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Abstract. Simply-typed set-theoretic languages such as Z and B are
widely used for program and system specifications. The main technique
for reasoning about such specifications is induction. However, while par-
tiality is an important concept in these languages, many standard ap-
proaches to automating induction proofs rely on the totality of all oc-
curring functions. Reinterpreting the second author’s recently proposed
induction technique for partial functional programs, we introduce in this
paper the new principle of “closure induction” for reasoning about the
inductive properties of partial functions in simply-typed set-theoretic
languages. In particular, closure induction allows us to prove partial
correctness, that is, to prove those instances of conjectures for which
designated partial functions are explicitly defined.

1 DMotivation

Partial functions are endemic in specifications written in languages such as Z and
B. To reason about their inductive properties a method amenable to mechanical
support by automated theorem provers is inevitable. In [13], Giesl has shown
that, under certain conditions, many of the reasoning processes used to prove
inductive properties of total functions (e.g., those in [5,9,19,25,27]) may be
transposed to partial functions. The inference rules proposed by Giesl allow us
to prove conjectures involving partial functions for all instances of the conjecture
for which designated partial functions are explicitly defined.

However, Giesl’s technique has been designed for a first-order functional lan-
guage with an eager (call-by-value) evaluation strategy. In this paper, we exam-
ine thoroughly which interpretation of partiality and which restrictions on the
allowed theories are required in order to extend Giesl’s induction principle from
the original functional programming framework to a simply-typed set-theoretic
language closely related to Z and B.

We refer to our new principle as “closure induction”, since instances of it may
be described within our set-theoretic language itself, and these instances may be
viewed as “closure axioms” for a function definition, asserting that the function
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is defined in only those cases explicitly specified. For the soundness of closure
induction we must make certain assumptions about the semantics of types (i.e.,
the carrier of a type must include “undefined” values that can be used as the
value of a partial function when applied outside of its domain). We describe an
appropriate semantics for our language in Section 2.

Our approach to induction is applicable to languages such as Z and B if they
too assume our semantics. This semantics is, we claim, not very restrictive; we
would argue that it imposes the minimal requirements needed in order to distin-
guish between defined and undefined expressions. A commonplace interpretation
of partial-function application in the Z community [1,24] is that any such ap-
plication always returns a value in the function’s range type; we refer to this as
the “classical” semantics. In such a framework we cannot distinguish between
defined and undefined function applications. However, there is some debate as to
whether this is the appropriate interpretation of function application [17], and
our alternative semantics has already gained some interest within the Z commu-
nity via its earlier presentation in a more general set-theoretic framework [11].
Apparently, no particular semantics is fixed by the standard definition of Z [20,
21]. Moreover, our semantics may be simulated within the classical semantics in
a straightforward way [11]; this allows us to simulate our approach to induction
in the CADIZ system [22], a tool for reasoning about Z specifications, which
currently supports the classical semantics.

In Section 3 we formalize our concept of inductive validity in the context of
partial functions and in Section 4 we introduce the technique of closure induction
in order to perform induction proofs automatically. We then discuss conditions
under which closure induction is sound. We formalize these conditions in terms
of rewriting, and it may thus come as no surprise that a confluence property
forms part of the conditions. In particular, we show that the applicability of clo-
sure induction extends beyond the “orthogonal” equational theories considered
previously by Giesl [13]. Finally, in Section 5 we present some further rules that
are needed in addition to closure induction to verify definedness conditions that
arise in most proofs about partial functions.

The closure-induction approach described in this paper has been simulated
within the CADiIZ system [22]; simulations of the diff and quot examples we
describe may be found on the web at ftp://ftp.cs.york.ac.uk/pub/aig/examples.

2 A Typed Language and its Semantics

Elsewhere [11], Duffy has described a quite general set-theoretic language (essen-
tially a subset of Z) and its associated semantics. Since, in the present paper, we
are concerned with inductive reasoning in the context of free types and equational
theories, we are able to consider a much restricted subset of this higher-order
language, which we will refer to as F (signifying “free types”).

2.1 The Syntax of Expressions

We refer to all allowed syntactic objects as “expressions”. We separate expres-



sions into “types”, “terms”, and “formulae”, distinguishing types from terms,
for simplicity, since we do not allow types as subterms.

Type ::= TypeName | PType | Type x --- x T'ype

Here, TypeName denotes given sets [20] which are introduced in a so-called
declaration part of specifications. Intuitively, IP is the powerset operator and x
denotes cross product.

Term ::= Const | Var | Tuple | Application

Const is used for function names — as for T'ypeNames they are introduced in
declaration parts of specifications. Variable names Var are introduced by the
quantification of a formula (as in, e.g., Vz : N P).

Tuple ::= (Term,...,Term)

An n-tuple of terms (¢1,...,t,), where n > 1, is often abbreviated t; the type
of (t1,...,tn) is Ty x --- x T,,, where T; is the type of t;.

Application ::= Term Term

where the first T'erm is of type P (T} x T») and the second T'erm has type Ti;
the type of the application is T». We often write f(t) instead of “f¢”.

Form ::=Term =Term | Term € Type | Term € Term |
—Form | Form A Form | Form V Form | Form = Form |

Q Var : Typee Form

where @ € {V,3,3:} (31 denoting unique existence). We also allow the formula
Qx,:Ty;...;2, : T, @ P as an abbreviation for Qz1 : Ty e...Qx, : T, ® P, and
ifTy =...=T, =T, we also write Qz1,...,z, : T e P. Moreover, we always
demand that all terms and all formulae must be well typed. So for example, for
any formula t; = to, both terms ¢; and ¢5 must have the same type.

