
Termination Graphs for Java Bytecode?

Marc Brockschmidt, Carsten Otto, Christian von Essen, and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. To prove termination of Java Bytecode (JBC) automatically,
we transform JBC to finite termination graphs which represent all pos-
sible runs of the program. Afterwards, the graph can be translated into
“simple” formalisms like term rewriting and existing tools can be used
to prove termination of the resulting term rewrite system (TRS). In this
paper we show that termination graphs indeed capture the semantics of
JBC correctly. Hence, termination of the TRS resulting from the termi-
nation graph implies termination of the original JBC program.

1 Introduction

Termination is an important property of programs. Therefore, techniques to an-
alyze termination automatically have been studied for decades [7, 8, 20]. While
most work focused on term rewrite systems or declarative programming lan-
guages, recently there have also been many results on termination of imperative
programs (e.g., [2, 4, 5]). However, these are “stand-alone” methods which do not
allow to re-use the many existing termination techniques and tools for TRSs and
declarative languages. Therefore, in [15] we presented the first rewriting-based
approach for proving termination of a real imperative object-oriented language,
viz. Java Bytecode. Related TRS-based approaches had already proved successful
for termination analysis of Haskell and Prolog [10, 16].

JBC [13] is an assembly-like object-oriented language designed as interme-
diate format for the execution of Java by a Java Virtual Machine (JVM). While
there exist several static analysis techniques for JBC, we are only aware of two
other automated methods to analyze termination of JBC, implemented in the
tools COSTA [1] and Julia [18]. They transform JBC into a constraint logic pro-
gram by abstracting every object of a dynamic data type to an integer denoting
its path-length (i.e., the length of the maximal path of references obtained by
following the fields of objects). While this fixed mapping from objects to integers
leads to a very efficient analysis, it also restricts the power of these methods.

In contrast, in our approach from [15], we represent data objects not by
integers, but by terms which express as much information as possible about the
data objects. In this way, we can benefit from the fact that rewrite techniques can
automatically generate suitable well-founded orders comparing arbitrary forms
of terms. Moreover, by using TRSs with built-in integers [9], our approach is
not only powerful for algorithms on user-defined data structures, but also for
algorithms on pre-defined data types like integers.

? Supported by the DFG grant GI 274/5-3 and by the G.I.F. grant 966-116.6.

However, it is not easy to transform JBC to a TRS which is suitable for
termination analysis. Therefore, we first transform JBC to so-called termination
graphs which represent all possible runs of the JBC program. These graphs handle
all aspects of the programming language that cannot easily be expressed in term
rewriting (e.g., side effects, cyclicity of data objects, object-orientation, etc.).
Similar graphs are also used in program optimization techniques [17].

To analyze termination of a set S of desired initial (concrete) program states,
we first represent this set by a suitable abstract state. This abstract state is the
starting node of the termination graph. Then this state is evaluated symbol-
ically, which leads to its child nodes in the termination graph. This symbolic
evaluation is repeated until one reaches states that are instances of states that
already appeared earlier in the termination graph. So while we perform consid-
erably less abstraction than direct termination tools like [1, 18], we also apply
suitable abstract interpretations [6] in order to obtain finite representations for
all possible forms of the heap at a certain program position.

Afterwards, a TRS is generated from the termination graph whose termina-
tion implies termination of the original JBC program for all initial states S. This
TRS can then be handled by existing TRS termination techniques and tools.

We implemented this approach in our tool AProVE [11] and in the Inter-
national Termination Competitions,1 AProVE achieved competitive results com-
pared to Julia and COSTA. So rewriting techniques can indeed be successfully
used for termination analysis of imperative object-oriented languages like Java.

However, [15] only introduced termination graphs informally and did not
prove that these graphs really represent the semantics of JBC. In the present
paper, we give a formal justification for the concept of termination graphs. Since
the semantics of JBC is not formally specified, in this paper we do not focus on
full JBC, but on JINJA Bytecode [12].2 JINJA is a small Java-like programming
language with a corresponding bytecode. It exhibits the core features of Java, its
semantics is formally specified, and the corresponding correctness proofs were
performed in the Isabelle/HOL theorem prover [14]. So in the following, “JBC”
always refers to “JINJA Bytecode”. We present the following new contributions:

• In Sect. 2, we define termination graphs formally and determine how states in
these graphs are evaluated symbolically (Def. 6, 7). To this end, we introduce

three kinds of edges in termination graphs (
Eval−→,

Ins−→,
Ref−→). In contrast to

[15], we extend these graphs to handle also method calls and exceptions.
• In Sect. 3, we prove that on concrete states, our definition of “symbolic

evaluation” is equivalent to evaluation in JBC (Thm. 10). As illustrated in
Fig. 1, there is a mapping trans from JBC program states to our notion
of concrete states. Then, Thm. 10 proves that if a program state j1 of a

JBC program is evaluated to a state j2 (i.e., j1
jvm−→ j2), then trans(j1) is

evaluated to trans(j2) using our definitions of “states” and of “symbolic

1 See http://www.termination-portal.org/wiki/Termination_Competition.
2 For the same reason, the correctness proof for the termination technique of [18] also

regarded a simplified instruction set similar to JINJA instead of full JBC.

s1 s2 s′2 s′′2 s3 . . .

c1 c2 c3 . . .

j1 j2 j3 . . .

} Thm. 11

} Thm. 10

Eval Ins Ref Eval

SyEv SyEv

jvm jvm

v v v v v

trans trans trans

Fig. 1. Relation between evaluation in JBC and paths in the termination graph

evaluation” from Sect. 2 (i.e., trans(j1)
SyEv−→ trans(j2)).

• In Sect. 4, we prove that our notion of symbolic evaluation for abstract states
correctly simulates the evaluation of concrete states. More precisely, let c1
be a concrete state which can be evaluated to the concrete state c2 (i.e.,

c1
SyEv−→ c2). Then Thm. 11 states that if the termination graph contains an

abstract state s1 which represents c1 (i.e., c1 is an instance of s1, denoted
c1 v s1), then there is a path from s1 to another abstract state s2 in the
termination graph such that s2 represents c2 (i.e., c2 v s2).

Note that Thm. 10 and 11 imply the “soundness” of termination graphs, cf.

Cor. 12: Suppose there is an infinite JBC-computation j1
jvm−→ j2

jvm−→ . . . where j1
is represented in the termination graph (i.e., there is a state s1 in the termination
graph with trans(j1) = c1 v s1). Then by Thm. 10 there is an infinite symbolic

evaluation c1
SyEv−→ c2

SyEv−→ . . . , where trans(ji) = ci for all i. Hence, Thm. 11
implies that there is an infinite so-called computation path in the termination
graph starting with the node s1. As shown in [15, Thm. 3.7], then the TRS
resulting from the termination graph is not terminating.

2 Constructing Termination Graphs

To illustrate termination graphs, we regard the method create in Fig. 2. List is
a data type whose next field points to the next list element and we omitted the
fields for the values of list elements to ease readability. The constructor List(n)
creates a new list object with n as its tail. The method create(x) first ensures
that x is at least 1. Then it creates a list of length x. In the end, the list is made
cyclic by letting the next field of the last list element point to the start of the
list. The method create terminates as x is decreased until it is 1.

After introducing our notion of states in Sect. 2.1, we describe the construc-
tion of termination graphs in Sect. 2.2 and explain the JBC program of Fig. 2 in
parallel. Sect. 2.3 formally defines symbolic evaluation and termination graphs.

