
Termination of term rewriting using

dependency pairs

Thomas Arts

a

, J�urgen Giesl

b

a

Department of Computer Science, Utrecht University, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands, E-mail: thomas@cs.ruu.nl

b

Department of Computer Science, Darmstadt University of Technology,

Alexanderstra�e 10, 64283 Darmstadt, Germany, E-mail:

giesl@informatik.tu-darmstadt.de

Abstract

We present techniques to prove termination and innermost termination of term

rewriting systems automatically. In contrast to previous approaches, we do not

compare left- and right-hand sides of rewrite rules, but introduce the notion of

dependency pairs to compare left-hand sides with special subterms of the right-

hand sides. This results in a technique which allows to apply existing methods

for automated termination proofs to term rewriting systems where they failed up

to now. In particular, there are numerous term rewriting systems where a direct

termination proof with simpli�cation orderings is not possible, but in combination

with our technique, well-known simpli�cation orderings (such as the recursive path

ordering, polynomial orderings, or the Knuth-Bendix ordering) can now be used to

prove termination automatically.

Unlike previous methods, our technique for proving innermost termination au-

tomatically can also be applied to prove innermost termination of term rewriting

systems that are not terminating. Moreover, as innermost termination implies ter-

mination for certain classes of term rewriting systems, this technique can also be

used for termination proofs of such systems.

1 Introduction

Termination is one of the most fundamental properties of a term rewriting sys-

tem (TRS), cf. e.g. [18]. While in general this problem is undecidable [29], sev-

eral methods for proving termination have been developed (e.g. path orderings
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[15,17,31,42,45], Knuth-Bendix orderings [19,33], forward closures [17,38], se-

mantic interpretations [11,12,23,37,43,47], transformation orderings [9,10,44],

distribution elimination [47], dummy elimination [21], semantic labelling [48],

etc. | for surveys see e.g. [16,45]).

We present a new approach for the automation of termination proofs. Most

well-known techniques for proving termination automatically try to �nd a

well-founded ordering such that for all rules of the TRS the left-hand sides

are greater than the corresponding right-hand sides. In most practical appli-

cations the synthesized orderings are total on ground terms [20] and therefore

virtually all orderings used are simpli�cation orderings [15,16,41,45]. How-

ever, numerous TRSs are not simply terminating, i.e. not compatible with

a simpli�cation ordering. Hence, standard techniques like the recursive path

ordering, polynomial interpretations, and the Knuth-Bendix ordering fail in

proving termination of these TRSs.

In Sect. 2 we introduce a new criterion for termination based on the notion of

dependency pairs. The main advantage of our termination criterion is that it is

especially well suited for automation. To check the criterion automatically, we

have developed a procedure which generates a set of constraints for every TRS.

If there exists a well-founded ordering satisfying these constraints, then the

TRS is terminating. For the synthesis of suitable orderings existing techniques,

such as the recursive path ordering or polynomial interpretations, may be used.

It turns out that for many TRSs where a direct application of simpli�cation

orderings fails, the constraints generated by our technique are nevertheless

satis�ed by an automatically generated simpli�cation ordering. Moreover, all

TRSs that can be proved terminating directly by synthesizing a simpli�cation

ordering automatically, can automatically be proved terminating by this new

technique, too.

Rewriting under strategies is often used for modelling certain programming

paradigms. For example, innermost rewriting, i.e. rewriting where only inner-

most redexes are contracted, can be used to model call-by-value computation

semantics. For that reason, there has been an increasing interest in research

on properties of rewriting under strategies. In particular, the study of ter-

mination is important when regarding such restricted versions of rewriting

[27,28,36]. To prove innermost termination (also called (strong) innermost

normalization), one has to show that the length of every innermost reduction

is �nite. Techniques for proving innermost termination can for example be uti-

lized for termination proofs of functional programs (modelled by TRSs) with

eager reduction strategy or of logic programs. (When transforming well-moded

logic programs into TRSs, innermost termination of the TRS is su�cient for

left-termination of the logic program [8].) Up to now, the only way to prove

innermost termination automatically was by showing termination of the TRS.

Therefore, none of the existing techniques could prove innermost termination
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of non-terminating systems. However, in Sect. 3 we show that after some modi-

�cation, the dependency pair technique can be used as the �rst speci�c method

for innermost termination. In Sect. 4 we conclude and give some comments

on related work.

2 Proving termination

In this section we present a new approach for automated termination proofs.

In Sect. 2.1, we state our termination criterion and prove that it is a necessary

and su�cient criterion for termination. Sect. 2.2 shows how this criterion can

be checked automatically by generating a set of constraints that are satis�ed by

a well-founded ordering if and only if the criterion is ful�lled. The generation

of suitable well-founded orderings is described in Sect. 2.3. To increase the

power of our method we introduce a re�ned approach for its automation in

Sect. 2.4 and an additional re�nement in Sect. 2.5. In this way we obtain

a very powerful technique which performs automated termination proofs for

many TRSs where termination could not be proved automatically before. An

overview of this technique is given in Sect. 2.6.

2.1 Termination criterion

For constructor systems it is common to split the signature into two disjoint

sets, the de�ned symbols and the constructors. The following de�nition extends

these notions to arbitrary term rewriting systems R(F ; R) (with the rules R

over a signature F). For an introduction to term rewriting and its notations,

we refer to Dershowitz and Jouannaud [18] and Klop [32], for example. Here,

the root of a term f(: : :) is the leading function symbol f .

De�nition 1 (De�ned symbols and constructors) Let R(F ; R) be a

TRS. The set D

R

of de�ned symbols of R is de�ned as froot(l) j l! r 2 Rg

and the set C

R

of constructors of R is de�ned as F nD

R

.

To refer to the de�ned symbols and constructors explicitly, a rewrite system

is written as R(D

R

; C

R

; R) and the subscripts are omitted if R is clear from

the context.

Example 2 The following TRS has two de�ned symbols, viz. minus and quot,

and two constructors, viz. 0 and s.

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)
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quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

Most techniques for automated termination proofs are restricted to simpli�ca-

tion orderings. However, the TRS above is not compatible with a simpli�cation

ordering, because the left-hand side of the last quot-rule is embedded in its

right-hand side if y is instantiated with s(x). Therefore these techniques cannot

prove termination of this TRS.

In contrast to previous methods which compare left- and right-hand sides of

rules, the central idea of our approach is to compare left-hand sides of rules

only with those subterms of the right-hand sides that may possibly start a

new reduction.

The motivation for this approach is to regard TRSs as `programs'. Intuitively,

such a program is terminating if the arguments are decreasing in each recursive

call. For example, to prove termination of quot, instead of comparing both

sides of the rules, one only has to compare the input arguments s(x); s(y)

with the arguments minus(x; y); s(y) of the corresponding recursive call. This

way of looking at termination of TRSs motivates that only those subterms of

the right-hand sides that have a de�ned root symbol are considered for the

examination of the termination behaviour.

More precisely, if a term f(s

1

; : : : ; s

n

) rewrites to a term C[g(t

1

; : : : ; t

m

)]

(where g is a de�ned symbol and C denotes some context), then for proving

termination, the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

are compared. In

order to avoid the handling of tuples, the signature F of the TRS is extended

by a set of fresh symbols, i.e., disjoint from the symbols in the signature, such

that there is a one-to-one mapping from the de�ned symbols to these fresh

symbols. The fresh symbols are called tuple symbols, and to ease readability,

in this paper we assume that the original signature F consists of lower case

function symbols only, whereas the tuple symbols are denoted by the cor-

responding upper case symbols. Instead of comparing tuples, now the terms

F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

) are compared, where F and G are the tuple

symbols for f and g, respectively

1

.

De�nition 3 (Dependency pair) Let R(D;C;R) be a TRS. If

f(s

1

; : : : ; s

n

)!C[g(t

1

; : : : ; t

m

)]

1

Intuitively, tuple symbols are used to `measure' the arguments of de�ned symbols

during the termination proofs. Sometimes the arguments of two de�ned function

symbols f and g must be measured in a di�erent way. Thus, we introduce a di�erent

tuple symbol for each de�ned symbol to distinguish whether a tuple of terms serves

as input for f or for g.
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is a rewrite rule of R with g 2 D, then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i is called

a dependency pair of R.

The dependency pairs of a TRS are easily determined and if the TRS is �nite,

then only �nitely many dependency pairs exist.

Example 4 The dependency pairs of the TRS in Ex. 2 are

hM(s(x); s(y));M(x; y)i (1)

hQ(s(x); s(y));M(x; y)i (2)

hQ(s(x); s(y));Q(minus(x; y); s(y))i (3)

where M and Q denote the tuple symbols for minus and quot, respectively.

The notion of dependency pairs is the basis for our termination criterion. Since

every left-hand side has a de�ned root symbol, no rule matches a term without

de�ned symbols, hence such a term is a normal form. Thus, in�nite reductions

originate from the fact that de�ned symbols are introduced by the right-hand

sides of rewrite rules. By tracing the introduction of these de�ned symbols,

information is obtained about the termination behaviour of the TRS. For that

purpose we consider special sequences of dependency pairs, so-called chains,

such that the right-hand side of every dependency pair in a chain corresponds

to the newly introduced redex that should be traced.

De�nition 5 (Chain) Let R(D;C;R) be a TRS. A sequence of dependency

pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an R-chain if there exists a substitution � such that

t

j

�!

�

R

s

j+1

� holds for every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in

the sequence.

If R is clear from the context we often write `chain' instead of `R-chain'. We

always assume that di�erent (occurrences of) dependency pairs have disjoint

sets of variables and we always regard substitutions whose domain may be

in�nite. Hence, in our example we have the chain

hQ(s(x

1

); s(y

1

));Q(minus(x

1

; y

1

); s(y

1

))i hQ(s(x

2

); s(y

2

));Q(minus(x

2

; y

2

); s(y

2

))i;

because Q(minus(x

1

; y

1

); s(y

1

))�!

�

R

Q(s(x

2

); s(y

2

))� holds for the substitution

� that replaces x

1

by s(0), x

2

by 0, and both y

1

and y

2

by 0. In fact any �nite

sequence of the dependency pair (3) in Ex. 4 is a chain. However, in the next

section we show that the above TRS has no in�nite chain. The following

theorem proves that the absence of in�nite chains is a su�cient and necessary

criterion for termination.
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Theorem 6 (Termination criterion) A TRS R(D;C;R) is terminating if

and only if no in�nite R-chain exists.

PROOF. We �rst prove that the above criterion is su�cient for termination,

i.e., we show that for any in�nite reduction we can construct an in�nite R-

chain.

Let t be a term that starts an in�nite reduction. By a minimality argument,

the term t contains a subterm

2

f

1

(~u

1

) that starts an in�nite reduction, but

none of the terms ~u

1

starts an in�nite reduction, i.e., the terms ~u

1

are strongly

normalizing.

Let us consider an in�nite reduction starting with f

1

(~u

1

). First, the arguments

~u

1

are reduced in zero or more steps to arguments ~v

1

and then a rewrite

rule f

1

(~w

1

)! r

1

is applied to f

1

(~v

1

), i.e., a substitution �

1

exists such that

f

1

(~v

1

) = f

1

(~w

1

)�

1

!

R

r

1

�

1

. Now the in�nite reduction continues with r

1

�

1

,

i.e., the term r

1

�

1

starts an in�nite reduction, too.

By assumption there exists no in�nite reduction beginning with one of the

terms ~v

1

= ~w

1

�

1

. Hence, for all variables x occurring in f

1

(~w

1

) the terms

�

1

(x) are strongly normalizing. Thus, since r

1

�

1

starts an in�nite reduction,

there occurs a subterm f

2

(~u

2

) in r

1

, i.e. r

1

= C[f

2

(~u

2

)] for some context C,

such that

� f

2

(~u

2

)�

1

starts an in�nite reduction and

� ~u

2

�

1

are strongly normalizing terms.

The �rst dependency pair of the in�nite R-chain that we construct is hF

1

(~w

1

);

F

2

(~u

2

)i corresponding to the rewrite rule f

1

(~w

1

)!C[f

2

(~u

2

)]. The other de-

pendency pairs of the in�nite R-chain are determined in the same way: Let

hF

j�1

(~w

j�1

); F

j

(~u

j

)i be a dependency pair such that f

j

(~u

j

)�

j�1

starts an in�-

nite reduction and the terms ~u

j

�

j�1

are strongly normalizing. Again, in zero

or more steps f

j

(~u

j

)�

j�1

reduces to f

j

(~v

j

) to which a rewrite rule f

j

(~w

j

)! r

j

can be applied such that r

j

�

j

starts an in�nite reduction for some substitution

�

j

with ~v

j

= ~w

j

�

j

.

Similar to the observations above, since r

j

�

j

starts an in�nite reduction, there

must be a subterm f

j+1

(~u

j+1

) in r

j

such that

� f

j+1

(~u

j+1

)�

j

starts an in�nite reduction and

� ~u

j+1

�

j

are strongly normalizing terms.

2

Tuples of terms t

1

; : : : ; t

n

are denoted by

~

t.
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This results in the j-th dependency pair of the chain, viz. hF

j

(~w

j

); F

j+1

(~u

j+1

)i.