A specification consists of a declaration and an axiom part, where the decla-
ration part introduces all given sets (i.e., all TypeNames) and constants used,
and the axiom part is a set of formulae.

2.2 The Semantics of Expressions

In the “classical semantics” described by Arthan [1], every expression is a mem-
ber of its type. In our semantics, we include “undefined” expressions that are not
members of their type, thus allowing function applications to “return a value”
not a member of the function’s range type. For this purpose, we distinguish
“having type T7” from “being a member of T7. We formalize this as follows.

Let X' be a specification involving a type T. In an interpretation for X we
assign a set T* to T', constructed according to the form of T



— If T is a given set, then T* is the union of two disjoint sets T+ U T ~, where
T is assumed to be non-empty.

— If T is a product T} X --- x Ty, then T+ = T;" x --- x T;f and T* =
T x - x T,

~If T = P(T}), then T+ = P (T}") and T* = P (T}).

Informally, Tt may be interpreted as the defined values of type T'. The assump-
tion that T is non-empty ensures that there is at least one possible value for
any application, and allows us to avoid treating the special case of an empty
type. In the language of our models we use the same symbols P, x, etc. as in F,
since no confusion should arise. The symbol = is our metalogical equality.

We now define the total function App, which will be assigned to function
applications. Let r be a subset of P (17" x Ty), and x be an element of T}".

the unique y such that (z,y) € r if such a y exists
some y in Ty otherwise

App(r,z) = {

App is defined so that it is consistent with the usual Z interpretation of appli-
cation [20]. Note that App(r,z) =y %A (z,y) € 7.

We are now able to define the meaning of F expressions in an interpretation
I, under an assignment a to any occurring free variables. In the following, let T’
denote a type, P,(Q denote formulae, x denote a variable, ¢ denote a constant,
s,t,t; denote terms, and f denote a term of type P (T x T") for some T,T". As
the relationship between the symbol € of F and membership in the models is
not straightforward, we use e for membership in the model language.

The interpretation of a term of type T is some value of T*. Only function
application is given special treatment; the meaning of other terms is standard.

¢)[a] = ¢r, an element of T*, where T is the type of ¢
x)[a] = a( ), the value assigned to z by the function a
(t1,- - -, tn))la] = (I(t1)]a], .- ., I(tn)[a])

f )lal = App(I(f)lal, I(t)[a])

For a formula P, we always have I(P)[a] = True or I(P)[a] = False. The
interpretation of equality and the propositional connectives is standard; only
membership and quantification are given special treatment.

I
I(
I(
I(

I(s=Hla] =True  iff I(s)[a] = I(9)a]

I(s € t)[a] = True iff I(s)[a] € I(t)[a]

I(t € T)[a] = True iff I(t)[a] e TT

I(=P)[a] = True iff I(P)[a] = False

I(P AQ)[a] = True iff I(P)[a] = True and I1(Q)[a] = True
I(PV Q)[a] = True iff I(P)[a] = True or 1(Q)[a] = True

I(P = Q)[a] = False  iff I(P)[a] = T'rue and I(Q)[a] = False
I(Vz : T o P)[a] = True iff I(P)[a®/*] = True for all e ¢ T

I(3z : T e P)[a] = True iff I(P)[a®/*] = True for some e € T+
I(31z : T o P)[a] = True iff I(P)[a®/*] = True for one unique e ¢ TF



In the last three equations, e is assigned to any occurrences of z in P (i.e.,
at/*(z) = e and a®/*(y) = a(y) for all y # z).

Note, in particular, that, under our semantics, the symbol “€” does not
represent true membership, but only membership of the “defined part” of any
type. Similarly, the quantifiers only range over the defined parts of the respective
types.

Ezxample 1. If o is a constant of a type nats, and f is a function from nats to
nats, then
I(f(0) € nats) = App(fr,or) € nats™. O

We may simulate our semantics in the classical semantics in the following
way [11]. Let X be a specification with exactly the given sets Ti,...,T,. Then
the declaration of each Tj is replaced by the declaration of a new given set T7;".
Subsequently, a declaration for each T; is added asserting it to be a subset of
T}. The rest of X' remains unchanged. Now, under the classical semantics, every
expression will return a value of its type T;"; the “undefined” expressions are
those that do not return a value of the subset T; of their type.

We may now define models in the usual way.

Definition 1 (Model). An interpretation I is a model of a specification X if
all azioms in X are satisfied by I under all variable assignments a.

For example, let X be a specification involving the type nats, a member o of
nats, two functions s and f from nats to nats, and the axioms

{Vz : nats e ~ 2 = s(x), f(o) = s(f(0))}.

Then f(o) is of type nats, but the value of App(fr,or) in any model of X will
not be in nats™ in order to avoid violating the first axiom. Having defined which
interpretations are models of a specification, we can now define consequence.

Definition 2 (Consequence). A formula P is a consequence of a specification
Y (or “valid”), denoted X |= P, if every model of X' satisfies P under all variable
assignments.

In this paper, we are concerned not so much with the consequences as with
the “inductive consequences” of specifications — though these two terms become
synonymous if we include the appropriate “induction formulae” within a spec-
ification. Our goal is to present an induction principle that allows us to prove
such inductive consequences. First, we clarify what we mean by this term in the
context of specifications that may involve partial functions.

3 Inductive Reasoning

For our purposes, a free type is a given set whose elements are freely generated
by a set of constructors [20]. For example, the elements of a type nats, repre-
senting the natural numbers, can be generated from the nullary constructor o



and the unary constructor s. In Z, the free type nats would be introduced into
a specification by the abbreviation

nats = o | s {{nats)).