2.1 States

The nodes of the termination graph are abstract states which represent sets of

public c lass L i s t {
public L i s t next ;

public L i s t (L i s t n) {
this . next = n ;

}

public stat ic
L i s t c r e a t e (int x) {

L i s t l a s t ;
L i s t cur ;
i f (x <= 0) {
return null ;
}
cur = new L i s t (null) ;
l a s t = cur ;
while (x != 1) {
x−−;
cur = new L i s t (cur) ;
}
l a s t . next = cur ;
return cur ;

}
}

public static List create(int);
... // return null for x <= 0
New List // create List object
Push null // load null reference
Invoke <init > 2 // call constructor
Store "cur" // store into cur
Load "cur" // load cur to opstack
Store "last" // store into last

hd: Load "x" // load x to opstack
Push 1 // load 1 to opstack
CmpEq // compare x and 1
IfFalse "bd" // jump to bd if x != 1
Load "last" // load last to opstack
Load "cur" // load cur to opstack
Putfield next // set last.next = cur
Load "cur" // load cur to opstack
Return // return cur

bd: Load "x" // load x to opstack
Push -1 // load -1 to opstack
IAdd // add x and -1
Store "x" // store result in x
New List // create List object
Load "cur" // load cur to opstack
Invoke <init > 2 // call constructor
Store "cur" // store into cur
Goto "hd" // jump to loop condition

Fig. 2. Java Code and a corresponding JINJA Bytecode for the method create

concrete states, using a formalization which is especially suitable for a translation
into TRSs. Our approach is restricted to verified sequential JBC programs with-
out recursion. To simplify the presentation in the paper, as in JINJA, we exclude
floating point arithmetic, arrays, and static class fields. However, our approach
can easily be extended to such constructs and indeed, our implementation also
handles such programs. We define the set of all states as

States = (ProgPos×LocVar×OpStack)∗×
({⊥} ∪References)×Heap×Annotations .

CmpEq |x : i1, l :o1, c :o1 | i2, i1
i1 =[1,∞) i2 =[1, 1]
o1 =List(next=null)

Fig. 3. Abstract state

Consider the state in Fig. 3. Its first compo-
nent is the program position (from ProgPos). In
the examples, we represent it by the next program
instruction to be executed (e.g., “CmpEq”).

The second component are the local variables
that have a defined value at the current program position, i.e., LocVar =
References∗. References are addresses in the heap, where we also have
null ∈ References. In our representation, we do not store primitive values
directly, but indirectly using references to the heap.

In examples we denote local variables by names instead of numbers. Thus,
“x : i1, l :o1, c :o1” means that the value of the 0th local variable x is a reference
i1 for integers and the 1st and 2nd local variables l and c both reference the
address o1. So different local variables can point to the same address.

The third component is the operand stack that JBC instructions operate on,
i.e., OpStack = References∗. The empty operand stack is denoted “ε” and
“i2, i1” denotes a stack with top element i2 and bottom element i1.

In contrast to [15], we allow several method calls and a triple from (ProgPos

×LocVar×OpStack) is just one frame of the call stack. Thus, an abstract
state may contain a sequence of such triples. If a method calls another method,
then a new frame is put on top of the call stack. This frame has its own program
counter, local variables, and operand stack. Consider the state in Fig. 4, where

Load "this" |t :o1, n :null |ε
Store "cur" |x : i1 |ε
i1 =[1,∞)
o1 =List(next=null)

Fig. 4. State with 2 frames

the List constructor was called. Hence, the top
frame on the call stack corresponds to the first
statement of this constructor method. The lower
frame corresponds to the statement Store "cur"

in the method create. It will be executed when
the constructor in the top frame has finished.

The component from ({⊥} ∪ References) in the definition of States is
used for exceptions and will be explained at the end of Sect. 2.2. Here, ⊥ means
that no exception was thrown (we omit ⊥ in examples to ease readability).

We write the first three components of a state in the first line and separate
them by “|”. The fourth component Heap is written in the lines below. It con-
tains information about the values of References. We represent it by a partial
function, i.e., Heap = References → Unknown ∪ Integers ∪ Instances.

The values in Unknown = Classnames×{?} represent tree-shaped (and
thus acyclic) objects where we have no information except the type. Classnames
are the names of all classes and interfaces. For example, “o3 = List(?)” means
that the object at address o3 is null or of type List (or a subtype of List).

We represent integers as possibly unbounded intervals, i.e. Integers =
{{x ∈ Z | a ≤ x ≤ b} | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}. So i1 = [1,∞)
means that any positive integer can be at the address i1. Since current TRS
termination tools cannot handle 32-bit int-numbers as in real Java, we treat
int as the infinite set of all integers (this is done in JINJA as well).

To represent Instances (i.e., objects) of some class, we describe the values of
their fields, i.e., Instances = Classnames×(FieldIDs → References). To
prevent ambiguities, in general the FieldIDs also contain the respective class
names. So “o1 = List(next = null)” means that at the address o1, there is a
List object and the value of its field next is null. For all (cl , f) ∈ Instances,
the function f is defined for all fields of the class cl and all of its superclasses.

All sharing information must be explicitly represented. If an abstract state
s contains the non-null references o1, o2 and does not mention that they could
be sharing, then s only represents concrete states where o1 and the references
reachable from o1 are disjoint from o2 and the references reachable from o2.

Sharing or aliasing for concrete objects can of course be represented easily,
e.g., we could have o2 = List(next = o1) which means that o1 and o2 do not
point to disjoint parts of the heap h (i.e., they join). But to represent such
concepts for unknown objects, we use three kinds of annotations. Annotations
are only built for references o 6= null with h(o) /∈ Integers.

Equality annotations like “o1 =? o2” mean that the addresses o1 and o2
could be equal. Here the value of at least one of o1 and o2 must be Unknown.
To represent states where two objects “may join”, we use joinability annotations
“o1 %$ o2”. We say that o′ is a direct successor of o in a state s (denoted o→s o

′)

iff the object at address o has a field whose value is o′. Then “o1 %$ o2” means
that if the value of o1 is Unknown, then there could be an o with o1 →+

s o
and o2 →∗s o, i.e., o is a proper successor of o1 and a (possibly non-proper)
successor of o2. Note that %$ is symmetric,3 so “o1 %$ o2” also means that if o2
is Unknown, then there could be an o′ with o1 →∗s o′ and o2 →+

s o′. Finally,
we use cyclicity annotations “o!” to denote that the object at address o is not
necessarily tree-shaped (so in particular, it could be cyclic).4

2.2 Termination Graphs, Refinements, and Instances

To build termination graphs, we begin with an abstract state describing all
concrete initial states. In our example, we want to know whether all calls of
create terminate. So in the corresponding initial abstract state, the value of
x is not an actual integer, but (−∞,∞). After symbolically executing the first
JBC instructions, one reaches the instruction “New List”. This corresponds to
state A in Fig. 5 where the value of x is from [1,∞).

We can evaluate “New List” without further information about x and reach
the node B via an evaluation edge. Here, a new List instance was created at ad-
dress o1 in the heap and o1 was pushed on the operand stack. “New List” does
not execute the constructor yet, but just allocates the needed memory and sets
all fields to default values. Thus, the next field of the new object is set to null .

“Push null” pushes null on the operand stack. The elements null and o1
on the stack are the arguments for the constructor <init> 2 that is invoked,
where “2” means that the constructor with two parameters (n and this) is used.

This leads to D, cf. Fig. 4. In the top frame, the local variables this (abbre-
viated t) and n have the values o1 and null. In the second frame, the arguments
that were passed to the constructor were removed from the operand stack.

We did not depict the evaluation of the constructor and continue with state
E, where the control flow has returned to create. So dotted arrows abbreviate
several steps. Our implementation of <init> returns the newly created object
as its result. Therefore, o1 has been pushed on the operand stack in E.

Evaluation continues to node F , storing o1 in the local variables cur and
last (abbreviated c and l). In F one starts with checking the condition of the
while loop. To this end, x and the number 1 are pushed on the operand stack
and the instruction CmpEq in state G compares them, cf. Fig. 3.

We cannot directly continue the symbolic evaluation, because the control flow
depends on the value of the number i1 in the variable x. So we refine the infor-
mation by an appropriate case analysis. This leads to the states H and J where
x’s value is from [1, 1] resp. [2,∞). We call this step integer refinement and G is
connected to H and J by refinement edges (denoted by dashed edges in Fig. 5).

3 Since both “=?” and “%$” are symmetric, we do not distinguish between “o1 =? o2”
and “o2 =? o1” and we also do not distinguish between “o1 %$ o2” and “o2 %$ o1”.

4 It is also possible to use an extended notion of annotations which also include sets
of FieldIDs. Then one can express properties like “o may join o′ by using only the
field next” or “o may only have a non-tree structure if one uses both fields next and
prev” (such annotations can be helpful to analyze algorithms on doubly-linked lists).

. . .