In this way, one obtains the in�nite sequence

hF

1

(~w

1

); F

2

(~u

2

)i hF

2

(~w

2

); F

3

(~u

3

)i hF

3

(~w

3

); F

4

(~u

4

)i : : :

It remains to prove that this sequence is really an R-chain.

Note that F

j

(~u

j

�

j�1

)!

�

R

F

j

(~v

j

) and ~v

j

= ~w

j

�

j

. Since we assume, without loss

of generality, that the variables of di�erent occurrences of dependency pairs

are disjoint, we obtain one substitution � = �

1

� �

2

� : : : (which is the disjoint

union of �

1

; �

2

; : : :) such that F

j

(~u

j

)�!

�

R

F

j

(~w

j

)� for all j. Thus, we have in

fact constructed an in�nite R-chain.

Now we show that our criterion is even necessary for termination, i.e., we

prove that any in�nite R-chain corresponds to an in�nite reduction. Assume

there exists an in�nite R-chain.

hF

1

(~s

1

); F

2

(

~

t

2

)i hF

2

(~s

2

); F

3

(

~

t

3

)i hF

3

(~s

3

); F

4

(

~

t

4

)i : : :

Hence, there is a substitution � such that

F

2

(

~

t

2

)�!

�

R

F

2

(~s

2

)�; F

3

(

~

t

3

)�!

�

R

F

3

(~s

3

)�; : : :

thus also

f

2

(

~

t

2

)�!

�

R

f

2

(~s

2

)�; f

3

(

~

t

3

)�!

�

R

f

3

(~s

3

)�; : : :

as the tuple symbols F

2

; F

3

; : : : are no de�ned symbols.

Note that every dependency pair hF (~s); G(

~

t)i corresponds to a rewrite rule

f(~s)!C[g(

~

t)] for some context C. Therefore, this results in the reduction

f

1

(~s

1

)� ! C

1

[f

2

(

~

t

2

)]�

#

�

C

1

[f

2

(~s

2

)]� ! C

1

[C

2

[f

3

(

~

t

3

)]]�

#

�

C

1

[C

2

[f

3

(~s

3

)]]� ! : : :

which is in�nite. ut
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2.2 Checking the termination criterion automatically

The advantage of our termination criterion is that it is particularly well suited

for automation. In this section we present a method for proving the absence

of in�nite chains automatically. For that purpose, we introduce a procedure

which, given a TRS, generates a set of inequalities such that the existence of

a well-founded ordering satisfying these inequalities is su�cient for termina-

tion of the TRS. A well-founded ordering satisfying the generated inequalities

can often be synthesized by standard techniques, even if a direct termination

proof is not possible with these techniques (i.e. even if a well-founded ordering

orienting the rules of the TRS cannot be synthesized). For the automation of

our method we assume the TRSs to be �nite, such that only �nitely many

dependency pairs have to be considered.

Note that if all chains correspond to a decreasing sequence w.r.t. some well-

founded ordering, then all chains must be �nite. Hence, to prove the absence

of in�nite chains, we try to synthesize a well-founded ordering > such that all

dependency pairs are decreasing w.r.t. this ordering. More precisely, if for any

sequence of dependency pairs hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : and for any substitution

� with t

j

�!

�

R

s

j+1

� we have

s

1

� > t

1

� > s

2

� > t

2

� > s

3

� > t

3

� > : : : ;

then no in�nite chain exists.

However, for most TRSs, the above inequalities are not satis�ed by any well-

founded ordering >, because the terms t

j

� and s

j+1

� of consecutive depen-

dency pairs in chains are often identical and therefore t

j

� > s

j+1

� does not

hold.

But obviously not all of the inequalities s

j

� > t

j

� and t

j

� > s

j+1

� have to be

strict. For instance, to guarantee the absence of in�nite chains it is su�cient if

there exists a well-founded quasi -ordering

3

� such that terms in dependency

pairs are strictly decreasing (i.e. s

j

� > t

j

�) and terms in between dependency

pairs are only weakly decreasing (i.e. t

j

� � s

j+1

�).

So for each sequence of dependency pairs as above we only demand

s

1

� > t

1

� � s

2

� > t

2

� � s

3

� > t

3

� � : : : (4)

Note that we cannot determine automatically for which substitutions � we

3

A quasi-ordering � is a reexive and transitive relation and � is called well-

founded if its strict part > is well founded.
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have t

j

�!

�

R

s

j+1

� and moreover, it is practically impossible to examine in-

�nite sequences of dependency pairs. Therefore in the following, we restrict

ourselves to weakly monotonic quasi-orderings � where both � and its strict

part > are closed under substitution. (A quasi-ordering � is weakly monotonic

if s � t implies f(: : : s : : :) � f(: : : t : : :).) Then, to guarantee t

j

� � s

j+1

�

whenever t

j

�!

�

R

s

j+1

� holds, it is su�cient to demand l � r for all rewrite

rules l! r of the TRS. To ensure s

j

� > t

j

� for those dependency pairs occur-

ring in possibly in�nite chains, we demand s > t for all dependency pairs hs; ti.

In fact the existence of such a well-founded ordering is not only su�cient, but

even necessary to ensure the absence of in�nite chains.

Theorem 7 (Proving termination) A TRS R(D;C;R) is terminating i�

there exists a well-founded weakly monotonic quasi-ordering �, where both �

and > are closed under substitution, such that

� l � r for all rules l! r in R and

� s > t for all dependency pairs hs; ti.

PROOF. We �rst prove that the above conditions are su�cient, i.e. that the

existence of such a quasi-ordering implies termination of R. Note that as l � r

holds for all rules l! r in R and as � is weakly monotonic and closed under

substitution, we have !

�

R

��, i.e. if t!

�

R

s then t � s.

Suppose there is an in�nite R-chain hs

1

; t

1

i hs

2

; t

2

i : : : Then there exists a

substitution � such that t

j

�!

�

R

s

j+1

� holds for all j. As!

�

R

��, this implies

t

j

� � s

j+1

�.

Since we have s

j

> t

j

for all dependency pairs, we obtain the in�nite descend-

ing sequence

s

1

� > t

1

� � s

2

� > t

2

� � s

3

� > : : :

which is a contradiction to the well-foundedness of >. Therefore, no in�nite

R-chain exists and hence by Thm. 6, R is terminating.

Now we prove that the above conditions are even necessary for termination. In

fact, we prove a stronger result, i.e. that termination of R implies termination

of the system R

0

with the rules

R

0

= R [ fs! t j hs; ti is a dependency pair of Rg:

Hence, the rewrite ordering of R

0

is (even) a well-founded strongly monotonic

ordering > (closed under substitution) satisfying s > t and the strict inequal-
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ities l > r for all rules of R

4

.

Assume that R

0

is not terminating. Hence, there exists a term q

1

starting an

in�nite R

0

-reduction.

q

1

!

R

0

q

2

!

R

0

: : : !

R

0

q

k

!

R

0

: : :

Clearly, q

1

must contain tuple symbols, because R is terminating. Without

loss of generality we may assume that q

1

is `minimal', i.e. that none of the

proper subterms of q

1

starts an in�nite reduction. We show that this implies

that the root of q

1

is a tuple symbol.

For any term q, let [[q]] denote the result of replacing all subterms with a root

tuple symbol by one and the same new variable y. Note that tuple symbols do

not occur in rewrite rules of R. Therefore, q

j

!

R

0

q

j+1

implies [[q

j

]]!

R

[[q

j+1

]],

if the contracted redex in q

j

is on a position above all tuple symbols. If the

contracted redex is below a tuple symbol, then q

j

!

R

0

q

j+1

implies [[q

j

]] =

[[q

j+1

]]. If the contracted redex has a tuple root symbol, then q

j

!

R

0

q

j+1

also

implies [[q

j

]] = [[q

j+1

]]. The reason is that in this case the reduct also has a

tuple root symbol, since all rewrite rules of R

0

that have a tuple symbol as

root of the left-hand side also have a tuple symbol as root of the right-hand

side. Hence, as R is terminating, after a �nite number of steps (say k) all

contracted redexes in the in�nite reduction are below a tuple symbol or have

a tuple root symbol (otherwise [[q

1

]] would start an in�nite R-reduction).

Let q

k

have the form C

k

[t

k;1

; : : : ; t

k;n

k

], where C

k

is a context without tuple

symbols and t

k;j

are terms with tuple root symbols. Then one of the t

k;j

starts an in�nite reduction. Now assume that the root symbol of q

1

is not a

tuple symbol, i.e., q

1

has the form C

1

[t

1;1

; : : : ; t

1;n

1

], where C

1

is a (non-empty)

context without tuple symbols and t

1;1

; : : : ; t

1;n

1

have tuple symbols on their

root positions. By induction on the length k of the reduction, one shows that

for each t

k;j

there exists a t

1;i

such that t

1;i

!

�

R

0

t

k;j

. Thus, q

1

has a proper

subterm t

1;i

which starts an in�nite reduction. This is a contradiction to the

minimality of q

1

.

Hence, q

1

has the form F

1

(~u

1

) where ~u

1

are strongly normalizing terms. So

in the in�nite reduction, �rst the arguments ~u

1

are reduced in zero or more

steps to ~v

1

, and then F

1

(~v

1

) is reduced to F

2

(~u

2

), i.e., hF

1

(~v

1

); F

2

(~u

2

)i is an

instantiation of a dependency pair. Note that ~u

2

are again strongly normalizing

terms (this is due to the above observations, because all subterms of ~u

2

with

4

The �rst intuition to prove this might be to imitate R

0

-reductions by the union

of !

R

and the subterm relation >

sub

. However, this approach fails because R

0

-

reductions may also take place within contexts, whereas !

R

[ >

sub

is not mono-

tonic if R is not simply terminating.
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tuple root symbols already occur in ~v

1

). So the in�nite reduction has the form

F

1

(~u

1

)!

�

R

0

F

1

(~v

1

)!

R

0

F

2

(~u

2

)!

�

R

0

F

2

(~v

2

)!

R

0

F

3

(~u

3

)!

�

R

0

: : : ;

where ~u

j

!

�

R

0

~v

j

holds for all j and hF

j

(~v

j

); F

j+1

(~u

j+1

)i is an instantiation of

a dependency pair of R. Let

hF

1

(~s

1

); F

2

(

~

t

2

)i hF

2

(~s

2

); F

3

(

~

t

3

)i : : :

be the sequence of these dependency pairs and let ~s

j

� = ~v

j

and

~

t

j

� = ~u

j

. If

�

0

(x) is de�ned to be [[�(x)]], then F

j

(

~

t

j

)�

0

!

�

R

F

j

(~s

j

)�

0

holds for all j. The

reason is that in dependency pairs, tuple symbols occur on root positions

only (i.e., ~s

j

and

~

t

j

do not contain tuple symbols). Therefore, ~s

j

�

0

= [[~v

j

]],

~

t

j

�

0

= [[~u

j

]] and again ~u

j

!

�

R

0

~v

j

implies [[~u

j

]]!

�

R

[[~v

j

]]. So the above sequence

of dependency pairs is an in�nite R-chain. By Thm. 6, this is a contradiction

to the termination of R. Hence, R

0

must also be terminating. ut

By the above theorem, termination proofs are now reduced to the search

for quasi-orderings satisfying certain constraints. Therefore, the technique of

Thm. 7 is very useful to apply standard methods like the recursive path or-

dering or polynomial interpretations to TRSs where they are not directly

applicable

5

.

Example 8 For instance, in our example we have to �nd a quasi-ordering

satisfying the following inequalities.

minus(x; 0)� x

minus(s(x); s(y))�minus(x; y)

quot(0; s(y))� 0

quot(s(x); s(y))� s(quot(minus(x; y); s(y)))

5

Using the strict part > of the quasi-ordering in Thm. 7 is sometimes too restric-

tive. In many standard methods based on semantic interpretations, quasi-orderings

are lifted from ground terms to non-ground terms by de�ning s � t i� s� � t� for

all ground substitutions �. However, the strict part of such a quasi-ordering is in

general not closed under substitution. On the other hand, the irreexive ordering

intuitively associated with such a quasi-ordering is de�ned as s >

lift

t i� s� > t�

holds for all ground substitutions �, which is indeed closed under substitution. The

ordering >

lift

is compatible with �, i.e., >

lift

���>. From the proof of the theorem

we easily see that instead of the strict part we in fact only need such a compat-

ible ordering. Therefore in the following, `>' may also be read as this intuitively

associated irreexive ordering >

lift

.
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M(s(x); s(y))>M(x; y)

Q(s(x); s(y))>M(x; y)

Q(s(x); s(y))>Q(minus(x; y); s(y))

In the next section we show how quasi-orderings satisfying such sets of in-

equalities can be synthesized automatically using standard techniques.

2.3 Generating suitable quasi-orderings

A well-founded ordering satisfying the constraints in Ex. 8 can for instance

be generated by the well-known techniques of polynomial interpretations [37].