Such a statement would then be expanded into a declaration and a set of
axioms. The declaration introduces the given set nats and the constants o of
type nats and s of type P (nats x nats). The axioms assert that s is a total
injection, that {0} and the range of s are disjoint, and that any subset of nats
that includes o and is closed under s is the whole of nats. The latter axiom
corresponds to a structural induction principle for nats. Sufficient conditions
for the consistency of an arbitrary free type are outlined by Spivey [20]; the
presentation of nats above satisfies these conditions.

The details of the expansion for any free type may be found in [23]. For
illustration, the axioms for nats are (equivalent to) the following formulae:

1. Membership 0 € nats, s € P(nats X nats)

2. Total Function Vz : nats e 3,y : natse (z,y) € s
3. Injectivity Ve,y:natses(x) =s(y) =>z=y
4. Disjointness Vz : nats e mo = s(z)

5. Induction Vnatsg : Pnatse o € natsy A

(Vz : nats ® € natsg = s(z) € natsy) =
Vz : nats e x € natsg

Under our semantics, the meaning of the declaration and axioms associated
with nats is that, in every model of the specification, nats™ must be isomorphic
to the constructor ground term algebra generated by the constructors o and s.
In other words, nats™ may contain only objects which occur as interpretations
of constructor ground terms and, moreover, different constructor ground terms
must be interpreted as different objects. This corresponds to the notion of initial
algebras usually applied in inductive theorem proving, cf. e.g. [4,13,15,25-27].

The structural induction principle associated with any free type allows us
to prove conjectures that hold for every element of the type. However, typically
we wish to prove properties of a partial function on its defined cases only, as
illustrated by the following example from [13].

Ezample 2.

nats = o | s {(nats))

|diﬁ, quot : nats X nats - nats

Vz : nats e diff (x,0) = x

Y,y : nats e diff (s(x), s(y)) = diff (z,y)

Yy : nats e quot(o,y) = o

Va,y : nats e quot(s(z),y) = s(quot(diff (s(z),y),y))

We use the usual Z bar notation to separate the declaration part of a specifi-
cation from the axiom part. For types T' and T", we use the expression f : T -+ T"
to introduce a new constant f in the declaration of a specification and to denote



the assumption that f is a “partial function” from T to T'. More precisely, the
expansion of f € T -» T' is

fePTxT) ANVz:T;y,z:T' e (z,y) € fA(r,2) € f=>y=2

Clearly, diff is explicitly defined only for x > y and quot(zx,y) is explicitly
defined only if y is a divisor of . Note that in the “classical” semantics there is no
model of the quot specification respecting the semantics of free types, because
quot(s(o0),0) must be equal to s(quot(s(0),0)). However, our semantics solves
this problem, because the interpretation of quot(s(0),0) is now a member of the
carrier set nats* \ nats™. a

Note that we have not explicitly specified the domains of the functions diff
and quot in the above example. Our approach to partiality thus differs from the
more conventional one in which the equations defining a function are usually
conditional on predicates that ensure that the function is assigned explicit val-
ues only for arguments within its domain. In this conventional approach, the
value of a function application is always a member of its type, this value simply
being left unspecified for arguments outside of the function’s domain. This ap-
proach thus models underspecified rather than partial functions. In contrast, our
approach allows a function application to be undefined for arguments outside of
the function’s domain. This makes our approach significantly more expressive,
allowing a more general class of consistent specifications, and providing several
other advantages for specification and reasoning.

In particular, there are many important and practically relevant algorithms
with undecidable domains. Typical examples are interpreters for programming
languages and sound and complete calculi for first-order logic. For these algo-
rithms, there do not exist any (recursive) predicates describing their domains.
The conventional approach for modelling partial functions cannot handle such
“real” partial functions. In our framework, on the other hand, such algorithms
can be expressed without difficulty, and, moreover, the proof technique described
in this paper supports their verification [12,13]. More generally, our framework
has the advantage that specifications can be formulated much more easily, since
one does not have to determine the domains of functions. Consequently, our ap-
proach is well-suited to the early “loose” stages of specification when the function
domains may be still unknown. Finally, our representation allows proofs which
do not have to deal with definedness conditions, which makes (automated) rea-
soning much more efficient, cf. [18].

For those cases where diff and quot are (explicitly) defined it can be shown
that the following conjectures follow from the above specification (if the specifi-
cation is extended by appropriate definitions for + and *):

Vz,y : nats e diff (x,y) +y ==z (1)
Vz,y : nats e quot(z,y) xy = x (2)

The problem in trying to prove these conjectures is that the equations for
diff and quot provide us with only sufficient conditions for these functions to



be defined; we cannot infer that they are defined in only those cases. We may
overcome this problem by adding suitable “closure axioms”. Whenever there is
a model of the specification where a function application is undefined, these
closure axioms eliminate all models where this function application would be
defined. Examples of such closure axioms are the following;:

Y,y : nats  diff (z,y) € nats = y=o0V Ju,v:natsex = s(u) ANy = s(v)

Y,y : nats  quot(x,y) € nats = (x = oV 3u : nats ex = s(u) A
quot(diff (s(u),y),y) € nats A
diff (s(u),y) € nats).

These closure axioms, the equations for diff and quot, and the free type axioms
imply for m,n € nats that diff (m,n) is not in nats if m is “smaller” than n, and
that quot(m,n) is not in nats if m is not “divisible” by n. Most importantly,
now the axioms imply our original conjectures in the forms

Vz,y : nats e diff (x,y) € nats = diff (z,y) +y == (3)
Y,y : nats e quot(x,y) € nats = quot(x,y) xy = . (4)

We refer to specifications that consist only of free types, function declarations,
and equations as equational. For such specifications ¥, the desired properties of
closure axioms are given by the following definition.

