
Closure Indution in a Z-like Language

? ??

David A. Du�y

1

and J�urgen Giesl

2

1

Department of Computer Siene, University of York,

Heslington, York, YO10 5DD, UK, dad�s.york.a.uk

2

Computer Siene Department, University of New Mexio,

Albuquerque, NM 87131, USA, giesl�s.unm.edu

Abstrat. Simply-typed set-theoreti languages suh as Z and B are

widely used for program and system spei�ations. The main tehnique

for reasoning about suh spei�ations is indution. However, while par-

tiality is an important onept in these languages, many standard ap-

proahes to automating indution proofs rely on the totality of all o-

urring funtions. Reinterpreting the seond author's reently proposed

indution tehnique for partial funtional programs, we introdue in this

paper the new priniple of \losure indution" for reasoning about the

indutive properties of partial funtions in simply-typed set-theoreti

languages. In partiular, losure indution allows us to prove partial

orretness, that is, to prove those instanes of onjetures for whih

designated partial funtions are expliitly de�ned.

1 Motivation

Partial funtions are endemi in spei�ations written in languages suh as Z and

B. To reason about their indutive properties a method amenable to mehanial

support by automated theorem provers is inevitable. In [13℄, Giesl has shown

that, under ertain onditions, many of the reasoning proesses used to prove

indutive properties of total funtions (e.g., those in [5, 9, 19, 25, 27℄) may be

transposed to partial funtions. The inferene rules proposed by Giesl allow us

to prove onjetures involving partial funtions for all instanes of the onjeture

for whih designated partial funtions are expliitly de�ned.

However, Giesl's tehnique has been designed for a �rst-order funtional lan-

guage with an eager (all-by-value) evaluation strategy. In this paper, we exam-

ine thoroughly whih interpretation of partiality and whih restritions on the

allowed theories are required in order to extend Giesl's indution priniple from

the original funtional programming framework to a simply-typed set-theoreti

language losely related to Z and B.

We refer to our new priniple as \losure indution", sine instanes of it may

be desribed within our set-theoreti language itself, and these instanes may be

viewed as \losure axioms" for a funtion de�nition, asserting that the funtion

?

Proeedings of the International Conferene of Z and B Users (ZB2000), York, UK,

Leture Notes in Computer Siene 1878, pages 471-490, Springer-Verlag, 2000.

??

D. Du�y was supported by the EPSRC under grant no. GR/L31104, J. Giesl was

supported by the DFG under grant no. GI 274/4-1.

is de�ned in only those ases expliitly spei�ed. For the soundness of losure

indution we must make ertain assumptions about the semantis of types (i.e.,

the arrier of a type must inlude \unde�ned" values that an be used as the

value of a partial funtion when applied outside of its domain). We desribe an

appropriate semantis for our language in Setion 2.

Our approah to indution is appliable to languages suh as Z and B if they

too assume our semantis. This semantis is, we laim, not very restritive; we

would argue that it imposes the minimal requirements needed in order to distin-

guish between de�ned and unde�ned expressions. A ommonplae interpretation

of partial-funtion appliation in the Z ommunity [1, 24℄ is that any suh ap-

pliation always returns a value in the funtion's range type; we refer to this as

the \lassial" semantis. In suh a framework we annot distinguish between

de�ned and unde�ned funtion appliations. However, there is some debate as to

whether this is the appropriate interpretation of funtion appliation [17℄, and

our alternative semantis has already gained some interest within the Z ommu-

nity via its earlier presentation in a more general set-theoreti framework [11℄.

Apparently, no partiular semantis is �xed by the standard de�nition of Z [20,

21℄. Moreover, our semantis may be simulated within the lassial semantis in

a straightforward way [11℄; this allows us to simulate our approah to indution

in the CADiZ system [22℄, a tool for reasoning about Z spei�ations, whih

urrently supports the lassial semantis.

In Setion 3 we formalize our onept of indutive validity in the ontext of

partial funtions and in Setion 4 we introdue the tehnique of losure indution

in order to perform indution proofs automatially. We then disuss onditions

under whih losure indution is sound. We formalize these onditions in terms

of rewriting, and it may thus ome as no surprise that a onuene property

forms part of the onditions. In partiular, we show that the appliability of lo-

sure indution extends beyond the \orthogonal" equational theories onsidered

previously by Giesl [13℄. Finally, in Setion 5 we present some further rules that

are needed in addition to losure indution to verify de�nedness onditions that

arise in most proofs about partial funtions.

The losure-indution approah desribed in this paper has been simulated

within the CADiZ system [22℄; simulations of the di� and quot examples we

desribe may be found on the web at ftp://ftp.s.york.a.uk/pub/aig/examples.

2 A Typed Language and its Semantis

Elsewhere [11℄, Du�y has desribed a quite general set-theoreti language (essen-

tially a subset of Z) and its assoiated semantis. Sine, in the present paper, we

are onerned with indutive reasoning in the ontext of free types and equational

theories, we are able to onsider a muh restrited subset of this higher-order

language, whih we will refer to as F (signifying \free types").

2.1 The Syntax of Expressions

We refer to all allowed syntati objets as \expressions". We separate expres-

2

sions into \types", \terms", and \formulae", distinguishing types from terms,

for simpliity, sine we do not allow types as subterms.

Type ::= TypeName j PType j Type� � � � � Type

Here, TypeName denotes given sets [20℄ whih are introdued in a so-alled

delaration part of spei�ations. Intuitively, P is the powerset operator and �

denotes ross produt.

Term ::= Const j V ar j Tuple j Appliation

Const is used for funtion names | as for TypeNames they are introdued in

delaration parts of spei�ations. Variable names V ar are introdued by the

quanti�ation of a formula (as in, e.g., 8x : N � P).

Tuple ::= (Term; : : : ; T erm)

An n-tuple of terms (t

1

; : : : ; t

n

), where n � 1, is often abbreviated t; the type

of (t

1

; : : : ; t

n

) is T

1

� � � � � T

n

, where T

i

is the type of t

i

.

Appliation ::= Term Term

where the �rst Term is of type P (T

1

� T

2

) and the seond Term has type T

1

;

the type of the appliation is T

2

. We often write f(t) instead of \f t ".

Form ::= Term = Term j Term 2 Type j Term 2 Term j

:Form j Form ^ Form j Form _ Form j Form) Form j

QV ar : Type � Form

where Q 2 f8; 9; 9

1

g (9

1

denoting unique existene). We also allow the formula

Qx

1

: T

1

; : : : ;x

n

: T

n

� P as an abbreviation for Qx

1

: T

1

� : : : Qx

n

: T

n

� P , and

if T

1

= : : : = T

n

= T , we also write Qx

1

; : : : ; x

n

: T � P . Moreover, we always

demand that all terms and all formulae must be well typed. So for example, for

any formula t

1

= t

2

, both terms t

1

and t

2

must have the same type.

A spei�ation onsists of a delaration and an axiom part, where the dela-

ration part introdues all given sets (i.e., all TypeNames) and onstants used,

and the axiom part is a set of formulae.

