
Closure Indu
tion in a Z-like Language

? ??

David A. Du�y

1

and J�urgen Giesl

2

1

Department of Computer S
ien
e, University of York,

Heslington, York, YO10 5DD, UK, dad�
s.york.a
.uk

2

Computer S
ien
e Department, University of New Mexi
o,

Albuquerque, NM 87131, USA, giesl�
s.unm.edu

Abstra
t. Simply-typed set-theoreti
 languages su
h as Z and B are

widely used for program and system spe
i�
ations. The main te
hnique

for reasoning about su
h spe
i�
ations is indu
tion. However, while par-

tiality is an important
on
ept in these languages, many standard ap-

proa
hes to automating indu
tion proofs rely on the totality of all o
-

urring fun
tions. Reinterpreting the se
ond author's re
ently proposed

indu
tion te
hnique for partial fun
tional programs, we introdu
e in this

paper the new prin
iple of \
losure indu
tion" for reasoning about the

indu
tive properties of partial fun
tions in simply-typed set-theoreti

languages. In parti
ular,
losure indu
tion allows us to prove partial

orre
tness, that is, to prove those instan
es of
onje
tures for whi
h

designated partial fun
tions are expli
itly de�ned.

1 Motivation

Partial fun
tions are endemi
 in spe
i�
ations written in languages su
h as Z and

B. To reason about their indu
tive properties a method amenable to me
hani
al

support by automated theorem provers is inevitable. In [13℄, Giesl has shown

that, under
ertain
onditions, many of the reasoning pro
esses used to prove

indu
tive properties of total fun
tions (e.g., those in [5, 9, 19, 25, 27℄) may be

transposed to partial fun
tions. The inferen
e rules proposed by Giesl allow us

to prove
onje
tures involving partial fun
tions for all instan
es of the
onje
ture

for whi
h designated partial fun
tions are expli
itly de�ned.

However, Giesl's te
hnique has been designed for a �rst-order fun
tional lan-

guage with an eager (
all-by-value) evaluation strategy. In this paper, we exam-

ine thoroughly whi
h interpretation of partiality and whi
h restri
tions on the

allowed theories are required in order to extend Giesl's indu
tion prin
iple from

the original fun
tional programming framework to a simply-typed set-theoreti

language
losely related to Z and B.

We refer to our new prin
iple as \
losure indu
tion", sin
e instan
es of it may

be des
ribed within our set-theoreti
 language itself, and these instan
es may be

viewed as \
losure axioms" for a fun
tion de�nition, asserting that the fun
tion

?

Pro
eedings of the International Conferen
e of Z and B Users (ZB2000), York, UK,

Le
ture Notes in Computer S
ien
e 1878, pages 471-490, Springer-Verlag, 2000.

??

D. Du�y was supported by the EPSRC under grant no. GR/L31104, J. Giesl was

supported by the DFG under grant no. GI 274/4-1.

is de�ned in only those
ases expli
itly spe
i�ed. For the soundness of
losure

indu
tion we must make
ertain assumptions about the semanti
s of types (i.e.,

the
arrier of a type must in
lude \unde�ned" values that
an be used as the

value of a partial fun
tion when applied outside of its domain). We des
ribe an

appropriate semanti
s for our language in Se
tion 2.

Our approa
h to indu
tion is appli
able to languages su
h as Z and B if they

too assume our semanti
s. This semanti
s is, we
laim, not very restri
tive; we

would argue that it imposes the minimal requirements needed in order to distin-

guish between de�ned and unde�ned expressions. A
ommonpla
e interpretation

of partial-fun
tion appli
ation in the Z
ommunity [1, 24℄ is that any su
h ap-

pli
ation always returns a value in the fun
tion's range type; we refer to this as

the \
lassi
al" semanti
s. In su
h a framework we
annot distinguish between

de�ned and unde�ned fun
tion appli
ations. However, there is some debate as to

whether this is the appropriate interpretation of fun
tion appli
ation [17℄, and

our alternative semanti
s has already gained some interest within the Z
ommu-

nity via its earlier presentation in a more general set-theoreti
 framework [11℄.

Apparently, no parti
ular semanti
s is �xed by the standard de�nition of Z [20,

21℄. Moreover, our semanti
s may be simulated within the
lassi
al semanti
s in

a straightforward way [11℄; this allows us to simulate our approa
h to indu
tion

in the CADiZ system [22℄, a tool for reasoning about Z spe
i�
ations, whi
h

urrently supports the
lassi
al semanti
s.

In Se
tion 3 we formalize our
on
ept of indu
tive validity in the
ontext of

partial fun
tions and in Se
tion 4 we introdu
e the te
hnique of
losure indu
tion

in order to perform indu
tion proofs automati
ally. We then dis
uss
onditions

under whi
h
losure indu
tion is sound. We formalize these
onditions in terms

of rewriting, and it may thus
ome as no surprise that a
on
uen
e property

forms part of the
onditions. In parti
ular, we show that the appli
ability of
lo-

sure indu
tion extends beyond the \orthogonal" equational theories
onsidered

previously by Giesl [13℄. Finally, in Se
tion 5 we present some further rules that

are needed in addition to
losure indu
tion to verify de�nedness
onditions that

arise in most proofs about partial fun
tions.

The
losure-indu
tion approa
h des
ribed in this paper has been simulated

within the CADiZ system [22℄; simulations of the di� and quot examples we

des
ribe may be found on the web at ftp://ftp.
s.york.a
.uk/pub/aig/examples.

2 A Typed Language and its Semanti
s

Elsewhere [11℄, Du�y has des
ribed a quite general set-theoreti
 language (essen-

tially a subset of Z) and its asso
iated semanti
s. Sin
e, in the present paper, we

are
on
erned with indu
tive reasoning in the
ontext of free types and equational

theories, we are able to
onsider a mu
h restri
ted subset of this higher-order

language, whi
h we will refer to as F (signifying \free types").

2.1 The Syntax of Expressions

We refer to all allowed synta
ti
 obje
ts as \expressions". We separate expres-

2

sions into \types", \terms", and \formulae", distinguishing types from terms,

for simpli
ity, sin
e we do not allow types as subterms.

Type ::= TypeName j PType j Type� � � � � Type

Here, TypeName denotes given sets [20℄ whi
h are introdu
ed in a so-
alled

de
laration part of spe
i�
ations. Intuitively, P is the powerset operator and �

denotes
ross produ
t.

Term ::= Const j V ar j Tuple j Appli
ation

Const is used for fun
tion names | as for TypeNames they are introdu
ed in

de
laration parts of spe
i�
ations. Variable names V ar are introdu
ed by the

quanti�
ation of a formula (as in, e.g., 8x : N � P).

Tuple ::= (Term; : : : ; T erm)

An n-tuple of terms (t

1

; : : : ; t

n

), where n � 1, is often abbreviated t; the type

of (t

1

; : : : ; t

n

) is T

1

� � � � � T

n

, where T

i

is the type of t

i

.

Appli
ation ::= Term Term

where the �rst Term is of type P (T

1

� T

2

) and the se
ond Term has type T

1

;

the type of the appli
ation is T

2

. We often write f(t) instead of \f t ".

Form ::= Term = Term j Term 2 Type j Term 2 Term j

:Form j Form ^ Form j Form _ Form j Form) Form j

QV ar : Type � Form

where Q 2 f8; 9; 9

1

g (9

1

denoting unique existen
e). We also allow the formula

Qx

1

: T

1

; : : : ;x

n

: T

n

� P as an abbreviation for Qx

1

: T

1

� : : : Qx

n

: T

n

� P , and

if T

1

= : : : = T

n

= T , we also write Qx

1

; : : : ; x

n

: T � P . Moreover, we always

demand that all terms and all formulae must be well typed. So for example, for

any formula t

1

= t

2

, both terms t

1

and t

2

must have the same type.