Definition 3 (Closure Axioms). A set of closure axioms for an equational
specification X is a set of formulae C' consistent with X such that

YE f(qiy-.-,qn) €T implies YUC E-(f(q1,-.-,qn) €T),

for each n-ary function f (whose application has type T') and each n-tuple of
appropriately-typed constructor ground terms (qi,...,q,). The addition of a set
of closure azioms to a specification is referred to as the closure of the specifica-
tion. In those cases where we assume that a specification includes all the relevant
closure azioms, we will say that the specification is a closed system.

For diff and quot, their above closure axioms may be derived automatically
from their equations, but this is not so straightforward in general. For example,
consider a function f : nats + nats “defined” by only the equation

Vz :natse f(z) = f(z).

Since this equation tells us nothing about the values returned by f, we infer
that f is undefined for all m in nats, and the corresponding closure axiom must
support this inference. An appropriate closure axiom is thus

Vz : nats ® = f(x) € nats.

However, it is not obvious how we may derive this closure axiom automatically
from the given equation. Giesl et al. [6,7,14] have developed techniques for ter-
mination analysis of partial functions, which would easily find out the domains of



such simple functions as f (and also quot and diff ) automatically, but, in general,
this is an undecidable problem. In fact, we will only use the (non-constructive)
closure axioms to define our notion of partial validity. To prove partial validity
in practice, we will introduce the proof technique of closure induction, which
allows us to verify properties of partial functions without knowing their domains
and without having to compute closure axioms explicitly.

Definition 4 (Partial Validity). For an equational specification X we say
that a conjecture P is partially valid if ¥ UC |= P holds for any set of closure
azioms C.

In practice, the verification of partial validity of a conjecture is accomplished
in two separate steps. The first is a proof of the f(x)-validity of a conjecture,
which means that the conjecture is valid for all those instantiations of x where
f(x) is defined. These proofs are supported by the principle of closure induction.

Definition 5 (f(x)-Validity). Let X be a specification involving the free types
Ti,...,Tn, T and the function f : Ty X --- X Ty, - T. Let x1,...,x, be vari-
ables of types Th,..., Ty, respectively, and let P be a quantifier-free formula.'
We say that the conjecture Vxq : Ty;...;x, : T, ® P is f(x)-valid, where x rep-
resents T1,...,Tn, if2 X | P(qi,...,q,) holds for every sequence qy,...,q, of
constructor ground terms such that ¥ = f(q1,...,qn) € T.

The conjectures (1)-(4) are respectively diff (z,y)-valid and quot(z,y)-valid.
For a closed system X, P is f(x)-valid iff

YEVe Ty sz T (f(x) €T = P).

It is clear that this notion of f(x)-validity does not make any sense for the
classical semantics of “€”: f(q1,...,qn) € T holds automatically in that case,
and thus f(x)-validity collapses to general (inductive) validity.

The second step in proving partial validity of a conjecture P is a proof of

YEVe :Ty;...;zn:Thenf(x) €T = P. (5)

If (5) can be verified, then f(x)-validity of P implies that P is a consequence of
each closure of X', and thus partially valid. To see this, let I be an interpretation
that is a model of XYUC and let ¢, . .., g, be arbitrary constructor ground terms.
We have to show that I is a model of P(q1,...,qn)- f X E f(q1,...,qn) €T,
then the claim follows from f(x)-validity of P. Otherwise, X |~ f(q1,...,qn) € T
and hence, YUC |= ~(f(q1,.-.,qn) € T). As I is a model of X' U C, I satisfies
=(f(q1,---,qn) € T) and by (5) we have that I is a model of P(q1,...,qy).

We refer to Requirement (5) as the permissibility condition [13]. Note that if
Y is not a closed system, then proving (5) is, of course, not the same as proving
for all constructor ground terms ¢y, ..., ¢,

Y flg,. .. qn) € T implies X = P(q1, ... ,qn). (6)

I It does not matter if the z; do not occur in P, or if other variables do occur in P.
2 We denote by P(qi,...,qn) the formula P with each variable z; replaced by g;.



(In fact, (6) implies (5), but not vice versa.) A proof of f(x)-validity and (6)
would constitute a proof of the inductive validity of P (instead of just partial
validity). Proving the permissibility condition becomes trivial if suitable hy-
potheses are included in the conjecture, as in the conjectures (3) and (4) and
the conjecture of the following example.

Ezample 3. Suppose we have the free type A ::=a | b, the function f: A - A,
and the single axiom f(a) = a. To prove that

Ve:Ae f(z)e A= f(x) == (7)

is partially valid we first prove its f(x)-validity. Since f is (explicitly) defined
only for a, we have to show f(a) € A = f(a) = a, which is clearly valid by the
given axiom. We now prove the permissibility condition

Ve:Ae-f(z) €A (fz) € A= f(z) =),
which is also clearly valid. This completes the proof of (7)’s partial validity. O

Note that our logic is non-monotonic w.r.t. extensions of the specification.
For example, f(b) € A = f(b) = b is an instance of (7) and hence, it is partially
valid. But adding f(b) = a subsequently to our specification would make f(b) €
A = f(b) = band (7) false. (But note also that the non-monotonicity of our logic
has the advantage that we never need any consistency checks, which are required
in monotonic frameworks for partiality and which are difficult to automate for
non-terminating functions.) We discuss this problem further in the next section.