2.2 The Semantis of Expressions

In the \lassial semantis" desribed by Arthan [1℄, every expression is a mem-

ber of its type. In our semantis, we inlude \unde�ned" expressions that are not

members of their type, thus allowing funtion appliations to \return a value"

not a member of the funtion's range type. For this purpose, we distinguish

\having type T" from \being a member of T". We formalize this as follows.

Let � be a spei�ation involving a type T . In an interpretation for � we

assign a set T

�

to T , onstruted aording to the form of T :

3

{ If T is a given set, then T

�

is the union of two disjoint sets T

+

[T

�

, where

T

+

is assumed to be non-empty.

{ If T is a produt T

1

� � � � � T

n

, then T

+

== T

+

1

� � � � � T

+

n

and T

�

==

T

�

1

� � � � � T

�

n

.

{ If T == P (T

1

), then T

+

== P (T

+

1

) and T

�

== P (T

�

1

).

Informally, T

+

may be interpreted as the de�ned values of type T . The assump-

tion that T

+

is non-empty ensures that there is at least one possible value for

any appliation, and allows us to avoid treating the speial ase of an empty

type. In the language of our models we use the same symbols P;�, et. as in F ,

sine no onfusion should arise. The symbol == is our metalogial equality.

We now de�ne the total funtion App, whih will be assigned to funtion

appliations. Let r be a subset of P (T

�

1

� T

�

2

), and x be an element of T

�

1

.

App(r; x) ==

�

the unique y suh that (x; y) 2 r if suh a y exists

some y in T

�

2

otherwise

App is de�ned so that it is onsistent with the usual Z interpretation of appli-

ation [20℄. Note that App(r; x) = y 6) (x; y) 2 r.

We are now able to de�ne the meaning of F expressions in an interpretation

I , under an assignment a to any ourring free variables. In the following, let T

denote a type, P;Q denote formulae, x denote a variable, denote a onstant,

s; t; t

i

denote terms, and f denote a term of type P (T � T

0

) for some T; T

0

. As

the relationship between the symbol 2 of F and membership in the models is

not straightforward, we use � for membership in the model language.

The interpretation of a term of type T is some value of T

�

. Only funtion

appliation is given speial treatment; the meaning of other terms is standard.

I()[a℄ ==

I

, an element of T

�

, where T is the type of

I(x)[a℄ == a(x), the value assigned to x by the funtion a

I((t

1

; : : : ; t

n

))[a℄ == (I(t

1

)[a℄; : : : ; I(t

n

)[a℄)

I(f t)[a℄ == App(I(f)[a℄; I(t)[a℄)

For a formula P , we always have I(P)[a℄ == True or I(P)[a℄ == False. The

interpretation of equality and the propositional onnetives is standard; only

membership and quanti�ation are given speial treatment.

I(s = t)[a℄ == True i� I(s)[a℄ == I(t)[a℄

I(s 2 t)[a℄ == True i� I(s)[a℄ � I(t)[a℄

I(t 2 T)[a℄ == True i� I(t)[a℄ � T

+

I(:P)[a℄ == True i� I(P)[a℄ == False

I(P ^Q)[a℄ == True i� I(P)[a℄ == True and I(Q)[a℄ == True

I(P _Q)[a℄ == True i� I(P)[a℄ == True or I(Q)[a℄ == True

I(P) Q)[a℄ == False i� I(P)[a℄ == True and I(Q)[a℄ == False

I(8x : T � P)[a℄ == True i� I(P)[a

e=x

℄ == True for all e � T

+

I(9x : T � P)[a℄ == True i� I(P)[a

e=x

℄ == True for some e � T

+

I(9

1

x : T � P)[a℄ == True i� I(P)[a

e=x

℄ == True for one unique e � T

+

4

In the last three equations, e is assigned to any ourrenes of x in P (i.e.,

a

e=x

(x) = e and a

e=x

(y) = a(y) for all y 6= x).

Note, in partiular, that, under our semantis, the symbol \2" does not

represent true membership, but only membership of the \de�ned part" of any

type. Similarly, the quanti�ers only range over the de�ned parts of the respetive

types.

Example 1. If o is a onstant of a type nats, and f is a funtion from nats to

nats, then

I(f(o) 2 nats) == App(f

I

; o

I

) � nats

+

:

ut

We may simulate our semantis in the lassial semantis in the following

way [11℄. Let � be a spei�ation with exatly the given sets T

1

; : : : ; T

n

. Then

the delaration of eah T

i

is replaed by the delaration of a new given set T

�

i

.

Subsequently, a delaration for eah T

i

is added asserting it to be a subset of

T

�

i

. The rest of � remains unhanged. Now, under the lassial semantis, every

expression will return a value of its type T

�

i

; the \unde�ned" expressions are

those that do not return a value of the subset T

i

of their type.

We may now de�ne models in the usual way.

De�nition 1 (Model). An interpretation I is a model of a spei�ation � if

all axioms in � are satis�ed by I under all variable assignments a.

For example, let � be a spei�ation involving the type nats, a member o of

nats, two funtions s and f from nats to nats, and the axioms

f8x : nats � :x = s(x); f(o) = s(f(o))g:

Then f(o) is of type nats, but the value of App(f

I

; o

I

) in any model of � will

not be in nats

+

in order to avoid violating the �rst axiom. Having de�ned whih

interpretations are models of a spei�ation, we an now de�ne onsequene.

De�nition 2 (Consequene). A formula P is a onsequene of a spei�ation

� (or \valid"), denoted � j= P , if every model of � satis�es P under all variable

assignments.

In this paper, we are onerned not so muh with the onsequenes as with

the \indutive onsequenes" of spei�ations | though these two terms beome

synonymous if we inlude the appropriate \indution formulae" within a spe-

i�ation. Our goal is to present an indution priniple that allows us to prove

suh indutive onsequenes. First, we larify what we mean by this term in the

ontext of spei�ations that may involve partial funtions.

3 Indutive Reasoning

For our purposes, a free type is a given set whose elements are freely generated

by a set of onstrutors [20℄. For example, the elements of a type nats, repre-

senting the natural numbers, an be generated from the nullary onstrutor o

5

and the unary onstrutor s. In Z, the free type nats would be introdued into

a spei�ation by the abbreviation

nats ::= o j s hhnatsii:

Suh a statement would then be expanded into a delaration and a set of

axioms. The delaration introdues the given set nats and the onstants o of

type nats and s of type P (nats � nats). The axioms assert that s is a total

injetion, that fog and the range of s are disjoint, and that any subset of nats

that inludes o and is losed under s is the whole of nats. The latter axiom

orresponds to a strutural indution priniple for nats. SuÆient onditions

for the onsisteny of an arbitrary free type are outlined by Spivey [20℄; the

presentation of nats above satis�es these onditions.