A spe
i�
ation
onsists of a de
laration and an axiom part, where the de
la-

ration part introdu
es all given sets (i.e., all TypeNames) and
onstants used,

and the axiom part is a set of formulae.

2.2 The Semanti
s of Expressions

In the \
lassi
al semanti
s" des
ribed by Arthan [1℄, every expression is a mem-

ber of its type. In our semanti
s, we in
lude \unde�ned" expressions that are not

members of their type, thus allowing fun
tion appli
ations to \return a value"

not a member of the fun
tion's range type. For this purpose, we distinguish

\having type T" from \being a member of T". We formalize this as follows.

Let � be a spe
i�
ation involving a type T . In an interpretation for � we

assign a set T

�

to T ,
onstru
ted a

ording to the form of T :

3

{ If T is a given set, then T

�

is the union of two disjoint sets T

+

[T

�

, where

T

+

is assumed to be non-empty.

{ If T is a produ
t T

1

� � � � � T

n

, then T

+

== T

+

1

� � � � � T

+

n

and T

�

==

T

�

1

� � � � � T

�

n

.

{ If T == P (T

1

), then T

+

== P (T

+

1

) and T

�

== P (T

�

1

).

Informally, T

+

may be interpreted as the de�ned values of type T . The assump-

tion that T

+

is non-empty ensures that there is at least one possible value for

any appli
ation, and allows us to avoid treating the spe
ial
ase of an empty

type. In the language of our models we use the same symbols P;�, et
. as in F ,

sin
e no
onfusion should arise. The symbol == is our metalogi
al equality.

We now de�ne the total fun
tion App, whi
h will be assigned to fun
tion

appli
ations. Let r be a subset of P (T

�

1

� T

�

2

), and x be an element of T

�

1

.

App(r; x) ==

�

the unique y su
h that (x; y) 2 r if su
h a y exists

some y in T

�

2

otherwise

App is de�ned so that it is
onsistent with the usual Z interpretation of appli-

ation [20℄. Note that App(r; x) = y 6) (x; y) 2 r.

We are now able to de�ne the meaning of F expressions in an interpretation

I , under an assignment a to any o

urring free variables. In the following, let T

denote a type, P;Q denote formulae, x denote a variable,
 denote a
onstant,

s; t; t

i

denote terms, and f denote a term of type P (T � T

0

) for some T; T

0

. As

the relationship between the symbol 2 of F and membership in the models is

not straightforward, we use � for membership in the model language.

The interpretation of a term of type T is some value of T

�

. Only fun
tion

appli
ation is given spe
ial treatment; the meaning of other terms is standard.

I(
)[a℄ ==

I

, an element of T

�

, where T is the type of

I(x)[a℄ == a(x), the value assigned to x by the fun
tion a

I((t

1

; : : : ; t

n

))[a℄ == (I(t

1

)[a℄; : : : ; I(t

n

)[a℄)

I(f t)[a℄ == App(I(f)[a℄; I(t)[a℄)

For a formula P , we always have I(P)[a℄ == True or I(P)[a℄ == False. The

interpretation of equality and the propositional
onne
tives is standard; only

membership and quanti�
ation are given spe
ial treatment.

I(s = t)[a℄ == True i� I(s)[a℄ == I(t)[a℄

I(s 2 t)[a℄ == True i� I(s)[a℄ � I(t)[a℄

I(t 2 T)[a℄ == True i� I(t)[a℄ � T

+

I(:P)[a℄ == True i� I(P)[a℄ == False

I(P ^Q)[a℄ == True i� I(P)[a℄ == True and I(Q)[a℄ == True

I(P _Q)[a℄ == True i� I(P)[a℄ == True or I(Q)[a℄ == True

I(P) Q)[a℄ == False i� I(P)[a℄ == True and I(Q)[a℄ == False

I(8x : T � P)[a℄ == True i� I(P)[a

e=x

℄ == True for all e � T

+

I(9x : T � P)[a℄ == True i� I(P)[a

e=x

℄ == True for some e � T

+

I(9

1

x : T � P)[a℄ == True i� I(P)[a

e=x

℄ == True for one unique e � T

+

4

In the last three equations, e is assigned to any o

urren
es of x in P (i.e.,

a

e=x

(x) = e and a

e=x

(y) = a(y) for all y 6= x).

Note, in parti
ular, that, under our semanti
s, the symbol \2" does not

represent true membership, but only membership of the \de�ned part" of any

type. Similarly, the quanti�ers only range over the de�ned parts of the respe
tive

types.

Example 1. If o is a
onstant of a type nats, and f is a fun
tion from nats to

nats, then

I(f(o) 2 nats) == App(f

I

; o

I

) � nats

+

:

ut

We may simulate our semanti
s in the
lassi
al semanti
s in the following

way [11℄. Let � be a spe
i�
ation with exa
tly the given sets T

1

; : : : ; T

n

. Then

the de
laration of ea
h T

i

is repla
ed by the de
laration of a new given set T

�

i

.

Subsequently, a de
laration for ea
h T

i

is added asserting it to be a subset of

T

�

i

. The rest of � remains un
hanged. Now, under the
lassi
al semanti
s, every

expression will return a value of its type T

�

i

; the \unde�ned" expressions are

those that do not return a value of the subset T

i

of their type.

We may now de�ne models in the usual way.

De�nition 1 (Model). An interpretation I is a model of a spe
i�
ation � if

all axioms in � are satis�ed by I under all variable assignments a.

For example, let � be a spe
i�
ation involving the type nats, a member o of

nats, two fun
tions s and f from nats to nats, and the axioms

f8x : nats � :x = s(x); f(o) = s(f(o))g:

Then f(o) is of type nats, but the value of App(f

I

; o

I

) in any model of � will

not be in nats

+

in order to avoid violating the �rst axiom. Having de�ned whi
h

interpretations are models of a spe
i�
ation, we
an now de�ne
onsequen
e.

De�nition 2 (Consequen
e). A formula P is a
onsequen
e of a spe
i�
ation

� (or \valid"), denoted � j= P , if every model of � satis�es P under all variable

assignments.

In this paper, we are
on
erned not so mu
h with the
onsequen
es as with

the \indu
tive
onsequen
es" of spe
i�
ations | though these two terms be
ome

synonymous if we in
lude the appropriate \indu
tion formulae" within a spe
-

i�
ation. Our goal is to present an indu
tion prin
iple that allows us to prove

su
h indu
tive
onsequen
es. First, we
larify what we mean by this term in the

ontext of spe
i�
ations that may involve partial fun
tions.

3 Indu
tive Reasoning

For our purposes, a free type is a given set whose elements are freely generated

by a set of
onstru
tors [20℄. For example, the elements of a type nats, repre-

senting the natural numbers,
an be generated from the nullary
onstru
tor o

5

and the unary
onstru
tor s. In Z, the free type nats would be introdu
ed into

a spe
i�
ation by the abbreviation

nats ::= o j s hhnatsii:

Su
h a statement would then be expanded into a de
laration and a set of

axioms. The de
laration introdu
es the given set nats and the
onstants o of

type nats and s of type P (nats � nats). The axioms assert that s is a total

inje
tion, that fog and the range of s are disjoint, and that any subset of nats

that in
ludes o and is
losed under s is the whole of nats. The latter axiom

orresponds to a stru
tural indu
tion prin
iple for nats. SuÆ
ient
onditions

for the
onsisten
y of an arbitrary free type are outlined by Spivey [20℄; the

presentation of nats above satis�es these
onditions.

