
JÜRGEN GIESL, CHRISTOPH WALTHER, JÜRGEN BRAUBURGER

TERMINATION ANALYSIS FOR FUNCTIONAL PROGRAMS

1. INTRODUCTION

Proving termination is a central problem in software development and for-
mal methods for termination analysis are essential for program verification.
However, since the halting problem is undecidable and totality of functions
is not even semi-decidable, there is no procedure to prove or disprove the
termination of all algorithms.

While most work on the automation of termination proofs has been done
in the areas of term rewriting systems (for surveys see e.g. (Dershowitz, 1987;
Steinbach, 1995b)) and of logic programs (e.g. (Ullman and van Gelder,
1988; Plümer, 1990; De Schreye and Decorte, 1994)), in this chapter we fo-
cus on functional programs and we also investigate the application of our
methods for termination analysis of loops in imperative programs.

To prove termination of a functional algorithm, one has to find a well-
founded relation such that the arguments in each recursive call are smaller
than the corresponding inputs. (A relation � is well founded iff there is no
infinite descending chain : : : � t2 � t1.) A semi-automatic method for termi-
nation proofs of LISP functions has been implemented in the NQTHM system
of R. S. Boyer and J S. Moore (1979). For an algorithm f (x) their prover
shows that in each recursive call f (r) a given measure is decreased. The sys-
tem uses a measure function j:j which maps data objects to natural numbers
and it verifies that the number jrj is smaller than the number jxj.

For this proof the system user has to supply so-called induction lemmata

of the form ∆ ! jrj < jxj, which assert that certain operations are measure
decreasing if some hypotheses ∆ are satisfied. For the termination proof of
an algorithm f (x) with a recursive call f (r), the system searches among the
known induction lemmata for some lemma with the conclusion jrj< jxj. Then
the prover verifies b! ∆, where b is the condition under which the recursive
call f (r) is performed.

Of course instead of using induction lemmata, one could also try to prove
inequalities like jrj < jxj directly. But the advantage of induction lemmata is
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that difficult facts are established once and for all (by an induction proof).
Then by applying induction lemmata, subsequent termination proofs are usu-
ally quite simple, i.e. they can often be accomplished without induction.

Boyer and Moore’s technique for proving termination is very powerful, as
the methods works for arbitrary measure functions j:j. But its disadvantage
is a low degree of automation. Induction lemmata have to be formulated by

the system user and therefore a human has to find the idea why an algorithm
terminates. Moreover, to ensure their soundness, these lemmata have to be
verified by the system before use. This verification may be hard, as in general
an induction proof is needed.

In this chapter, we present an alternative method for automated termina-
tion proofs of algorithms (Section 2). With this method a certain class of
induction lemmata can be synthesized automatically and the soundness of
these induction lemmata is guaranteed by construction. So compared to the
technique of Boyer and Moore the advantage of our method is a much higher
degree of automation.

But a limitation of this method is that it is restricted to one single fixed

measure function, viz. the so-called size measure function, while the sys-
tem of Boyer and Moore can use arbitrary measure functions for termina-
tion proofs. Using the size measure function, data objects t are compared by
their size jtj#, i.e. lists are compared by their length, trees are compared by
the number of their nodes etc. Although this approach is successful for many
examples, there are numerous relevant algorithms whose termination proofs
require a measure different from size and for these algorithms the method of
Section 2 must fail.

Therefore, in Section 3 we extend our method in order to handle arbi-

trary measure functions. To determine suitable measures automatically we
use approaches from the area of term rewriting systems for the generation of
well-founded term orderings. But unfortunately term orderings cannot be di-
rectly used for termination proofs of functional algorithms which call other
algorithms in the arguments of their recursive calls. The reason is that for
termination of term rewriting systems orderings between terms are needed,
whereas for functional programs orderings between the evaluated terms are
required. Our method solves this problem and enables term orderings to be
used for functional programs. In this way, we obtain an automated method
for termination proofs where suitable measure functions and induction lem-
mata are synthesized by machine. This combines a high degree of automation
with the powerful generality of Boyer and Moore’s method.

The approaches of Section 2 and 3 aim to prove that an algorithm termi-
nates for each input (“total termination”). Thus, if the termination proof fails
then they cannot find a (sub-)domain where termination is provable. How-
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ever, this is necessary for termination proofs of algorithms which call partial

auxiliary algorithms, i.e. auxiliary algorithms which do not terminate for all
inputs. In particular, this problem arises when examining the termination be-
haviour of loops in imperative programs. Therefore, in Section 4 we extend
our techniques to termination analysis of partial functions.

2. TERMINATION PROOFS WITH ARGUMENT-BOUNDED ALGORITHMS

In this section we illustrate a first approach for automated termination proofs
using a fixed ordering. After an introduction to termination proofs in Section
2.1, Section 2.2 shows how inequalities are proved by the technique of esti-

mation. For this technique we need certain knowledge about the algorithms
under consideration and in Section 2.3 we discuss how this knowledge can be
acquired automatically.