New List |x : i1 |ε
i1=[1,∞)

A

Push null |x : i1 |o1
i1=[1,∞)
o1=List(next=null)

B

Invoke |x : i1 |null , o1
i1=[1,∞)
o1=List(next=null)

C

Load "this"|t :o1, n :null |ε
Store "cur"|x : i1 |ε
i1=[1,∞)
o1=List(next=null)

D

Store "cur"|x : i1 |o1
i1=[1,∞)
o1=List(next=null)

E

Load "x"|x : i1, l :o1, c :o1 |ε
i1=[1,∞)
o1=List(next=null)

F

CmpEq |x : i1, l :o1, c :o1 | i2,i1
i1=[1,∞) i2=[1, 1]
o1=List(next=null)

G

CmpEq |x : i3, l :o1, c :o1 | i2,i3
i3=[1, 1] i2=[1, 1]
o1=List(next=null)

H IfFalse |x : i3, l :o1, c :o1 | i4
i3=[1, 1] i4=[1, 1]
o1=List(next=null)

I
. . .

CmpEq |x : i3, l :o1, c :o1 | i2,i3
i3=[2,∞) i2=[1, 1]
o1=List(next=null)

J

IfFalse |x : i3, l :o1, c :o1 | i4
i3=[2,∞) i4=[0, 0]
o1=List(next=null)

K

IAdd |x : i3, l :o1, c :o1 | i5,i3
i3=[2,∞) i5=[−1,−1]
o1=List(next=null)

L

Store "x"|x : i3,l :o1,c :o1 | i6
i3=[2,∞) i6=[1,∞)
o1=List(next=null)

M

Load "x"|x : i6, l :o1, c :o2 |ε
i6=[1,∞)
o1=List(next=null)
o2=List(next=o1)

N

Load "x"|x : i6, l :o1, c :o3 |ε
i6=[1,∞) o1 =? o3
o1=List(next=null)
o3=List(?) o1 %$ o3

O
Load "x"|x : i9, l :o1, c :o4 |ε
i9=[1,∞) o1 =? o3
o1=List(next=null)
o3=List(?) o1 %$ o3
o4=List(next=o3)

P

IfFalse |x : i7, l :o1, c :o3 | i8
i7 = [1, 1] i8 = [1, 1]

o1 =? o3
o1=List(next=null)
o3=List(?) o1 %$ o3

Q

Putfield |x : i7,l :o1,c :o3 |o3,o1
i7=[1, 1] o1 =? o3
o1=List(next=null)
o3=List(?) o1 %$ o3

R
Putfield |x : i7, l :o1, c :o1 |o1,o1
i7=[1, 1]
o1=List(next=null)

S
. . .

Putfield |x : i7,l :o1,c :o3 |o3,o1
i7=[1, 1]
o1=List(next=null)
o3=List(?) o1 %$ o3

T

Load "cur"|x : i7, l :o1, c :o3 |ε
i7=[1, 1]
o1=List(next=o3) o1! o3!
o3=List(?) o1 %$ o3

U

. . .

i6 = i3 + i5

Fig. 5. Termination graph for create

To define integer refinements, for any s ∈ States, let s[o/o′] be the state
obtained from s by replacing all occurrences of the reference o in instance fields,
the exception component, local variables, and on the operand stacks by o′. By
s+{o 7→ vl} we denote a state which results from s by removing any information
about o and instead the heap now maps o to the value vl . So in Fig. 5, J is
(G+ {i3 7→ [2,∞)})[i1/i3]. We only keep information on those references in the
heap that are reachable from the local variables and the operand stacks.

Definition 1 (Integer refinement). Let s ∈ States where h is the heap of s
and let o ∈ References with h(o) = V ⊆ Z. Let V1, . . . , Vn be a partition of V
(i.e., V1∪. . .∪Vn = V) with Vi ∈ Integers. Moreover, si = (s+{oi 7→ Vi})[o/oi]
for fresh references oi. Then {s1, . . . , sn} is an integer refinement of s.

In Fig. 5, evaluation of CmpEq continues and we push True resp. False on
the operand stack leading to the nodes I and K. To simplify the presentation,
in the paper we represent the Booleans True and False by the integers 1 and 0.
In I and K, we can then evaluate the IfFalse instruction.

From K on, we continue the evaluation by loading the value of x and the
constant −1 on the operand stack. In L, IAdd adds the two topmost stack ele-
ments. To keep track of this, we create a new reference i6 for the result and label

the edge from L to M by the relation between i6, i3, and i5. Such labels are
used when constructing rewrite rules from the termination graph [15]. Then, the
value of i6 is stored in x and the rest of the loop is executed. Afterwards in state
N , cur points to a list (at address o2) where a new element was added in front
of the original list at o1. Then the program jumps back to the instruction Load

"x" at the label “hd” in the program, where the loop condition is evaluated.
However, evaluation had already reached this instruction in state F . So the

new state N is a repetition in the control flow. The difference between F and N
is that in F , l and c are the same, while in N , l refers to o1 and c refers to o2,
where the list at o1 is the direct successor (or “tail”) of the list at o2.

To obtain finite termination graphs, whenever the evaluation reaches a pro-
gram position for the second time, we “merge” the two corresponding states (like
F and N). This widening result is displayed in node O. Here, the annotation
“o1 =? o3” allows the equality of the references in l and c, as in J . But O also
contains “o1 %$ o3”. So l may be a successor of c, as in N . We connect N to O
by an instance edge (depicted by a thick dashed line), since the concrete states
described by N are a subset of the concrete states described by O. Moreover,
we could also connect F to O by an instance edge and discard the states G-N
which were only needed to obtain the suitably generalized state O. Note that in
this way we maintain the essential invariant of termination graphs, viz. that a
node “is terminating” whenever all of its children are terminating.

To define “instance”, we first define all positions π of references in a state s,
where s|π is the reference at position π. A position π is exc or a sequence starting
with lvi,j or osi,j for i, j ∈ N (indicating the jth reference in the local variable
array or the operand stack of the ith frame), followed by zero or more FieldIDs.

Definition 2 (State positions SPos). Let s=(〈fr0, . . . , frn〉, e, h, a) be a state
where each stack frame fr i has the form (ppi, lvi, osi). Then SPos(s) is the
smallest set containing all the following sequences π:

• π = lvi,j where 0 ≤ i ≤ n, lvi = oi,0, . . . , oi,mi
, 0 ≤ j ≤ mi. Then s|π is oi,j.

• π = osi,j where 0 ≤ i ≤ n, osi = o′i,0, . . . , o
′
i,ki

, 0 ≤ j ≤ ki. Then s|π is o′i,j.
• π = exc if e 6= ⊥. Then s|π is e.
• π = π′ v for some v ∈ FieldIDs and some π′ ∈ SPos(s) where h(s|π′) =

(cl , f) ∈ Instances and where f(v) is defined. Then s|π is f(v).

For any position π, let πs denote the maximal prefix of π such that πs ∈ SPos(s).
We write π if s is clear from the context.

In Fig. 5, F |lv0,0
= i1, F |lv0,1

= F |lv0,2
= o1. If h is F ’s heap, then h(o1) =

(List, f)∈Instances, where f(next)=null. So F |lv0,1 next=F |lv0,2 next=null.
Intuitively, a state s′ is an instance of a state s if they correspond to the

same program position and whenever there is a reference s′|π, then either the
values represented by s′|π in the heap of s′ are a subset of the values represented
by s|π in the heap of s or else, π is no position in s. Moreover, shared parts of
the heap in s′ must also be shared in s. Note that since s and s′ correspond to
the same position in a verified JBC program, s and s′ have the same number
of local variables and their operand stacks have the same size. In Def. 3, the

conditions (a)-(d) handle Integers, null, Unknown, and Instances, whereas
the remaining conditions concern equality and annotations. Here, the conditions
(e)-(g) handle the case where two positions π, π′ of s′ are also in SPos(s).