The details of the expansion for any free type may be found in [23℄. For

illustration, the axioms for nats are (equivalent to) the following formulae:

1. Membership o 2 nats, s 2 P (nats� nats)

2. Total Funtion 8x : nats � 9

1

y : nats � (x; y) 2 s

3. Injetivity 8x; y : nats � s(x) = s(y)) x = y

4. Disjointness 8x : nats � : o = s(x)

5. Indution 8nats

0

: Pnats� o 2 nats

0

^

(8x : nats � x 2 nats

0

) s(x) 2 nats

0

))

8x : nats � x 2 nats

0

Under our semantis, the meaning of the delaration and axioms assoiated

with nats is that, in every model of the spei�ation, nats

+

must be isomorphi

to the onstrutor ground term algebra generated by the onstrutors o and s.

In other words, nats

+

may ontain only objets whih our as interpretations

of onstrutor ground terms and, moreover, di�erent onstrutor ground terms

must be interpreted as di�erent objets. This orresponds to the notion of initial

algebras usually applied in indutive theorem proving, f. e.g. [4, 13, 15, 25{27℄.

The strutural indution priniple assoiated with any free type allows us

to prove onjetures that hold for every element of the type. However, typially

we wish to prove properties of a partial funtion on its de�ned ases only, as

illustrated by the following example from [13℄.

Example 2.

nats ::= o j s hhnatsii

di� ; quot : nats� nats ! nats

8x : nats � di� (x; o) = x

8x; y : nats � di� (s(x); s(y)) = di� (x; y)

8y : nats � quot(o; y) = o

8x; y : nats � quot(s(x); y) = s(quot(di� (s(x); y); y))

We use the usual Z bar notation to separate the delaration part of a spei�-

ation from the axiom part. For types T and T

0

, we use the expression f : T ! T

0

to introdue a new onstant f in the delaration of a spei�ation and to denote

6

the assumption that f is a \partial funtion" from T to T

0

. More preisely, the

expansion of f 2 T ! T

0

is

f 2 P(T � T

0

) ^ 8x : T ; y; z : T

0

� (x; y) 2 f ^ (x; z) 2 f) y = z:

Clearly, di� is expliitly de�ned only for x � y and quot(x; y) is expliitly

de�ned only if y is a divisor of x. Note that in the \lassial" semantis there is no

model of the quot spei�ation respeting the semantis of free types, beause

quot(s(o); o) must be equal to s(quot(s(o); o)). However, our semantis solves

this problem, beause the interpretation of quot(s(o); o) is now a member of the

arrier set nats

�

n nats

+

. ut

Note that we have not expliitly spei�ed the domains of the funtions di�

and quot in the above example. Our approah to partiality thus di�ers from the

more onventional one in whih the equations de�ning a funtion are usually

onditional on prediates that ensure that the funtion is assigned expliit val-

ues only for arguments within its domain. In this onventional approah, the

value of a funtion appliation is always a member of its type, this value simply

being left unspei�ed for arguments outside of the funtion's domain. This ap-

proah thus models underspei�ed rather than partial funtions. In ontrast, our

approah allows a funtion appliation to be unde�ned for arguments outside of

the funtion's domain. This makes our approah signi�antly more expressive,

allowing a more general lass of onsistent spei�ations, and providing several

other advantages for spei�ation and reasoning.

In partiular, there are many important and pratially relevant algorithms

with undeidable domains. Typial examples are interpreters for programming

languages and sound and omplete aluli for �rst-order logi. For these algo-

rithms, there do not exist any (reursive) prediates desribing their domains.

The onventional approah for modelling partial funtions annot handle suh

\real" partial funtions. In our framework, on the other hand, suh algorithms

an be expressed without diÆulty, and, moreover, the proof tehnique desribed

in this paper supports their veri�ation [12, 13℄. More generally, our framework

has the advantage that spei�ations an be formulated muh more easily, sine

one does not have to determine the domains of funtions. Consequently, our ap-

proah is well-suited to the early \loose" stages of spei�ation when the funtion

domains may be still unknown. Finally, our representation allows proofs whih

do not have to deal with de�nedness onditions, whih makes (automated) rea-

soning muh more eÆient, f. [18℄.

For those ases where di� and quot are (expliitly) de�ned it an be shown

that the following onjetures follow from the above spei�ation (if the spei�-

ation is extended by appropriate de�nitions for + and �):

8x; y : nats � di� (x; y) + y = x (1)

8x; y : nats � quot(x; y) � y = x (2)

The problem in trying to prove these onjetures is that the equations for

di� and quot provide us with only suÆient onditions for these funtions to

7

be de�ned; we annot infer that they are de�ned in only those ases. We may

overome this problem by adding suitable \losure axioms". Whenever there is

a model of the spei�ation where a funtion appliation is unde�ned, these

losure axioms eliminate all models where this funtion appliation would be

de�ned. Examples of suh losure axioms are the following:

8x; y : nats � di� (x; y) 2 nats) y = o _ 9u; v : nats � x = s(u) ^ y = s(v)

8x; y : nats � quot(x; y) 2 nats) (x = o_9u : nats � x = s(u) ^

quot(di� (s(u); y); y) 2 nats ^

di� (s(u); y) 2 nats).

These losure axioms, the equations for di� and quot, and the free type axioms

imply for m;n 2 nats that di� (m;n) is not in nats if m is \smaller" than n, and

that quot(m;n) is not in nats if m is not \divisible" by n. Most importantly,

now the axioms imply our original onjetures in the forms

8x; y : nats � di� (x; y) 2 nats) di� (x; y) + y = x (3)

8x; y : nats � quot(x; y) 2 nats) quot(x; y) � y = x: (4)

We refer to spei�ations that onsist only of free types, funtion delarations,

and equations as equational. For suh spei�ations �, the desired properties of

losure axioms are given by the following de�nition.

De�nition 3 (Closure Axioms). A set of losure axioms for an equational

spei�ation � is a set of formulae C onsistent with � suh that

� 6j= f(q

1

; : : : ; q

n

) 2 T implies � [C j= : (f(q

1

; : : : ; q

n

) 2 T);

for eah n-ary funtion f (whose appliation has type T) and eah n-tuple of

appropriately-typed onstrutor ground terms (q

1

; : : : ; q

n

). The addition of a set

of losure axioms to a spei�ation is referred to as the losure of the spei�a-

tion. In those ases where we assume that a spei�ation inludes all the relevant

losure axioms, we will say that the spei�ation is a losed system.

For di� and quot, their above losure axioms may be derived automatially

from their equations, but this is not so straightforward in general. For example,

onsider a funtion f : nats ! nats \de�ned" by only the equation

8x : nats � f(x) = f(x):

Sine this equation tells us nothing about the values returned by f , we infer

that f is unde�ned for all m in nats, and the orresponding losure axiom must

support this inferene. An appropriate losure axiom is thus

8x : nats � : f(x) 2 nats:

However, it is not obvious how we may derive this losure axiom automatially

from the given equation. Giesl et al. [6, 7, 14℄ have developed tehniques for ter-

mination analysis of partial funtions, whih would easily �nd out the domains of

8

suh simple funtions as f (and also quot and di�) automatially, but, in general,

this is an undeidable problem. In fat, we will only use the (non-onstrutive)

losure axioms to de�ne our notion of partial validity. To prove partial validity

in pratie, we will introdue the proof tehnique of losure indution, whih

allows us to verify properties of partial funtions without knowing their domains

and without having to ompute losure axioms expliitly.