2.1. Termination Proofs of Functional Programs

We regard an eager first-order functional language with (free) algebraic data
types and pattern matching (where the patterns have to be exhaustive and
exclusive)1. For example, consider the data type bool with the nullary con-

structors true and false and the data type nat (for naturals) whose objects are
built with the constructors 0 and s : nat! nat.

The following algorithms compute predecessor, subtraction, and division
(the boolean function lt is the usual “less than” relation on nat).

function p : nat! nat

p(0) = 0

p(s(x)) = x

function minus : nat�nat! nat

minus(x;0) = x

minus(0;s(y)) = 0

minus(s(x);s(y)) = minus(x;y)
function quot : nat�nat! nat

quot(x;0) = 0

quot(x;s(y)) = if( lt(x;s(y)); 0; s(quot(minus(p(x);y);s(y))))

For each data type s there is a pre-defined conditional if : bool�s�s! s.
These conditionals are the only algorithms with non-eager semantics, i.e.
when evaluating if(b; t1; t2), the (boolean) term2 b is evaluated first and de-

1 An eager language evaluates the arguments of a function call before application
(this corresponds to the call-by-value parameter passing discipline). The use of pat-
tern matching instead of selectors (or destructors) has no real impact on the difficulty
of the termination proof, but it eases the readability of our presentation.

2 In the following we often refer to boolean terms as “formulas”, where :, ^, _,
and! are pre-defined boolean functions with obvious semantics.
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pending on the result of its evaluation either t1 or t2 is evaluated afterwards
yielding the result of the whole conditional.

To prove termination of algorithms one has to show that in each recursive
call a certain measure is decreased w.r.t. a well-founded relation. For that
purpose a measure function j:j is used which maps each data object t to a
natural number jtj. For minus’ termination proof we can use the size measure
j:j#, where the size of an object of type nat is the number it represents (i.e.
the number of s-occurrences it contains). So we have j0j# = 0, js(0)j# = 1 etc.
Termination of the (binary) function minus can now be verified by regarding
its first argument only. Hence, we have to show that jxj# is smaller than js(x)j#
for all instantiations of x, i.e. we have to verify the following termination

formula3 for minus.

jxj# < js(x)j#

So for a function f with several arguments we try to prove termination by
comparing the i-th argument of the recursive calls with the i-th input argument
(for a fixed i). For every recursive call in a defining equation f (: : : ti : : :) =

: : : f (: : : ri : : :) : : : we obtain a termination formula

b ! jrij# < jtij#(1.1)

where b is the condition under which the recursive call f (: : : ri : : :) is evalu-
ated. For instance, the recursive call of quot is evaluated under the condition
:lt(x;s(y)). So, by regarding the first argument of quot, we obtain the termi-
nation formula

:lt(x;s(y)) ! jminus(p(x);y)j# < jxj#:

The approach of comparing data objects t by their size jtj# is frequently
used in termination proofs. For any data object of type s, we can define an
abstract notion of size by counting the number of reflexive4 constructors of
type s, where substructures are ignored.

For example, let list be a data type with the constructors empty : list and
add : nat� list! list, where add(n; l) represents the insertion of the number
n in front of the list l. Then we have jadd(s(0);empty)j# = 1, because this
term (of type list) contains only one occurrence of a reflexive list-constructor,

3 We only regard universally closed formulas of the form 8 : : : ϕ for verification,
where ϕ is quantifier free and we omit the quantifiers to ease readability.

4 A function symbol f : s1� : : :� sn ! s is reflexive if its range type s is among
its domain types si, and otherwise it is irreflexive. For instance, 0 is an irreflexive
function symbol, whereas s, p, minus, and quot are reflexive.
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whereas jadd(0;add(0;empty))j# = 2. Now we can define the size ordering

�# which compares data objects by their size, i.e. t1 �# t2 iff jt1j# < jt2j#. The
non-strict size ordering �# is defined as t1 �# t2 iff jt1j# � jt2j#. Hence, the
termination formulas of minus and quot can be restated as

x �# s(x);(1.2)

:lt(x;s(y)) ! minus(p(x);y) �# x:(1.3)

2.2. Proving Inequalities by Estimation

Termination formula (1.2) of minus holds by definition of the size ordering
since s(x) contains one more occurrence of s than x for all ground instantia-
tions of x. Note that for the termination proof of minus a pair of terms built
only with variables and constructors has to be compared. But for an algo-
rithm like quot which calls other algorithms (viz. minus and p), a termination
formula like (1.3) is more difficult to verify. The reason is that size is defined
in terms of the constructors 0 and s only. Hence, we cannot directly compute
the size of the data object resulting from minus(p(x);y) by evaluation of the
algorithms minus and p.

