/2866575

[19] Burstall, R.M., Darlington, J.: A transformation system for developing
recursive programs. J. ACM 24(1), 44–67 (1977), https://doi.org/10.1145/
321992.321996

[20] Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource
bounds. In: Proc. PLDI ’15. pp. 467–478 (2015), https://doi.org/10.1145/
2737924.2737955

[21] Carbonneaux, Q., Hoffmann, J., Reps, T.W., Shao, Z.: Automated resource
analysis with Coq proof objects. In: CAV ’17. LNCS, vol. 10427, pp. 64–85
(2017), https://doi.org/10.1007/978-3-319-63390-9 4

[22] Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with
martingales. In: Proc. CAV ’13. LNCS, vol. 8044, pp. 511–526 (2013), https:
//doi.org/10.1007/978-3-642-39799-8 34
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