De�nition 4 (Partial Validity). For an equational spei�ation � we say

that a onjeture P is partially valid if � [C j= P holds for any set of losure

axioms C.

In pratie, the veri�ation of partial validity of a onjeture is aomplished

in two separate steps. The �rst is a proof of the f(x)-validity of a onjeture,

whih means that the onjeture is valid for all those instantiations of x where

f(x) is de�ned. These proofs are supported by the priniple of losure indution.

De�nition 5 (f(x)-Validity). Let � be a spei�ation involving the free types

T

1

; : : : ; T

n

; T and the funtion f : T

1

� � � � � T

n

! T . Let x

1

; : : : ; x

n

be vari-

ables of types T

1

; : : : ; T

n

, respetively, and let P be a quanti�er-free formula.

1

We say that the onjeture 8x

1

: T

1

; : : : ;x

n

: T

n

� P is f(x)-valid, where x rep-

resents x

1

; : : : ; x

n

, if

2

� j= P (q

1

; : : : ; q

n

) holds for every sequene q

1

; : : : ; q

n

of

onstrutor ground terms suh that � j= f(q

1

; : : : ; q

n

) 2 T .

The onjetures (1)-(4) are respetively di� (x; y)-valid and quot(x; y)-valid.

For a losed system �, P is f(x)-valid i�

� j= 8x

1

: T

1

; : : : ;x

n

: T

n

� (f(x) 2 T) P):

It is lear that this notion of f(x)-validity does not make any sense for the

lassial semantis of \2": f(q

1

; : : : ; q

n

) 2 T holds automatially in that ase,

and thus f(x)-validity ollapses to general (indutive) validity.

The seond step in proving partial validity of a onjeture P is a proof of

� j= 8x

1

: T

1

; : : : ;x

n

: T

n

� : f(x) 2 T) P: (5)

If (5) an be veri�ed, then f(x)-validity of P implies that P is a onsequene of

eah losure of �, and thus partially valid. To see this, let I be an interpretation

that is a model of �[C and let q

1

; : : : ; q

n

be arbitrary onstrutor ground terms.

We have to show that I is a model of P (q

1

; : : : ; q

n

). If � j= f(q

1

; : : : ; q

n

) 2 T ,

then the laim follows from f(x)-validity of P . Otherwise, � 6j= f(q

1

; : : : ; q

n

) 2 T

and hene, � [C j= :(f(q

1

; : : : ; q

n

) 2 T). As I is a model of � [C, I satis�es

:(f(q

1

; : : : ; q

n

) 2 T) and by (5) we have that I is a model of P (q

1

; : : : ; q

n

).

We refer to Requirement (5) as the permissibility ondition [13℄. Note that if

� is not a losed system, then proving (5) is, of ourse, not the same as proving

for all onstrutor ground terms q

1

; : : : ; q

n

� 6j= f(q

1

; : : : ; q

n

) 2 T implies � j= P (q

1

; : : : ; q

n

): (6)

1

It does not matter if the x

i

do not our in P , or if other variables do our in P .

2

We denote by P (q

1

; : : : ; q

n

) the formula P with eah variable x

i

replaed by q

i

.

9

(In fat, (6) implies (5), but not vie versa.) A proof of f(x)-validity and (6)

would onstitute a proof of the indutive validity of P (instead of just partial

validity). Proving the permissibility ondition beomes trivial if suitable hy-

potheses are inluded in the onjeture, as in the onjetures (3) and (4) and

the onjeture of the following example.

Example 3. Suppose we have the free type A ::= a j b, the funtion f : A ! A,

and the single axiom f(a) = a. To prove that

8x : A � f(x) 2 A) f(x) = x (7)

is partially valid we �rst prove its f(x)-validity. Sine f is (expliitly) de�ned

only for a, we have to show f(a) 2 A) f(a) = a, whih is learly valid by the

given axiom. We now prove the permissibility ondition

8x : A � : f(x) 2 A) (f(x) 2 A) f(x) = x);

whih is also learly valid. This ompletes the proof of (7)'s partial validity. ut

Note that our logi is non-monotoni w.r.t. extensions of the spei�ation.

For example, f(b) 2 A) f(b) = b is an instane of (7) and hene, it is partially

valid. But adding f(b) = a subsequently to our spei�ation would make f(b) 2

A) f(b) = b and (7) false. (But note also that the non-monotoniity of our logi

has the advantage that we never need any onsisteny heks, whih are required

in monotoni frameworks for partiality and whih are diÆult to automate for

non-terminating funtions.) We disuss this problem further in the next setion.

4 Closure Indution

In priniple, for f(x)-validity we have to onsider in�nitely many instantiations.

To perform suh proofs (automatially), we introdue the priniple of losure

indution. We restrit ourselves to equational spei�ations whose equations E

are universally quanti�ed over the (de�ned parts) of the respetive types | we

will frequently omit their quanti�ers in the rest of this disussion.

De�nition 6 (Equations De�ning Funtions). A subset E

0

of E de�nes the

funtion f if E

0

onsists of all equations from E of the form f(t

1

; : : : ; t

n

) = r.

De�nition 7 (Closure Indution). Suppose that f : T

1

� � � � � T

n

! T (for

free types T

1

; : : : ; T

n

and T) is a delared funtion symbol de�ned by a set of

equations of the form

f(t

11

; : : : ; t

1n

) = r

1

; : : : ; f(t

m1

; : : : ; t

mn

) = r

m

suh that eah r

i

has a (possibly empty) set of subterms of the form ff(s

i1

); : : : ;

f(s

ik

i

)g. Let P be a quanti�er-free formula, let �

i

be the (possibly empty) on-

juntion of the formulae P (s

ij

) for j = 1 : : : k

i

, and let 8�F denote the universal

10

losure of any formula F . The priniple of losure indution is the following:

\from the f(x)-validity of

8 � (�

1

) P (t

11

; : : : ; t

1n

)) ^ : : : ^ 8 � (�

m

) P (t

m1

; : : : ; t

mn

))

infer the f(x)-validity of 8x

1

: T

1

; : : : ;x

n

: T

n

� P ."

Note that losure indution diretly orresponds to the tehniques ommonly

used in indutive theorem proving (suh as over set indution or reursion

analysis), f. e.g. [5, 9, 19, 25, 27℄. However, the important di�erenes are that

our indution priniple also works for non-terminating partial funtions (like

the indution priniple of [13℄) and that it an be used in the framework of a

simply-typed set-theoreti language (unlike the indution priniple of [13℄).