A common verification technique is to use estimations for proving such
inequalities. Assume that we know the estimations

minus(x;y) �# x

p(x) �# x

which state that minus and p are 1-bounded operations, i.e. the results of
minus(x;y) and p(x) are always size-smaller or have the same size as their
first argument x.

In general, a function g is p-bounded iff its result is always size-smaller
than or size-equal to its input xp on argument position p, i.e. g(x1; : : : ;xn)�#

xp for all ground instantiations of x1; : : : ;xn, and it is argument-bounded iff
it is p-bounded for some argument position p. From the 1-boundedness of
minus and p we can conclude

minus(p(x);y) �# p(x) �# x:(1.4)

Hence, by transitivity of �# the non-strict version of the termination formula
(1.3) is verified. But for the termination proof of quot, minus(p(x);y) has to
be strictly smaller than x under the condition of quot’s recursive call.
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Assume also that we know difference predicates ∆1
minus

and ∆1
p

which in-
dicate whether minus(x;y) resp. p(x) are strictly smaller than x:

function ∆1
minus

: nat�nat! bool

∆1
minus

(x;0) = false

∆1
minus

(0;s(y)) = false

∆1
minus

(s(x);s(y)) = true

function ∆1
p

: nat! bool

∆1
p

(0) = false

∆1
p

(s(x)) = true

Then the following induction lemmata hold for minus and p:

∆1
minus

(x;y) $ minus(x;y) �# x;

∆1
p

(x) $ p(x)�# x:

To finish the termination proof of quot we have to establish that under the
condition of quot’s recursive call at least one of the two inequalities in (1.4)
is strict, i.e. that minus(p(x);y)�# x holds. Since ∆1

minus

(p(x);y) is equivalent
to the strictness of the first inequality and ∆1

p

(x) is equivalent to the strictness
of the second inequality,

∆1
minus

(p(x);y) _ ∆1
p

(x)

is an equivalent requirement for minus(p(x);y) �# x. Hence, termination of
quot is proved by verifying the termination hypothesis

:lt(x;s(y)) ! ∆1
minus

(p(x);y) _ ∆1
p

(x);(1.5)

i.e. by verifying x� y+1 ! x�1 6= 0^ y 6= 0 _ x 6= 0.
In general, each p-bounded function g : s1� : : :�sn ! s is associated with

a difference predicate ∆p
g : s1� : : :� sn ! bool such that

∆p
g(x1; : : : ;xn) $ g(x1; : : : ;xn)�# xp(1.6)

holds for all ground instantiations of x1; : : : ;xn. So if a p-bounded function g

is applied to some input t1; : : : ; tn and it returns something size-smaller than tp,
then the difference predicate ∆p

g applied to t1; : : : ; tn yields true and it returns
false iff g returns something size-equal to tp.

The notion of argument-bounded functions is the key concept for our for-
malization of estimation proofs. Suppose that for each p 2 IN we know a set
Γp of p-bounded function symbols and let Γ be the family of all these sets.
Then a decidable so-called estimation relation �Γ on terms can be defined,
such that for all terms t1 and tn we have

t1 �Γ tn implies t1 �# tn:(1.7)

The relation �Γ mirrors the proof technique of estimation and it is based on
the knowledge about data types and the argument-bounded functions in Γ.

datei.tex; 13/02/1998; 10:59; p.6



TERMINATION ANALYSIS FOR FUNCTIONAL PROGRAMS 7

Suppose we know that minus and p are 1-bounded, i.e. fminus;pg � Γ1.
Then the non-strict inequality minus(p(x);y) �# x can be verified directly by
estimating minus and p, cf. (1.4). So the general idea to establish t1 �Γ tn is
to test whether tn is a subterm of t1, as e.g. x is a subterm of minus(p(x);y),
where only subterms in argument-bounded positions p are inspected.

The estimation relation �Γ provides a deductive requirement for the non-

strict semantic relation �#, cf. (1.7). But as termination proofs are based on
the relation �#, we need a deductive means for the strict size ordering �#.

Here, the general idea is to scan an estimation t1 �Γ t2 �Γ : : : �Γ tn�1 �Γ
tn step by step. For each estimation step ti �Γ ti+1, where ti = gi(: : : ti+1 : : :)

and ti+1 is the pi-th argument of the pi-bounded function gi, the corresponding
“call” of the difference predicate ∆pi

gi (: : : ti+1 : : :) is collected. From all these
“calls”, one computes the disjunction

∆p1
g1
(: : : t2 : : :) _ ∆p2

g2
(: : : t3 : : :) _ : : :_ ∆pn�1

gn�1
(: : : tn : : :):

This formula is called the difference equivalent ∆Γ(t1; tn) of t1 and tn. Since
each literal of ∆Γ(t1; tn) is built with a difference predicate, we have generated
an equivalent requirement for t1 �# tn, i.e.

t1 �Γ tn implies ∆Γ(t1; tn)$ t1 �# tn:

Apart from the estimation rule for argument-bounded functions, we may
also define additional estimation rules based on data types. For instance, the
estimation step

tp �Γ cons(: : : tp : : :)

can be performed for each constructor cons with a reflexive argument position
p, and the corresponding difference equivalent ∆Γ(tp;cons(: : :)) is true. So
by this rule we can conclude inequalities like t2 �Γ add(t1; t2) and t �Γ s(t)

(cf. the termination formula (1.2) of minus). Moreover, for each data type,
“t �Γ t” can be used as an estimation step where ∆Γ(t; t) is defined as false.