The details of the expansion for any free type may be found in [23℄. For

illustration, the axioms for nats are (equivalent to) the following formulae:

1. Membership o 2 nats, s 2 P (nats� nats)

2. Total Fun
tion 8x : nats � 9

1

y : nats � (x; y) 2 s

3. Inje
tivity 8x; y : nats � s(x) = s(y)) x = y

4. Disjointness 8x : nats � : o = s(x)

5. Indu
tion 8nats

0

: Pnats� o 2 nats

0

^

(8x : nats � x 2 nats

0

) s(x) 2 nats

0

))

8x : nats � x 2 nats

0

Under our semanti
s, the meaning of the de
laration and axioms asso
iated

with nats is that, in every model of the spe
i�
ation, nats

+

must be isomorphi

to the
onstru
tor ground term algebra generated by the
onstru
tors o and s.

In other words, nats

+

may
ontain only obje
ts whi
h o

ur as interpretations

of
onstru
tor ground terms and, moreover, di�erent
onstru
tor ground terms

must be interpreted as di�erent obje
ts. This
orresponds to the notion of initial

algebras usually applied in indu
tive theorem proving,
f. e.g. [4, 13, 15, 25{27℄.

The stru
tural indu
tion prin
iple asso
iated with any free type allows us

to prove
onje
tures that hold for every element of the type. However, typi
ally

we wish to prove properties of a partial fun
tion on its de�ned
ases only, as

illustrated by the following example from [13℄.

Example 2.

nats ::= o j s hhnatsii

di� ; quot : nats� nats ! nats

8x : nats � di� (x; o) = x

8x; y : nats � di� (s(x); s(y)) = di� (x; y)

8y : nats � quot(o; y) = o

8x; y : nats � quot(s(x); y) = s(quot(di� (s(x); y); y))

We use the usual Z bar notation to separate the de
laration part of a spe
i�-

ation from the axiom part. For types T and T

0

, we use the expression f : T ! T

0

to introdu
e a new
onstant f in the de
laration of a spe
i�
ation and to denote

6

the assumption that f is a \partial fun
tion" from T to T

0

. More pre
isely, the

expansion of f 2 T ! T

0

is

f 2 P(T � T

0

) ^ 8x : T ; y; z : T

0

� (x; y) 2 f ^ (x; z) 2 f) y = z:

Clearly, di� is expli
itly de�ned only for x � y and quot(x; y) is expli
itly

de�ned only if y is a divisor of x. Note that in the \
lassi
al" semanti
s there is no

model of the quot spe
i�
ation respe
ting the semanti
s of free types, be
ause

quot(s(o); o) must be equal to s(quot(s(o); o)). However, our semanti
s solves

this problem, be
ause the interpretation of quot(s(o); o) is now a member of the

arrier set nats

�

n nats

+

. ut

Note that we have not expli
itly spe
i�ed the domains of the fun
tions di�

and quot in the above example. Our approa
h to partiality thus di�ers from the

more
onventional one in whi
h the equations de�ning a fun
tion are usually

onditional on predi
ates that ensure that the fun
tion is assigned expli
it val-

ues only for arguments within its domain. In this
onventional approa
h, the

value of a fun
tion appli
ation is always a member of its type, this value simply

being left unspe
i�ed for arguments outside of the fun
tion's domain. This ap-

proa
h thus models underspe
i�ed rather than partial fun
tions. In
ontrast, our

approa
h allows a fun
tion appli
ation to be unde�ned for arguments outside of

the fun
tion's domain. This makes our approa
h signi�
antly more expressive,

allowing a more general
lass of
onsistent spe
i�
ations, and providing several

other advantages for spe
i�
ation and reasoning.

In parti
ular, there are many important and pra
ti
ally relevant algorithms

with unde
idable domains. Typi
al examples are interpreters for programming

languages and sound and
omplete
al
uli for �rst-order logi
. For these algo-

rithms, there do not exist any (re
ursive) predi
ates des
ribing their domains.

The
onventional approa
h for modelling partial fun
tions
annot handle su
h

\real" partial fun
tions. In our framework, on the other hand, su
h algorithms

an be expressed without diÆ
ulty, and, moreover, the proof te
hnique des
ribed

in this paper supports their veri�
ation [12, 13℄. More generally, our framework

has the advantage that spe
i�
ations
an be formulated mu
h more easily, sin
e

one does not have to determine the domains of fun
tions. Consequently, our ap-

proa
h is well-suited to the early \loose" stages of spe
i�
ation when the fun
tion

domains may be still unknown. Finally, our representation allows proofs whi
h

do not have to deal with de�nedness
onditions, whi
h makes (automated) rea-

soning mu
h more eÆ
ient,
f. [18℄.

For those
ases where di� and quot are (expli
itly) de�ned it
an be shown

that the following
onje
tures follow from the above spe
i�
ation (if the spe
i�-

ation is extended by appropriate de�nitions for + and �):

8x; y : nats � di� (x; y) + y = x (1)

8x; y : nats � quot(x; y) � y = x (2)

The problem in trying to prove these
onje
tures is that the equations for

di� and quot provide us with only suÆ
ient
onditions for these fun
tions to

7

be de�ned; we
annot infer that they are de�ned in only those
ases. We may

over
ome this problem by adding suitable \
losure axioms". Whenever there is

a model of the spe
i�
ation where a fun
tion appli
ation is unde�ned, these

losure axioms eliminate all models where this fun
tion appli
ation would be

de�ned. Examples of su
h
losure axioms are the following:

8x; y : nats � di� (x; y) 2 nats) y = o _ 9u; v : nats � x = s(u) ^ y = s(v)

8x; y : nats � quot(x; y) 2 nats) (x = o_9u : nats � x = s(u) ^

quot(di� (s(u); y); y) 2 nats ^

di� (s(u); y) 2 nats).

These
losure axioms, the equations for di� and quot, and the free type axioms

imply for m;n 2 nats that di� (m;n) is not in nats if m is \smaller" than n, and

that quot(m;n) is not in nats if m is not \divisible" by n. Most importantly,

now the axioms imply our original
onje
tures in the forms

8x; y : nats � di� (x; y) 2 nats) di� (x; y) + y = x (3)

8x; y : nats � quot(x; y) 2 nats) quot(x; y) � y = x: (4)

We refer to spe
i�
ations that
onsist only of free types, fun
tion de
larations,

and equations as equational. For su
h spe
i�
ations �, the desired properties of

losure axioms are given by the following de�nition.

De�nition 3 (Closure Axioms). A set of
losure axioms for an equational

spe
i�
ation � is a set of formulae C
onsistent with � su
h that

� 6j= f(q

1

; : : : ; q

n

) 2 T implies � [C j= : (f(q

1

; : : : ; q

n

) 2 T);

for ea
h n-ary fun
tion f (whose appli
ation has type T) and ea
h n-tuple of

appropriately-typed
onstru
tor ground terms (q

1

; : : : ; q

n

). The addition of a set

of
losure axioms to a spe
i�
ation is referred to as the
losure of the spe
i�
a-

tion. In those
ases where we assume that a spe
i�
ation in
ludes all the relevant

losure axioms, we will say that the spe
i�
ation is a
losed system.