However, when using polynomial interpretations for direct termination proofs

of TRSs, the polynomials have to be (strongly) monotonic in all their argu-

ments, i.e. s > t implies f(: : : s : : :) > f(: : : t : : :). But for the approach of this

paper, we only need a weakly monotonic quasi-ordering satisfying the inequal-

ities. Thus, s > t only implies f(: : : s : : :) � f(: : : t : : :). Hence, when using our

method it su�ces to �nd a polynomial interpretation with weakly monotonic

polynomials, which do not necessarily depend on all their arguments. For ex-

ample, we may map minus(x; y) to the polynomial x which does not depend

on the second argument y.

Then the inequalities in Ex. 8 are satis�ed by a polynomial ordering where 0

is mapped to 0, s(x) is mapped to x + 1, and minus(x; y), quot(x; y), M(x; y)

and Q(x; y) are all mapped to x. Methods for the automated synthesis of

polynomial orderings have for instance been developed in [23,43]. In this way,

termination of this TRS can be proved fully automatically, although a direct

termination proof with simpli�cation orderings was not possible.

Instead of polynomial orderings one can also use path orderings, which can

easily be generated automatically. However, these path orderings are always

strongly monotonic, whereas in our method we only need a weakly monotonic

ordering. For that reason, before synthesizing a suitable path ordering some of

the arguments of function symbols may be eliminated. For instance, one may

eliminate the second argument of the function symbol minus. Then every term

minus(s; t) in the inequalities is replaced by m(s) (where m is a new unary

function symbol). By comparing the terms resulting from this replacement

(instead of the original terms) we can take advantage of the fact that minus

does not have to be strongly monotonic in its second argument.

Example 9 In this way, the inequalities of Ex. 8 are transformed into

m(x)� x

12



m(s(x))�m(x)

quot(0; s(y))� 0

quot(s(x); s(y))� s(quot(m(x); s(y)))

M(s(x); s(y))>M(x; y)

Q(s(x); s(y))>M(x; y)

Q(s(x); s(y))>Q(m(x); s(y)):

These inequalities are satis�ed by the recursive path ordering using the prece-

dence quot . s .m and Q .M.

Apart from eliminating arguments of function symbols, another possibility

is to replace functions by one of their arguments. So instead of deleting the

second argument of minus one could replace all terms minus(s; t) by minus'

�rst argument s. Then the resulting inequalities are again satis�ed by the

recursive path ordering. To perform this elimination of arguments resp. of

function symbols we introduce the following concept.

De�nition 10 (Argument �ltering TRS) An argument �ltering TRS

6

for the signature F (AFS for short) is a TRS whose rewrite rules are of the

form

f(x

1

; : : : ; x

n

)! g(y

1

; : : : y

k

) or

f(x

1

; : : : ; x

n

)!x

i

where x

1

; : : : ; x

n

are pairwise di�erent variables, y

1

; : : : ; y

k

are pairwise di�er-

ent variables out of x

1

; : : : ; x

n

, g 62 F , and for every function symbol f 2 F

there is at most one f -rule in the AFS.

From a rewriting point of view AFSs are quite simple, because every AFS

is complete. Hence, for any term t the normal form t #

A

w.r.t. an AFS A is

unique.

The following theorem states that in order to �nd a quasi-ordering satisfy-

ing a particular set of inequalities, one may �rst normalize the terms in the

inequalities with respect to an AFS. Subsequently, one only has to �nd a

quasi-ordering that satis�es these modi�ed inequalities. Note that for a �nite

signature there are only �nitely many AFSs (up to renaming of the symbols).

Hence, by combining the synthesis of a suitable AFS with well-known tech-

niques for the generation of (strongly monotonic) simpli�cation orderings, now

6

Argument �ltering TRSs are a special form of recursive program schemes [13,32].

13



the search for a weakly monotonic ordering satisfying the constraints can be

automated.

Theorem 11 (Preservation under argument �ltering) Let A be an

AFS and let IN be a set of inequalities. If the inequalities

fs#

A

> t#

A

j s > t 2 INg [ fs#

A

� t#

A

j s � t 2 INg

are satis�ed by a well-founded weakly monotonic quasi-ordering (where both

� and > are closed under substitution), then there also exists such a quasi-

ordering satisfying the inequalities IN.

PROOF. Assuming that the normalized inequalities are satis�ed by a quasi-

ordering �, a relation �

0

on terms is de�ned where the terms are �rst nor-

malized w.r.t. A and then compared w.r.t. the quasi-ordering � (i.e. s �

0

t

i� s #

A

� t #

A

). It is straightforward to see that �

0

is a well-founded quasi-

ordering satisfying the inequalities IN.

For any substitution �, let � #

A

denote the substitution which results from

� by normalizing all terms in the range of � w.r.t. A. Then, for all terms t

and all substitutions � we have (t�) #

A

= (t #

A

)(� #

A

). Hence, both �

0

and

>

0

are closed under substitution. Moreover, �

0

is weakly monotonic, because

s #

A

� t #

A

implies f(: : : x : : :) #

A

[x=s #

A

] � f(: : : x : : :) #

A

[x=t #

A

] resp.

f(: : : s : : :) #

A

� f(: : : t : : :) #

A

( here, x is a variable occurring just once in

f(: : : x : : :) ). ut

By the above theorem in combination with Thm. 7 it is now possible to prove

termination of the TRS in Ex. 2 automatically using the recursive path order-

ing. After normalizing all inequalities in Ex. 8 w.r.t. the one-rule AFS

minus(x; y)!m(x);

one obtains the inequalities in Ex. 9 which are satis�ed by the recursive path

ordering.

2.4 Re�nement using dependency graphs

While the method of Thm. 7 can be successfully used for automated termina-

tion proofs, in this section we introduce a re�nement of this approach, i.e., we

show how the constraints obtained can be weakened. By this weakening, the

14



(automatic) search for a suitable quasi-ordering satisfying these constraints

can be eased signi�cantly.

In order to ensure that every possible in�nite chain results in an in�nite de-

creasing sequence of terms, in Thm. 7 we demanded s > t for all dependency

pairs hs; ti. However, in many examples several dependency pairs can occur

at most once in any chain and therefore they do not have to be considered at

all. Moreover, for the other dependency pairs it is often su�cient if just some

of them are strictly decreasing, whereas others may be weakly decreasing.

Example 12 The dependency pair hQ(s(x); s(y));M(x; y)i occurs at most

once in any chain: Recall that a dependency pair hv; wi may only follow a

pair hs; ti in a chain, if there exists a substitution � such that t�!

�

R

v�. As

the tuple symbol M is not a de�ned symbol, M(x; y)� can only be reduced to

terms with the same root symbol M. Hence, the dependency pair (2) can only

be succeeded by the dependency pair (1) which in turn can only be succeeded by

itself, i.e. (2) can never occur twice in a chain. Therefore, any possible in�nite

chain has an in�nite tail in which the dependency pair hQ(s(x); s(y));M(x; y)i

does not occur. Therefore it su�ces to show that no in�nite chain exists con-

sisting of the other dependency pairs.

For the TRS of Ex. 2 it is not necessary to reduce the number of constraints

in order to prove termination automatically. However, for the following TRS

we have to get rid of a constraint in order to use a simpli�cation ordering for

satisfying the inequalities.

Example 13 Let us extend the TRS of Ex. 2 by three additional rules. We

now write in�x operators for the de�ned symbols minus and plus to ease read-

ability.

x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x� y; s(y)))

0+ y ! y

s(x) + y ! s(x + y)

(x� y)� z ! x� (y + z)

The dependency pairs of this TRS are the dependency pairs as given in Ex. 4

together with the dependency pairs

hP(s(x); y);P(x; y)i (5)

hM(x� y; z);P(y; z)i (6)

15



hM(x� y; z);M(x; y + z)i (7)

where P is the tuple symbol for the de�ned symbol `+'. To prove termination

according to Thm. 7 we now obtain the following inequalities.

x� 0� x

s(x)� s(y)� x� y

quot(0; s(y))� 0

quot(s(x); s(y))� s(quot(x� y; s(y)))

0+ y� y

s(x) + y� s(x + y)

(x� y)� z� x� (y + z)

M(s(x); s(y))>M(x; y)

Q(s(x); s(y))>M(x; y)

Q(s(x); s(y))>Q(x� y; s(y))

P(s(x); y)>P(x; y)

M(x� y; z)>P(y; z)

M(x� y; z)>M(x; y + z)

Since the inequality Q(s(x); s(y)) > Q(x� y; s(y)) has an instantiation that is

self-embedding, no simpli�cation ordering satis�es these inequalities directly.

In order to apply techniques for the automated generation of simpli�cation

orderings, therefore Thm. 11 has to be used �rst. We have to normalize the

inequalities w.r.t. an AFS A that rewrites x� y to m(x) or to x (this is forced

by the inequalities). But thereafter, the inequality

M(x� y; z)#

A

> P(y; z)#

A

in combination with the other remaining inequalities cannot be satis�ed by any

well-founded monotonic ordering closed under substitution. (The reason is that

y does not occur in M(x� y; z)#

A

any more, whereas P(y; z)#

A

still depends

on y, as A must not eliminate the �rst argument of P.) Hence, an automatic

termination proof fails at this point.

Recall that one may delete all dependency pairs which occur at most once

in any chain. In the example above, this elimination of constraints results

in a set of inequalities for which a suitable quasi-ordering can be generated

automatically, whereas this is not possible for the original set of constraints.

Example 14 For the TRS of Ex. 13, the constraint M(: : :) > P(: : :) is unnec-

essary to ensure the absence of in�nite chains. The reason is that in any chain
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the dependency pair (6) can occur at most once, since the only dependency pair

following (6) can be (5) and (5) can only be followed by itself.

To determine those dependency pairs which may occur in�nitely often in a

chain we de�ne a graph of dependency pairs where those dependency pairs

that possibly occur consecutive in a chain are connected. In this way, any

in�nite chain corresponds to a cycle in the graph (as we restricted ourselves

to �nite TRSs).

De�nition 15 (Dependency graph) The dependency graph of a TRS R

is the directed graph whose nodes are the dependency pairs and there is an arc

from hs; ti to hv; wi if hs; tihv; wi is an R-chain.

Thus, the dependency graph connects dependency pairs that form a chain, i.e.,

for some instantiation the right-hand side of one pair reduces to the left-hand

side of the other pair. Every chain corresponds to a path in the dependency

graph. Note however that the converse does not hold, i.e., a path in this graph

does not necessarily correspond to a chain, since instead of using one `global'

substitution for all dependency pairs in a chain, here one may use di�erent

`local' substitutions for consecutive dependency pairs.

Example 16 As an example consider the TRS with the rules

f(x) ! g(x; 0)

g(1; y) ! f(y):

It has the following dependency pairs.

hF(x);G(x; 0)i (8)

hG(1; y); F(y)i (9)

Both (8) (9) and (9) (8) are chains, as can be seen using the `local' substi-

tutions �

1

(x) = 1; �

1

(y) = 0 and �

2

(x) = y. Hence, in the dependency graph

there are arcs from (8) to (9) and back. However, although (8) (9) (8) is on a

path in the dependency graph, it is not a chain, because there exists no `global'

substitution � such that G(x; 0)�!

�

R

G(1; y)� and F(y)�!

�

R

F(x)�.

Now to prove termination of a TRS it is su�cient if s > t holds for at least

one dependency pair hs; ti on each cycle of the dependency graph and if s � t

holds for all other dependency pairs on cycles. Dependency pairs that do not

occur on a cycle can be ignored.
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hQ(s(x); s(y));M(x; y)i

hM(x� y; z);P(y; z)i

hP(s(x); y);P(x; y)i

hM(s(x); s(y));M(x; y)i

hQ(s(x); s(y));Q(x� y; s(y))i

hM(x� y; z);M(x; y + z)i

Fig. 1. The dependency graph for the TRS of Ex. 13.

Example 17 For the TRS of Ex. 13 we obtain the dependency graph in Fig.

1. Hence, this results in the following set of inequalities.

x� 0� x

s(x)� s(y)� x� y

quot(0; s(y))� 0

quot(s(x); s(y))� s(quot(x� y; s(y)))

0+ y� y

s(x) + y� s(x + y)

(x� y)� z� x� (y + z)

M(s(x); s(y))>M(x; y)

Q(s(x); s(y))>Q(x� y; s(y))

P(s(x); y)>P(x; y)

M(x� y; z)>M(x; y + z)

The inequalities obtained are satis�ed by the polynomial ordering where 0 is

mapped to 0, s(x) is mapped to x + 2, x � y is mapped to x + 1, quot(x; y)

is mapped to 2x, M(x; y) and Q(x; y) are mapped to x, and both + and P

are mapped to addition. By normalizing the inequalities with respect to the

argument �ltering TRS
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x� y ! m(x)

M(x; y) ! x

the resulting inequalities are also satis�ed by the recursive path ordering. Thus,

by the following theorem, termination of the TRS is proved.

Theorem 18 (Dependency graph re�nement) A TRS R(D;C;R) is

terminating i� there exists a well-founded weakly monotonic quasi-ordering �,

where both � and > are closed under substitution, such that

� l � r for all rules l! r in R,

� s � t for all dependency pairs hs; ti on a cycle of the dependency graph, and

� s > t for at least one dependency pair hs; ti on each cycle of the dependency

graph.