Using the estimation relation and the difference equivalent, our procedure
for automated termination proofs is straightforward. For each recursive call
in a defining equation f (: : : t : : :) = : : : f (: : : r : : :) : : : we have to prove a ter-
mination formula of the form

b ! r �# t;

where b is the condition under which f (: : : r : : :) is evaluated, cf. (1.1). Now
we first test whether r �Γ t holds (otherwise the termination proof fails). If
r �Γ t can be established, then the termination hypothesis

b ! ∆Γ(r; t)
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is generated. Subsequently, an induction theorem proving system (e.g. one
of those described in (Boyer and Moore, 1979; Bundy et al., 1990; Walther,
1994a; Bouhoula and Rusinowitch, 1995; Kapur and Zhang, 1995; Hutter
and Sengler, 1996)) is used to verify the generated termination hypotheses.
This verification is usually quite simple, i.e. the proof often succeeds using
case analysis and propositional reasoning only. If all termination hypotheses
can be proved, then the termination formulas hold for each recursion and
consequently, the algorithm under consideration terminates.

For example, to verify termination of quot, minus(p(x);y) �Γ x is estab-
lished first. Then the difference equivalent ∆Γ(minus(p(x);y);x) is computed
as ∆1

minus

(p(x);y)_∆1
p

(x) and the termination hypothesis (1.5) is generated.
Finally, an induction theorem prover is called with this termination hypothe-
sis, which is easily verified by case analysis and symbolic evaluation.

2.3. Argument-Bounded Functions

The generation of termination hypotheses is based on the argument-bounded
functions in Γ and on their difference predicates. Hence, for an automation of
our approach, we have to determine argument-boundedness and to synthesize
difference predicates5 automatically.

To recognize argument-bounded functions we define a decidable algo-

rithm schema such that every instance of this schema computes an argument-
bounded function. The main idea embodied in this schema is to construct
a meta-induction proof to verify that a function is argument-bounded. The
defining equations of the difference predicate are generated in parallel to the
proof steps of the meta-induction.

For example, to verify that minus is 1-bounded, the right-hand side of
minus’ first defining equation, viz. x, is compared with the corresponding first
input argument x. Since x �Γ x holds, minus is 1-bounded at least for the first
case. The corresponding difference equivalent ∆Γ(x;x) is false, which means
that in this case the result is never size-smaller than the input argument x.
Therefore, we obtain ∆1

minus

(x;0) = false as the first defining equation for the
difference predicate ∆1

minus

.
For the second equation of minus the result 0 has to be compared with the

corresponding input 0. We have 0 �Γ 0 and ∆Γ(0;0) = false. Hence, minus is
also 1-bounded in this case and we obtain ∆1

minus

(0;s(y)) = false as the second
defining equation for the difference predicate. This completes the base case
of the meta-induction.

5 Strictly speaking, we synthesize algorithms which compute difference predi-
cates. For the sake of brevity, we also refer to these algorithms as “difference predi-
cates”.
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Finally the result minus(x;y) of the third (recursive) equation is compared
with s(x). Because we assume minus(x;y) �Γ x as the induction hypothesis, it
remains to verify x �Γ s(x). As this obviously holds (where the corresponding
difference equivalent ∆Γ(x;s(x)) is true), minus is 1-bounded for the recursive
case, too. Now the difference equivalent ∆Γ(minus(x;y);s(x)) is computed
as ∆1

minus

(x;y)_ true which is simplified to true (here we may already use
∆1
minus

(x;y) because we are in an inductive construction). Thus, minus(x;y)

is size-smaller than s(x), and therefore, the last defining equation of ∆1
minus

is
∆1
minus

(s(x);s(y)) = true. This completes the step case of the meta-induction.
In this way, minus is recognized as a 1-bounded function and the algorithm
for ∆1

minus

as given in Section 2.2 is synthesized automatically.
Note that the above meta-induction is based on the recursions of minus.

Hence, the proof for the argument-boundedness of minus is only sound if
minus terminates, because otherwise the induction relation used is not well
founded. So before proving the termination of quot we must have proved
termination of minus. Therefore, in this chapter we always demand that (apart
from recursive calls) algorithms only call other algorithms whose termination
has been verified before, which excludes mutually recursive algorithms (see
(Giesl, 1997) for an extension of termination analysis to mutual recursion).