As losure indution proves only f(x)-validity (and it an also be applied if

f is partial), to verify that P is partially valid w.r.t. the spei�ation, we must

also prove the permissibility ondition (5). If we onsider a spei� funtion, say

quot, we may express the indution priniple and the assoiated permissibility

ondition in the language F itself :

8p : P (nats� nats) � (8y : nats � (o; y) 2 p

^ 8x; y : nats � ((di� (s(x); y); y) 2 p) (s(x); y) 2 p)

^ 8x; y : nats � (:quot(x; y) 2 nats) (x; y) 2 p))

) (8m : nats� nats �m 2 p):

Thus, we show that a onjeture p holds if quot is expliitly de�ned, and that p

also holds when quot is not de�ned. Sine we have expressed the priniple as an

F formula, we may add it as an axiom to the spei�ation �.

This possibility of stating the indution rule on the objet level is due to the

expressiveness of our set-theoreti language (this was not possible in the �rst-

order language of [13℄). Not only does this demonstrate that losure indution

may be simulated within F , thus allowing a quite straightforward simulation

of losure indution in CADiZ, without the need to implement the inferene

rule (at least for initial experimental purposes), but it also provides a partial

solution to the problem of non-monotoniity. The problem is that while a new

axiom may be onsistent with the initially given axioms, it may not be onsistent

with some proven onjetures. Representing losure indution as an additional

axiom eliminates this possibility, and makes more transparent to the spei�er

what properties are being assigned to eah funtion.

We now desribe suÆient onditions under whih losure indution is sound.

Firstly, the arguments to eah funtion de�nition must be \onstrutor terms",

and, seondly, if f(q

1

; : : : ; q

n

) is equal to a type element q, then it must be

\reduible" to q. For the formal expression of these onditions, we reinterpret a

set of F equations as a set of rewrite rules. The next three de�nitions restate the

required notions from the theory of term rewriting. For a detailed introdution

to term rewriting see e.g. [2, 10℄.

De�nition 8 (Cbv-Rewriting). A rewrite rule has the form l ! r, where l

is a non-variable term, r is a term, and every variable in r also ours in l.

11

We use the following restrition of rewriting to model a all-by-value (or \bv")

evaluation strategy. For a set of rules R, let)

R

be the smallest relation suh

that s)

R

t holds if there is a rule l ! r in R suh that some subterm s

0

of s

is an instane l� of l, for eah variable x in l there is some onstrutor ground

term q suh that x�)

�

R

q, and t is s with (some ourrene of) s

0

replaed by

r�. In this ase, we say that the term s bv-rewrites in one step to a term t via

a set of rules R. A term s bv-rewrites (or \bv-redues") in zero or more steps

to t if s)

�

R

t, the notation)

�

R

denoting the reexive and transitive losure of

)

R

.

De�nition 9 (Construtor System). Let E be the equations de�ning a set

of funtions F . Provided that orienting E from left to right yields rewrite rules,

we all these rules the rewrite system orresponding to E. A set of rules R is a

onstrutor system if the proper subterms of the left-hand sides of R-rules are

built from free-type funtion symbols (that is, \onstrutors") and variables only.

Now we introdue a loalized onuene (and termination) property depend-

ing on E.

De�nition 10 (Type Convergene). Suppose that a spei�ation � onsists

of a set of free types, a set of funtion delarations F , and a set of equations E

de�ning the funtions in F . If R is the set of rewrite rules orresponding to E,

then we say that R is type onvergent for the funtion f : T

1

� � � � � T

n

! T if,

whenever � j= f(q

1

; : : : ; q

n

) = q for any onstrutor ground terms q

1

; : : : ; q

n

; q,

then we have f(q

1

; : : : ; q

n

))

�

R

q; if this holds for all funtions in F , then we

say that R is type onvergent.

Finally, we are able to present our main result.

Theorem 1 (Soundness of Closure Indution). Let R and f be as above.

Then losure indution proves f(x)-validity if R is a onstrutor system that is

type onvergent for f .

A proof may be found in the Appendix. Informally, the argument is as follows.

If R is a type onvergent onstrutor system for f , then, for eah appliation

f(q) that is equal to a onstrutor ground term, we an �nd a rule l ! r

suh that l mathes f(q) and the orresponding instanes of any appliations

of f in r are smaller than f(q) with respet to some partiular well-founded

ordering. Consequently, in the appliation of losure indution to a formula P ,

we generate all the ases for whih f is de�ned, and, for eah suh ase, we assume

instanes of P that are smaller aording to this well-founded ordering. Thus, if

the hypotheses of losure indution are f(x)-valid, then so is the onlusion.

That losure indution is unsound when the assoiated rewrite system is not

type onvergent is illustrated by the following.

Example 4. Let E be

ff(o) = o; 8x : nats � f(x) = f(s(x))g:

12

We may prove via strutural indution that 8x : nats � f(x) = o follows from

E. However, by losure indution we are also able to prove the learly false

onjeture 8x : nats � f(x) � x (for the usual de�nition of �), giving us 8x :

nats � o � x. The proof proeeds as follows. The \base ase" is f(o) � o, whih

is obviously valid. In the \step ase" we prove

8x : nats � f(s(x)) � s(x)) f(x) � x:

This may be redued to

8x : nats � f(x) � s(x)) f(x) � x

by the seond de�ning equation of f . But this is learly valid by the usual

properties of � (sine 8x : nats � f(x) = o and thus, 8x : nats � f(x) 2 nats).

We are left to prove the permissibility ondition, whih in this ase is

8x : nats � : f(x) 2 nats) f(x) � x:

But we know that 8x : nats � f(x) = o holds, whih is inonsistent with the

hypothesis of this permissibility ondition; thus, the ondition holds trivially,

and the onjeture is \proven". ut

The problem in this example is that, for eah n > 0, f(s

n

(o)) is equal to a

onstrutor ground term, but not reduible to one via the rewrite system orre-

sponding to the given axioms; this rewrite system is thus not type onvergent.

For the sound appliation of losure indution, whenever f(q) is de�ned, the

attempted proof that the onjeture holds for q must rely on indution hypothe-

ses that are smaller w.r.t. a well-founded relation; for a onstrutor system, type

onvergene ensures that this ondition is satis�ed.

That type onvergene alone is insuÆient for the soundness of losure indu-

tion is illustrated by the next example. Thus, one really needs both onditions,

i.e., being a onstrutor system and type onvergene.

Example 5. Let E be

f8x : nats � f(x) = g(f(x)); 8x : nats � g(f(x)) = o; 8x : nats � g(x) = xg:

Obviously, the rewrite system R orresponding to E is type onvergent, but it is

not a onstrutor system. By losure indution, we an prove the false onjeture

8x : nats � f(x) 2 nats) f(x) = s(o):

The indution formula is trivial (the indution hypothesis is equal to the indu-

tion onlusion) and the permissibility onjeture is also a tautology. ut

The problem in this example is that while f(q) redues to o for eah onstru-

tor ground term q, the only possible suh redution in the given system is via an

\expansion" step. Consequently, we again annot onstrut a well-founded or-

dering that justi�es the assumed indution hypothesis in the proposed proof, and

we are not saved by a separate indution ase for whih the indution hypothesis

an be so justi�ed.