For di� and quot, their above
losure axioms may be derived automati
ally

from their equations, but this is not so straightforward in general. For example,

onsider a fun
tion f : nats ! nats \de�ned" by only the equation

8x : nats � f(x) = f(x):

Sin
e this equation tells us nothing about the values returned by f , we infer

that f is unde�ned for all m in nats, and the
orresponding
losure axiom must

support this inferen
e. An appropriate
losure axiom is thus

8x : nats � : f(x) 2 nats:

However, it is not obvious how we may derive this
losure axiom automati
ally

from the given equation. Giesl et al. [6, 7, 14℄ have developed te
hniques for ter-

mination analysis of partial fun
tions, whi
h would easily �nd out the domains of

8

su
h simple fun
tions as f (and also quot and di�) automati
ally, but, in general,

this is an unde
idable problem. In fa
t, we will only use the (non-
onstru
tive)

losure axioms to de�ne our notion of partial validity. To prove partial validity

in pra
ti
e, we will introdu
e the proof te
hnique of
losure indu
tion, whi
h

allows us to verify properties of partial fun
tions without knowing their domains

and without having to
ompute
losure axioms expli
itly.

De�nition 4 (Partial Validity). For an equational spe
i�
ation � we say

that a
onje
ture P is partially valid if � [C j= P holds for any set of
losure

axioms C.

In pra
ti
e, the veri�
ation of partial validity of a
onje
ture is a

omplished

in two separate steps. The �rst is a proof of the f(x)-validity of a
onje
ture,

whi
h means that the
onje
ture is valid for all those instantiations of x where

f(x) is de�ned. These proofs are supported by the prin
iple of
losure indu
tion.

De�nition 5 (f(x)-Validity). Let � be a spe
i�
ation involving the free types

T

1

; : : : ; T

n

; T and the fun
tion f : T

1

� � � � � T

n

! T . Let x

1

; : : : ; x

n

be vari-

ables of types T

1

; : : : ; T

n

, respe
tively, and let P be a quanti�er-free formula.

1

We say that the
onje
ture 8x

1

: T

1

; : : : ;x

n

: T

n

� P is f(x)-valid, where x rep-

resents x

1

; : : : ; x

n

, if

2

� j= P (q

1

; : : : ; q

n

) holds for every sequen
e q

1

; : : : ; q

n

of

onstru
tor ground terms su
h that � j= f(q

1

; : : : ; q

n

) 2 T .

The
onje
tures (1)-(4) are respe
tively di� (x; y)-valid and quot(x; y)-valid.

For a
losed system �, P is f(x)-valid i�

� j= 8x

1

: T

1

; : : : ;x

n

: T

n

� (f(x) 2 T) P):

It is
lear that this notion of f(x)-validity does not make any sense for the

lassi
al semanti
s of \2": f(q

1

; : : : ; q

n

) 2 T holds automati
ally in that
ase,

and thus f(x)-validity
ollapses to general (indu
tive) validity.

The se
ond step in proving partial validity of a
onje
ture P is a proof of

� j= 8x

1

: T

1

; : : : ;x

n

: T

n

� : f(x) 2 T) P: (5)

If (5)
an be veri�ed, then f(x)-validity of P implies that P is a
onsequen
e of

ea
h
losure of �, and thus partially valid. To see this, let I be an interpretation

that is a model of �[C and let q

1

; : : : ; q

n

be arbitrary
onstru
tor ground terms.

We have to show that I is a model of P (q

1

; : : : ; q

n

). If � j= f(q

1

; : : : ; q

n

) 2 T ,

then the
laim follows from f(x)-validity of P . Otherwise, � 6j= f(q

1

; : : : ; q

n

) 2 T

and hen
e, � [C j= :(f(q

1

; : : : ; q

n

) 2 T). As I is a model of � [C, I satis�es

:(f(q

1

; : : : ; q

n

) 2 T) and by (5) we have that I is a model of P (q

1

; : : : ; q

n

).

We refer to Requirement (5) as the permissibility
ondition [13℄. Note that if

� is not a
losed system, then proving (5) is, of
ourse, not the same as proving

for all
onstru
tor ground terms q

1

; : : : ; q

n

� 6j= f(q

1

; : : : ; q

n

) 2 T implies � j= P (q

1

; : : : ; q

n

): (6)

1

It does not matter if the x

i

do not o

ur in P , or if other variables do o

ur in P .

2

We denote by P (q

1

; : : : ; q

n

) the formula P with ea
h variable x

i

repla
ed by q

i

.

9

(In fa
t, (6) implies (5), but not vi
e versa.) A proof of f(x)-validity and (6)

would
onstitute a proof of the indu
tive validity of P (instead of just partial

validity). Proving the permissibility
ondition be
omes trivial if suitable hy-

potheses are in
luded in the
onje
ture, as in the
onje
tures (3) and (4) and

the
onje
ture of the following example.

Example 3. Suppose we have the free type A ::= a j b, the fun
tion f : A ! A,

and the single axiom f(a) = a. To prove that

8x : A � f(x) 2 A) f(x) = x (7)

is partially valid we �rst prove its f(x)-validity. Sin
e f is (expli
itly) de�ned

only for a, we have to show f(a) 2 A) f(a) = a, whi
h is
learly valid by the

given axiom. We now prove the permissibility
ondition

8x : A � : f(x) 2 A) (f(x) 2 A) f(x) = x);

whi
h is also
learly valid. This
ompletes the proof of (7)'s partial validity. ut

Note that our logi
 is non-monotoni
 w.r.t. extensions of the spe
i�
ation.

For example, f(b) 2 A) f(b) = b is an instan
e of (7) and hen
e, it is partially

valid. But adding f(b) = a subsequently to our spe
i�
ation would make f(b) 2

A) f(b) = b and (7) false. (But note also that the non-monotoni
ity of our logi

has the advantage that we never need any
onsisten
y
he
ks, whi
h are required

in monotoni
 frameworks for partiality and whi
h are diÆ
ult to automate for

non-terminating fun
tions.) We dis
uss this problem further in the next se
tion.

4 Closure Indu
tion

In prin
iple, for f(x)-validity we have to
onsider in�nitely many instantiations.

To perform su
h proofs (automati
ally), we introdu
e the prin
iple of
losure

indu
tion. We restri
t ourselves to equational spe
i�
ations whose equations E

are universally quanti�ed over the (de�ned parts) of the respe
tive types | we

will frequently omit their quanti�ers in the rest of this dis
ussion.

De�nition 6 (Equations De�ning Fun
tions). A subset E

0

of E de�nes the

fun
tion f if E

0

onsists of all equations from E of the form f(t

1

; : : : ; t

n

) = r.

De�nition 7 (Closure Indu
tion). Suppose that f : T

1

� � � � � T

n

! T (for

free types T

1

; : : : ; T

n

and T) is a de
lared fun
tion symbol de�ned by a set of

equations of the form

f(t

11

; : : : ; t

1n

) = r

1

; : : : ; f(t

m1

; : : : ; t

mn

) = r

m

su
h that ea
h r

i

has a (possibly empty) set of subterms of the form ff(s

i1

); : : : ;

f(s

ik

i

)g. Let P be a quanti�er-free formula, let �

i

be the (possibly empty)
on-

jun
tion of the formulae P (s

ij

) for j = 1 : : : k

i

, and let 8�F denote the universal

10

losure of any formula F . The prin
iple of
losure indu
tion is the following:

\from the f(x)-validity of

8 � (�

1

) P (t

11

; : : : ; t

1n

)) ^ : : : ^ 8 � (�

m

) P (t

m1

; : : : ; t

mn

))

infer the f(x)-validity of 8x

1

: T

1

; : : : ;x

n

: T

n

� P ."

Note that
losure indu
tion dire
tly
orresponds to the te
hniques
ommonly

used in indu
tive theorem proving (su
h as
over set indu
tion or re
ursion

analysis),
f. e.g. [5, 9, 19, 25, 27℄. However, the important di�eren
es are that

our indu
tion prin
iple also works for non-terminating partial fun
tions (like

the indu
tion prin
iple of [13℄) and that it
an be used in the framework of a

simply-typed set-theoreti
 language (unlike the indu
tion prin
iple of [13℄).