4 Closure Induction

In principle, for f(x)-validity we have to consider infinitely many instantiations.
To perform such proofs (automatically), we introduce the principle of closure
induction. We restrict ourselves to equational specifications whose equations F
are universally quantified over the (defined parts) of the respective types — we
will frequently omit their quantifiers in the rest of this discussion.

Definition 6 (Equations Defining Functions). A subset E' of E defines the
function f if E' consists of all equations from E of the form f(t1,...,tn) =7.

Definition 7 (Closure Induction). Suppose that f : Ty x -+ x Ty, +» T (for
free types Ty ,..., Ty and T) is a declared function symbol defined by a set of
equations of the form

f(tlla"'atln) =T1y ooy f(tmlaatmn) =Tm
such that each r; has a (possibly empty) set of subterms of the form {f(si1),...,

f(sir;)}. Let P be a quantifier-free formula, let I'; be the (possibly empty) con-
junction of the formulae P(s;;) for j =1...k;, and let Vo F' denote the universal

10



closure of any formula F. The principle of closure induction is the following:
“from the f(x)-validity of

V.(Fljp(tll,...,tln)) A oo A VO(Fm:>P(tm1,,tmn))
infer the f(x)-validity of Va1 : Ty;.. ;2 : T e P.”

Note that closure induction directly corresponds to the techniques commonly
used in inductive theorem proving (such as cover set induction or recursion
analysis), cf. e.g. [5,9,19,25,27]. However, the important differences are that
our induction principle also works for non-terminating partial functions (like
the induction principle of [13]) and that it can be used in the framework of a
simply-typed set-theoretic language (unlike the induction principle of [13]).

As closure induction proves only f(x)-validity (and it can also be applied if
f is partial), to verify that P is partially valid w.r.t. the specification, we must
also prove the permissibility condition (5). If we consider a specific function, say
quot, we may express the induction principle and the associated permissibility
condition in the language F itself:

Vp : P (nats x nats) e (Yy : nats e (0,y) € p
A Vz,y :nats e ((diff (s(z),y),y) € p = (s(2),y) € p)
A Vz,y : nats e (~quot(x,y) € nats = (z,y) € p))
= (Vm : nats X nats e m € p).

Thus, we show that a conjecture p holds if quot is explicitly defined, and that p
also holds when quot is not defined. Since we have expressed the principle as an
F formula, we may add it as an axiom to the specification X.

This possibility of stating the induction rule on the object level is due to the
expressiveness of our set-theoretic language (this was not possible in the first-
order language of [13]). Not only does this demonstrate that closure induction
may be simulated within F, thus allowing a quite straightforward simulation
of closure induction in CADiZ, without the need to implement the inference
rule (at least for initial experimental purposes), but it also provides a partial
solution to the problem of non-monotonicity. The problem is that while a new
axiom may be consistent with the initially given axioms, it may not be consistent
with some proven conjectures. Representing closure induction as an additional
axiom eliminates this possibility, and makes more transparent to the specifier
what properties are being assigned to each function.

We now describe sufficient conditions under which closure induction is sound.
Firstly, the arguments to each function definition must be “constructor terms”,
and, secondly, if f(qi,...,qs) is equal to a type element ¢, then it must be
“reducible” to q. For the formal expression of these conditions, we reinterpret a
set of F equations as a set of rewrite rules. The next three definitions restate the
required notions from the theory of term rewriting. For a detailed introduction
to term rewriting see e.g. [2,10].

Definition 8 (Cbv-Rewriting). A rewrite rule has the form | — r, where |
is a non-variable term, r is a term, and every wvariable in r also occurs in .
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We use the following restriction of rewriting to model a call-by-value (or “cbv”)
evaluation strategy. For a set of rules R, let =g be the smallest relation such
that s =g t holds if there is a Tule | — r in R such that some subterm s' of s
is an instance 10 of 1, for each variable x in | there is some constructor ground
term g such that 26 =% q, and t is s with (some occurrence of) s’ replaced by
rf. In this case, we say that the term s cbv-rewrites in one step to a term t via
a set of rules R. A term s cbv-rewrites (or “cbv-reduces”) in zero or more steps
tot if s =% t, the notation =7, denoting the reflexive and transitive closure of
=>R-

Definition 9 (Constructor System). Let E be the equations defining a set
of functions F'. Provided that orienting E from left to right yields rewrite rules,
we call these rules the rewrite system corresponding to E. A set of rules R is a
constructor system if the proper subterms of the left-hand sides of R-rules are
built from free-type function symbols (that is, “constructors”) and variables only.

Now we introduce a localized confluence (and termination) property depend-
ing on E.

Definition 10 (Type Convergence). Suppose that a specification ¥ consists
of a set of free types, a set of function declarations F', and a set of equations E
defining the functions in F. If R is the set of rewrite rules corresponding to E,
then we say that R is type convergent for the function f : 7T} x --- x T, +» T if,
whenever X = f(q1,...,qn) = q for any constructor ground terms qi,...,qn,q,
then we have f(qi,...,qn) =% ¢; if this holds for all functions in F, then we
say that R is type convergent.

Finally, we are able to present our main result.

Theorem 1 (Soundness of Closure Induction). Let R and f be as above.
Then closure induction proves f(x)-validity if R is a constructor system that is
type convergent for f.