Finally, we give an example of the suessful appliation of losure indution.

13

Example 6. Let nats and di� be as before. Suppose we wish to prove di� (x; y)-

validity of

8x; y : nats � di� (x; y) 2 nats) di� (x; y) + y = x: (3)

The rules represent a onstrutor system that is type onvergent; we may thus

apply losure indution. This involves proving

8x : nats � di� (x; o) 2 nats) di� (x; o) + o = x;

whih redues to the reexivity axiom 8x : nats � x = x, and proving

8x; y : nats � P (x; y)) P (s(x); s(y));

where P (r; t) denotes di� (r; t) 2 nats) di� (r; t) + t = r. The proof of this

seond subgoal is also straightforward. To prove the partial validity of the original

onjeture (3), we also need to prove the permissibility onjeture

8x; y : nats � : di� (x; y) 2 nats) (di� (x; y) 2 nats) di� (x; y) + y = x);

but this is a tautology.

If we were to add the axiom 8x; y : nats � di� (x; y) = di� (x; y) to our

spei�ation, then the assoiated rewrite system would still be a type onvergent

onstrutor system, and thus losure indution would still be appliable. Now

an extra ase would be inluded in whih we assume the onjeture holds for

(x; y) in the proof that it holds for (x; y); this learly does not orrespond to a

well-founded ordering, but the di� (x; y)-validity of the onjeture will have been

proven already by the other ases in the appliation of the losure indution.

Thus, ompared to the indution priniple of [13℄, the present priniple of

losure indution has the advantage that it an also deal with overlapping equa-

tions. (Another advantage over that previous priniple is that the requirement of

type onvergene is loalized to the funtion under onsideration, i.e., the rules

need not be type onvergent for other funtions.) ut

This example illustrates the fat that losure indution does not involve the

onstrution of merely a \over set" of ases in the sense of Bronsard et al. [8℄.

Instead it onstruts all ases suggested by a funtion de�nition. Utilizing only

suÆient rules to over all ases would, in fat, be unsound. For example, using

just the rule di� (x; y) ! di� (x; y) to generate the indution ases would allow

us to prove any onjeture, as (x; y) overs all possible pairs of type elements.

5 De�nedness Rules

In general, losure indution is not always suÆient to prove f(x)-validity. In

our example, to prove the quot(x; y)-validity of

8x; y : nats � quot(x; y) 2 nats) quot(x; y) � y = x (4)

14

we need to be able to make inferenes about the de�nedness of funtion appli-

ations. For this, Giesl [13℄ has proposed de�nedness rules for funtions; in the

present ontext these take the form

from f(t) 2 T infer t

1

2 T

1

and : : : and t

n

2 T

n

for any tuple of terms t and eah n-ary funtion symbol.

The ondition that a set of rules is both a onstrutor system and type

onvergent is not suÆient to ensure that the above de�nedness rules may be

applied soundly. For example, onsider the type onvergent onstrutor system

ff(o)! o; f(o)! f(g(o))g;

where o 2 nats is given and f and g are partial funtions from nats to nats.

The formula f(g(o)) 2 nats follows from this system, but g(o) 2 nats does not.

To haraterize a lass of rewrite systems where the de�nedness rules are sound,

we propose a strengthening of the notion of type onvergene.

De�nition 11 (Complete Type Convergene). Let � be a spei�ation

whih onsists of a set of free types, a set of funtion delarations F , and a set

of equations E de�ning the funtions in F . If R is the set of rewrite rules orre-

sponding to E, then we say that R is ompletely type onvergent i� � j= t = q

implies t)

�

R

q for all ground terms t and all onstrutor ground terms q.

For example, the spei�ation of di� and quot is ompletely type onver-

gent. Note that here the semantis of the universal quanti�er 8 is ruial. Sine

it quanti�es over only the objets of nats

+

, the spei�ation does not imply

equations like quot(o; quot(s(o); o)) = o.

The de�nedness rules are justi�ed for ompletely type onvergent onstrutor

systems; the argument is as follows. Let C be a set of losure axioms for �,

let x be the variables in t (of type T

x

), let q be a onstrutor ground term

tuple, and let [q=x℄ denote the substitution of x by q. If � j= f(t)[q=x℄ 2 T ,

then we have � j= f(t)[q=x℄ = q for some onstrutor ground term q and

thus, f(t)[q=x℄)

�

R

q due to the omplete type onvergene of R. Consequently,

the terms t

1

[q=x℄; : : : ; t

n

[q=x℄ also bv-rewrite to onstrutor ground terms (see

Lemma 1 in the Appendix). It follows that � j= t

i

[q=x℄ 2 T

i

for eah i, and thus

� [C j= f(t)[q=x℄ 2 T) t

1

[q=x℄ 2 T

1

^ : : : ^ t

n

[q=x℄ 2 T

n

(8)

holds. If, on the other hand, � 6j= f(t)[q=x℄ 2 T , then (8) holds again, sine

� [C j= :f(t)[q=x℄ 2 T by the de�nition of losure axioms. As (8) holds

for all onstrutor ground term tuples q, we �nally obtain the desired result

� [C j= 8x : T

x

� f(t) 2 T) t

1

2 T

1

^ : : : ^ t

n

2 T

n

.

We may \simulate" these de�nedness rules too in F , in the following way.

For every de�ning equation f(t) = r we add to our spei�ation the impliation

8x : T

x

� f(t) 2 T) r

0

2 T

0

for every subterm r

0

of r (of type T

0

).

15

Example 7. For the quot system we obtain (besides others) the impliations

8x; y : nats � quot(s(x); y) 2 nats) quot(di� (s(x); y); y) 2 nats

8x; y : nats � quot(s(x); y) 2 nats) di� (s(x); y) 2 nats:

Now, using these de�nedness formulae, we an indeed prove the onjeture (4)

by losure indution. For instane, the �rst impliation above is used in the

following way. The proof of quot(x; y)-validity of (4) involves the proof of

: : :) (quot(s(x); y) 2 nats) quot(s(x); y) � y = s(x)):

By the de�nition of quot, this may be redued to

: : :) (quot(s(x); y) 2 nats) s(quot(di� (s(x); y); y)) � y = s(x)):

We now wish to apply the de�nition of \�" to the left-hand side of the equal-

ity; but for this to be possible, the property quot(di� (s(x); y); y) 2 nats must

hold. Fortunately, sine we have the hypothesis quot(s(x); y) 2 nats, the desired

property does hold by the de�nedness formulae for quot. ut

Of ourse, we need a method to ensure (omplete) type onvergene auto-

matially. Let R be the set of rewrite rules orresponding to the equations E,

where R is a onstrutor system. Moreover, let R

0

= fl� ! r� j l ! r 2 R; �

replaes all variables of l by onstrutor ground terms g. Then onuene of R

0

implies omplete type onvergene of R. The reason is that

� j= t = q

i� E

0

j= t = q where E

0

= fs

1

� = s

2

� j 8x � s

1

= s

2

2 E; � replaes x by

onstrutor ground terms g

i� t,

�

R

0

q by Birkho�'s theorem [3℄

i� t)

�

R

0

q due to R

0

's onuene and as R

0

is a onstrutor system.