PROOF. The proof is similar to the proof of Thm. 7 with the additional

observation that any in�nite R-chain corresponds to an in�nite path in the

dependency graph. This in�nite path traverses at least one cycle in�nitely

many times, since there are only �nitely many dependency pairs. At least

one dependency pair in this cycle corresponds to a strict inequality. Thus,

the chain corresponds to a descending sequence of terms containing in�nitely

many strict inequalities.

Thm. 7 directly implies that the above conditions are also necessary for the

termination of R. ut

However, to perform termination proofs according to Thm. 18, we have to

construct the dependency graph automatically. Unfortunately, in general this

is not possible, since for two dependency pairs hs; ti; hv; wi it is undecidable

whether they form a chain (i.e. whether there exists a substitution � such that

t�!

�

R

v�).

Therefore, we introduce a technique to approximate the dependency graph,

i.e., the technique computes a superset of those terms t; v where t�!

�

R

v�

holds for some substitution �. We call terms t; v suggested by our technique

connectable terms. In this way, (at least) all cycles that occur in the depen-

dency graph and hence all possibly in�nite chains can be determined. So by

computing a graph containing the dependency graph we can indeed apply the

method of Thm. 18 for automated termination proofs.

For the computation of connectable terms we use syntactic uni�cation. This

uni�cation is not performed on the terms of the dependency pairs directly,

but one of the terms is modi�ed �rst. If t is a term with a constructor root

symbol c, then t� can only be reduced to terms which have the same root

19



symbol c. If the root symbol of t is de�ned, then this does not give us any

direct information about those terms t� can be reduced to. For that reason,

to determine whether the term t is connectable to v, we replace all subterms

in t that have a de�ned root symbol by a new variable and check whether this

modi�cation of t uni�es with v.

For example, P(: : :) is not connectable to M(: : :). On the other hand, the term

Q(x � y; s(y)) is connectable to Q(s(x); s(y)), because before uni�cation, the

subterm x� y is replaced by a new variable.

In order to ensure that t is connectable to v whenever there exists a sub-

stitution � such that t�!

�

R

v�, before uni�cation we also have to rename

multiple occurrences of the same variable x in t. (The reason is that di�erent

occurrences of x� can reduce to di�erent terms.)

Example 19 As an example consider the following TRS of Toyama [46].

f(0; 1; x) ! f(x; x; x)

g(x; y) ! x

g(x; y) ! y

The only dependency pair, viz. hF(0; 1; x); F(x; x; x)i, is on a cycle of the de-

pendency graph, because F(x; x; x)� reduces to F(0; 1; x

0

)�, if � replaces x and

x

0

by g(0; 1). Note however that F(x; x; x) does not unify with F(0; 1; x

0

), i.e., if

we would not rename F(x; x; x) to F(x

1

; x

2

; x

3

) before the uni�cation, then we

could not determine this cycle of the dependency graph and we would falsely

conclude termination of this (non-terminating) TRS.

To perform the required modi�cation on the term t, two functions cap and

ren are introduced. For any term t, cap(t) results from replacing all subterms

of t that have a de�ned root symbol by di�erent new variables and ren(t) re-

sults from replacing all variables in t by di�erent fresh variables. In particular,

di�erent occurrences of the same variable are also replaced by di�erent new

variables.

De�nition 20 (Connectable terms) Let D be the set of de�ned symbols.

The functions cap and ren from terms to terms are inductively de�ned as

cap(x) = x; for variables x

cap(f(t

1

; : : : ; t

n

)) =

8

>

<

>

:

y;

f(cap(t

1

); : : : ;cap(t

n

));

if f 2 D

if f 62 D
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ren(x) = y; for variables x

ren(f(t

1

; : : : ; t

n

)) = f(ren(t

1

); : : : ;ren(t

n

))

where y is the next variable in an in�nite list of fresh variables y

1

; y

2

; : : :

For any terms t and v, the term t is connectable to v if ren(cap(t)) and v

are uni�able.

Strictly speaking, neither cap nor ren are proper functions, because one time

we have ren(x) = y

1

and the next time we obtain ren(x) = y

2

. Of course,

cap and ren can easily be transformed into proper functions by giving cap

and ren a second argument which contains the next fresh variable that has not

yet been used. However, we omitted this second argument to ease readability.

For example, we have

ren(cap(Q(x� y; s(y)))) = ren(Q(y

1

; s(y))) = Q(y

2

; s(y

3

))

and

ren(cap(Q(x; x))) = ren(Q(x; x)) = Q(y

4

; y

5

):

As ren(t) is always a linear term, to check whether two terms are connectable

we can even use a uni�cation algorithm without occur check.

To approximate the dependency graph, we draw an arc from a dependency

pair hs; ti to hv; wi whenever t is connectable to v. In this way, for our example

the dependency graph of Fig. 1 is constructed automatically. So termination

of the TRS in Ex. 13 can be proved automatically.

The following theorem proves the soundness of this approach: by computing

connectable terms we in fact obtain a supergraph of the dependency graph.

Using this supergraph, we can now prove termination according to Thm. 18.

Theorem 21 (Computing dependency graphs) Let R be a TRS and let

hs; ti; hv; wi be dependency pairs. If there is an arc from hs; ti to hv; wi in the

dependency graph, then t is connectable to v.

PROOF. By induction on the structure of t we prove that if there exists a

substitution � with t�!

�

R

u for some term u, then ren(cap(t)) matches u.

So in particular, if t�!

�

R

v�, then ren(cap(t)) matches v�. As ren(cap(t))

only contains new variables, this implies that ren(cap(t)) and v are uni�able.
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Assume that t�!

�

R

u for some term u. If t is a variable or if t = f(t

1

; : : : ; t

k

)

for a de�ned symbol f , then ren(cap(t)) is a variable, hence it matches u.

If t = c(t

1

; : : : ; t

k

) for some constructor c, then

ren(cap(t)) = c(ren(cap(t

1

)); : : : ;ren(cap(t

k

))):

In this case, u has to be of the form c(u

1

; : : : ; u

k

) and t

j

�!

�

R

u

j

holds for all j.

By the induction hypothesis we obtain that ren(cap(t

j

)) matches u

j

. Since

the variables in ren(cap(t

j

)) are disjoint from the variables in ren(cap(t

i

))

for all i 6= j, ren(cap(t)) also matches u. ut

2.5 Re�ned termination proofs by narrowing dependency pairs

By the re�nement of dependency graphs, Thm. 18 provides us with a powerful

technique to prove that there exists no in�nite chain of dependency pairs.

However, there are still examples where the automation of our method fails.

Example 22 For instance, let us replace the last rule of the TRS in Ex. 13

by a `commutativity' rule (here, s0 abbreviates s(0), etc.).

x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x� y; s(y)))

0+ y ! y

s(x) + y ! s(x + y)

(x� s0) + (y � ssz) ! (y � ssz) + (x� s0)

One of the new dependency pairs, viz.

hP(x� s0; y � ssz);P(y � ssz; x� s0)i; (10)

forms a cycle of the dependency graph. Hence, due to Thm. 18 we have to �nd

an ordering such that the dependency pair (10) is strictly decreasing, i.e.

P(x� s0; y � ssz) > P(y � ssz; x� s0):

In order to apply techniques for the synthesis of simpli�cation orderings, we

have to normalize the inequalities w.r.t. an AFS again which rewrites x� y to
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m(x) (or to x). However, the resulting constraint

P(m(x);m(y)) > P(m(y);m(x))

is not satis�ed by any well-founded ordering closed under substitution. Hence,

in this way termination of the TRS cannot be proved automatically.

Up to now we demanded constraints which ensure that in any sequence of de-

pendency pairs hs

1

; t

1

i hs

2

; t

2

i : : : and for all substitutions � with t

j

�!

�

R

s

j+1

�

we have

7

s

1

� > t

1

� � s

2

� > t

2

� � : : : (4)

So we demanded s > t for the dependency pairs hs; ti. But instead of the

requirement that there should be a strict decrease in dependency pairs, it

would also be su�cient if the ordering is strict between two dependency pairs.

Thus, if hs; ti and hv; wi are consecutive in a chain, then instead of s� >

t� � v� one could demand s� � t� and t� > v� for all substitutions � with

t�!

�

R

v�.

To achieve this e�ect we replace the original dependency pairs by new pairs

of terms. Subsequently, we demand that these new pairs of terms are strictly

decreasing. Note that if the reduction from t� to v� is always of the form

t�!

R

t

0

�!

�

R

v�;

then instead of s� > t� � v� we may also require s� > t

0

� � v�. To compute

the terms t

0

we use narrowing (cf. e.g. [30]).

De�nition 23 (Narrowing) Let R be a TRS. A term t narrows to a term

t

0

via the substitution � (denoted by t  

R

t

0

), if there exists a non-variable

position p in t, � is the most general uni�er of tj

p

and l for some rewrite

rule l! r of R, and t

0

= t�[r�]

p

. (Here, the variables of l! r must have been

renamed to fresh variables.)

If a dependency pair hs; ti is followed by another dependency pair hv; wi in

a chain, and if t is not already uni�able with v (i.e. at least one rule of R is

needed to reduce t� to v�), then we may perform all possible narrowing steps

on t (resulting in new terms t

1

; : : : ; t

n

) in order to examine the reduction from

t� to v�.

7

By taking the dependency graph into account, this requirement has been weak-

ened, i.e., it is su�cient if just a certain subset of dependency pairs is strictly

decreasing in any possibly in�nite chain.
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However, instead of only narrowing right-hand sides of dependency pairs hs; ti,

the substitutions derived from narrowing the term t should also be applied on

the left-hand side s of the pair hs; ti. Thus, if t  

R

t

1

; : : : ; t  

R

t

n

are all

possible narrowings of t (via the substitutions �

1

; : : : ; �

n

), then instead of

s� > t� � v� for all � with t� !

�

R

v�

it is su�cient to demand

s�

1

�> t

1

� � v� for all � with t

1

�!

�

R

v�,

.

.

.

s�

n

�> t

n

�� v� for all � with t

n

�!

�

R

v�.

Hence, we may replace the dependency pair hs; ti by the n new pairs hs�

1

; t

1

i;

: : : ; hs�

n

; t

n

i. For that purpose instead of narrowing terms we introduce the

concept of narrowing pairs of terms.

De�nition 24 (Narrowing pairs) Let R be a TRS. If a term t narrows

to a term t

0

via the substitution �, then we say that the pair of terms hs; ti

narrows to the pair hs�; t

0

i.

Example 25 For Ex. 22, the instantiated right-hand side

P(y � ssz; x� s0)�

of dependency pair (10) can only reduce to an instantiation of a left-hand

side of a dependency pair if one of the minus-rules is applied to (y � ssz)�

or (x � s0)�. So instead of the dependency pair (10) we may regard its two

narrowings

hP(x� s0; sy � ssz);P(y � sz; x� s0)i (11)

hP(sx� s0; y � ssz);P(y � ssz; x� 0)i: (12)

Now the constraints that the left-hand sides of the new pairs (11) and (12)

should be greater than their right-hand sides (together with the remaining con-

straints for this system) are again satis�ed by the orderings mentioned in Ex.

17. Hence, in this way termination of the TRS can be proved automatically.

If P is the set of all dependency pairs of R, then instead of checking whether

there exists an in�nite R-chain of pairs from P now it su�ces to show that

there is no in�nite R-chain of pairs from P nfhs; tig[fhs�

1

; t

1

i; : : : ; hs�

n

; t

n

ig,

where hs�

1

; t

1

i; : : : ; hs�

n

; t

n

i are all narrowings of hs; ti. (So with this re�ne-

ment we have to regard chains of pairs of terms which are no dependency

pairs any more.) Note that any pair hs; ti can only be narrowed (in one step)
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to �nitely many pairs hs

0

; t

0

i (up to variable renaming) and these pairs hs

0

; t

0

i

can easily be computed automatically. In particular, if a dependency pair hs; ti

has no narrowings, then it does not have to be considered any more for the

termination proof.

However, the following two examples demonstrate that a pair hs; ti in P may

only be replaced by its narrowings, if t does not unify with any left-hand side

of a pair in P and if t is a linear term.

Example 26 The following non-terminating TRS

f(0) ! f(0)

0 ! 1

has one cycle in the dependency graph formed by an arc from the dependency

pair hF(0); F(0)i to itself. Narrowing this pair, although its right-hand side

uni�es with its left-hand side, results in hF(0); F(1)i. Now the new right-hand

side F(1) is not connectable to F(0) any more. Hence, by ignoring the uni�-

cation condition, the only cycle in the dependency graph would be erroneously

removed and therefore termination of this TRS could be falsely concluded.

Similarly, the linearity of the right-hand side plays a crucial role, as can be

seen from the non-terminating TRS

f(s(x)) ! f(g(x; x))

g(0; 1) ! s(0)

0 ! 1

where hF(s(x)); F(g(x; x))i forms the only cycle of the dependency graph. How-

ever, by ignoring the linearity condition, this dependency pair could be deleted,

as the term F(g(x; x)) cannot be narrowed. Hence, no cycle exists in the new

dependency graph and therefore termination of the TRS would be falsely con-

cluded

8

.

The following theorem proves that under the above conditions the replacement

of dependency pairs by their narrowings maintains the su�ciency and necessity

of our termination criterion.