Definition 3 (Instance). Let s′ = (〈fr ′0, . . . , fr
′
n〉, e′, h′, a′) and s = (〈fr0, . . . ,

frn〉, e, h, a), where fr ′i = (pp′i, lv
′
i, os

′
i) and fr i = (ppi, lvi, osi). We call s′ an

instance of s (denoted s′ v s) iff ppi = pp′i for all i and for all π, π′ ∈ SPos(s′):

(a) if h′(s′|π)∈Integers and π∈SPos(s), then h′(s′|π) ⊆ h(s|π)∈Integers.
(b) if s′|π = null and π ∈ SPos(s), then s|π = null or h(s|π) ∈ Unknown.
(c) if h′(s′|π) = (cl ′, ?) ∈ Unknown and π ∈ SPos(s), then

h(s|π) = (cl , ?) ∈ Unknown and cl ′ is cl or a subtype of cl .
(d) if h′(s′|π) = (cl ′, f ′) ∈ Instances and π ∈ SPos(s), then h(s|π) = (cl , ?)

or h(s|π) = (cl ′, f) ∈ Instances, where cl ′ must be cl or a subtype of cl .
(e) if s′|π 6= s′|π′ and π, π′ ∈ SPos(s), then s|π 6= s|π′ .
(f) if s′|π = s′|π′ and π, π′ ∈ SPos(s) where h′(s′|π) ∈ Instances∪Unknown,

then s|π = s|π′ or s|π =? s|π′ .5

(g) if s′|π =? s′|π′ and π, π′ ∈ SPos(s), then s|π =? s|π′ .
(h) if

(
s′|π = s′|π′ or s′|π =? s′|π′ where h′(s′|π) ∈ Instances∪Unknown

)
and {π, π′} 6⊆ SPos(s) with π 6= π′, then s|π %$ s|π′ .

(i) if s′|π %$ s′|π′ , then s|π %$ s|π′ .
(j) if s′|π! holds, then s|π !.
(k) if there exist ρ, ρ′ ∈ FieldIDs∗ without common prefix

where ρ 6= ρ′, s′|πρ=s′|πρ′ , h′(s′|πρ) ∈ Instances∪Unknown,
and ({πρ, πρ′} 6⊆ SPos(s) or s|πρ=? s|πρ′), then s|π !.

In Fig. 5, we have F v O and N v O. Symbolic evaluation can continue in
the new generalized state O. It again leads to a node like G, where an integer
refinement is needed to continue. If the value in x is still not 1, eventually one
has to evaluate the loop condition again (in node P). Since P v O, we draw an
instance edge from P to O and can “close” this part of the termination graph.6

If the value in x is 1 (which is checked in state Q), we reach state R. Here,
the references o1 and o3 in l and c have been loaded on the operand stack and
one now has to execute the Putfield instruction which sets the next field of the
object at the address o1 to o3. To find out which references are affected by this
operation, we need to decide whether o1 = o3 holds. To this end, we perform an
equality refinement according to the annotation “o1 =? o3”.

Definition 4 (Equality refinement). Let s ∈ States where h is the heap of s
and where s contains “o =? o′”. Hence, h(o) ∈ Unknown or h(o′) ∈ Unknown.

5 For annotations concerning s|π with π ∈ SPos(s), we usually do not mention that
they are from the Annotations component of s, since s is clear from the context.

6 If P had not been an instance of O, we would have performed another widening step
and created a new node which is more general than O and P . By a suitably aggressive
widening strategy, one can ensure that after finitely many widening steps, one always
reaches a “fixpoint”. Then all states that result from further symbolic evaluation are
instances of states that already occurred earlier. In this way, we can automatically
generate a finite termination graph for any non-recursive JBC program.

W.l.o.g. let h(o) ∈ Unknown. Let s= = s[o/o′] and let s6= result from s by
removing “o =? o′”. Then {s=, s6=} is an equality refinement of s.

In Fig. 5, equality refinement of R results in S (where o1 =o3) and T (where
o1 6= o3 and thus, “o1 =? o3” was removed). In T ’s successor U , the next field
of o1 has been set to o3. However, o1 and o3 may join due to “o1 %$ o3”. So
in particular, T also represents states where o3 →+ o1. Thus, writing o3 to a
field of o1 could create a cyclic data object. Therefore, all non-concrete elements
in the abstracted object must be annotated with !. Consequently, our symbolic
evaluation has to extend our state with “o1!” and “o3!”. From U on, the graph
construction can be finished directly by evaluating the remaining instructions.

From the termination graph, one could generate the following 1-rule TRS
which describes the operations on the cycle of the termination graph.

fO(i6, List(null), o3) → fO(i6 − 1, List(null), List(o3)) | i6 > 0 ∧ i6 6= 1 (1)

Here we also took the condition from the states before O into account which
ensures that the loop is only executed for numbers x that are greater than 0.

As mentioned in Sect. 1, we regard TRSs where the integers and operations
like “−”, “>”, “6=” are built in [9] and we represent objects by terms. So essen-
tially, for any class C with n fields we introduce an n-ary function symbol C whose
arguments correspond to the fields of C. Hence, the object List(next = null)
is represented by the term List(null). A state like O is translated into a term
fO(. . .) whose direct subterms correspond to the exception component (if it is
not ⊥), the local variables, and the entries of the operand stack. Hence, Rule (1)
describes that in each loop iteration, the value of the 0th local variable decreases
from i6 to i6 − 1, the value of the 1st variable remains List(null), and the value
of the 2nd variable increases from o3 to List(o3). Termination of this TRS is easy
to show and indeed, AProVE proves termination of create automatically.

Getfield |x :o1 |o1
o1 = List(?) o1!

A

Getfield |x :o2 |o2
o2 = List(next = o3)
o3 = List(?) o2! o3!

o2 %$ o3 o2=
? o3

B

. . .

Getfield |x :o1 |o1
o1 = List(next = o1)

D

Getfield | x :null | null

C
〈 〉
exception: o2
o2 = NullPointer()

E

Fig. 6. Instance refinement and exceptions

Finally, we have a third kind
of refinement. This instance re-
finement is used if we need in-
formation about the existence or
the type of an Unknown instance.
Consider Fig. 6, where in state A
we want to access the next field of
the List object in o1. However, we
cannot evaluate Getfield, as the

instance in o1 is Unknown. To refine o1, we create a successor B where the
instance exists and is exactly of type List and a state C where o1 is null.

In A the instance may be cyclic, indicated by o1!. For this reason, the instance
refinement has to add appropriate annotations to B. For example, stateD (where
o1 is a concrete cyclic list) is an instance of B.

In C, evaluation of Getfield throws a NullPointer exception. If an excep-
tion handler for this type is defined, evaluation would continue there and a refer-
ence to the NullPointer object is pushed to the operand stack. But here, no such
handler exists and E reaches a program end. Here, the call stack is empty and

the exception component e is no longer ⊥, but an object o2 of type NullPointer.

Definition 5 (Instance refinement). Let s ∈ States where h is the heap of
s and h(o) = (cl , ?). Let cl1, . . . , cln be all non-abstract (not necessarily proper)
subtypes of cl . Then {snull , s1, . . . , sn} is an instance refinement of s. Here,
snull = s[o/ null] and in si, we replace o by a fresh reference oi pointing to
an object of type cl i. For all fields vi,1 . . . vi,mi

of cl i (where vi,j has type cl i,j),
a new reference oi,j is generated which points to the most general value vl i,j of
type cl i,j, i.e., (−∞,∞) for integers and cl i,j(?) for reference types. Then si is
(s + {oi 7→ (cl i, fi), oi,1 7→ vl i,1, . . . , oi,mi 7→ vl i,mi})[o/oi], where fi(vi,j) = oi,j
for all j. Moreover, new annotations are added in si: If s contained o′ %$ o, we
add o′ =? oi,j and o′ %$ oi,j for all j.7 If we had o!, we also add oi,j !, oi =? oi,j,
oi %$ oi,j, oi,j =? oi,j′ , and oi,j %$ oi,j′ for all j, j′ with j 6= j′.

2.3 Defining Symbolic Evaluation and Termination Graphs

To define symbolic evaluation formally, for every JINJA instruction, we formulate
a corresponding inference rule for symbolic evaluation of our abstract states. This
is straightforward for all JINJA instructions except Putfield. Thus, in Def. 6
we only present the rules corresponding to a simple JINJA Bytecode instruction
(Load) and to Putfield. We will show in Sect. 3 that on non-abstract states,
our inference rules indeed simulate the semantics of JINJA.

For a state s whose topmost frame has m local variables with values o0, . . . ,
om, “Load b” pushes the value ob of the bth local variable to the operand stack.
Executing “Putfield v” in a state with the operand stack o0, o1, . . . , ok means
that one wants to write o0 to the field v of the object at address o1. This is only
allowed if there is no annotation “o1 =? o” for any o. Then the function f that
maps every field of o1 to its value is updated such that v is now mapped to o0.