As
losure indu
tion proves only f(x)-validity (and it
an also be applied if

f is partial), to verify that P is partially valid w.r.t. the spe
i�
ation, we must

also prove the permissibility
ondition (5). If we
onsider a spe
i�
 fun
tion, say

quot, we may express the indu
tion prin
iple and the asso
iated permissibility

ondition in the language F itself :

8p : P (nats� nats) � (8y : nats � (o; y) 2 p

^ 8x; y : nats � ((di� (s(x); y); y) 2 p) (s(x); y) 2 p)

^ 8x; y : nats � (:quot(x; y) 2 nats) (x; y) 2 p))

) (8m : nats� nats �m 2 p):

Thus, we show that a
onje
ture p holds if quot is expli
itly de�ned, and that p

also holds when quot is not de�ned. Sin
e we have expressed the prin
iple as an

F formula, we may add it as an axiom to the spe
i�
ation �.

This possibility of stating the indu
tion rule on the obje
t level is due to the

expressiveness of our set-theoreti
 language (this was not possible in the �rst-

order language of [13℄). Not only does this demonstrate that
losure indu
tion

may be simulated within F , thus allowing a quite straightforward simulation

of
losure indu
tion in CADiZ, without the need to implement the inferen
e

rule (at least for initial experimental purposes), but it also provides a partial

solution to the problem of non-monotoni
ity. The problem is that while a new

axiom may be
onsistent with the initially given axioms, it may not be
onsistent

with some proven
onje
tures. Representing
losure indu
tion as an additional

axiom eliminates this possibility, and makes more transparent to the spe
i�er

what properties are being assigned to ea
h fun
tion.

We now des
ribe suÆ
ient
onditions under whi
h
losure indu
tion is sound.

Firstly, the arguments to ea
h fun
tion de�nition must be \
onstru
tor terms",

and, se
ondly, if f(q

1

; : : : ; q

n

) is equal to a type element q, then it must be

\redu
ible" to q. For the formal expression of these
onditions, we reinterpret a

set of F equations as a set of rewrite rules. The next three de�nitions restate the

required notions from the theory of term rewriting. For a detailed introdu
tion

to term rewriting see e.g. [2, 10℄.

De�nition 8 (Cbv-Rewriting). A rewrite rule has the form l ! r, where l

is a non-variable term, r is a term, and every variable in r also o

urs in l.

11

We use the following restri
tion of rewriting to model a
all-by-value (or \
bv")

evaluation strategy. For a set of rules R, let)

R

be the smallest relation su
h

that s)

R

t holds if there is a rule l ! r in R su
h that some subterm s

0

of s

is an instan
e l� of l, for ea
h variable x in l there is some
onstru
tor ground

term q su
h that x�)

�

R

q, and t is s with (some o

urren
e of) s

0

repla
ed by

r�. In this
ase, we say that the term s
bv-rewrites in one step to a term t via

a set of rules R. A term s
bv-rewrites (or \
bv-redu
es") in zero or more steps

to t if s)

�

R

t, the notation)

�

R

denoting the re
exive and transitive
losure of

)

R

.

De�nition 9 (Constru
tor System). Let E be the equations de�ning a set

of fun
tions F . Provided that orienting E from left to right yields rewrite rules,

we
all these rules the rewrite system
orresponding to E. A set of rules R is a

onstru
tor system if the proper subterms of the left-hand sides of R-rules are

built from free-type fun
tion symbols (that is, \
onstru
tors") and variables only.

Now we introdu
e a lo
alized
on
uen
e (and termination) property depend-

ing on E.

De�nition 10 (Type Convergen
e). Suppose that a spe
i�
ation �
onsists

of a set of free types, a set of fun
tion de
larations F , and a set of equations E

de�ning the fun
tions in F . If R is the set of rewrite rules
orresponding to E,

then we say that R is type
onvergent for the fun
tion f : T

1

� � � � � T

n

! T if,

whenever � j= f(q

1

; : : : ; q

n

) = q for any
onstru
tor ground terms q

1

; : : : ; q

n

; q,

then we have f(q

1

; : : : ; q

n

))

�

R

q; if this holds for all fun
tions in F , then we

say that R is type
onvergent.

Finally, we are able to present our main result.

Theorem 1 (Soundness of Closure Indu
tion). Let R and f be as above.

Then
losure indu
tion proves f(x)-validity if R is a
onstru
tor system that is

type
onvergent for f .

A proof may be found in the Appendix. Informally, the argument is as follows.

If R is a type
onvergent
onstru
tor system for f , then, for ea
h appli
ation

f(q) that is equal to a
onstru
tor ground term, we
an �nd a rule l ! r

su
h that l mat
hes f(q) and the
orresponding instan
es of any appli
ations

of f in r are smaller than f(q) with respe
t to some parti
ular well-founded

ordering. Consequently, in the appli
ation of
losure indu
tion to a formula P ,

we generate all the
ases for whi
h f is de�ned, and, for ea
h su
h
ase, we assume

instan
es of P that are smaller a

ording to this well-founded ordering. Thus, if

the hypotheses of
losure indu
tion are f(x)-valid, then so is the
on
lusion.

That
losure indu
tion is unsound when the asso
iated rewrite system is not

type
onvergent is illustrated by the following.

Example 4. Let E be

ff(o) = o; 8x : nats � f(x) = f(s(x))g:

12

We may prove via stru
tural indu
tion that 8x : nats � f(x) = o follows from

E. However, by
losure indu
tion we are also able to prove the
learly false

onje
ture 8x : nats � f(x) � x (for the usual de�nition of �), giving us 8x :

nats � o � x. The proof pro
eeds as follows. The \base
ase" is f(o) � o, whi
h

is obviously valid. In the \step
ase" we prove

8x : nats � f(s(x)) � s(x)) f(x) � x:

This may be redu
ed to

8x : nats � f(x) � s(x)) f(x) � x

by the se
ond de�ning equation of f . But this is
learly valid by the usual

properties of � (sin
e 8x : nats � f(x) = o and thus, 8x : nats � f(x) 2 nats).

We are left to prove the permissibility
ondition, whi
h in this
ase is

8x : nats � : f(x) 2 nats) f(x) � x:

But we know that 8x : nats � f(x) = o holds, whi
h is in
onsistent with the

hypothesis of this permissibility
ondition; thus, the
ondition holds trivially,

and the
onje
ture is \proven". ut

The problem in this example is that, for ea
h n > 0, f(s

n

(o)) is equal to a

onstru
tor ground term, but not redu
ible to one via the rewrite system
orre-

sponding to the given axioms; this rewrite system is thus not type
onvergent.

For the sound appli
ation of
losure indu
tion, whenever f(q) is de�ned, the

attempted proof that the
onje
ture holds for q must rely on indu
tion hypothe-

ses that are smaller w.r.t. a well-founded relation; for a
onstru
tor system, type

onvergen
e ensures that this
ondition is satis�ed.

That type
onvergen
e alone is insuÆ
ient for the soundness of
losure indu
-

tion is illustrated by the next example. Thus, one really needs both
onditions,

i.e., being a
onstru
tor system and type
onvergen
e.

Example 5. Let E be

f8x : nats � f(x) = g(f(x)); 8x : nats � g(f(x)) = o; 8x : nats � g(x) = xg:

Obviously, the rewrite system R
orresponding to E is type
onvergent, but it is

not a
onstru
tor system. By
losure indu
tion, we
an prove the false
onje
ture

8x : nats � f(x) 2 nats) f(x) = s(o):

The indu
tion formula is trivial (the indu
tion hypothesis is equal to the indu
-

tion
on
lusion) and the permissibility
onje
ture is also a tautology. ut

The problem in this example is that while f(q) redu
es to o for ea
h
onstru
-

tor ground term q, the only possible su
h redu
tion in the given system is via an

\expansion" step. Consequently, we again
annot
onstru
t a well-founded or-

dering that justi�es the assumed indu
tion hypothesis in the proposed proof, and

we are not saved by a separate indu
tion
ase for whi
h the indu
tion hypothesis

an be so justi�ed.