8

The problem is that the �rst reduction step from F(g(x; x))� to F(s(x

0

))� takes

place `in �' and therefore it cannot be captured by narrowing. For linear terms, this

e�ect could be simulated by choosing another suitable �

0

, but in the above example

this is not possible, because here two di�erent occurrences of x� are reduced to

di�erent terms.
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Theorem 27 (Narrowing re�nement for termination) Let R be a TRS

and let P be a set of pairs of terms. Let hs; ti 2 P such that t is linear and

for all hv; wi 2 P the terms t and v are not uni�able (after renaming the

variables). Let

P

0

= P n fhs; tig [ fhs

0

; t

0

i j hs

0

; t

0

i is a narrowing of hs; tig:

There exists an in�nite R-chain of pairs from P i� there exists an in�nite

R-chain of pairs from P

0

.

PROOF. It su�ces to prove that for every hs; ti 2 P the sequence

: : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : :

(of pairs from P or P

0

) is an R-chain i� there exists a narrowing hs

0

; t

0

i of

hs; ti such that : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is an R-chain. Here, hs; ti resp.

hs

0

; t

0

i may also be the �rst pair in the chain (i.e. hv

1

; w

1

i may be missing).

If this has been proved then all occurrences of hs; ti in an in�nite chain may

be replaced by pairs from P

0

. In an analogous way, every in�nite chain of pairs

from P

0

can also be transformed into an in�nite chain of pairs from P.

For the �rst direction, let : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : be an R-chain. Hence,

there must be a substitution such that for all pairs, the instantiated right-hand

side reduces to the instantiated left-hand side of the next pair in the chain.

Let � be such a substitution where the length of the reduction

t�!

�

R

v

2

�

is minimal. Note that the length of this reduction cannot be zero, as t and v

2

do not unify. Hence, we have t�!

R

q!

�

R

v

2

� for some term q.

There are two possibilities for the reduction t�!

R

q. Let us �rst assume that

this reduction takes place `in �'. Hence, there is a variable x in t (i.e. tj

p

= x

for some position p) such that �(x)!

R

r and q = t[r]

p

. The variable x only

occurs once in t (as t is linear) and therefore, we have q = t�

0

, where �

0

is the

substitution with �

0

(x) = r and �

0

(y) = �(y) for all y 6= x. As all (occurrences

of) dependency pairs are variable disjoint, �

0

behaves like � for all pairs except

hs; ti. For this pair, we have

w

1

�

0

= w

1

�!

�

R

s�!

�

R

s�

0

and

t�

0

= q!

�

R

v

2

� = v

2

�

0

:

26



Hence, �

0

is also a substitution where each instantiated right-hand side reduces

to the instantiation of the left-hand side of the following pair in the chain. But

as the reduction from t�

0

to v

2

�

0

is shorter than the reduction from t� to v

2

�,

this is a contradiction to the minimality of �.

So the reduction t�!

R

q cannot take place `in �'. Hence, t contains some

subterm f(~u) such that a rule l! r has been applied to f(~u)�. In other words,

l matches f(~u)� (i.e. l� = f(~u)�). Hence, the reduction has the following form:

t� = t�[f(~u)�]

p

= t�[l�]

p

!

R

t�[r�]

p

= q:

Similar to Def. 23 we assume that the variables of l! r have been renamed

to fresh ones. Therefore we can extend � to `behave' like � on the variables

of l and r (but it still remains the same on the variables of all pairs in the

chain). Now � is a uni�er of l and f(~u) and hence, there also exists a most

general uni�er �. By the de�nition of most general uni�ers, then there must

be a substitution � such that � = �� .

Let t

0

be the term t�[r�]

p

and let s

0

be s�. Then hs; ti narrows to hs

0

; t

0

i. As

we may assume s

0

and t

0

to be variable disjoint from all other pairs, we may

extend � to behave like � on the variables of s

0

and t

0

. Then we have

w

1

�!

�

R

s� = s�� = s

0

� = s

0

� and

t

0

� = t

0

� = t�� [r�� ]

p

= t�[r�]

p

= t�[r�]

p

= q!

�

R

v

2

�:

Hence, : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is also an R-chain.

For the other direction of the theorem, let : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : be an

R-chain. Hence, there is a substitution � such that for all pairs the instantiated

right-hand side reduces to the instantiated left-hand side of the next pair in

the chain. So in particular we have

w

1

�!

�

R

s

0

� and t

0

�!

�

R

v

2

�:

We know that hs; ti narrows to hs

0

; t

0

i via some substitution �. As the variables

in hs; ti are disjoint from all other occurring variables, we may extend � to

`behave' like �� on the variables of s and t. Then we have s� = s�� = s

0

�

and hence,

w

1

�!

�

R

s�:
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Moreover, by the de�nition of narrowing, t�!

R

t

0

. This implies t��!

R

t

0

�

and as t� = t��, we have

t�!

�

R

v

2

�:

Hence, : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : is also an R-chain. ut

Note that while dependency pairs may indeed be replaced by their narrowings,

in general a similar replacement of rules by their narrowings is unsound, i.e., it

does not preserve the termination behaviour. For example, in the TRS with the

rules f(1)! f(0) and 0! 1, the right-hand side 1 of the second rule cannot be

narrowed. However, deleting this second rule transforms the non-terminating

TRS into a terminating one. So narrowing of dependency pairs is di�erent from

narrowing of rules, because even if some dependency pairs are eliminated, still

all rules can be used for the reductions between two dependency pairs.

Example 28 Narrowing pairs can be repeated several times if appropriate. So

instead of replacing the dependency pair (10) by (11) and (12) we could also

apply narrowing again and replace (11) and (12) by those pairs they narrow

to. For example, the pair (11) has a linear right-hand side which does not unify

with the left-hand side of any pair. Thus it may be replaced by its narrowings

hP(x� s0; ssy � ssz);P(y � z; x� s0)i

hP(sx� s0; sy � ssz);P(y � sz; x� 0)i:

In general, before application of Thm. 18 one can apply an arbitrary number

of narrowing steps to the dependency pairs. Subsequently, the resulting set of

pairs is considered to be the `set of dependency pairs' and the techniques pre-

sented to approximate the dependency graph and to synthesize the inequalities

are applied. Finally, standard techniques are used to �nd an ordering satisfying

the generated inequalities.

By the use of narrowing the automation of our method can be improved sig-

ni�cantly. For instance, if in our example we perform at least one narrowing

step, then termination can again be veri�ed automatically.

Note that if an ordering can be found that satis�es the set of inequalities

obtained without narrowing any of the pairs, then the inequalities obtained

after narrowing are also satis�ed by the same ordering. (If the ordering satis�es

s > t and l � r, then it also satis�es s� > t� � t

0

, provided that t  

R

t

0

via the substitution �. Hence, s > t resp. s � t implies s

0

> t

0

resp.

s

0

� t

0

for any narrowing hs

0

; t

0

i of hs; ti. Moreover, if hs

0

; t

0

i and hv

0

; w

0

i are

narrowings of hs; ti and hv; wi respectively, then there can only be an arc
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from hs

0

; t

0

i to hv

0

; w

0

i in the new dependency graph if there already was an

arc from hs; ti to hv; wi in the original dependency graph. The corresponding

statement also holds for our approximation of dependency graphs, i.e., if t

0

is

connectable to v

0

, then t is also connectable to v.) Thus, replacing pairs by

their narrowings can only extend the set of TRSs for which termination can

be proved automatically.

2.6 Summary

Combining all re�nements, we obtain the following technique to prove termi-

nation automatically using the dependency pair approach:

� Determine the dependency pairs (this can be automated in a straightforward

way).

� Replace some (dependency) pairs by all their narrowings. This step may be

repeated several times.

� Approximate the dependency graph by estimating for all (dependency) pairs

whether an arc exists between them. For this purpose, the functions cap

and ren are introduced. The pairs that occur on a cycle in the approximated

dependency graph are computed by standard graph algorithms. Pairs which

are not on a cycle in the approximated dependency graph can be ignored.

� Transform the rules and the (dependency) pairs on cycles into inequalities.

� Find a well-founded weakly monotonic quasi-ordering satisfying the inequal-

ities after normalizing them with respect to one of the possible AFSs.

For �nding suitable orderings standard techniques like the recursive path or-

dering or polynomial interpretations may be used. In this way, standard tech-

niques can now be applied to prove termination of TRSs whose termination

could not be proved automatically before. For a collection of examples to

demonstrate the power of our approach see [4].

3 Proving innermost termination

Similar to our approach for termination we now introduce a method to prove

innermost termination of TRSs. Several ideas and notions can be transferred

from the termination case to the innermost termination case. Therefore many

theorems in this section look similar to the theorems in the previous section

and in their proofs we only indicate the di�erences to the previous approach.

In Sect. 3.1 we present a criterion for innermost termination corresponding to

the termination criterion of Sect. 2. We show in Sect. 3.2 that this criterion
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is also suitable for automation and that similar re�nements for improving the

technique can be developed (Sect. 3.3 and Sect. 3.4). The automated checking

of this criterion enables us to prove innermost termination automatically, even

if the TRS is not terminating. Additionally, for several classes of TRSs inner-

most termination already su�ces for termination [27,28]. Moreover, numerous

modularity results exist for innermost termination [5,7,27,35,36], which do not

hold for termination. Therefore, for those classes of TRSs termination can be

proved by splitting the TRS and proving innermost termination of the sub-

systems separately. The advantage of this approach is that there are several

interesting TRSs where a direct termination proof is not possible with the

existing automatic techniques (including the technique of Sect. 2). However

in many of these examples, a suitable ordering satisfying the constraints gen-

erated by our technique for proving innermost termination can nevertheless

be synthesized automatically. So for many TRSs proving innermost termina-

tion automatically is essentially easier than proving termination. In this way,

innermost termination (and thereby, termination) of many also non-simply

terminating systems can now be veri�ed automatically. An overview of the

technique is given in Sect. 3.5.

3.1 Innermost termination criterion

In contrast to the approach in the previous section, now our aim is to prove

that the length of every innermost reduction is �nite (where innermost re-

dexes have to be contracted �rst). Of course, termination implies innermost

termination, but in general the converse does not hold.

Example 29 As an example consider the following TRS with the de�ned sym-

bols f and g and the constructors 0 and s.

f(g(x); s(0); y) ! f(y; y; g(x))

g(s(x)) ! s(g(x))

g(0) ! 0

In this example, we have the following in�nite (cycling) reduction.

f(gs0; s0; gs0)! f(gs0; gs0; gs0)! f(gs0; sg0; gs0)! f(gs0; s0; gs0)! : : :

However, this reduction is not an innermost reduction, because in the �rst

reduction step the subterm gs0 is a redex and would have to be reduced �rst.

Although this TRS is not terminating, it nevertheless turns out to be innermost

terminating.
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The aim of this section is to develop a criterion for innermost termination

similar to our termination criterion of Sect. 2. In the above example we obtain

the following dependency pairs.

hF(g(x); s(0); y);G(x)i (13)

hF(g(x); s(0); y); F(y; y; g(x))i (14)

hG(s(x));G(x)i (15)

Recall that a sequence of dependency pairs hs

1

; t

1

i hs

2

; t

2

i : : : is a chain, if

there exists a substitution � such that t

j

� reduces to s

j+1

� for all j. Here, the

right-hand side of each dependency pair corresponds to a newly introduced

redex and the reductions t

j

�!

�

R

s

j+1

� are used to contract the arguments of

the redex that is traced. However, chains correspond to arbitrary reductions,

whereas now we are only interested in innermost reductions. Therefore, we

have to restrict the de�nition of chains in order to obtain a notion which

corresponds to the innermost reduction strategy.

The �rst restriction is motivated by the fact that when regarding innermost

reductions, arguments of a redex should be in normal form before the redex

is contracted. Therefore we demand that all s

j

� should be normal forms. Ad-

ditionally, when concentrating on innermost reductions, the reductions of the

arguments to normal form should also be innermost reductions. This results

in the following restricted notion of a chain (where innermost reductions are

denoted by `

i

!').

De�nition 30 (Innermost chain) Let R(D;C;R) be a TRS. A sequence of

dependency pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an innermost R-chain if there exists a

substitution � such that all s

j

� are normal forms and such that t

j

�

i

!

�

R

s

j+1

�

holds for every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

In our example we have the innermost chain

hG(s(x

1

));G(x

1

)i hG(s(x

2

));G(x

2

)i hG(s(x

3

));G(x

3

)i

because G(x

1

)�

i

!

�

R

G(s(x

2

))� and G(x

2

)�

i

!

�

R

G(s(x

3

))� holds for the substi-

tution � that replaces x

1

by s(s(x

3

)) and x

2

by s(x

3

).

Of course, every innermost chain is also a chain, but not vice versa. For in-

stance, the in�nite sequence consisting of the second dependency pair (14)

only is an in�nite chain, because

F(y

1

; y

1

; g(x

1

))�!

�

R

F(g(x

2

); s(0); y

2

)� (16)
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holds if �(x

j

) = s(0) and �(y

j

) = g(s(0)). However, this in�nite chain is not

an innermost chain, because for every substitution � satisfying (16), the term

F(g(x

2

); s(0); y

2

)� is not a normal form. The following theorem proves that the

absence of in�nite innermost chains is a su�cient and necessary criterion for

innermost termination. (Hence, the restriction of chains to innermost chains

in fact corresponds to the restriction of reductions to innermost reductions.)