A proof may be found in the Appendix. Informally, the argument is as follows.
If R is a type convergent constructor system for f, then, for each application
f(q) that is equal to a constructor ground term, we can find a rule | — r
such that | matches f(q) and the corresponding instances of any applications
of f in r are smaller than f(q) with respect to some particular well-founded
ordering. Consequently, in the application of closure induction to a formula P,
we generate all the cases for which f is defined, and, for each such case, we assume
instances of P that are smaller according to this well-founded ordering. Thus, if
the hypotheses of closure induction are f(x)-valid, then so is the conclusion.

That closure induction is unsound when the associated rewrite system is not
type convergent is illustrated by the following.

Ezample /. Let E be

{f(0) = o, Yz : nats e f(x) = f(s(x))}.

12



We may prove via structural induction that Vz : nats e f(z) = o follows from
E. However, by closure induction we are also able to prove the clearly false
conjecture Vz : nats e f(x) > x (for the usual definition of >), giving us Vz :
nats ® o > x. The proof proceeds as follows. The “base case” is f(0) > o, which
is obviously valid. In the “step case” we prove

Vo :natse f(s(x)) > s(x) = f(z) >z
This may be reduced to
Vz :natse f(z) > s(x) = f(z) > =z

by the second defining equation of f. But this is clearly valid by the usual
properties of > (since Yz : nats e f(z) = o and thus, Vz : nats e f(x) € nats).
We are left to prove the permissibility condition, which in this case is

Vz :nats e = f(z) € nats = f(x) > x.

But we know that Vx : nats e f(x) = o holds, which is inconsistent with the
hypothesis of this permissibility condition; thus, the condition holds trivially,
and the conjecture is “proven”. O

The problem in this example is that, for each n > 0, f(s"(0)) is equal to a
constructor ground term, but not reducible to one via the rewrite system corre-
sponding to the given axioms; this rewrite system is thus not type convergent.
For the sound application of closure induction, whenever f(q) is defined, the
attempted proof that the conjecture holds for q must rely on induction hypothe-
ses that are smaller w.r.t. a well-founded relation; for a constructor system, type
convergence ensures that this condition is satisfied.

That type convergence alone is insufficient for the soundness of closure induc-
tion is illustrated by the next example. Thus, one really needs both conditions,
i.e., being a constructor system and type convergence.

Ezample 5. Let E be
{Vz : nats e f(x) = g(f(z)), Vz : nats e g(f(x)) = o, Yz : nats e g(z) = z}.

Obviously, the rewrite system R corresponding to E is type convergent, but it is
not a constructor system. By closure induction, we can prove the false conjecture

Vz : nats e f(z) € nats = f(z) = s(0).

The induction formula is trivial (the induction hypothesis is equal to the induc-
tion conclusion) and the permissibility conjecture is also a tautology. O

The problem in this example is that while f(q) reduces to o for each construc-
tor ground term ¢, the only possible such reduction in the given system is via an
“expansion” step. Consequently, we again cannot construct a well-founded or-
dering that justifies the assumed induction hypothesis in the proposed proof, and
we are not saved by a separate induction case for which the induction hypothesis
can be so justified.

Finally, we give an example of the successful application of closure induction.
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Ezample 6. Let nats and diff be as before. Suppose we wish to prove diff (z,y)-
validity of

Vx,y : nats e diff (x,y) € nats = diff (z,y) +y = =. (3)

The rules represent a constructor system that is type convergent; we may thus
apply closure induction. This involves proving

Vz : nats e diff (z,0) € nats = diff (z,0) + 0 = =z,
which reduces to the reflexivity axiom Vz : nats e x = x, and proving
Vz,y :nats e P(z,y) = P(s(z),s(y)),

where P(r,t) denotes diff (r,t) € nats = diff (r,t) + ¢t = r. The proof of this
second subgoal is also straightforward. To prove the partial validity of the original
conjecture (3), we also need to prove the permissibility conjecture

Vx,y : nats e = diff (z,y) € nats = (diff (z,y) € nats = diff (z,y) +y = z),

but this is a tautology.

If we were to add the axiom Vz,y : nats e diff (z,y) = diff (z,y) to our
specification, then the associated rewrite system would still be a type convergent
constructor system, and thus closure induction would still be applicable. Now
an extra case would be included in which we assume the conjecture holds for
(z,y) in the proof that it holds for (z,y); this clearly does not correspond to a
well-founded ordering, but the diff (z,y)-validity of the conjecture will have been
proven already by the other cases in the application of the closure induction.

Thus, compared to the induction principle of [13], the present principle of
closure induction has the advantage that it can also deal with overlapping equa-
tions. (Another advantage over that previous principle is that the requirement of
type convergence is localized to the function under consideration, i.e., the rules
need not be type convergent for other functions.) O

This example illustrates the fact that closure induction does not involve the
construction of merely a “cover set” of cases in the sense of Bronsard et al. [8].
Instead it constructs all cases suggested by a function definition. Utilizing only
sufficient rules to cover all cases would, in fact, be unsound. For example, using
just the rule diff (z,y) — diff (x,y) to generate the induction cases would allow
us to prove any conjecture, as (x,y) covers all possible pairs of type elements.

5 Definedness Rules

In general, closure induction is not always sufficient to prove f(z)-validity. In
our example, to prove the quot(z,y)-validity of

Vx,y : nats e quot(x,y) € nats = quot(z,y) xy =x (4)
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we need to be able to make inferences about the definedness of function appli-
cations. For this, Giesl [13] has proposed definedness rules for functions; in the
present context these take the form

from f(t) € T infert; € Ty and ... and t, € Ty,

for any tuple of terms t and each n-ary function symbol.