2.4. Refinements and Summary

We have presented a method to generate termination hypotheses, such that
the truth of these hypotheses implies termination of the algorithm under con-
sideration. The termination hypotheses represent the idea why an algorithm
terminates. Hence, with our method the creativity for finding the right argu-
ment for termination has been mechanized for a certain class of algorithms.

Our approach is based on induction lemmata stating that certain opera-
tions are argument-bounded w.r.t. the size-ordering. Unlike the method of
Boyer and Moore, our method is able to synthesize such induction lemmata
automatically. The obtained lemmata are sound by construction, i.e. they do
not have to be verified by a theorem prover.

The general procedure to compute the relevant knowledge for termination
proofs works as follows. For each new algorithm f we first prove termination.
Afterwards, for each argument position p it is tested whether f is p-bounded
and if so, a difference predicate ∆p

f is synthesized. In this way, the knowledge
about argument-bounded algorithms is increased gradually by machine.

For functions with several arguments we proved termination by exam-
ining just one argument position. However, our approach is generalized in
a straightforward way by taking several argument positions into account, cf.
(Walther, 1994b). Numerous refinements of our method have been developed,
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e.g. techniques for the simplification of difference predicates which ease the
proof of termination hypotheses considerably. Further details and refinements
can be found in (Walther, 1988; Walther, 1991; Walther, 1994b).

Our method works for polymorphic types as well and an adaptation to
non-free data types can be found in (Sengler, 1996; Sengler, 1997). Based
on our schema for argument-bounded functions, McAllester and Arkoudas

(1996) suggest a programming discipline such that only terminating programs
can be defined. Termination analysis can also be extended to languages with
lazy evaluation strategy (Panitz and Schmidt-Schauß, 1997) and to higher-
order functions by inspecting the decrease of their first-order arguments, cf.
(Nielson and Nielson, 1996).

3. TERMINATION PROOFS WITH TERM ORDERINGS

The termination proof method just presented is restricted to one single fixed

measure function. However, there are many useful algorithms which require
a measure function j:j different from the size measure function j:j#. Therefore,
we now extend our approach to arbitrary well-founded term orderings.

3.1. Term Orderings and Functional Programs

Consider the data type tree for binary trees with the constructors nil and cons.
The nullary function nil represents leafs and cons(t1; t2) is the tree whose root
has the direct subtrees t1 and t2. The algorithm atten linearizes trees such
that all left subtrees are leaves, cf. Figure 1.

function atten : tree! tree

atten(nil) = nil

atten(cons(nil;y)) = cons(nil;atten(y))

atten(cons(cons(u;v);w)) = atten(cons(u;cons(v;w)))

In the third defining equation, the size of the argument is not decreasing
in the recursive call, but it remains the same (where the size of a tree is the
number of its inner nodes, i.e. the number of occurrences of cons). So the size
ordering cannot be used for the termination proof of atten and therefore the
method of Section 2 fails. To prove the termination of atten we have to find
a well-founded ordering on terms (a so-called term ordering) which satisfies
the termination formulas

y � cons(nil;y);(1.8)

cons(u;cons(v;w)) � cons(cons(u;v);w):(1.9)
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Figure 1. A tree in linear form and rotation of trees as performed by atten.

Techniques for the automated generation of well-founded term orderings
have been developed in the area of term rewriting systems. For instance, (1.8)
and (1.9) are satisfied by a polynomial ordering (Lankford, 1979), where ev-
ery n-ary function symbol is associated with an n-ary polynomial over the
natural numbers. Then a ground term r is smaller than a ground term t with
respect to the polynomial ordering iff the number jrj corresponding to r is
smaller than the number jtj corresponding to t. As all ground terms are asso-
ciated with natural numbers, polynomial orderings are well founded.

If nil is associated with the nullary polynomial 0 and cons(x;y) is associ-
ated with the polynomial 1+ 2x+ y (i.e. jcons(x;y)j = 1+ 2jxj+ jyj), then
jcons(nil;y)j = 1+ jyj. As jyj < 1+ jyj holds for all natural numbers jyj,
this polynomial ordering satisfies the first requirement (1.8). Analogously,
jcons(u;cons(v;w))j = 2+ 2juj+ 2jvj+ jwj and jcons(cons(u;v);w)j = 3+
4juj+ 2jvj+ jwj. As 2+ 2juj+ 2jvj+ jwj < 3+ 4juj+ 2jvj+ jwj is true for
all naturals juj; jvj; jwj, the polynomial ordering also satisfies (1.9) and the
termination of atten is proved.