Finally, we give an example of the su

essful appli
ation of
losure indu
tion.

13

Example 6. Let nats and di� be as before. Suppose we wish to prove di� (x; y)-

validity of

8x; y : nats � di� (x; y) 2 nats) di� (x; y) + y = x: (3)

The rules represent a
onstru
tor system that is type
onvergent; we may thus

apply
losure indu
tion. This involves proving

8x : nats � di� (x; o) 2 nats) di� (x; o) + o = x;

whi
h redu
es to the re
exivity axiom 8x : nats � x = x, and proving

8x; y : nats � P (x; y)) P (s(x); s(y));

where P (r; t) denotes di� (r; t) 2 nats) di� (r; t) + t = r. The proof of this

se
ond subgoal is also straightforward. To prove the partial validity of the original

onje
ture (3), we also need to prove the permissibility
onje
ture

8x; y : nats � : di� (x; y) 2 nats) (di� (x; y) 2 nats) di� (x; y) + y = x);

but this is a tautology.

If we were to add the axiom 8x; y : nats � di� (x; y) = di� (x; y) to our

spe
i�
ation, then the asso
iated rewrite system would still be a type
onvergent

onstru
tor system, and thus
losure indu
tion would still be appli
able. Now

an extra
ase would be in
luded in whi
h we assume the
onje
ture holds for

(x; y) in the proof that it holds for (x; y); this
learly does not
orrespond to a

well-founded ordering, but the di� (x; y)-validity of the
onje
ture will have been

proven already by the other
ases in the appli
ation of the
losure indu
tion.

Thus,
ompared to the indu
tion prin
iple of [13℄, the present prin
iple of

losure indu
tion has the advantage that it
an also deal with overlapping equa-

tions. (Another advantage over that previous prin
iple is that the requirement of

type
onvergen
e is lo
alized to the fun
tion under
onsideration, i.e., the rules

need not be type
onvergent for other fun
tions.) ut

This example illustrates the fa
t that
losure indu
tion does not involve the

onstru
tion of merely a \
over set" of
ases in the sense of Bronsard et al. [8℄.

Instead it
onstru
ts all
ases suggested by a fun
tion de�nition. Utilizing only

suÆ
ient rules to
over all
ases would, in fa
t, be unsound. For example, using

just the rule di� (x; y) ! di� (x; y) to generate the indu
tion
ases would allow

us to prove any
onje
ture, as (x; y)
overs all possible pairs of type elements.

5 De�nedness Rules

In general,
losure indu
tion is not always suÆ
ient to prove f(x)-validity. In

our example, to prove the quot(x; y)-validity of

8x; y : nats � quot(x; y) 2 nats) quot(x; y) � y = x (4)

14

we need to be able to make inferen
es about the de�nedness of fun
tion appli-

ations. For this, Giesl [13℄ has proposed de�nedness rules for fun
tions; in the

present
ontext these take the form

from f(t) 2 T infer t

1

2 T

1

and : : : and t

n

2 T

n

for any tuple of terms t and ea
h n-ary fun
tion symbol.

The
ondition that a set of rules is both a
onstru
tor system and type

onvergent is not suÆ
ient to ensure that the above de�nedness rules may be

applied soundly. For example,
onsider the type
onvergent
onstru
tor system

ff(o)! o; f(o)! f(g(o))g;

where o 2 nats is given and f and g are partial fun
tions from nats to nats.

The formula f(g(o)) 2 nats follows from this system, but g(o) 2 nats does not.

To
hara
terize a
lass of rewrite systems where the de�nedness rules are sound,

we propose a strengthening of the notion of type
onvergen
e.

De�nition 11 (Complete Type Convergen
e). Let � be a spe
i�
ation

whi
h
onsists of a set of free types, a set of fun
tion de
larations F , and a set

of equations E de�ning the fun
tions in F . If R is the set of rewrite rules
orre-

sponding to E, then we say that R is
ompletely type
onvergent i� � j= t = q

implies t)

�

R

q for all ground terms t and all
onstru
tor ground terms q.

For example, the spe
i�
ation of di� and quot is
ompletely type
onver-

gent. Note that here the semanti
s of the universal quanti�er 8 is
ru
ial. Sin
e

it quanti�es over only the obje
ts of nats

+

, the spe
i�
ation does not imply

equations like quot(o; quot(s(o); o)) = o.

The de�nedness rules are justi�ed for
ompletely type
onvergent
onstru
tor

systems; the argument is as follows. Let C be a set of
losure axioms for �,

let x be the variables in t (of type T

x

), let q be a
onstru
tor ground term

tuple, and let [q=x℄ denote the substitution of x by q. If � j= f(t)[q=x℄ 2 T ,

then we have � j= f(t)[q=x℄ = q for some
onstru
tor ground term q and

thus, f(t)[q=x℄)

�

R

q due to the
omplete type
onvergen
e of R. Consequently,

the terms t

1

[q=x℄; : : : ; t

n

[q=x℄ also
bv-rewrite to
onstru
tor ground terms (see

Lemma 1 in the Appendix). It follows that � j= t

i

[q=x℄ 2 T

i

for ea
h i, and thus

� [C j= f(t)[q=x℄ 2 T) t

1

[q=x℄ 2 T

1

^ : : : ^ t

n

[q=x℄ 2 T

n

(8)

holds. If, on the other hand, � 6j= f(t)[q=x℄ 2 T , then (8) holds again, sin
e

� [C j= :f(t)[q=x℄ 2 T by the de�nition of
losure axioms. As (8) holds

for all
onstru
tor ground term tuples q, we �nally obtain the desired result

� [C j= 8x : T

x

� f(t) 2 T) t

1

2 T

1

^ : : : ^ t

n

2 T

n

.

We may \simulate" these de�nedness rules too in F , in the following way.

For every de�ning equation f(t) = r we add to our spe
i�
ation the impli
ation

8x : T

x

� f(t) 2 T) r

0

2 T

0

for every subterm r

0

of r (of type T

0

).

15

Example 7. For the quot system we obtain (besides others) the impli
ations

8x; y : nats � quot(s(x); y) 2 nats) quot(di� (s(x); y); y) 2 nats

8x; y : nats � quot(s(x); y) 2 nats) di� (s(x); y) 2 nats:

Now, using these de�nedness formulae, we
an indeed prove the
onje
ture (4)

by
losure indu
tion. For instan
e, the �rst impli
ation above is used in the

following way. The proof of quot(x; y)-validity of (4) involves the proof of

: : :) (quot(s(x); y) 2 nats) quot(s(x); y) � y = s(x)):

By the de�nition of quot, this may be redu
ed to

: : :) (quot(s(x); y) 2 nats) s(quot(di� (s(x); y); y)) � y = s(x)):

We now wish to apply the de�nition of \�" to the left-hand side of the equal-

ity; but for this to be possible, the property quot(di� (s(x); y); y) 2 nats must

hold. Fortunately, sin
e we have the hypothesis quot(s(x); y) 2 nats, the desired

property does hold by the de�nedness formulae for quot. ut

Of
ourse, we need a method to ensure (
omplete) type
onvergen
e auto-

mati
ally. Let R be the set of rewrite rules
orresponding to the equations E,

where R is a
onstru
tor system. Moreover, let R

0

= fl� ! r� j l ! r 2 R; �

repla
es all variables of l by
onstru
tor ground terms g. Then
on
uen
e of R

0

implies
omplete type
onvergen
e of R. The reason is that

� j= t = q

i� E

0

j= t = q where E

0

= fs

1

� = s

2

� j 8x � s

1

= s

2

2 E; � repla
es x by

onstru
tor ground terms g

i� t,

�

R

0

q by Birkho�'s theorem [3℄

i� t)

�

R

0

q due to R

0

's
on
uen
e and as R

0

is a
onstru
tor system.