Theorem 31 (Innermost termination criterion) A TRS R(D;C;R) is

innermost terminating if and only if no in�nite innermost R-chain exists.

PROOF. The proof of this theorem is very similar to the proof of Thm.

6. In the same way as in the latter proof, an in�nite sequence of dependency

pairs can be constructed, whenever an in�nite innermost reduction exists. The

di�erence, however, is that now the arguments of the terms are innermost

reduced to normal form before building the next dependency pair, whereas in

the proof of Thm. 6 the arguments were reduced an arbitrary number of steps.

The sequence constructed in this way is in fact an innermost chain.

For the other direction, similar to the corresponding proof of Thm. 6 one can

show that any in�nite innermost chain corresponds to an in�nite innermost

reduction. ut

3.2 Checking the innermost termination criterion automatically

In this section we present an automatic approach for innermost termination

proofs using the criterion of Thm. 31, i.e., we develop a method to prove the

absence of in�nite innermost chains automatically.

Assume that there is a sequence hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : of dependency pairs

and a substitution � such that all terms s

j

� are in normal form and such that

t

j

� reduces innermost to s

j+1

� for all j. Then to prove that this sequence is

�nite, it su�ces again to �nd a well-founded quasi-ordering � such that the

following inequalities are satis�ed.

s

1

� > t

1

� � s

2

� > t

2

� � s

3

� > t

3

� � : : : (4)

To ensure that all dependency pairs are decreasing, we again demand s > t

for all dependency pairs hs; ti. In our example this results in the following

constraints, cf. (13), (14), (15):

F(g(x); s(0); y)>G(x) (17)

F(g(x); s(0); y)> F(y; y; g(x)) (18)
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G(s(x))>G(x): (19)

Moreover, we have to ensure t

j

� � s

j+1

� whenever t

j

�

i

!

�

R

s

j+1

� holds.

Recall that to prove termination we demanded that all rules were weakly

decreasing. This was necessary, because in chains, � may be an arbitrary

substitution and hence, every rule can be used in the reduction from t

j

� to

s

j+1

�

9

. However, in contrast to the situation for chains, in an innermost chain

only a subset of the rewrite rules of the TRS can be applied in the reduction

in between the dependency pairs. Therefore, to prove innermost termination

we only demand the constraints l � r for those rules l! r that can be used

in an innermost reduction of t

j

�. Note that as all terms s

j

� are normal, �

is a normal substitution (i.e., it instantiates all variables with normal forms).

Hence, for the dependency pairs (13) and (15) we directly obtain that no

rule can ever be used to reduce a normal instantiation of G(x) (because G is

no de�ned symbol). The only dependency pair whose right-hand side can be

reduced if its variables are instantiated with normal forms is (14), because

this is a dependency pair with a de�ned symbol in the right-hand side. As the

only de�ned symbol in F(y; y; g(x)) is g, the only rules that may be applied

on normal instantiations of this term are the two g-rules of the TRS. Since

these g-rules can never introduce a new redex with root symbol f, the two

g-rules are the only rules that can be used to reduce any normal instantiation

of F(y; y; g(x)). Hence, in this example we only have to demand that these

rules should be weakly decreasing.

g(s(x)) � s(g(x)); g(0) � 0 (20)

In general, to determine the usable rules, i.e. (a superset of) those rules that

may possibly be used in an innermost reduction of a normal instantiation of a

term t, we proceed as follows. If t contains a de�ned symbol f , then all f -rules

are usable and furthermore, all rules that are usable for right-hand sides of

f -rules are also usable for t. However, if one of these rules contains a redex as

a proper subterm of the left-hand side, then we do not have to include it in the

usable rules, since this rule can never be applied in any innermost reduction.

(Of course, such rules could also be directly removed from the TRS before the

innermost termination proof.)

De�nition 32 (Usable rules) Let R(D;C;R) be a TRS. For any symbol f

let Rules(R; f)=fl! r in R j root(l) = f; l has no redex as proper subtermg:

For any term t, the set of usable rules U(R; t) is inductively de�ned as

9

Provided that a variable occurs in t

j

, but termination is decidable for TRSs with

ground right-hand sides [14].
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U(R; x) = ;

U(R; f(t

1

; : : : ; t

n

)) = Rules(R; f) [

S

n

j=1

U(R

0

; t

j

) [

S

l! r2Rules(R;f)

U(R

0

; r);

where

10

R

0

= R n Rules(R; f).

Hence, in our example we have

U(R; F(y; y; g(x)))=Rules(R; F) [U(R; y) [U(R; g(x)) [ ;

=U(R; g(x))

=Rules(R; g) [

U(ff(: : :)! f(: : :)g; x) [

U(ff(: : :)! f(: : :)g; s(g(x))) [

U(ff(: : :)! f(: : :)g; 0)

= fg(s(x))! s(g(x)); g(0)! 0g:

Observe that by the above de�nition Rules(R; f) = ; for any constructor f .

When proving termination we had to search for a weakly monotonic quasi-

ordering satisfying the constraints obtained. The reason for demanding weak

monotonicity was that l � r for all rules had to ensure t

j

� � s

j+1

� whenever

t

j

� could be reduced to s

j+1

�. However, now for the tuple symbols we do not

need weak monotonicity on all positions any more. For example, for the tuple

symbol F we only have to ensure that all reductions starting from F(y; y; g(x))�

are weakly decreasing (where � is a normal substitution). Obviously, such

reductions can never take place in the �rst two arguments of F and hence, F

does not have to be weakly monotonic in these arguments.

The constraints (20) already ensure that during reductions of F(y; y; g(x))�

the value of the subterm g(x)� can only be decreased. Of course, we have to

guarantee that the value of the whole term F(y; y; g(x)) is weakly decreasing

if an instantiation of g(x) is replaced by a smaller term. For that purpose,

we demand that F(y; y; g(x)) must be weakly monotonic on the position of

its subterm g(x), i.e., for the tuple symbol F we only have to demand the

following monotonicity constraint:

x

1

� x

2

) F(y; y; x

1

) � F(y; y; x

2

): (21)

10

U(R; t) is well-de�ned, because its �rst argument R is decreasing.
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We only compute such monotonicity constraints for the tuple symbols and for

all other (lower case) symbols we demand weak monotonicity in all of their

arguments. In general, we obtain the following procedure for the generation

of constraints.

Theorem 33 (Proving innermost termination) Let R(D;C;R) be a

TRS and let � be a well-founded quasi-ordering where both � and > are

closed under substitution. If � is weakly monotonic on all symbols apart from

the tuple symbols and if � satis�es the following constraints for all dependency

pairs hs; ti

� l � r for all usable rules l! r in U(R; t),

� s > t,

� x

1

� y

1

^ : : : ^ x

n

� y

n

) C[x

1

; : : : ; x

n

] � C[y

1

; : : : ; y

n

],

if t = C[f

1

(~u

1

); : : : ; f

n

(~u

n

)], where C is a context without de�ned symbols

and f

1

; : : : ; f

n

are de�ned symbols,

then R is innermost terminating.

PROOF. The proof of this theorem corresponds to the proof of Thm. 7. Sup-

pose that hs

1

; t

1

i hs

2

; t

2

i : : : is an in�nite innermost R-chain. Then there exists

a substitution � such that s

j

� is a normal form and t

j

� reduces innermost

to s

j+1

� for all j. Hence, � replaces all variables by normal forms and there-

fore, the only rules that can be applied in this reduction are the usable rules

U(R; t

j

). All usable rules are weakly decreasing and the terms t

j

are weakly

monotonic on all positions where reductions are applied. (The reason is that

lower case symbols are weakly monotonic and without loss of generality we

can assume that � does not introduce any tuple symbols, i.e., the only tuple

symbol in t

j

� is on the root position.) Hence, we have t

j

� � s

j+1

�. This re-

sults in an in�nite decreasing sequence s

1

� > t

1

� � s

2

� > t

2

� � : : : which

is a contradiction to the well-foundedness of �. Thus, no in�nite innermost

R-chain exists and by Thm. 31, the TRS is innermost terminating. ut

So there are two main di�erences between the termination approach and the

approach for innermost termination. The �rst di�erence is in the set of in-

equalities that is generated. As we restrict ourselves to innermost reductions

and to terms s

j

� that are normal forms, several inequalities that have to be

demanded when proving termination are unnecessary when proving innermost

termination (i.e., we do not have to demand l � r for all rules any more, but

it su�ces if just the usable rules are weakly decreasing). After generating the

inequalities, the second di�erence is that the quasi-ordering satisfying the in-

equalities does not have to be weakly monotonic for all function symbols (i.e.,

tuple symbols only have to satisfy the monotonicity constraints that are stated

explicitly).
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Hence, in Ex. 29 to prove innermost termination it is su�cient to �nd a

well-founded quasi-ordering satisfying the constraints in (17) { (21). For the

synthesis of suitable quasi-orderings we proceed in the same way as it has

been done for termination (Sect. 2.3) where for polynomial interpretations

the di�erence is that the polynomials do not have to be weakly monotonic in

all arguments.

For example, these constraints are ful�lled by the polynomial ordering where

the constant 0 is mapped to the number 0, s(x) is mapped to x + 1, g(x) is

mapped to x+ 2, F(x; y; z) is mapped to (x� y)

2

+ 1, and G(x) is mapped to

x. Note that this quasi-ordering is not weakly monotonic on the tuple symbol

F. The only monotonicity constraint in our example is (21), which is obviously

satis�ed as F(x; y; z) is mapped to a polynomial which is weakly monotonic

11

in its third argument z. However, this polynomial is not weakly monotonic in

x or y.

Unlike Thm. 7 for termination proofs, the existence of a quasi-ordering satis-

fying the conditions of Thm. 33 is su�cient, but not necessary for innermost

termination. The reason is that demanding the constraints of Thm. 33 for

all instantiations may be too strong, since for innermost chains sometimes it

would be su�cient to regard certain instantiations only.

Example 34 For example, consider the innermost terminating TRS

f(s(x)) ! f(g(h(x)))

g(h(x)) ! g(x)

g(s(x)) ! s(x)

g(0) ! s(0)

h(0) ! a:

In this example there are no in�nite innermost chains. However, the con-

straints according to Thm. 33 include the inequalities

F(s(x))> F(g(h(x)))

g(h(x))� g(x)

g(0)� s(0)

11

When using polynomial interpretations, monotonicity constraints like (21) can

also be represented as inequalities. For instance, if F is mapped to some polynomial

[F], then instead of (21) one could demand that the partial derivative of [F](y; y; x)

with respect to x should be non-negative, i.e.

@[F](y;y;x)

@x

� 0, cf. [23].

If one uses other techniques (e.g. path orderings) which can only generate monotonic

orderings, then of course one may drop monotonicity constraints like (21).
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x

1

� x

2

) F(x

1

)� F(x

2

):

These constraints imply F(s(0)) > F(g(h(0))) � F(g(0)) � F(s(0)). There-

fore they cannot be satis�ed by any well-founded quasi-ordering closed under

substitution.

However, the approach of Thm. 33 su�ces to prove innermost termination of

numerous important examples and challenge problems (including the TRS in

Ex. 29) automatically, i.e., this technique allows the application of standard

techniques for innermost termination proofs, even if the TRS is not termi-

nating. Moreover, using the results of Gramlich [27,28], Thm. 33 can also be

applied to prove termination of TRSs that are non-overlapping (or for locally

conuent overlay systems).

Example 35 As an example regard the following TRS by Kolbe [34] where

quot(x; y; z) is used to compute 1+

j

x�y

z

k

, if x � y and z 6= 0 (i.e. quot(x; y; y)

computes

j

x

y

k

).

quot(0; s(y); s(z)) ! 0

quot(s(x); s(y); z) ! quot(x; y; z)

quot(x; 0; s(z)) ! s(quot(x; s(z); s(z)))

The above system is not simply terminating (the left-hand side of the last

rule is embedded in the right-hand side if z is instantiated with 0) and there-

fore most automatic approaches for termination proofs (which are restricted

to simpli�cation orderings) fail.

Nevertheless, with our technique we can prove innermost termination and

therefore termination of this system automatically. As quot is the only de-

�ned symbol of this system, we obtain the following dependency pairs.

hQ(s(x); s(y); z);Q(x; y; z)i (22)

hQ(x; 0; s(z));Q(x; s(z); s(z))i (23)

In this example there are no usable rules, as in the right-hand sides of the de-

pendency pairs no de�ned symbols occur. Hence, due to Thm. 33 we only have

to �nd a well-founded ordering such that both dependency pairs are decreasing.