Putfield | . . . | o0, o1
p=List(next=o1)
o1=List(next=null)
o0=List(next=null)

c

. . . | . . . | ε
p=List(next=o1)
o1=List(next=o0)
o0=List(next=null)

c′

Putfield | . . . | o0, o1
p=List(?) p%$ o1
o1=List(next=null)
o0=List(?)

s

. . . | . . . | ε
p=List(?) p%$ o1
o1=List(next=o0)
o0=List(?) p%$ o0

s′

v

v

Fig. 7. Putfield and annotations

However, we may also have to
update annotations when evaluat-
ing Putfield. Consider the con-
crete state c and the abstract
state s in Fig. 7. We have c v s, as
the connection between p and o1
in c (i.e., p →∗c o1) was replaced
by “p %$ o1” in s. In both states,
we consider a Putfield instruc-

tion which writes o0 into the field next of o1. For c, we obtain the state c′ where
we we now also have p →∗c′ o0. However, to evaluate Putfield in the abstract
state s, it is not sufficient to just write o0 to the field next of o1. Then c′ would
not be an instance of the resulting state s′, since s′ would not represent the
connection between p and o0. Therefore, we have to add “p %$ o0” in s′. Now
c′ v s′ indeed holds. A similar problem was discussed for node U of Fig. 5, where
we had to add “!” annotations after evaluating Putfield.

7 Of course, if cl i,j and the type of o′ have no common subtype or one of them is int,
then o′ =? oi,j does not need to be added.

To specify when we need such additional annotations, for any state s let
o ∼s o′ denote that “o =? o′” or “o %$ o′” is contained in s. Then we define s

as →∗s ◦ (= ∪ ∼s), i.e., o s o
′′ iff there is an o′ with o→∗s o′, where o′ = o′′ or

o′ ∼s o′′. We drop the index “s” if s is clear from the context. For example, in
Fig. 7, we have p→∗c′ o1, p→∗c′ o0 and p s′ o1, p s′ o0.

Consider a Putfield instruction which writes the reference o0 into the in-
stance referenced by o1. After evaluation, o1 may reach any reference q that
could be reached by o0 up to now. Moreover, q cannot only be reached from o1,
but from every reference p that could possibly reach o1 up to now. Therefore,
we must add “p %$ q” for all p, q with p ∼ o1 and o0 q.

Moreover, Putfield may create new non-tree shaped objects if there is a
reference p that can reach a reference q in several ways after the evaluation.
This can only happen if p q and p o1 held before (otherwise p would
not be influenced by Putfield). If the new field content o0 could also reach
q (o0 q), a second connection from p over o0 to q may be created by the
evaluation. Then we have to add “p!” for all p for which a q exists such that
p q, p o1, and o0 q.8 It suffices to do this for references p where the
paths from p to o1 and from p to q do not have a common non-empty prefix.

Finally, o0 could have reached a non-tree shaped object or a reference q
marked with !. In this case, we have to add “p!” for all p with p ∼ o1.

In Def. 6, for any mapping h, let h + {k 7→ d} be the function that maps k
to d and every k′ 6= k to h(k′). For pp ∈ ProgPos, let pp+ 1 be the position of
the next instruction. Moreover, instr(pp) is the instruction at position pp.

Definition 6 (Symbolic evaluation
SyEv−→). For every JINJA instruction, we

define a corresponding inference rule for symbolic evaluation of states. We write

s
SyEv−→ s′ if s is transformed to s′ by one of these rules. Below, we give the rules

for Load and Putfield (in the case where no exception was thrown). The rules
for the other instructions are analogous.

s = (〈(pp, lv, os), fr1, . . . , frn〉,⊥, h, a)
instr(pp) = Load b lv = o0, . . . , om os = o′0, . . . , o

′
k

s′ = (〈(pp+ 1, lv, os′), fr1, . . . , frn〉,⊥, h, a) os′ = ob, o
′
0, . . . , o

′
k

s = (〈(pp, lv, os), fr1, . . . , frn〉,⊥, h, a)
instr(pp) = Putfield v os = o0, o1, o2, . . . , ok

h(o1) = (cl , f) ∈ Instances a contains no annotation o1 =? o

s′ = (〈(pp+ 1, lv, os′), fr1, . . . , frn〉,⊥, h′, a′) os′ = o2, . . . , ok
h′ = h+ (o1 7→ (cl , f ′)) f ′ = f + (v 7→ o0)

In the rule for Putfield, a′ contains all annotations in a, and in addition:
• a′ contains “p %$ q” for all p, q with p ∼s o1 and o0 s q
• a′ contains “p!” for all p where p s q, p s o1, o0 s q for some q, and

where the paths from p to o1 and p to q have no common non-empty prefix.

8 This happened in state T of Fig. 5 where o3 was written to the field of o1. We already
had o1 T o3 and o3 T o1, since T contained the annotation “o1 %$ o3”. Hence,
in the successor state U of T , we had to add the annotations “o1!” and “o3!”.

• if a contains “q!” for some q with o0 →∗s q or if there are π, ρ, ρ′ with ρ 6= ρ′

where s|π = o0 and s|πρ = s|πρ′ , then a′ contains “p!” for all p with p ∼s o1.

Finally, we define termination graphs formally. As illustrated, termination
graphs are constructed by repeatedly expanding those leaves that do not cor-
respond to program ends (i.e., where the call stack is not empty). Whenever
possible, we evaluate the abstract state in a leaf (resulting in an evaluation edge
Eval−→). If evaluation is not possible, we use a refinement to perform a case analysis

(resulting in refinement edges
Ref−→). To obtain a finite graph, we introduce more

general states whenever a program position is visited a second time in our sym-

bolic evaluation and add appropriate instance edges
Ins−→ . However, we require

all cycles of the termination graph to contain at least one evaluation edge.

Definition 7 (Termination graph). A graph (N,E) with N ⊆ States and
E ⊆ N×{Eval,Ref, Ins}×N is a termination graph if every cycle contains at
least one edge labelled with Eval and one of the following holds for each s ∈ N :

• s has just one outgoing edge (s,Eval, s′) and s
SyEv−→ s′.

• There is a refinement {s1, . . . , sn} of s according to Def. 1, 4, or 5, and the
outgoing edges of s are (s,Ref, s1), . . . , (s,Ref, sn).
• s has just one outgoing edge (s, Ins, s′) and s v s′.
• s has no outgoing edge and s = (ε, e, h, a).

3 Simulating JBC by Concrete States

In this section we show that if one only regards concrete states, the rules for
symbolic evaluation in Def. 6 correspond to the operational semantics of JINJA.

Definition 8 (Concrete states). Let c ∈ States and let h be the heap of c.
We call c concrete iff c contains no annotations and for all π ∈ SPos(c), either
c|π = null or h(c|π) ∈ Instances∪{[z, z] | z ∈ Z}.

Def. 9 recapitulates the definition of JINJA states from [12] in a formulation
that is similar to our states. However, integers are not represented by references,
there are no integer intervals, no unknown values, and no annotations.

Definition 9 (JINJA states). Let Val = Z ∪References. Then we define:

JinjaStates = (ProgPos×JinjaLocVar×JinjaOpStack)∗×
({⊥} ∪References)× JinjaHeap

JinjaLocVar = Val∗

JinjaOpStack = Val∗

JinjaHeap = References→ JinjaInstances
JinjaInstances = Classnames×(FieldIDs→ Val)

To define a function trans which maps each JINJA state to a corresponding
concrete state, we first introduce a function trVal : Val → References with
trVal(o) = o for all o ∈ References. Moreover, trVal maps every z ∈ Z to a
fresh reference oz. Later, the value of oz in the heap will be the interval [z, z].

Now we define tr Ins : JinjaInstances→ Instances. For any f : FieldIDs

→ Val, let tr Ins(cl , f) = (cl , f̃), where f̃(v) = trVal(f(v)) for all v ∈ FieldIDs.
Next we define trHeap : JinjaHeap → Heap. For any h ∈ JinjaHeap,

trHeap(h) is a function from References to Integers ∪ Instances. For any
o ∈ References, let trHeap(h)(o) = tr Ins(h(o)). Furthermore, we need to add
the new references for integers, i.e., trHeap(h)(oz) = [z, z] for all z ∈ Z.

Let trFrame : (ProgPos×JinjaLocVar×JinjaOpStack) → (ProgPos

×LocVar×OpStack) with trFrame(pp, lv, os) = (pp, l̃v, õs). If lv = o0, . . . , om,

os = o′0, . . . , o
′
k, then l̃v = trVal(o0), . . . , trVal(om), õs = trVal(o

′
0), . . . , trVal(o

′
k).