Finally, t)

�

R

0

q of
ourse implies t)

�

R

q.

A suÆ
ient
ondition for
on
uen
e of R

0

is the requirement that the rules in

R (i.e., the de�ning equations E of the spe
i�
ation) should be non-overlapping.

In other words, for two di�erent equations s

1

= t

1

and s

2

= t

2

, the terms s

1

and s

2

must not unify. For example, the equations for di� and quot are non-

overlapping. This suÆ
ient
riterion
an easily be
he
ked automati
ally. The

reason for this requirement being suÆ
ient for R

0

's
on
uen
e is that)

R

0

is

equal to the innermost rewrite relation)

i

R

0

for ground
onstru
tor systems R

0

and having non-overlapping rules implies
on
uen
e of innermost redu
tions [16℄.

So
ompared to [13℄, the requirement of orthogonality is not needed due to the

de�nition of
bv-rewriting.

6 Con
lusion

We have introdu
ed a new \
losure indu
tion" prin
iple in order to reason about

spe
i�
ations in a simply-typed Z-like set-theoreti
 language that in
ludes par-

tial fun
tions. For this purpose, we adapted Giesl's indu
tion prin
iple for partial

16

fun
tions [13℄. While Giesl's indu
tion prin
iple was tailored to fun
tional pro-

grams with an eager evaluation strategy, in the present paper we adapted it to

equational spe
i�
ations of our set-theoreti
 language, and exhibited suÆ
ient

onditions in order to render this indu
tion prin
iple
orre
t.

In this pro
ess, we relaxed some of the assumptions Giesl made about his

programs, showing that a suÆ
ient
ondition for the soundness of our prin
i-

ple is that the rewrite system
orresponding to the equations is a
onstru
tor

system that is type
onvergent for the fun
tion under
onsideration. In order to

employ the frequently ne
essary further rules for reasoning about de�nedness,

we also have to demand
omplete type
onvergen
e. A suÆ
ient synta
ti

ri-

terion for
omplete type
onvergen
e (and thus type
onvergen
e) is that the

rewrite rules
orresponding to the equational de�nitions of a spe
i�
ation are a

non-overlapping
onstru
tor system.

Note that the use of a mu
h more powerful language than Giesl's partial

fun
tional programs enables us to express the indu
tion prin
iple within the

language itself. This allows for an easy implementation of our prin
iple and

solves the non-monotoni
ity problem w.r.t. extensions of spe
i�
ations.

For future work, we intend to �nd
riteria for allowing non-equations in

spe
i�
ations, and we aim at relaxing the restri
tion to
onstru
tor systems.

Moreover, while we do not impose the
onstraint that our equations are left-linear

as in [13℄, at the moment we still have to restri
t ourselves to non-overlapping

equations to ensure
omplete type
onvergen
e; weaker
riteria are needed to

in
rease the appli
ability of our approa
h to a wider
lass of spe
i�
ations. We

plan also to
onsider extensions to
over
onditional equations and to develop

more spe
i�
 te
hniques for nested or mutually re
ursive de�nitions.

A Proof of the Soundness Theorem for Closure Indu
tion

Lemma 1. Let R be a
onstru
tor system. For all ground terms t and all
on-

stru
tor ground terms q, if t)

�

R

q then ea
h subterm of t
an also be
bv-redu
ed

to a
onstru
tor ground term.

Proof. Suppose t)

�

R

q. We pro
eed by indu
tion on the stru
ture of t. If t is

a
onstant then the lemma is obvious. Otherwise, t has the form f(t). If f is

a
onstru
tor, then the lemma dire
tly follows from the indu
tion hypothesis.

Otherwise, the redu
tion of t is as follows:

f(t))

�

f(s)) r�)

�

q;

where t

i

)

�

s

i

for all i and f(s) = l� for a rule l ! r. Here, l has the form

f(u). By the de�nition of
bv-rewriting, x� redu
es to a
onstru
tor ground

term for all variables x in u. As R is a
onstru
tor system, all u

i

are
onstru
tor

terms and hen
e, ea
h u

i

� also redu
es to a
onstru
tor ground term. Thus,

as t

i

)

�

s

i

= u

i

�, ea
h t

i

redu
es to a
onstru
tor ground term. For proper

subterms of the t

i

, redu
ibility to a
onstru
tor ground term follows from the

indu
tion hypothesis. ut

17

Note that this result does not hold for usual rewriting (instead of
bv-

rewriting). For example, via the
onstru
tor system f(x) ! o the term f(g(o))

rewrites to o, though g(o) is irredu
ible. But when using
bv-rewriting, g(o) must

be redu
ible to a
onstru
tor ground term in order to redu
e f(g(o)) to o.

De�nition 12 (Full Redu
tion in n Steps). Let R be a set of rewrite rules

and let s, t be terms. We say that s
bv-redu
es to t in n steps via R, denoted

s)

R;n

t, if there is a rule l ! r in R su
h that t is s with the subterm l� repla
ed

by r� and if, for ea
h variable x

i

(1 � i � j) o

urring in l, x

i

� \fully redu
es"

to some
onstru
tor ground term q

i

in k

i

steps via R, and if k

1

+ � � �+ k

j

= n.

We say that s fully redu
es to t in n steps via R, denoted s)

n

R

t, if there is

some t

0

su
h that s)

R;i

t

0

)

j

R

t, and i+ j + 1 = n.

Thus, \full redu
tion"
ounts all the rule appli
ations involved in the rewriting.

Lemma 2. Let R be a
onstru
tor system involving the fun
tion f : T

1

� : : :

�T

n

! T . We de�ne the relation >

f

over n-tuples of ground terms as follows: s

>

f

t i� there exists a
onstru
tor ground term q su
h that f s)

i

R

C[f t℄)

j

R

q

(where C denotes some
ontext), i > 0, and there is no k < i + j and no

onstru
tor ground term p su
h that f s)

k

R

p. Then >

f

is well founded.

Proof. Suppose s

1

>

f

s

2

>

f

s

3

>

f

: : :; then

f s

1

)

i

1

R

C

1

[f s

2

℄; f s

2

)

i

2

R

C

2

[f s

3

℄; : : : ;

and C

1

[f s

2

℄; C

2

[f s

3

℄; : : : all redu
e to
onstru
tor ground terms. Sin
e f s

1

fully

redu
es to a
onstru
tor ground term in a minimum of i

1

+j

1

steps, the minimum

number of steps for the full redu
tion of C

1

[f s

2

℄ is j

1

. But in that
ase f s

2

fully

redu
es to some
onstru
tor ground term p in at most j

1

steps, by Lemma 1.

Thus, we have

i

1

+ j

1

> j

1

� i

2

+ j

2

> j

2

� i

3

+ j

3

> j

3

� : : :

But this is impossible. ut

As a simple
ounterexample for the well-foundedness of the same relation

without the minimality
ondition (i.e., without the requirement that f s)

k

R

p

does not hold for k < i+ j),
onsider R = ff(o)! o; f(o)! f(o)g. This set is a

onstru
tor system and f(o))

1

R

f(o))

1

R

o, but >

f

would not be well founded,

as we would have o >

f

o.