However, in general this naive approach of using term orderings for ter-
mination proofs is not sound. For example, the algorithm

function f : tree! tree

f(nil) = nil

f(cons(u;v)) = f(atten(cons(u;v)))

is obviously not terminating. Nevertheless there exists a well-founded term
ordering � satisfying the termination formula

atten(cons(u;v)) � cons(u;v):(1.10)

For instance, let r � t hold iff the leading function symbol of r is atten and
the leading symbol of t is cons. So the existence of a well-founded term order-
ing such that terms in the recursive calls are smaller than the corresponding
input terms is not sufficient for the termination of a functional program.
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The reason is that a term with the defined6 function symbol atten is used
in f’s recursive call, viz. atten(cons(u;v)), whose evaluation must be com-
pared with the input cons(u;v). Thus, (1.10) cannot hold for any well-founded
ordering, since atten(cons(nil;nil)) is evaluated to cons(nil;nil). So a direct
use of term orderings for termination proofs is only sound, if the arguments of
the recursive calls contain no functions except constructors (as nil and cons),
because terms built only with constructors are evaluated already.

A straightforward attempt to enable the use of term orderings for func-
tional algorithms which call other algorithms is the restriction to term order-
ings which respect the semantics of the called algorithms. Under such order-
ings, different terms which denote the same data object (like atten(cons(nil;

nil)) and cons(nil;nil)) are equivalent.
But in general this restriction is too strong. Consider the following purge-

and-sort algorithm sort (i.e. sort also eliminates duplicates).

function sort : list! list

sort(x) = if(emptyp(x); empty; add(min(x);sort(rm(min(x);x))))

This algorithm calls three other algorithms emptyp, min, and rm, where
emptyp(x) checks if x is empty, min(x) computes the minimum of a non-
empty list x, and rm(n;x) removes all occurrences of n from x.

However, none of the orderings typically used in the area of term rewriting
systems both respects the semantics of min and rm and makes inputs greater
than the corresponding recursive calls of sort. (In fact, most term orderings
that are amenable to automation7 are simplification orderings (Dershowitz,
1987; Steinbach, 1995b), i.e. orderings which possess the subterm property

(t � f (: : : t : : :)). Such orderings do not respect the semantics of the algorithm
min, because min(add(0;empty)) evaluates to 0, but min(add(0;empty)) can
never be equivalent to its subterm 0 w.r.t. a simplification ordering.)

Another straightforward attempt for the termination proof of the algorithm
sort is to transform sort and the auxiliary algorithms min and rm into a term

rewriting system and to prove its termination instead. Functional programs in
our language can be regarded as a special kind of (conditional) term rewrit-
ing systems with innermost evaluation strategy. But due to their special form
and this evaluation strategy we may use a different approach for termination
proofs of functional programs than it is necessary for term rewriting systems.

6 Functions whose semantics are determined by algorithms are called defined.
7 There also exist techniques which can orient every terminating term rewriting

system (e.g. semantical path orderings (Kamin and Levy, 1980), transformation or-
derings (Bellegarde and Lescanne, 1990), or semantic labelling (Zantema, 1995)).
But the disadvantage of these powerful approaches is that up to now there are only
few suggestions for their automated generation (Steinbach, 1995a).

datei.tex; 13/02/1998; 10:59; p.12



TERMINATION ANALYSIS FOR FUNCTIONAL PROGRAMS 13

For instance, for functional programs it is sufficient to compare the input
arguments with the arguments in the recursive calls, while for term rewrit-
ing systems left- and right-hand sides of all rules have to be compared (and
moreover, the ordering has to be monotonic), cf. (Dershowitz, 1987).

Therefore by transforming functional programs into term rewriting sys-
tems we impose unnecessarily strong requirements for the termination proof.
For instance, no simplification ordering can prove termination of the term
rewriting system corresponding to sort, min, and rm, since it contains a rule

sort(add(n;y))! add(: : : ;sort(rm(: : : ;add(n;y))))

whose left-hand side is embedded in its right-hand side (and the same holds
for the system resulting from quot, minus, and p from Section 2).

3.2. Elimination of Defined Function Symbols

In the preceding section we showed that term orderings can be used for termi-
nation proofs of algorithms like atten, where the size ordering (and there-
fore the approach of Section 2) fails. But on the other hand, the estimation
technique of Section 2 proves termination of algorithms like sort which call
other algorithms in the arguments of their recursive calls, whereas for such
algorithms the direct use of term orderings is unsound. To benefit from the ad-
vantages of both approaches, we need a method which combines the handling
of such algorithms with the flexibility of arbitrary term orderings (i.e. we need
a proper extension of our approach in Section 2). Since the straightforward
solutions impose too strong requirements such that termination proofs often

fail, we now develop a method which overcomes these problems. To prove the
termination of sort we have to show the existence of a well-founded ordering
� (on the evaluated terms) satisfying the termination formula