Finally, t)

�

R

0

q of ourse implies t)

�

R

q.

A suÆient ondition for onuene of R

0

is the requirement that the rules in

R (i.e., the de�ning equations E of the spei�ation) should be non-overlapping.

In other words, for two di�erent equations s

1

= t

1

and s

2

= t

2

, the terms s

1

and s

2

must not unify. For example, the equations for di� and quot are non-

overlapping. This suÆient riterion an easily be heked automatially. The

reason for this requirement being suÆient for R

0

's onuene is that)

R

0

is

equal to the innermost rewrite relation)

i

R

0

for ground onstrutor systems R

0

and having non-overlapping rules implies onuene of innermost redutions [16℄.

So ompared to [13℄, the requirement of orthogonality is not needed due to the

de�nition of bv-rewriting.

6 Conlusion

We have introdued a new \losure indution" priniple in order to reason about

spei�ations in a simply-typed Z-like set-theoreti language that inludes par-

tial funtions. For this purpose, we adapted Giesl's indution priniple for partial

16

funtions [13℄. While Giesl's indution priniple was tailored to funtional pro-

grams with an eager evaluation strategy, in the present paper we adapted it to

equational spei�ations of our set-theoreti language, and exhibited suÆient

onditions in order to render this indution priniple orret.

In this proess, we relaxed some of the assumptions Giesl made about his

programs, showing that a suÆient ondition for the soundness of our prini-

ple is that the rewrite system orresponding to the equations is a onstrutor

system that is type onvergent for the funtion under onsideration. In order to

employ the frequently neessary further rules for reasoning about de�nedness,

we also have to demand omplete type onvergene. A suÆient syntati ri-

terion for omplete type onvergene (and thus type onvergene) is that the

rewrite rules orresponding to the equational de�nitions of a spei�ation are a

non-overlapping onstrutor system.

Note that the use of a muh more powerful language than Giesl's partial

funtional programs enables us to express the indution priniple within the

language itself. This allows for an easy implementation of our priniple and

solves the non-monotoniity problem w.r.t. extensions of spei�ations.

For future work, we intend to �nd riteria for allowing non-equations in

spei�ations, and we aim at relaxing the restrition to onstrutor systems.

Moreover, while we do not impose the onstraint that our equations are left-linear

as in [13℄, at the moment we still have to restrit ourselves to non-overlapping

equations to ensure omplete type onvergene; weaker riteria are needed to

inrease the appliability of our approah to a wider lass of spei�ations. We

plan also to onsider extensions to over onditional equations and to develop

more spei� tehniques for nested or mutually reursive de�nitions.

A Proof of the Soundness Theorem for Closure Indution

Lemma 1. Let R be a onstrutor system. For all ground terms t and all on-

strutor ground terms q, if t)

�

R

q then eah subterm of t an also be bv-redued

to a onstrutor ground term.

Proof. Suppose t)

�

R

q. We proeed by indution on the struture of t. If t is

a onstant then the lemma is obvious. Otherwise, t has the form f(t). If f is

a onstrutor, then the lemma diretly follows from the indution hypothesis.

Otherwise, the redution of t is as follows:

f(t))

�

f(s)) r�)

�

q;

where t

i

)

�

s

i

for all i and f(s) = l� for a rule l ! r. Here, l has the form

f(u). By the de�nition of bv-rewriting, x� redues to a onstrutor ground

term for all variables x in u. As R is a onstrutor system, all u

i

are onstrutor

terms and hene, eah u

i

� also redues to a onstrutor ground term. Thus,

as t

i

)

�

s

i

= u

i

�, eah t

i

redues to a onstrutor ground term. For proper

subterms of the t

i

, reduibility to a onstrutor ground term follows from the

indution hypothesis. ut

17

Note that this result does not hold for usual rewriting (instead of bv-

rewriting). For example, via the onstrutor system f(x) ! o the term f(g(o))

rewrites to o, though g(o) is irreduible. But when using bv-rewriting, g(o) must

be reduible to a onstrutor ground term in order to redue f(g(o)) to o.

De�nition 12 (Full Redution in n Steps). Let R be a set of rewrite rules

and let s, t be terms. We say that s bv-redues to t in n steps via R, denoted

s)

R;n

t, if there is a rule l ! r in R suh that t is s with the subterm l� replaed

by r� and if, for eah variable x

i

(1 � i � j) ourring in l, x

i

� \fully redues"

to some onstrutor ground term q

i

in k

i

steps via R, and if k

1

+ � � �+ k

j

= n.

We say that s fully redues to t in n steps via R, denoted s)

n

R

t, if there is

some t

0

suh that s)

R;i

t

0

)

j

R

t, and i+ j + 1 = n.

Thus, \full redution" ounts all the rule appliations involved in the rewriting.

Lemma 2. Let R be a onstrutor system involving the funtion f : T

1

� : : :

�T

n

! T . We de�ne the relation >

f

over n-tuples of ground terms as follows: s

>

f

t i� there exists a onstrutor ground term q suh that f s)

i

R

C[f t℄)

j

R

q

(where C denotes some ontext), i > 0, and there is no k < i + j and no

onstrutor ground term p suh that f s)

k

R

p. Then >

f

is well founded.

Proof. Suppose s

1

>

f

s

2

>

f

s

3

>

f

: : :; then

f s

1

)

i

1

R

C

1

[f s

2

℄; f s

2

)

i

2

R

C

2

[f s

3

℄; : : : ;

and C

1

[f s

2

℄; C

2

[f s

3

℄; : : : all redue to onstrutor ground terms. Sine f s

1

fully

redues to a onstrutor ground term in a minimum of i

1

+j

1

steps, the minimum

number of steps for the full redution of C

1

[f s

2

℄ is j

1

. But in that ase f s

2

fully

redues to some onstrutor ground term p in at most j

1

steps, by Lemma 1.

Thus, we have

i

1

+ j

1

> j

1

� i

2

+ j

2

> j

2

� i

3

+ j

3

> j

3

� : : :

But this is impossible. ut

As a simple ounterexample for the well-foundedness of the same relation

without the minimality ondition (i.e., without the requirement that f s)

k

R

p

does not hold for k < i+ j), onsider R = ff(o)! o; f(o)! f(o)g. This set is a

onstrutor system and f(o))

1

R

f(o))

1

R

o, but >

f

would not be well founded,

as we would have o >

f

o.

Theorem 1 (Soundness of Closure Indution). Let � be a spei�ation

with free types and a set of (universally quanti�ed) equations and let R be the

orresponding rewrite system. Then losure indution proves f(x)-validity in �

if R is a onstrutor system that is type onvergent for f .