Theorem 1 (Soundness of Closure Indu
tion). Let � be a spe
i�
ation

with free types and a set of (universally quanti�ed) equations and let R be the

orresponding rewrite system. Then
losure indu
tion proves f(x)-validity in �

if R is a
onstru
tor system that is type
onvergent for f .

Proof. We wish to show that if the hypotheses of
losure indu
tion are f(x)-

valid then so is the
on
lusion. Note that due to Lemma 1, a
onje
ture P is

18

f(x)-valid i� � j= P (s

1

; : : : ; s

n

) holds for all those ground (rather than just

onstru
tor ground) terms s su
h that � j= f(s) 2 T . If R is type
onvergent,

then � j= f(s) 2 T is equivalent to the existen
e of a
onstru
tor ground term

q with f(s))

�

R

q.

Now suppose that the
on
lusion is false, that is, there is a term f(s

1

; : : : ; s

n

),

where f(s

1

; : : : ; s

n

))

�

R

q for some ground
onstru
tor term q, su
h that the

formula P (s

1

; : : : ; s

n

) is false, and that (s

1

; : : : ; s

n

) is minimal with respe
t to

>

f

among su
h n-tuples. Without loss of generality, let f(s

1

; : : : ; s

n

))

�

R

q be

the minimal redu
tion of f(s

1

; : : : ; s

n

) to a
onstru
tor ground term.

Sin
e f is not a
onstru
tor, the redu
tion f(s

1

; : : : ; s

n

))

�

R

q must involve

the appli
ation of a rule l ! r 2 R su
h that f(s

0

1

; : : : ; s

0

n

) is an instan
e l� of

l, where s

i

)

�

R

s

0

i

for ea
h s

i

. Consequently, for any subterm f(t

1

; : : : ; t

n

) of r�,

we have that

(s

1

; : : : ; s

n

) >

f

(t

1

; : : : ; t

n

):

But if all the P (t

1

; : : : ; t

n

) were valid, then so would be P (s

0

1

; : : : ; s

0

n

), by the

hypotheses of
losure indu
tion, and hen
e P (s

1

; : : : ; s

n

) would be valid as well,

sin
e s

i

)

�

R

s

0

i

. Thus, if l ! r is a non-re
ursive rule, then we dire
tly obtain

a
ontradi
tion. Otherwise, one of the P (t

1

; : : : ; t

n

) must also be false, whi
h

ontradi
ts the >

f

-minimality of (s

1

; : : : ; s

n

). ut

A
knowledgement. We would like to thank the anonymous referees for many

helpful
omments.

Referen
es

1. R. D. Arthan. Unde�nedness in Z: Issues for spe
i�
ation and proof. In CADE-13

Workshop on Me
hanisation of Partial Fun
tions. New Brunswi
k, New Jersey,

USA, 1996.

2. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University

Press, 1998.

3. G. Birkho�. On the stru
ture of abstra
t algebras. Pro
. Cambridge Philos. So
.,

31:433{454, 1934.

4. A. Bouhoula and M. Rusinowit
h. Impli
it indu
tion in
onditional theories. Jour-

nal of Automated Reasoning, 14:189{235, 1995.

5. R. S. Boyer and J S. Moore. A Computational Logi
. A
ademi
 Press, 1979.

6. J. Brauburger and J. Giesl. Termination analysis by indu
tive evaluation. In Pro
.

CADE-15, LNAI 1421, pages 254{269. Springer, 1998.

7. J. Brauburger and J. Giesl. Approximating the domains of fun
tional and imper-

ative programs. S
ien
e of Computer Programming, 35:113{136, 1999.

8. F. Bronsard, U. S. Reddy, and R. W. Hasker. Indu
tion using term orders. Journal

of Automated Reasoning, 16:3{37, 1996.

9. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A

heuristi
 for guiding indu
tive proofs. Arti�
ial Intelligen
e, 62:185{253, 1993.

10. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theoreti
al

Computer S
ien
e, volume B, pages 243{320. North-Holland, 1990.

19

11. D. A. Du�y. On partial-fun
tion appli
ation in Z. In 3rd Northern Formal Methods

Workshop, Ilkley, UK, 1998. Springer. http://www.ewi
.org.uk/ewi
/.

12. J. Giesl. The
riti
al pair lemma: A
ase study for indu
tion proofs with par-

tial fun
tions. Te
hni
al Report IBN 98/49, TU Darmstadt, 1998. http://www.

inferenzsysteme.informatik.tu-darmstadt.de/

�

reports/notes/ibn-98-49.ps.

13. J. Giesl. Indu
tion proofs with partial fun
tions. Journal of Automated Reasoning,

2000. To appear. Preliminary version appeared as Te
hni
al Report IBN 98/48, TU

Darmstadt, Germany. Available from http://www.inferenzsysteme.informatik.tu-

darmstadt.de/

�

giesl/ibn-98-48.ps.

14. J. Giesl, C. Walther, and J. Brauburger. Termination analysis for fun
tional pro-

grams. In W. Bibel and P. S
hmitt, editors, Automated Dedu
tion { A Basis for

Appli
ations, Vol. III, Applied Logi
 Series 10, pages 135{164. Kluwer, 1998.

15. J. A. Goguen, J. W. That
her, and E. G. Wagner. An initial algebra approa
h to

the spe
i�
ation,
orre
tness, and implementation of abstra
t data types. In R. T.

Yeh, editor, Current Trends in Programming Methodology, volume 4. Prenti
e-Hall,

1978.

16. B. Gramli
h. Abstra
t relations between restri
ted termination and
on
uen
e

properties of rewrite systems. Fundamenta Informati
ae, 34:3{23, 1995.

17. C. B. Jones. Partial fun
tions and logi
s: A warning. Information Pro
essing

Letters, 54:65{67, 1995.

18. D. Kapur. Constru
tors
an be partial, too. In R. Vero�, editor, Automated

Reasoning and its Appli
ations { Essays in Honor of Larry Wos, pages 177{210.

MIT Press, 1997.

19. D. Kapur and M. Subramaniam. New uses of linear arithmeti
 in automated

theorem proving by indu
tion. Journal of Automated Reasoning, 16:39{78, 1996.

20. J. M. Spivey. The Z Notation: A Referen
e Manual, Se
ond Edition. Prenti
e Hall,

1992.

21. I. Toyn. Z standard (draft). Available from the Department of Computer S
ien
e,

University of York at http://www.
s.york.a
.uk/

�

ian/zstan, 1999.

22. I. Toyn. CADiZ. Available from the Department of Computer S
ien
e, University of

York at the web address http://www.
s.york.a
.uk/

�

ian/
adiz/home.html, 2000.

23. I. Toyn, S. H. Valentine, and D. A. Du�y. On mutually re
ursive free types in Z. In

Pro
eedings International Conferen
e of Z and B Users, ZB2000, LNCS. Springer,

2000. To appear.

24. S. Valentine. In
onsisten
y and unde�nedness in Z { a pra
ti
al guide. In Pro-

eedings 11th International Conferen
e of Z Users, ZUM'98, LNCS 1493, pages

233{249. Springer, 1998.

25. C. Walther. Mathemati
al indu
tion. In D. M. Gabbay, C. J. Hogger, and J. A.

Robinson, editors, Handbook of Logi
 in Arti�
ial Intelligen
e and Logi
 Program-

ming, volume 2. Oxford University Press, 1994.

26. C.-P. Wirth and B. Gramli
h. On notions of indu
tive validity for �rst-order

equational
lauses. In Pro
. CADE-12, LNAI 814. Springer, 1994.

27. H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A me
hanizable prin
iple of

indu
tion for equational spe
i�
ations. In Pro
. CADE-9, LNAI 310, pages 162{

181. Springer, 1988.

20