Finally we define trans : JinjaStates→ States. For any j ∈ JinjaStates
with j = (〈fr0, . . . , frn〉, e, h), let trans(j) = (〈trFrame(fr0), . . . , trFrame(frn)〉,
e′, trHeap(h),∅), where e′ = ⊥ if e = ⊥ and e′ = trVal(e) otherwise.

For j, j′ ∈ JinjaStates, j
jvm−→ j′ denotes that evaluating j one step accord-

ing to the semantics of JINJA [12] leads to j′. Thm. 10 shows that
jvm−→ can be

simulated by the evaluation of concrete states as defined in Def. 6, cf. Fig. 1.

Theorem 10 (Evaluation of concrete states simulates JINJA evalua-

tion). For all j, j′ ∈ JinjaStates, j
jvm−→ j′ implies trans(j)

SyEv−→ trans(j′).

Proof. We give the proof for the most complex JINJA instruction (i.e., Putfield
in the case where no exception was thrown). The proof is analogous for the other

instructions. Here,
jvm−→ is defined by the following inference rule.

j = (〈(pp, lv, os), fr1, . . . , frn〉,⊥, h) instr(pp) = Putfield v
os = o0, o1, o2, . . . , ok h(o1) = (cl , f) ∈ JinjaInstances

j′ = (〈(pp+ 1, lv, os′), fr1, . . . , frn〉,⊥, h′) os′ = o2, . . . , ok
h′ = h+ (o1 7→ (cl , f ′)) f ′ = f + (v 7→ o0)

Let j
jvm−→ j′ by the above rule. Then trans(j) = (〈(pp, l̃v, õs), trFrame(fr1),

. . . , trFrame(frn)〉,⊥, trHeap(h),∅) with õs = trVal(o0), trVal(o1), . . . , trVal(ok).

Note that trVal(o1) = o1. Moreover, trans(j′) = (〈(pp+ 1, l̃v, õs′), trFrame(fr1),

. . . , trFrame(frn)〉,⊥, trHeap(h′),∅) with õs′ = trVal(o2), . . . , trVal(ok).

On the other hand, by Def. 6 for c = trans(j), we have c
SyEv−→ c′ with c′ =

(〈(pp+ 1, l̃v, õs′), trFrame(fr1), . . . , trFrame(frn)〉,⊥, trHeap(h)′,∅). It remains to
show that trHeap(h′) = trHeap(h)′. For any new reference oz for integers, we have
trHeap(h′)(oz) = [z, z] = trHeap(h)′(oz). For any o ∈ References \{o1}, we
have trHeap(h′)(o) = tr Ins(h′(o)) = tr Ins(h(o)) and trHeap(h)′(o) = trHeap(h)(o)

= tr Ins(h(o)). Finally, trHeap(h′)(o1) = tr Ins(h′(o1)) = tr Ins(cl , f ′) = (cl , f̃ ′)

where f̃ ′(v) = trVal(o0) and f̃ ′(w) = trVal(f(w)) for all w ∈ FieldIDs \{v}.
Moreover, trHeap(h)′(o1) = (cl , (f̃)′) where (f̃)′(v) = trVal(o0) and (f̃)′(w) =

f̃(w) = trVal(f(w)) for all w ∈ FieldIDs \{v}. ut

4 Simulating Concrete States by Abstract States

Now we show that our symbolic evaluation on abstract states is indeed consistent
with the evaluation of all represented concrete states, cf. the upper half of Fig. 1.

Theorem 11 (Evaluation of abstract states simulates evaluation of con-

crete states). Let c, c′, s ∈ States, where c is concrete, c
SyEv−→ c′, c v s, and

s occurs in a termination graph G. Then G contains a path s(
Ins−→ ∪ Ref−→)∗

◦ Eval−→ s′ such that c′ v s′.
Proof. We prove the theorem by induction on the sum of the lengths of all paths

from s to the next
Eval−→ edge. This sum is always finite, since every cycle of a

termination graph contains an evaluation edge, cf. Def. 7. We perform a case

analysis on the type of the outgoing edges of s. If there is an edge s
Ins−→ s̃,

and hence s v s̃, we prove transitivity of v (Lemma 13, Sect. 4.1). Then c v s
implies c v s̃ and the claim follows from the induction hypothesis.

If the outgoing edges of s are
Ref−→ edges (i.e., s

Ref−→ s1, . . . , s
Ref−→ sn), we show

that our refinements are “valid”, i.e., c v s implies c v sj for some sj (Lemmas
14-16, Sect. 4.2). Again, then the claim follows from the induction hypothesis.

Finally, if the first step is an
Eval−→-step (i.e., s

SyEv−→ s′), we prove the correct-

ness of the
SyEv−→ relation on abstract states (Lemma 19, Sect. 4.3). ut

With Thm. 10 and 11, we can prove the “soundness” of termination graphs.

Corollary 12 (Soundness of termination graphs). Let j1 ∈ JinjaStates

have an infinite evaluation j1
jvm−→ j2

jvm−→ . . . and let G be a termination graph
with a state s11 such that trans(j1) v s11. Then G contains an infinite compu-
tation path s11, . . . , s

n1
1 , s12, . . . , s

n2
2 , . . . such that trans(ji) v s1i for all i.

Proof. The corollary follows directly from Thm. 10 and 11, cf. Sect. 1. ut
As shown in [15, Thm. 3.7], if the TRS resulting from a termination graph

is terminating, then there is no infinite computation path. Thus, Cor. 12 proves
the soundness of our approach for automated termination analysis of JBC.

4.1 Transitivity of v
Lemma 13 (v transitive). If s′′ v s′ and s′ v s, then also s′′ v s.
Proof. We prove the lemma by checking each of the conditions in Def. 3. Here, we
only consider Def. 3(a)-(d) and refer to [3] for the (similar) proof of the remaining
conditions. Let π ∈ SPos(s) and let h (h′, h′′) be the heap of s (s′, s′′). Note
that π ∈ SPos(s) implies π ∈ SPos(s′) and π ∈ SPos(s′′), cf. [15, Lemma 4.1].

(a) If h′′(s′′|π) ∈ Integers, then because of s′′ v s′ also h′(s′|π) ∈ Integers
and thus h(s|π) ∈ Integers. We also have h′′(s′′|π) ⊆ h′(s′|π) ⊆ h(s|π).

(b) If s′′|π = null , then by s′′ v s′ we have either
s′|π = null and thus, s|π = null or h(s|π) ∈ Unknown

or h′(s′|π) ∈ Unknown and thus, h(s|π) ∈ Unknown.
(c) If h′′(s′′|π) = (cl ′′, ?), then h′(s′|π) = (cl ′, ?) and thus also h(s|π) = (cl , ?).

Here, cl ′′ is cl ′ or a subtype of cl ′, and cl ′ is cl or a subtype of cl .
Note that the subtype relation of JBC types is transitive by definition.

(d) If h′′(s′′|π) = (cl ′′, f ′′) ∈ Instances, then either

h′(s′|π) = (cl ′, ?) and thus, also h(s|π) = (cl , ?)
or h′(s′|π) = (cl ′′, f ′) ∈ Instances and thus,

either h(s|π) = (cl , ?) or h(s|π) = (cl ′′, f) ∈ Instances.
Again, cl ′′ is cl ′ or a subtype of cl ′, and cl ′ is cl or a subtype of cl . ut

4.2 Validity of refinements

We say that a refinement ρ : States→ 2States is valid iff for all s ∈ States and
all concrete states c, c v s implies that there is an s′ ∈ ρ(s) such that c v s′.
We now prove the validity of our refinements from Def. 1, 4, and 5.

Lemma 14. The integer refinement is valid.

Proof. Let {s1, . . . , sn} be an integer refinement of s where si = (s + {oi 7→
Vi})[o/oi] and hs(o) = V = V1 ∪ . . . ∪ Vn ⊆ Z for the heap hs of s.

Let c be a concrete state with heap hc and c v s. Let Π = {π ∈ SPos(s) |
s|π = o}. By Def. 3(e), there is a z ∈ Z such that hc(c|π) = [z, z] for all π ∈ Π.
Let z ∈ Vi and let hsi be the heap of si. Then hsi(si|π) = Vi for all π ∈ Π.