:emptyp(x) ! rm(min(x);x) � x;(1.11)

where r � t abbreviates “evaluation of r” � “evaluation of t”.
As demonstrated, the application of methods for the synthesis of well-

founded term orderings is only sound if the termination formulas do not con-
tain defined function symbols (like rm and min). Therefore we develop a
calculus to transform termination formulas like (1.11) into formulas without

defined function symbols.
This calculus transforms a set of termination formulas TF0 of an algorithm

into sets TF1, TF2, etc. until we obtain a set of formulas TFn containing no
defined function symbols any more, cf. Figure 2. This transformation is an
abduction process, i.e. TFi+1 j= TFi holds for all i. Hence, if a relation �
satisfies TFi+1, then it also satisfies TFi.
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14 JÜRGEN GIESL, CHRISTOPH WALTHER, JÜRGEN BRAUBURGER

TF0 7! TF1 7! TF2 7! : : : 7! TFn

jj jj jj jj

� x � x � x : : :x �

Figure 2. Elimination of defined function symbols from termination formulas.

The formulas in TFn resulting from the transformation process contain
no defined function symbols. Therefore the naive approach of using a term
ordering � satisfying TFn is sound. As TFn implies TF0, this ordering � also
satisfies the original termination formulas in TF0 and therefore the existence
of a term ordering satisfying the requirements in TFn is sufficient for the
termination of the algorithm.

The derivation tree in Figure 3 illustrates the transformation of sort’s ter-
mination formula (1.11). Every node in the tree is transformed into its succes-
sors by application of one transformation rule. Leaves of the tree are formulas
that do not contain defined function symbols (and therefore no transformation
rule is applicable to them). As each transformation rule is an abduction step,
every node is implied by the formulas of all its successors. Hence, the formu-
las at the leaves imply the termination formula at the root of the tree. Thus,
the existence of a well-founded term ordering satisfying the requirements at
the leaves of the tree in Figure 3 is sufficient for termination of sort. In the
following our termination proof method is presented in three steps.

3.2.1. Estimation and Generalization

The termination formula (1.11) of sort contains the defined function symbols
rm and min. The central idea of our procedure is an estimation of defined
function symbols by new free function symbols (i.e. function symbols like
constructors which are not defined by algorithms). Therefore rm is replaced
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Figure 3. Termination proof of sort.
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by a new free symbol rm and we demand that the result of rm is always
greater or equal than the result of rm, i.e.

rm(n;x) � rm(n;x):(1.12)

Unlike rm, the free function symbol rm has no fixed semantics (i.e. there is no
algorithm for rm) and our aim is to transform the termination formula (1.11)
into inequalities which contain free symbols like rm, but no defined symbols
like rm. If these resulting inequalities are satisfied by a well-founded term
ordering, then the termination of sort is proved.

This generalizes the approach of Section 2 where argument-bounded func-
tions were estimated by their arguments according to the size ordering. For
example, (1.12) holds for rm(n;x) := x and � :=�#, since rm is 2-bounded.
However, now we perform estimations without fixing the upper bounds and
the ordering used. Instead we generate constraints and postpone the search
for suitable upper bounds and orderings satisfying these constraints to the
end of the termination proof.

Assume that we know a set of so-called estimation inequalities E
rm�

rm

(without defined function symbols) which imply (1.12). Then demanding

rm(min(x);x) � x(1.13)

and E
rm� rm

implies the non-strict version of termination formula (1.11):

rm(min(x);x) � rm(min(x);x) � x:

But to ensure the strict inequality (1.11), one of the inequalities (1.13) and
rm(min(x);x) � rm(min(x);x) must be strict, whenever :emptyp(x) holds.

Assume also that we know a strictness predicate δ
rm� rm

which is true iff
the result of rm is strictly smaller than the result of rm. Then δ

rm � rm

(min(x);x)

indicates whether the estimation of rm(min(x);x) by rm(min(x);x) is strict.
Therefore we can replace the termination formula (1.11) of sort by (1.13),
E

rm� rm

, and the formula

:emptyp(x) ! δ
rm�

rm

(min(x);x) _ rm(min(x);x) � x:(1.14)

The transformation of (1.11) into (1.13), E
rm � rm

, and (1.14) corresponds to
the step from the root of the derivation tree in Figure 3 to its direct successors.
This transformation is an abduction step, because (1.13), E

rm� rm

, and (1.14)
are sufficient for the termination formula (1.11), and it is obtained by the
estimation rule in Figure 4.