The condition that a set of rules is both a constructor system and type
convergent is not sufficient to ensure that the above definedness rules may be
applied soundly. For example, consider the type convergent constructor system

{7(0) = 0, f(0) = f(g(0)},

where o € nats is given and f and g are partial functions from nats to nats.
The formula f(g(0)) € nats follows from this system, but g(o) € nats does not.
To characterize a class of rewrite systems where the definedness rules are sound,
we propose a strengthening of the notion of type convergence.

Definition 11 (Complete Type Convergence). Let X be a specification
which consists of a set of free types, a set of function declarations F', and a set
of equations E defining the functions in F. If R is the set of rewrite rules corre-
sponding to E, then we say that R is completely type convergent iff ¥ £t =gq
implies t =% q for all ground terms t and all constructor ground terms q.

For example, the specification of diff and quot is completely type conver-
gent. Note that here the semantics of the universal quantifier V is crucial. Since
it quantifies over only the objects of natst, the specification does not imply
equations like quot(o, quot(s(o),0)) = o.

The definedness rules are justified for completely type convergent constructor
systems; the argument is as follows. Let C be a set of closure axioms for X,
let x be the variables in t (of type Tx), let g be a constructor ground term
tuple, and let [q/x] denote the substitution of x by q. If ¥ |= f(t)[q/x] € T,

then we have ¥ = f(t)[q/x] = ¢ for some constructor ground term ¢ and
thus, f(t)[a/x] =% ¢ due to the complete type convergence of R. Consequently,
the terms ¢1[q/x], ..., t,[q/x] also cbv-rewrite to constructor ground terms (see

Lemma 1 in the Appendix). It follows that X' |= ¢;{q/x] € T; for each i, and thus
YUC E fW)a/xleT = t1fa/x] €Ty A ... A tpla/x] €T, (8)

holds. If, on the other hand, ¥ [ f(t)[q/x] € T, then (8) holds again, since
YUC E —f(t)la/x] € T by the definition of closure axioms. As (8) holds
for all constructor ground term tuples q, we finally obtain the desired result
YUCEVYx:Txef(t)eT =t €Ti A ... ANty €T,

We may “simulate” these definedness rules too in F, in the following way.
For every defining equation f(t) = r we add to our specification the implication

Vx:Txe f(t)eT = r' €T’

for every subterm r' of 7 (of type T").
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Ezample 7. For the quot system we obtain (besides others) the implications

Y,y : nats ® quot(s(x),y) € nats = quot(diff (s(z),y),y) € nats
Y,y : nats @ quot(s(z),y) € nats = diff (s(z),y) € nats.

Now, using these definedness formulae, we can indeed prove the conjecture (4)
by closure induction. For instance, the first implication above is used in the
following way. The proof of quot(z,y)-validity of (4) involves the proof of

... = (quot(s(z),y) € nats = quot(s(x),y) xy = s(z) ).
By the definition of quot, this may be reduced to

.. = (quot(s(z),y) € nats = s(quot(diff (s(z),y),y)) xy = s(z)).

We now wish to apply the definition of “x” to the left-hand side of the equal-
ity; but for this to be possible, the property quot(diff (s(z),y),y) € nats must
hold. Fortunately, since we have the hypothesis quot(s(z),y) € nats, the desired
property does hold by the definedness formulae for quot. O

Of course, we need a method to ensure (complete) type convergence auto-
matically. Let R be the set of rewrite rules corresponding to the equations E,
where R is a constructor system. Moreover, let R' = {lo — ro|l - r € R,0
replaces all variables of [ by constructor ground terms }. Then confluence of R’
implies complete type convergence of R. The reason is that

YEt=q
iff B' =t =qwhere E' = {s10 = s20 | Vx 851 = 52 € E,0 replaces x by
constructor ground terms }
iff t &% ¢ by Birkhoft’s theorem [3]
iff t =% ¢  due to R"s confluence and as R' is a constructor system.

Finally, t =% ¢ of course implies ¢ =% g.

A sufficient condition for confluence of R’ is the requirement that the rules in
R (i.e., the defining equations E of the specification) should be non-overlapping.
In other words, for two different equations s; = t; and s = to, the terms s;
and sy must not unify. For example, the equations for diff and quot are non-
overlapping. This sufficient criterion can easily be checked automatically. The
reason for this requirement being sufficient for R’s confluence is that =g is
equal to the innermost rewrite relation :>iR, for ground constructor systems R’
and having non-overlapping rules implies confluence of innermost reductions [16].
So compared to [13], the requirement of orthogonality is not needed due to the
definition of cbv-rewriting.

6 Conclusion

We have introduced a new “closure induction” principle in order to reason about
specifications in a simply-typed Z-like set-theoretic language that includes par-
tial functions. For this purpose, we adapted Giesl’s induction principle for partial
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functions [13]. While Giesl’s induction principle was tailored to functional pro-
grams with an eager evaluation strategy, in the present paper we adapted it to
equational specifications of our set-theoretic language, and exhibited sufficient
conditions in order to render this induction principle correct.

In this process, we relaxed some of the assumptions Giesl made about his
programs, showing that a sufficient condition for the soundness of our princi-
ple is that the rewrite system corresponding to the equations is a constructor
system that is type convergent for the function under consideration. In order to
employ the frequently necessary further rules for reasoning about definedness,
we also have to demand complete type convergence. A sufficient syntactic cri-
terion for complete type convergence (and thus type convergence) is that the
rewrite rules corresponding to the equational definitions of a specification are a
non-overlapping constructor system.

Note that the use of a much more powerful language than Giesl’s partial
functional programs enables us to express the induction principle within the
language itself. This allows for an easy implementation of our principle and
solves the non-monotonicity problem w.r.t. extensions of specifications.