To show c v si, we only have to check condition Def. 3(a). Let τ ∈ SPos(c)∩
SPos(si) with hc(c|τ) = [z′, z′] ∈ Integers. If τ 6∈ Π, then this position was
not affected by the integer refinement and thus, hc(c|τ) ⊆ hs(s|τ) = hsi(si|τ). If
τ ∈ Π, then we have z′ = z and thus hc(c|τ) ⊆ Vi = hsi(si|τ). ut

Lemma 15. The equality refinement is valid.

Proof. Let {s=, s6=} be an equality refinement of s, using the annotation o =? o′.
Let c be a concrete state with c v s. We want to prove that c v s6= or c v s=.

Let Π = {τ ∈SPos(s) |s|τ =o}, Π ′ = {τ ′∈SPos(s) |s|τ ′ =o′}. By Def. 3(e)
there are oc and o′c with c|τ = oc for all τ ∈ Π and c|τ ′ = o′c for all τ ′ ∈ Π ′.

If oc 6= o′c, we trivially have c v s6=, as s6= differs from s only in the removed
annotation “o =? o′” which is not needed when regarding instances like c.

s

o o′

τ τ ′

β η

s=

o′

τ τ ′

β
η

Fig. 8. Illustrating Lemma 15

If oc = o′c, we prove c v s=. The
only change between s and s= was
on or below positions in Π. Consider
Fig. 8, where a state s with s|τ = o
and s|τ ′ = o′ is depicted on the left

(i.e., τ ∈ Π and τ ′ ∈ Π ′). When we perform an equality refinement and replace
o by o′, we reach the state s= on the right. As illustrated there, we can decom-
pose any position π ∈ SPos(s=) with a prefix in Π into τβη, where τ is the
shortest prefix in Π and τβ is the longest prefix with s=|τβ = s=|τ .

With this decomposition, we have s=|τ = s|τ ′ for τ ′ ∈ Π ′ and thus s=|τβη =
s=|τη = s=|τ ′η = s|τ ′η. For c v s=, we now only have to check the conditions of
Def. 3 for any position of s= of the form τβη as above. Then the claim follows
directly, as the conditions of Def. 3 already hold for τ ′η, since c v s. ut

Lemma 16. The instance refinement is valid.

Proof. Let S = {snull , s1, . . . , sn} be an instance refinement of s on reference o.
Let c be concrete with heap hc and c v s. We prove that c v s′ for some s′ ∈ S.

By Def. 5, hs(o) = (cl , ?), where hs is the heap of s. Let Π = {π ∈ SPos(s) |
s|π = o}. The instance refinement only changed values at positions in Π and
below. It may have added annotations for references at other positions, but as
annotations only allow more sharing effects, we do not have to consider these
positions. By Def. 3(e), there is an oc such that c|π = oc for all π ∈ Π. If
oc = null , we set s′ = snull . If hc(oc) = (cl i, f), we set s′ = si, where si is
obtained by refining the type cl to cl i. Now one can prove c v s′ by checking all
conditions of Def. 3, as in the proof of Lemma 13. For the full proof, see [3]. ut

4.3 Correctness of symbolic evaluation

Finally, we prove that every evaluation of a concrete state is also represented
by the evaluation of the corresponding abstract state. This is trivial for most
instructions, since they only affect the values of local variables or the operand
stack. The only instruction which changes data objects on the heap is Putfield.

c′

o1 o0
τ v

α

η

Fig. 9. Illustrating Lemma 17

Consider the evaluation of a concrete state c
to another state c′ by executing “Putfield v”
which writes o0 to the field v of the object at ad-
dress o1. Similar to the proof of Lemma 15, ev-
ery position π of c′ where the state was changed
can be decomposed into π = τβη. Here, the first

part τ leads to o1 and it is the longest prefix that is not affected by the evalu-
ation of Putfield. Similarly, the last part η is the longest suffix of π that was
not changed by evaluating Putfield. So in particular, c′|τβ = o0. The middle
part β contains those parts that were actually changed in the evaluation step. So
usually, β is just the field v. However, if o0 →∗c o1, then the object at o1 in c′ has
become cyclic and then β can be more complex. Consider Fig. 9, where c′|τ = o1
and regard the position π = τv α v η. Here, the position π was influenced twice
by the evaluation, as the middle part β = v α v contains a cycle using the field
v. In the following, let π1 < π2 denote that π1 is a proper prefix of π2 and let ≤
be the reflexive closure of <.

Definition 17 (Change of concrete states by Putfield). Let c ∈ States be
concrete with “ Putfield v” as the next instruction to be evaluated and c|os0,1 6=
null . Let c

SyEv−→ c′ (i.e., in c′, the object at reference c|os0,0 has been written
to the field v of the object at reference c|os0,1). Then δ denotes the function that
maps positions in c′, which has a shorter operand stack than c, to positions in
c, i.e., δ(w π) = w π if w 6= os0,j and δ(w π) = os0,j+2 π if w = os0,j. For any
π ∈ SPos(c′) with c′|π 6= c|δ(π), its Putfield-decomposition is π = τβη, where

• τ is the shortest prefix of π such that both c′|τ = c|os0,1 and τ v ≤ π,
• β is the longest position of the form β = v α1 v α2 v . . . v αn v for some n ≥ 0

where τβ ≤ π, c′|τ v αj = c|os0,1 , and c′|τ v ρ 6= c|os0,1 for all ρ < αj and all
1 ≤ j ≤ n. Note that this implies c′|τ β = c′|τ v = c|os0,0 and c′|π = c|os0,0 η.

We now show that Putfield-decompositions can be lifted to abstract states.

Lemma 18 (Change of abstract states by Putfield). Let s ∈ States with

“ Putfield v” as next instruction and s|os0,1 6= null . Let s
SyEv−→ s′ and let c be

concrete with c v s and c
SyEv−→ c′. For any π ∈ SPos(s′) ∩ SPos(c′), we have:

• If c′|π = c|δ(π), then s′|π = s|δ(π).
• If c′|π 6= c|δ(π), then for the corresponding Putfield-decomposition π = τβη,

we have s′|τ = s|os0,1 , s′|τβ = s′|τ v = s|os0,0 , and s′|π = s|os0,0 η.

Proof. Note that s|os0,1 6= null also implies c|os0,1 6= null , since c v s. Hence,
c′|π = c|δ(π) means that the position π is not influenced by the Putfield in-
struction. This implies that we also have s′|π = s|δ(π).

Now let c′|π 6= c|δ(π). Since τ is the shortest prefix with c′|τ = c|os0,1 and τ v
≤ π, this path is not affected by the evaluation, i.e., c′|τ = c|δ(τ) and s′|τ = s|δ(τ).

Assume that s′|τ 6= s|os0,1 . As s
SyEv−→ s′, we have hs(s|os0,1) ∈ Instances,

where hs is the heap of the state s. But then, as c|δ(τ) = c′|τ = c|os0,1 and

s|δ(τ) = s′|τ 6= s|os0,1 , c v s implies s|δ(τ) =? s|os0,1 . This contradicts the

definition of =?, which requires that at least one of hs(s|δ(τ)) and hs(s|os0,1) must
be in Unknown. But here, we do not only have hs(s|os0,1) ∈ Instances, but
also hs(s|δ(τ)) ∈ Instances. The reason for the latter is that since π ∈ SPos(s′)
and τ < π, we have hs′(s

′|τ) ∈ Instances and thus also hs(s|δ(τ)) ∈ Instances
(recall that s′|τ = s|δ(τ)). Thus, we have shown that s′|τ = s|os0,1 . The proof for
s′|τβ = s|os0,0 works analogously (see [3] for details). As η was not affected by
Putfield, s′|τβ = s|os0,0 implies s′|π = s|os0,0 η. ut

Now we can finally prove the correctness of our evaluation on abstract states.

Lemma 19 (Correctness of evaluation on abstract states). Let c, s ∈
States with c concrete and c v s. If c

SyEv−→ c′ and s
SyEv−→ s′, then c′ v s′.

Proof. For all instructions except Putfield, the claim is obvious. Therefore, we
prove the lemma for “Putfield v”, which writes the reference c|os0,0 to the field
v of the instance referenced by c|os0,1 . As the case for c|os0,1 = null (leading to
an exception) is trivial, we will not consider it here and assume c|os0,1 6= null .
To prove that c′ v s′, we consider each of the conditions of Def. 3.