Proof. We wish to show that if the hypotheses of losure indution are f(x)-

valid then so is the onlusion. Note that due to Lemma 1, a onjeture P is

18

f(x)-valid i� � j= P (s

1

; : : : ; s

n

) holds for all those ground (rather than just

onstrutor ground) terms s suh that � j= f(s) 2 T . If R is type onvergent,

then � j= f(s) 2 T is equivalent to the existene of a onstrutor ground term

q with f(s))

�

R

q.

Now suppose that the onlusion is false, that is, there is a term f(s

1

; : : : ; s

n

),

where f(s

1

; : : : ; s

n

))

�

R

q for some ground onstrutor term q, suh that the

formula P (s

1

; : : : ; s

n

) is false, and that (s

1

; : : : ; s

n

) is minimal with respet to

>

f

among suh n-tuples. Without loss of generality, let f(s

1

; : : : ; s

n

))

�

R

q be

the minimal redution of f(s

1

; : : : ; s

n

) to a onstrutor ground term.

Sine f is not a onstrutor, the redution f(s

1

; : : : ; s

n

))

�

R

q must involve

the appliation of a rule l ! r 2 R suh that f(s

0

1

; : : : ; s

0

n

) is an instane l� of

l, where s

i

)

�

R

s

0

i

for eah s

i

. Consequently, for any subterm f(t

1

; : : : ; t

n

) of r�,

we have that

(s

1

; : : : ; s

n

) >

f

(t

1

; : : : ; t

n

):

But if all the P (t

1

; : : : ; t

n

) were valid, then so would be P (s

0

1

; : : : ; s

0

n

), by the

hypotheses of losure indution, and hene P (s

1

; : : : ; s

n

) would be valid as well,

sine s

i

)

�

R

s

0

i

. Thus, if l ! r is a non-reursive rule, then we diretly obtain

a ontradition. Otherwise, one of the P (t

1

; : : : ; t

n

) must also be false, whih

ontradits the >

f

-minimality of (s

1

; : : : ; s

n

). ut

Aknowledgement. We would like to thank the anonymous referees for many

helpful omments.

Referenes

1. R. D. Arthan. Unde�nedness in Z: Issues for spei�ation and proof. In CADE-13

Workshop on Mehanisation of Partial Funtions. New Brunswik, New Jersey,

USA, 1996.

2. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University

Press, 1998.

3. G. Birkho�. On the struture of abstrat algebras. Pro. Cambridge Philos. So.,

31:433{454, 1934.

4. A. Bouhoula and M. Rusinowith. Impliit indution in onditional theories. Jour-

nal of Automated Reasoning, 14:189{235, 1995.

5. R. S. Boyer and J S. Moore. A Computational Logi. Aademi Press, 1979.

6. J. Brauburger and J. Giesl. Termination analysis by indutive evaluation. In Pro.

CADE-15, LNAI 1421, pages 254{269. Springer, 1998.

7. J. Brauburger and J. Giesl. Approximating the domains of funtional and imper-

ative programs. Siene of Computer Programming, 35:113{136, 1999.

8. F. Bronsard, U. S. Reddy, and R. W. Hasker. Indution using term orders. Journal

of Automated Reasoning, 16:3{37, 1996.

9. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A

heuristi for guiding indutive proofs. Arti�ial Intelligene, 62:185{253, 1993.

10. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theoretial

Computer Siene, volume B, pages 243{320. North-Holland, 1990.

19

11. D. A. Du�y. On partial-funtion appliation in Z. In 3rd Northern Formal Methods

Workshop, Ilkley, UK, 1998. Springer. http://www.ewi.org.uk/ewi/.

12. J. Giesl. The ritial pair lemma: A ase study for indution proofs with par-

tial funtions. Tehnial Report IBN 98/49, TU Darmstadt, 1998. http://www.

inferenzsysteme.informatik.tu-darmstadt.de/

�

reports/notes/ibn-98-49.ps.

13. J. Giesl. Indution proofs with partial funtions. Journal of Automated Reasoning,

2000. To appear. Preliminary version appeared as Tehnial Report IBN 98/48, TU

Darmstadt, Germany. Available from http://www.inferenzsysteme.informatik.tu-

darmstadt.de/

�

giesl/ibn-98-48.ps.

14. J. Giesl, C. Walther, and J. Brauburger. Termination analysis for funtional pro-

grams. In W. Bibel and P. Shmitt, editors, Automated Dedution { A Basis for

Appliations, Vol. III, Applied Logi Series 10, pages 135{164. Kluwer, 1998.

15. J. A. Goguen, J. W. Thather, and E. G. Wagner. An initial algebra approah to

the spei�ation, orretness, and implementation of abstrat data types. In R. T.

Yeh, editor, Current Trends in Programming Methodology, volume 4. Prentie-Hall,

1978.

16. B. Gramlih. Abstrat relations between restrited termination and onuene

properties of rewrite systems. Fundamenta Informatiae, 34:3{23, 1995.

17. C. B. Jones. Partial funtions and logis: A warning. Information Proessing

Letters, 54:65{67, 1995.

18. D. Kapur. Construtors an be partial, too. In R. Vero�, editor, Automated

Reasoning and its Appliations { Essays in Honor of Larry Wos, pages 177{210.

MIT Press, 1997.

19. D. Kapur and M. Subramaniam. New uses of linear arithmeti in automated

theorem proving by indution. Journal of Automated Reasoning, 16:39{78, 1996.

20. J. M. Spivey. The Z Notation: A Referene Manual, Seond Edition. Prentie Hall,

1992.

21. I. Toyn. Z standard (draft). Available from the Department of Computer Siene,

University of York at http://www.s.york.a.uk/

�

ian/zstan, 1999.

22. I. Toyn. CADiZ. Available from the Department of Computer Siene, University of

York at the web address http://www.s.york.a.uk/

�

ian/adiz/home.html, 2000.

23. I. Toyn, S. H. Valentine, and D. A. Du�y. On mutually reursive free types in Z. In

Proeedings International Conferene of Z and B Users, ZB2000, LNCS. Springer,

2000. To appear.

24. S. Valentine. Inonsisteny and unde�nedness in Z { a pratial guide. In Pro-

eedings 11th International Conferene of Z Users, ZUM'98, LNCS 1493, pages

233{249. Springer, 1998.

25. C. Walther. Mathematial indution. In D. M. Gabbay, C. J. Hogger, and J. A.

Robinson, editors, Handbook of Logi in Arti�ial Intelligene and Logi Program-

ming, volume 2. Oxford University Press, 1994.

26. C.-P. Wirth and B. Gramlih. On notions of indutive validity for �rst-order

equational lauses. In Pro. CADE-12, LNAI 814. Springer, 1994.

27. H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mehanizable priniple of

indution for equational spei�ations. In Pro. CADE-9, LNAI 310, pages 162{

181. Springer, 1988.

20