These constraints are for instance satis�ed by the polynomial ordering where

0 is mapped to the number 0, s(x) is mapped to x+1, and Q(x; y; z) is mapped

to x+(x�y+z)

2

. Hence, innermost termination and thereby also termination

of this TRS is proved (as it is non-overlapping).
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Note that again we bene�t from the fact that the tuple symbol Q need not

be weakly monotonic in its arguments. Therefore, an interpretation like the

polynomial x + (x � y + z)

2

may be used, which is not weakly monotonic

in any of its arguments. In fact, if the set of usable rules is empty, then

the quasi-ordering need not even be weakly monotonic for any symbol. The

termination approach of Sect. 2 cannot be used to prove termination of this

TRS automatically, since the generated inequalities are not satis�ed by any

well-founded weakly monotonic total quasi-ordering or any quasi-simpli�cation

ordering (not even after normalization by a suitable AFS).

3.3 Re�nement using innermost dependency graphs

To prove innermost termination of a TRS according to Thm. 33 we have to

�nd an ordering such that s > t holds for all dependency pairs hs; ti. However,

similar to the re�nement for termination proofs in Sect. 2.4, for certain rewrite

systems this requirement can be weakened, i.e., it is su�cient to demand s > t

for some dependency pairs only.

For instance, in the quot example (Ex. 35) up to now we demanded that both

dependency pairs (22) and (23) had to be decreasing. However, two occur-

rences of the dependency pair (23) can never follow each other in an inner-

most chain, because Q(x

1

; s(z

1

); s(z

1

))� can never reduce to any instantiation

of Q(x

2

; 0; s(z

2

)). The reason is that the second arguments s(z

1

) resp. 0 of

these two terms have di�erent constructor root symbols. Hence, any possi-

ble in�nite innermost chain would contain in�nitely many occurrences of the

other dependency pair (22). Therefore it is su�cient if (22) is decreasing and if

(23) is just weakly decreasing. In this way, we obtain the following (weakened)

constraints.

Q(s(x); s(y); z)>Q(x; y; z) (24)

Q(x; 0; s(z))�Q(x; s(z); s(z)) (25)

In general, to determine those dependency pairs which may possibly follow

each other in innermost chains, we de�ne the following graph.

De�nition 36 (Innermost dependency graph) The innermost depen-

dency graph of a TRS R is the directed graph whose nodes are the dependency

pairs and there is an arc from hs; ti to hv; wi if hs; tihv; wi is an innermost

R-chain.

For instance, in the innermost dependency graph for the quot example there

are arcs from (22) to itself and to (23), and there is an arc from (23) to (22)
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hQ(s(x); s(y); z);Q(x; y; z)i

hQ(x; 0; s(z));Q(x; s(z); s(z))i

Fig. 2. The innermost dependency graph for the quot TRS (Ex. 35).

(but not to itself).

Of course, the fact that innermost chains are restricted chains cause innermost

dependency graphs to be subgraphs of dependency graphs. Now any in�nite

innermost chain corresponds to a cycle in the innermost dependency graph.

Hence, it is su�cient if s > t holds for at least one dependency pair hs; ti on

every cycle and if s � t holds for the other dependency pairs on cycles. So,

similar to Thm. 18 (for termination) we obtain the following re�ned theorem

for automated innermost termination proofs.

Theorem 37 (Innermost dependency graph re�nement) Let R(D;C;

R) be a TRS and let � be a well-founded quasi-ordering where both � and

> are closed under substitution. If � is weakly monotonic on all symbols

apart from the tuple symbols and if � satis�es the following constraints for

all dependency pairs hs; ti on a cycle of the innermost dependency graph

� l � r for all usable rules l! r in U(R; t),

� s � t,

� x

1

� y

1

^ : : : ^ x

n

� y

n

) C[x

1

; : : : ; x

n

] � C[y

1

; : : : ; y

n

],

if t = C[f

1

(~u

1

); : : : ; f

n

(~u

n

)], where C is a context without de�ned symbols

and f

1

; : : : ; f

n

are de�ned symbols,

and if s > t holds for at least one dependency pair hs; ti on each cycle of the

innermost dependency graph, then R is innermost terminating.

PROOF. The proof that Thm. 37 is a consequence of Thm. 33 is completely

analogous to the proof that Thm. 18 is a consequence of Thm. 7. ut

Hence, in the quot example the constraints (24) and (25) are in fact su�cient

for innermost termination. A suitable quasi-ordering satisfying these weak-

ened constraints can easily be synthesized using the technique of Sect. 2.3.

(For instance, one could use the polynomial interpretation where 0 and s are

interpreted as usual and where Q(x; y; z) is mapped to x. If the constraints

(24) and (25) are normalized w.r.t. an AFS which drops the second argument

of Q, then they are also satis�ed by the recursive path ordering.) This exam-

ple demonstrates that the weakening of the constraints by using innermost
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dependency graphs often enables the application of much simpler orderings

(e.g., now we can use the recursive path ordering or a linear weakly mono-

tonic polynomial ordering whereas for the original constraints of Sect. 3.2 we

needed a non-monotonic polynomial of degree 2).

However, for an automation of Thm. 37 we have to construct the innermost

dependency graph. Again, this cannot be done automatically, since for two

pairs hs; ti and hv; wi it is undecidable whether there exists a substitution �

such that t� reduces innermost to v� and such that s� and v� are normal

forms. Hence, similar to the dependency graph, we can only approximate this

graph by computing a supergraph containing the innermost dependency graph.

Note that t� may only reduce to v� for some substitution �, if either t has a

de�ned root symbol or if both t and v have the same constructor root symbol.

Recall that cap(t) denotes the result of replacing all subterms in t with a

de�ned root symbol by di�erent fresh variables. Then t� can only reduce to

v� if cap(t) and v are uni�able.

However, this replacement of subterms of t must only be done for terms which

are not equal to subterms of s. The reason is that such subterms are already

in normal form when instantiated with �. For example, if we modify the �rst

rule of the TRS in Ex. 29 to f(g(x); s(0)) ! f(g(x); g(x)), then to determine

whether there is an arc from the resulting dependency pair

hF(g(x); s(0)); F(g(x); g(x))i

to itself, the subterms g(x) in the right-hand side do not have to be replaced

by new variables. As both sides of this dependency pair do not unify after

variable renaming, one can immediately see that this pair is not on a cycle

of the innermost dependency graph (whereas cap(F(g(x); g(x)) = F(x

1

; x

2

)

would unify with the left-hand side).

Let cap

s

(t) only replace those subterms of t by di�erent fresh variables which

have a de�ned root symbol and which are not equal to subterms of s. Then to

re�ne the approximation of innermost dependency graphs instead of cap(t)

we check whether cap

s

(t) uni�es with v. Moreover, if � is the most general

uni�er (mgu) of cap

s

(t) and v, then there can only be an arc from hs; ti to

hv; wi in the innermost dependency graph, if both s� and v� are in normal

form.

So there are three di�erences between the approximation of the dependency

graph and the approximation of the innermost dependency graph. First, for

the innermost dependency graph we only replace subterms of t which do not

occur in s, i.e., we use cap

s

(t) instead of cap(t). Second, to approximate the

dependency graph, multiple occurrences of the same variable in cap(t) are

replaced by fresh variables (using the function ren), whereas the variables
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in cap

s

(t) are left unchanged for the approximation of the innermost depen-

dency graph. The reason is that any substitution used for instantiating the

dependency pairs of an innermost chain is a normal substitution. Thus, vari-

ables are always instantiated by normal forms, and hence these instantiations

are not reduced. Multiple occurrences of the same variable in a term result in

multiple occurrences of the same subterm after reduction of the instantiated

term. In contrast, for an arbitrary substitution, instantiated multiple occur-

rences of the same variable may result in di�erent subterms after reduction of

the instantiated term.

The third di�erence is that for innermost dependency graphs we only draw an

arc from hs; ti to hv; wi, if the mgu of cap

s

(t) and v instantiates s and v to

normal forms. This condition is due to the restriction to innermost chains.

Similar to the notion of connectable terms in Sect. 2.4, we call two dependency

pairs innermost connectable if they should be connected by an arc in our

approximation of the innermost dependency graph.

De�nition 38 (Innermost connectable pairs) For any dependency pairs

hs; ti and hv; wi, the pair hs; ti is innermost connectable to hv; wi if cap

s

(t)

and v are uni�able by some mgu � such that s� and v� are in normal form.

The following theorem proves the soundness of our approximation.

Theorem 39 (Computing innermost dependency graphs) Let R be a

TRS and let hs; ti and hv; wi be dependency pairs. If there is an arc from

hs; ti to hv; wi in the innermost dependency graph, then hs; ti is innermost

connectable to hv; wi.

PROOF. Due to the additional conditions in the de�nition of innermost

chains and the de�nition of innermost connectable pairs, the proof is slightly

di�erent from the proof of Thm. 21.

By induction on the structure of t we show that if there exists a substitution �

such that s� is a normal form and t�!

�

R

u for some term u, then there exists

a substitution � (whose domain only includes variables that are introduced in

the construction of cap

s

(t)) with cap

s

(t)�� = u. Thus, in particular, if there

exists a substitution � such that s� and v� are normal forms and t�!

�

R

v�,

then cap

s

(t)�� = v� (= v�� , since the variables of v� do not occur in the

domain of �). Hence, cap

s

(t) and v unify and the most general uni�er � is

such that s� and v� are normal forms. (There exist instantiations of these two

terms that are normal forms (viz. s�� = s� and v�� = v�), hence the terms

s� and v� are normal forms themselves.)

If t equals a subterm of s, then t� is in normal form, hence t� equals u.
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Moreover, we have cap

s

(t) = t. So cap

s

(t)� = u, i.e., in this case � is the

empty substitution.

If t is not equal to a subterm of s and root(t) is de�ned, then cap

s

(t) is a fresh

variable. Let � replace cap

s

(t) by u. Then we have cap

s

(t)�� = cap

s

(t)� = u.

Otherwise, t = c(t

1

; : : : ; t

n

) for some constructor c and we have

cap

s

(t) = c(cap

s

(t

1

); : : : ;cap

s

(t

n

)):

In this case u is of the form c(u

1

; : : : ; u

n

) and t

j

�!

�

R

u

j

for all j. By the

induction hypothesis there exist substitutions �

j

such that cap

s

(t

j

)��

j

= u

j

.

Note that the variables newly introduced in cap

s

(t

j

) are disjoint from those

variables newly introduced in cap

s

(t

i

) for i 6= j. Hence, if � = �

1

� : : :��

n

, then

for all j we have cap

s

(t

j

)�� = u

j

, and thus, cap

s

(t)�� = c(u

1

; : : : ; u

n

). ut

Using the approximation of Thm. 39, we can now compute the innermost

dependency graph for the quot example in Fig. 2 automatically.

Example 40 There are also examples where the innermost dependency graph

does not contain any cycles.

f(x; g(x)) ! f(1; g(x))

g(1) ! g(0)

In this example, the dependency pair hF(x; g(x)); F(1; g(x))i is not on a cy-

cle of the innermost dependency graph, although cap

F(x

1

; g(x

1

))

(F(1; g(x

1

))) =

F(1; g(x

1

)) uni�es with F(x

2

; g(x

2

)) using a mgu that replaces x

1

and x

2

by 1.

However, the instantiated left-hand side F(1; g(1)) is not a normal form, since

it contains the redex g(1). The other dependency pairs hF(x; g(x));G(x)i and

hG(1);G(0)i cannot occur on cycles either, since G(: : :) does not unify with

F(: : :) and G(0) does not unify with G(1). Hence, using the re�ned techniques

of Thm. 39 and 37 we obtain no constraint at all, i.e., innermost termina-

tion can be proved by only computing the (approximation of) the innermost

dependency graph.

3.4 Re�ned innermost termination proofs by narrowing dependency pairs

Similar to the termination technique of Sect. 2, the power of our technique

can be increased if we consider narrowings of the dependency pairs.
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Example 41 For an illustration regard the following TRS.

p(0) ! 0

p(s(x)) ! x

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(x; y) ! if(le(x; y); x; y)

if(true; x; y) ! 0

if(false; x; y) ! s(minus(p(x); y))

Here, a `conditional' program for minus has been encoded into an unconditional

TRS. The dependency pairs on cycles of the innermost dependency graph are

hLE(s(x); s(y)); LE(x; y)i (26)

hM(x; y); IF(le(x; y); x; y)i (27)

hIF(false; x; y);M(p(x); y)i: (28)

However, the constraints resulting from application of Thm. 37 would imply

M(s(x); 0) > M(p(s(x)); 0). Therefore an automatic innermost termination

proof using quasi-simpli�cation orderings fails.

The only dependency pair whose right-hand side does not unify with any left-

hand side of a dependency pair is (27). Hence, in any innermost chain at

least one rule of the TRS must be applied in order to reduce an instantiation of

IF(le(x; y); x; y) to an instantiation of a left-hand side. So instead of examining

the dependency pair (27) we may �rst perform all possible narrowing steps and

replace (27) by

hM(0; y); IF(true; 0; y)i (29)

hM(s(x); 0); IF(false; s(x); 0)i (30)

hM(s(x); s(y)); IF(le(x; y); s(x); s(y))i: (31)

Note that while the right-hand side of (28) uni�es with the left-hand side of

the original dependency pair (27), after this replacement the right-hand side of

(28) does not unify with left-hand sides any more. Hence, the �rst narrowing

of (27) now enables a subsequent narrowing of (28). So (28) is replaced by

hIF(false; 0; y);M(0; y)i (32)

hIF(false; s(x); y);M(x; y)i: (33)
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In this way, the original set of dependency pairs (26) { (28) is transformed

into (26) and (29) { (33). The pairs (29) and (32) are not on cycles of the

innermost dependency graph and can therefore be ignored in the innermost

termination proof. Thus, our method determines that instead of the original

dependency pair (27) one only has to regard instantiations where x is instan-

tiated with a term of the form s(: : :). But for those terms, p is decreasing

and hence, the call of M in the right-hand side of (33) is applied to smaller

arguments than the call of M in the left-hand side of (30) or (31).