For Def. 3(a), (b), (d), (e), (f), for any π ∈ SPos(c′), there are two possibil-
ities. We either have c′|π = c|δ(π) and therefore also s′|π = s|δ(π) by Lemma 18.
Then the condition on c′|π and s′|π that is needed for c′ v s′ follows from the
respective condition on c|δ(π) and s|δ(π), since c v s. Otherwise, c′|π 6= c|δ(π).
By Lemma 18, there is a position η such that c′|π = c|os0,0 η and s′|π = s|os0,0 η.
Now the condition on c′|π and s′|π that is needed for c′ v s′ follows from the
respective condition on c|os0,0 η and s|os0,0 η, since we have c v s.

Def. 3 (c), (g), (i), (j) are not applicable, since c is a concrete state. It remains
to consider (h) and (k). We only give the proof for (h), since the proof for (k) is
analogous. Let hc, hc′ , hs, hs′ be the heaps of c, c′, s, and s′. We have c′|π = c′|π′

and {π, π′} 6⊆ SPos(s′). We only handle the case where π 6∈ SPos(s′) and
π′ ∈ SPos(s′) and where both π, π′ 6∈ SPos(s′). The remaining case is analogous
to the first. We now have four possibilities (1)-(4):

(1) c′|π = c|δ(π) and c′|π′ = c|δ(π′), i.e., neither π nor π′ were affected by the

Putfield operation. Then {δ(π), δ(π′)} 6⊆ SPos(s) and thus due to c v s,
we have s|

δ(π)
%$ s|

δ(π′)
and thus also s′|π %$ s′|π′ .

(2) c′|π 6= c|δ(π) and c′|π′ = c|δ(π′), i.e., only π was affected by Putfield. Let π =
τβη be the Putfield-decomposition. We can then distinguish three subcases:

(2.1) τβ ∈ SPos(s′) and π = τβη 6∈ SPos(s′). Then also os0,0 η 6∈ SPos(s),
because otherwise the object at position hs(s|os0,0 η) would have been
written to position π = τβη in s′. We have c|δ(π′) = c′|π′ = c′|π = c|os0,0 η
and as c v s, we have s|

δ(π′)
%$ s|os0,0 η. Note that os0,0 η = os0,0 η̃ for

some η̃ ≤ η. Thus also s′|π′ %$ s′|τβη̃ and hence, s′|π′ %$ s′|π.
(2.2) τ ∈ SPos(s′) and τβ 6∈ SPos(s′). Then for β = v α1 v α2 v . . . αn v,

there is a minimal j with τ v α1 . . . v αj 6∈ SPos(s′). We then also have
os0,0 αj 6∈ SPos(s). As c|os0,1 = c|os0,0 αj

by construction of the decom-
position and as c v s, we have s|os0,1 %$ s|os0,0 α̃j

for some α̃j ≤ αj .
If {δ(π′),os0,0 η} ⊆ SPos(s), by c v s, we have s|δ(π′) = s|os0,0 η or

s|δ(π′) =? s|os0,0 η. If {δ(π′),os0,0 η} 6⊆ SPos(s), by c v s, we have
s|
δ(π′)

%$ s|os0,0 η̃ for some η̃ ≤ η. Both cases imply s|os0,0 s|
δ(π′)

.

As we have s|os0,0 α̃j
∼ s|os0,1 and s|os0,0 s|

δ(π′)
, the first rule for

the annotation additions (from Def. 6) requires s′|τ v α̃j
%$ s′|π′ . Hence,

s′|τ v α1... v α̃j
%$ s′|π′ and thus, s′|π %$ s′|π′ .

(2.3) τ 6∈ SPos(s′). Then also δ(τ) 6∈ SPos(s) and as c|δ(τ) = c|os0,1 and c v s,
we have s|

δ(τ)
%$ s|os0,1 . We also have c|os0,0 η = c|δ(π′) and thus either

s|os0,0 η̃ = s|
δ(π′)

, s|os0,0 η̃ =? s|
δ(π′)

, or s|os0,0 η̃ %$ s|
δ(π′)

for η̃ ≤ η. In all

cases, s|os0,0 s|
δ(π′)

. Together with s|
δ(τ)
∼ s|os0,1 , the first rule for

the annotation additions requires s′|τ %$ s′|π′ and hence, s′|π %$ s′|π′ .
(3) c′|π = c|δ(π) and c′|π′ 6= c|δ(π′), i.e., only π′ was affected by the Putfield

operation. This is analogous to Case (2).
(4) c′|π 6= c|δ(π) and c′|π′ 6= c|δ(π′), i.e., both π, π′ were affected by Putfield.

This is proved by a case analysis similar to Case (2) (see [3] for details). ut

5 Conclusion

In this paper, we have shown that termination graphs correctly simulate the
evaluation of JBC. To this end, we first gave a formal definition of termination
graphs (Sect. 2). Then we showed that our notion of symbolic evaluation in these
graphs corresponds to the operational semantics of JINJA Bytecode, as long as
we are restricted to concrete states (Sect. 3). Afterwards, we proved that every
evaluation of concrete states is simulated by a path on abstract states in the
termination graph (Sect. 4). Together with the results of [15], this proves the
soundness of our approach for automated termination analysis of JBC. Here, JBC
is first transformed into termination graphs. Afterwards, one generates TRSs
from these graphs and uses existing tools to prove their termination.

The result of the current paper (i.e., the proof that every JBC evaluation
is represented by the termination graph) is also useful outside of termination
analysis, since termination graphs could also be used for analysis of nullness,
sharing, exceptions, etc. Compared to other static analysis techniques, termina-

tion graphs perform less abstraction and therefore, while the analysis may be
more time-consuming, it can be more precise. Developing such other analyses
that build upon termination graphs is the subject of future work.

Acknowledgement. J. Giesl wants to thank C. Walther for having introduced
him to many of the research areas that are relevant for this paper (e.g., induction
and symbolic evaluation [19], termination [20], and semantics [21]).

References

1. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, D. Zanardini. Termination
analysis of Java Bytecode. In Proc. FMOODS ’08, LNCS 5051, pages 2–18, 2008.

2. J. Berdine, B. Cook, D. Distefano, P. O’Hearn. Automatic termination proofs for
programs with shape-shifting heaps. Proc. CAV ’06, LNCS 4144, p. 386-400, 2006.

3. M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl. Termination graphs for
Java Bytecode. Technical Report AIB-2010-15, RWTH Aachen, 2010. http://

aib.informatik.rwth-aachen.de.
4. M. Colón and H. Sipma. Practical methods for proving program termination. In

Proc. CAV ’02, LNCS 2404, pages 442–454, 2002.
5. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.

In Proc. PLDI ’06, pages 415–426. ACM Press, 2006.
6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.
POPL ’77, pages 238–252. ACM Press, 1977.

7. D. De Schreye and S. Decorte. Termination of logic programs: The never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

8. N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3(1-2):69–116, 1987.
9. C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, S. Falke. Proving termination

of integer term rewriting. In Proc. RTA ’09, LNCS 5595, pages 32–47, 2009.
10. J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, R. Thiemann. Auto-

mated termination proofs for Haskell by term rewriting. ACM TOPLAS, to appear.
11. J. Giesl, P. Schneider-Kamp, R. Thiemann. AProVE 1.2: Automatic termination

proofs in the DP framework. Proc. IJCAR ’06, LNAI 4130, pages 281–286, 2006.
12. G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual

machine and compiler. ACM TOPLAS, 28(4):619–695, 2006.
13. T. Lindholm and F. Yellin. Java Virtual Machine Specification. Prentice Hall, 1999.
14. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic. LNCS 2283. Springer, 2002.
15. C. Otto, M. Brockschmidt, C. von Essen, J. Giesl. Automated termination analysis

of Java Bytecode by term rewriting. Proc. RTA ’10, LIPIcs 6, p. 259-276, 2010.
16. P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated termi-

nation proofs for logic programs by term rewriting. ACM TOCL, 11(1), 2009.
17. M. H. Sørensen and R. Glück. An algorithm of generalization in positive super-

compilation. In Proc. ILPS ’95, pages 465–479. MIT Press, 1995.
18. F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java Bytecode

based on path-length. ACM TOPLAS, 32(3), 2010.
19. C. Walther. Mathematical induction. In Handbook of Logic in Artificial Intelligence

and Logic Programming, volume 2, pages 127–227. Oxford University Press, 1994.
20. C. Walther. On proving the termination of algorithms by machine. Artificial

Intelligence, 71(1):101–157, 1994.
21. C. Walther. Semantik und Programmverifikation. Teubner-Wiley, 2001.