For future work, we intend to find criteria for allowing non-equations in
specifications, and we aim at relaxing the restriction to constructor systems.
Moreover, while we do not impose the constraint that our equations are left-linear
as in [13], at the moment we still have to restrict ourselves to non-overlapping
equations to ensure complete type convergence; weaker criteria are needed to
increase the applicability of our approach to a wider class of specifications. We
plan also to consider extensions to cover conditional equations and to develop
more specific techniques for nested or mutually recursive definitions.

A Proof of the Soundness Theorem for Closure Induction

Lemma 1. Let R be a constructor system. For all ground terms t and all con-
structor ground terms q, if t =% q then each subterm of t can also be cbv-reduced
to a constructor ground term.

Proof. Suppose t =% q. We proceed by induction on the structure of ¢. If ¢ is
a constant then the lemma is obvious. Otherwise, ¢ has the form f(t). If f is
a constructor, then the lemma directly follows from the induction hypothesis.
Otherwise, the reduction of ¢ is as follows:

f) =7 f(s) =>r0="4q,

where t; =* s; for all i and f(s) = 16 for a rule I — r. Here, [ has the form
f(u). By the definition of cbv-rewriting, 6 reduces to a constructor ground
term for all variables x in u. As R is a constructor system, all u; are constructor
terms and hence, each u;6 also reduces to a constructor ground term. Thus,
as t; =% s; = u;0, each t; reduces to a constructor ground term. For proper
subterms of the ¢;, reducibility to a constructor ground term follows from the
induction hypothesis. O
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Note that this result does not hold for usual rewriting (instead of cbv-
rewriting). For example, via the constructor system f(z) — o the term f(g(0))
rewrites to o, though ¢(0) is irreducible. But when using cbv-rewriting, g(o) must
be reducible to a constructor ground term in order to reduce f(g(0)) to o.

Definition 12 (Full Reduction in n Steps). Let R be a set of rewrite rules
and let s, t be terms. We say that s cbv-reduces to t in n steps via R, denoted
s =R t, if there is a rule | — r in R such that t is s with the subterm 10 replaced
by 70 and if, for each variable z; (1 < i < j) occurring in l, ;0 “fully reduces”
to some constructor ground term ¢; in k; steps via R, and if ki + -+ k; =n.
We say that s fully reduces to t in n steps via R, denoted s =% t, if there is
some t' such that s =g ; t' :>]}'-{ t,andi+j+1=n.

Thus, “full reduction” counts all the rule applications involved in the rewriting.

Lemma 2. Let R be a constructor system involving the function f : Ty X ...
xT, + T. We define the relation >; over n-tuples of ground terms as follows: s
> t iff there exists a constructor ground term q such that fs =% C[f t] :ﬂ{ q
(where C denotes some context), i > 0, and there is no k < i + j and no
constructor ground term p such that fs =% p. Then >; is well founded.

Proof. Suppose s; >f sy >f 83 >7...; then
fs1 =3 Cilf sa, fs2 =% Colf ssl, ..,

and C1[f s2], Co[f s3], . .. all reduce to constructor ground terms. Since fs; fully
reduces to a constructor ground term in a minimum of ¢; +j; steps, the minimum
number of steps for the full reduction of C}[f s2] is ji. But in that case f sy fully
reduces to some constructor ground term p in at most j; steps, by Lemma 1.
Thus, we have

i1+ 1> 51 >+ > >z iz >3 > ...
But this is impossible. O

As a simple counterexample for the well-foundedness of the same relation
without the minimality condition (i.e., without the requirement that fs :>}“2 P
does not hold for k < i+ j), consider R = {f(0) = o, f(0) — f(0)}. This set is a
constructor system and f(o) =% f(0) =% o, but >¢ would not be well founded,
as we would have o > o.

Theorem 1 (Soundness of Closure Induction). Let X be a specification
with free types and a set of (universally quantified) equations and let R be the
corresponding rewrite system. Then closure induction proves f(x)-validity in X
if R is a constructor system that is type convergent for f.

Proof. We wish to show that if the hypotheses of closure induction are f(x)-
valid then so is the conclusion. Note that due to Lemma 1, a conjecture P is
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f(x)-valid iff ¥ = P(s1,...,sp) holds for all those ground (rather than just
constructor ground) terms s such that X' = f(s) € T. If R is type convergent,
then X = f(s) € T is equivalent to the existence of a constructor ground term
g with f(s) =% q.

Now suppose that the conclusion is false, that is, there is a term f(s1,..., sp),
where f(s1,...,8n) =% ¢ for some ground constructor term ¢, such that the
formula P(s1,...,s,) is false, and that (s1,...,s,) is minimal with respect to
> among such n-tuples. Without loss of generality, let f(s1,...,5,) =% ¢ be
the minimal reduction of f(si,...,s,) to a constructor ground term.

Since f is not a constructor, the reduction f(s1,...,s,) =75 ¢ must involve
the application of a rule I — r € R such that f(s{,...,s),) is an instance [f of
I, where s; =% s; for each s;. Consequently, for any subterm f(ti,...,t,) of r0,
we have that

(81,...,8n) >f (tl,...,tn).
But if all the P(t1,...,t,) were valid, then so would be P(s},...,s!), by the

hypotheses of closure induction, and hence P(sy,...,s,) would be valid as well,
since s; =% s;. Thus, if I — r is a non-recursive rule, then we directly obtain
a contradiction. Otherwise, one of the P(t1,...,t,) must also be false, which
contradicts the > p-minimality of (s1,...,sp). a
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