Now innermost termination (and thereby termination) of the system can be

proved by the technique of Thm. 37. This results in the following constraints.

le(0; y)� true

le(s(x); 0)� false

le(s(x); s(y))� le(x; y)

LE(s(x); s(y))> LE(x; y)

M(s(x); 0)� IF(false; s(x); 0)

M(s(x); s(y))� IF(le(x; y); s(x); s(y))

IF(false; s(x); y)>M(x; y)

x

1

� x

2

) IF(x

1

; s(x); s(y))� IF(x

2

; s(x); s(y))

These constraints are satis�ed by a polynomial interpretation where 0, true and

false are mapped to 0, s(x) is mapped to x + 1, le(x; y), LE(x; y), and M(x; y)

are mapped to x, and IF(x; y; z) is mapped to y. They are also satis�ed by the

recursive path ordering if an AFS is used to eliminate the �rst argument of IF.

Narrowing pairs for the innermost termination technique has the side-e�ect

that one may also drop some inequalities l � r corresponding to the rules

l! r, since after narrowing the pairs some rules may not be usable any more.

For example, for the original dependency pairs, the p-rules were usable, since

(28) contains an occurrence of p in its right-hand side. But after narrowing

this dependency pair, the occurrence of p is deleted and hence we do not have

to demand that the p-rules are weakly decreasing.

So similar to the approach in Sect. 2.5 we may replace a dependency pair

hs; ti by all its narrowings provided that the right-hand side t does not unify

with any left-hand side of a dependency pair. In fact, due to the restriction to

innermost chains we may even perform such a replacement if t uni�es with the

left-hand side v of a dependency pair, as long as their mgu does not instantiate

both s and v to normal forms. Note that in contrast to the termination case,

for innermost termination proofs we do not have to demand that t must be

a linear term. Hence, we can indeed narrow the dependency pair (27) in the
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above example, although its right-hand side is not linear. However, this step

would not have been possible with the method of Sect. 2. Therefore, for the

TRS in Ex. 41 the constraints generated by the approach of Sect. 2 are not

satis�ed by any quasi-simpli�cation ordering.

Theorem 42 (Narrowing re�nement for innermost termination) Let

R be a TRS and let P be a set of pairs of terms. Let hs; ti 2 P such that

all variables of t also occur in s and such that for all hv; wi 2 P where t and v

are uni�able by some mgu � (after renaming the variables), one of the terms

s� or v� is no normal form. Let

P

0

= P n fhs; tig [ fhs

0

; t

0

i j hs

0

; t

0

i is a narrowing of hs; tig:

If there exists no in�nite innermost R-chain of pairs from P

0

, then there exists

no in�nite innermost R-chain of pairs from P either.

PROOF. The proof is analogous to the proof of Thm. 27. The only di�erence

is that the right-hand side t of the dependency pair does not have to be linear

any more. The reason is that in innermost chains we restrict ourselves to

normal substitutions � and therefore, reductions of t� can never take place

`in �' (as all variables of t also occur in s). ut

Note that unlike Thm. 27 for termination, the replacement of dependency

pairs by their narrowings can destroy the necessity of our innermost termina-

tion criterion. The reason is that narrowing does not respect the innermost

reduction strategy.

Example 43 The TRS in Ex. 34 was innermost terminating. Hence, there

does not exist an in�nite innermost chain of dependency pairs. However, if we

replace the dependency pair hF(s(x)); F(g(h(x)))i by its narrowings

hF(s(0)); F(g(a))i (34)

hF(s(x)); F(g(x))i; (35)

then there exists an in�nite innermost chain consisting of the new dependency

pair (35), because F(g(x

1

))�

i

!

R

F(s(x

2

))� holds if � instantiates x

1

and x

2

by

0. (In particular, if (35) is again replaced by its narrowings, then we obtain the

new pair hF(s(0)); F(s(0))i which obviously forms an in�nite innermost chain.)

Thus, although g(h(x)) has no redex as a proper subterm, narrowing this term

leads to a failure of the innermost termination proof.
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So there are examples where narrowing transforms a set of dependency pairs

without in�nite innermost chains into a new set of pairs which form an in�nite

innermost chain. However, this can only happen for examples where the au-

tomation of our method would have failed anyway, i.e. where the constraints

generated without using narrowing would already have been unsatis�able (as

in Ex. 34). More precisely, if we use the approach of Thm. 37 and if we approx-

imate innermost dependency graphs by computing the innermost connectable

pairs (Thm. 39), then every ordering satisfying the constraints generated with-

out narrowing also satis�es the constraints generated after narrowing depen-

dency pairs. In fact, every constraint obtained when using narrowing is implied

by the constraints that one would obtain without narrowing. (The reason is

that if hs

0

; t

0

i and hv

0

; w

0

i are narrowings of hs; ti and hv; wi respectively, then

hs; ti is innermost connectable to hv; wi whenever hs

0

; t

0

i is innermost con-

nectable to hv

0

; w

0

i.) Hence, the application of narrowing can only extend the

number of systems where innermost termination can be proved automatically.

3.5 Summary

Combining all re�nements, our technique to prove innermost termination au-

tomatically using the dependency pair approach works as follows:

� Determine the dependency pairs.

� Replace some (dependency) pairs by all their narrowings. Again, this step

could be repeated several times.

� Approximate the innermost dependency graph by estimating for all (depen-

dency) pairs whether an arc exists between two of them. For that purpose

we introduced the function cap

s

.

� Compute the usable rules U, i.e. (a superset of) those rules that can be

used for the reductions between two (dependency) pairs.

� Transform the usable rules and the (dependency) pairs on cycles into in-

equalities.

� Find a well-founded quasi-ordering satisfying the inequalities after normal-

izing them with respect to one of the possible AFSs.

As for the termination approach, standard techniques like the recursive path

ordering or polynomial interpretations can be used to �nd these orderings.

However, since the ordering need not be weakly monotonic for tuple sym-

bols, we may also search for di�erent kinds of orderings, such as polynomial

interpretations where some polynomials have negative coe�cients.

Our approach is the �rst automatic method which can also prove innermost

termination of TRSs that are not terminating. Moreover, for those classes of

TRSs where innermost termination already implies termination, the technique
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described in this section can also be used for termination proofs. In particular,

this holds for non-overlapping or at least locally conuent overlay systems. The

di�erence to the termination technique is that we only need to prove absence

of in�nite innermost chains. For that reason several steps in the technique are

di�erent to the technique of Sect. 2:

� Right-hand sides of narrowed (dependency) pairs do not have to be linear

and they may unify with left-hand sides as long as their mgu does not

instantiate the left-hand sides to normal forms.

� For computing the innermost dependency graph instead of the functions

ren and cap we use the function cap

s

.

� We restrict ourselves to the usable rules when transforming the rules into

inequalities.

� The quasi-ordering that has to be found in the end need not be weakly

monotonic on tuple symbols (unless explicitly demanded).

As long as the system is non-overlapping it is always advantageous to prove

innermost termination only (instead of termination). The reason is that every

ordering satisfying the constraints of the termination technique in Sect. 2 also

satis�es the constraints of our innermost termination technique, but not vice

versa. For instance, termination of the systems in Ex. 35 and 41 can easily be

proved with the technique introduced in this section, whereas the constraints

generated by the method of Sect. 2 are not satis�ed by any quasi-simpli�cation

ordering. A collection of examples demonstrating the power of our technique

to prove innermost termination can be found in [4].

4 Conclusion and related work

We have introduced techniques to prove termination and innermost termina-

tion of term rewriting systems automatically. For that purpose we have de-

veloped su�cient and necessary criteria for both termination and innermost

termination. To automate the checking of these criteria, a set of constraints is

synthesized for each TRS and standard techniques developed for termination

proofs can be used to generate a well-founded ordering satisfying these con-

straints. If such an ordering can be found, then termination resp. innermost

termination of the system is proved.

Most other methods for automated termination proofs are restricted to sim-

pli�cation orderings. Compared to proving termination directly, our approach

has the advantage that the constraints generated by our method are often sat-

is�ed by standard (simpli�cation) orderings, even if termination of the origi-

nal TRS cannot be proved with these orderings. Moreover, for all those TRSs

where termination can be proved with a simpli�cation ordering directly, this
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simpli�cation ordering also satis�es the inequalities resulting from our tech-

nique. Therefore, instead of using simpli�cation orderings for direct termina-

tion proofs, it is always advantageous to combine them with the technique

presented in this paper.

We implemented our technique for the generation of constraints and in this

way termination could be proved automatically for many challenge problems

from literature as well as for practically relevant TRSs from di�erent areas of

computer science. See [4] for a collection of numerous such examples, including

arithmetical operations (e.g. mod, gcd, logarithm, average), sorting algorithms

(such as selection sort, minimum sort, and quicksort), algorithms on graphs and

trees, and several other well-known non-simply terminating TRSs (e.g. from

[16,17,44]).

Our termination criteria are based on the notion of dependency pairs. The

concept of dependency pairs was introduced in [6] and a �rst method for its

automation was proposed in [1]. For that purpose, we transferred the estima-

tion technique [24,25], which was originally developed for termination proofs

of functional programs, to rewrite systems. However, this �rst method was

restricted to non-overlapping constructor systems without nested recursion.

In this approach, the dependency pair technique was based on a special form

of semantic labelling (cf. [48]), called self-labelling (similar to the notion of

self-labelling in [40]). Self-labelling determines unique labels for the terms and

a dependency pair can be regarded as a combination of the label for the left-

hand side with the labels for the right-hand side of a rule.

In [2] we developed a re�ned framework for dependency pairs which is inde-

pendent from semantic labelling. Therefore this framework is better suited for

automation (as one does not have to construct an appropriate semantic in-

terpretation any more) and its soundness can be proved in a much easier and

shorter way. Moreover, in this framework we could show that our technique

is applicable to arbitrary TRSs and we proved that the formulated criterion

(Thm. 6) is not only su�cient, but also necessary for termination.

The present paper extends the approach of [2] by the introduction of argument

�ltering TRSs, the addition of narrowing dependency pairs, and by proving

that the whole approach up to the search for suitable quasi-orderings is sound

and complete, i.e., the inequalities for which an ordering should be found by

standard techniques are satis�able if and only if the TRS is terminating. This

result suggests that the transformation described in this paper should always

be applied before using any of the standard techniques for termination proofs.

In [3] we presented a modi�cation of the framework, in which the notion of

chains was restricted to innermost chains and we showed that a TRS is inner-

most terminating if and only if no in�nite innermost chains exist for the TRS.
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This approach is the �rst automatic method which can also prove innermost

termination of systems that are not terminating. Moreover, our technique can

very successfully be used for termination proofs of non-overlapping systems,

because for those systems innermost termination is already su�cient for ter-

mination.

In the present paper we extended the technique described in [3] by a re�ned

de�nition of innermost dependency graphs, a method to compute better ap-

proximations of these graphs, and a more powerful approach for narrowing

dependency pairs. In [4] we give a collection of several examples which can

now be proved terminating resp. innermost terminating automatically, but

where automatic proofs using the techniques in [2,3] failed.

We have presented a sound and complete termination criterion. In contrast

to most other complete approaches (semantic path ordering [31], general path

ordering [17], semantic labelling [48], etc.) our method is particularly well

suited for automation as has been demonstrated in this paper. The only other

complete criterion that has been used for automatic termination proofs (by

Steinbach [44]) is the approach of transformation orderings [9,10]. It turns out

that the termination of several examples where the automation of Steinbach

failed can be proved by our technique automatically, cf. [4].

At �rst sight there seem to be some similarities between our method and

forward closures [17,38]. The idea of forward closures is to restrict the appli-

cation of rules to that part of a term created by previous rewrites. Similar to

our notion of chains, this notion also results in a sequence of terms, but these

sequences have completely di�erent semantics. For example, forward closures

are reductions whereas in general the terms in a chain do not form a reduc-

tion. The reason is that in the dependency pair approach we do not restrict

the application of rules, but we restrict the examination of terms to those

subterms that can possibly be reduced further. Compared to the forward clo-

sure approach, the dependency pair technique has the advantage that it can

be used for arbitrary TRSs, whereas the absence of in�nite forward closures

only implies termination for right-linear [14] or non-overlapping [22] TRSs.

Moreover, in contrast to the dependency pair method, we do not know of any

attempt to automate the forward closure approach.

The framework of dependency pairs, as introduced in this paper, is very gen-

eral and is therefore well suited to be used for more general rewriting problems,

too. For example, the framework of dependency pairs can easily be extended

for termination modulo associativity and commutativity [39]. Moreover, sev-

eral well-known and new modularity results can be derived in this framework

[5,7,26].
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