This rule8 embodies a main principle of our transformation. Similar to
Section 2, for a termination formula b ! r � t we ensure that the non-strict

8 We also use an estimation rule for non-strict inequalities g(: : :) � t which only
contains the first two consequences of the rule in Figure 4.
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16 JÜRGEN GIESL, CHRISTOPH WALTHER, JÜRGEN BRAUBURGER

b ! g(r1; : : : ;rn)� t

ḡ(r1; : : : ;rn)� t

Eg�ḡ

b ! δg�ḡ(r1; : : : ;rn) _ ḡ(r1; : : : ;rn)� t

Figure 4. Estimation rule to estimate a defined function symbol g.

unconditional inequality r� t holds. The advantage of omitting the condition
b (which contains semantical information) is that defined symbols in r� t can
be eliminated by repeated application of purely syntactical inference rules
(like estimation). A semantical rule which considers the condition b is only
necessary to guarantee that one of the estimation steps in the derivation is
strict, cf. Section 3.2.3.

The resulting formulas (1.13) and (1.14) still contain the defined symbol
min. To eliminate min we can again use estimation and replace it by a new
free symbol min. But apart from estimation there is another (obvious) method
to eliminate defined symbols like min, viz. replacing terms like min(x) in ine-
qualities9 by fresh variables. In this way, (1.13) and (1.14) are generalized to

rm(z;x) � x;(1.15)

:emptyp(x) ! δ
rm�

rm

(min(x);x) _ rm(z;x) � x:(1.16)

Each generalization is also an abduction, because if (1.15) resp. (1.16) hold
for all z, then (1.13) resp. (1.14) hold as well. As (1.15) contains no defined
symbols, this inequality corresponds to a leaf in the derivation tree.

3.2.2. Estimation Inequalities and Strictness Predicates

Our estimation technique is based on estimation inequalities like E
rm �

rm

and
on strictness predicates like δ

rm� rm

and in this section we show how they are
computed. The estimation inequalities E

rm � rm

guarantee that rm is an upper
bound for rm, where rm is defined as

function rm : nat� list! list

rm(n;empty) = empty

rm(n;add(m;y)) = if(eq(n;m); rm(n;y); add(m; rm(n;y))):

Here, eq computes the equality predicate on naturals.

9 To perform estimation and generalization repeatedly, these techniques may
also be applied to inequalities g(: : :) � t occurring in disjunctions of the form
b ! δ1(: : :)_ : : :_ δn(: : :)_ g(: : :) � t. A method to eliminate the defined symbols
from the terms δ(: : :) is presented in Section 3.2.3.
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To construct E
rm� rm

we consider each result term of rm separately. Instead
of rm(n;x) � rm(n;x) we therefore demand (again omitting conditions like
eq(n;m) in non-strict inequalities)

empty � rm(n;empty);(1.17)

rm(n;y) � rm(n;add(m;y));(1.18)

add(m; rm(n;y)) � rm(n;add(m;y)):(1.19)

We cannot define E
rm� rm

= f(1:17);(1:18);(1:19)g as (1.18) and (1.19) still
contain the defined symbol rm. Defined function symbols occurring in such
inequalities have to be eliminated by estimation or generalization again.

But the problem here is that rm itself appears in the inequalities (1.18) and
(1.19). Therefore we cannot use the (non-strict version of the) estimation rule
in Figure 4 for the estimation of rm, because we do not know the estimation
inequalities E

rm � rm

yet.
The construction of estimation inequalities corresponds to the problem

of proving argument-boundedness in Section 2. Therefore, we solve it in a
similar way by computing E

rm � rm

inductively. The base case of the inductive
construction corresponds to rm’s non-recursive equation. Inequality (1.17)
ensures that in this case rm is an upper bound for rm.

In the step case we have to guarantee that (1.18) and (1.19) hold, i.e. for
inputs of the form (n;add(m;y)) the result of rm must be smaller or equal
than the result of rm. As induction hypothesis we assume that this estimation
is already correct for the arguments (n;y), i.e. rm(n;y) � rm(n;y). Therefore

rm(n;y) � rm(n;add(m;y))(1.20)

is sufficient for (1.18) and we can replace (1.18) by inequality (1.20) which
does not contain defined function symbols.

So to eliminate the defined symbol rm from (1.18) we use the (non-strict)
estimation rule (Figure 4) and due to an inductive argument we can omit the
second consequence, viz. E

rm �
rm

, of this inference rule.
For the transformation of (1.19) we again use the induction hypothesis

rm(n;y)� rm(n;y). However, to eliminate the defined symbol rm from (1.19)
by estimation, we would need

add(m; rm(n;y)) � add(m; rm(n;y)):(1.21)

To imply (1.21), in addition to the induction hypothesis we have to demand
that the result of add should also be decreasing if the second argument of
add is decreasing. In other words, add should be monotonic in its second
argument, i.e. we demand the requirement

u� v ! add(m;u)� add(m;v):(1.22)

datei.tex; 13/02/1998; 10:59; p.17



18 JÜRGEN GIESL, CHRISTOPH WALTHER, JÜRGEN BRAUBURGER

Now (by the induction hypothesis), (1.19) is implied by (1.22) and

add(m; rm(n;y)) � rm(n;add(m;y)):(1.23)

The monotonicity problem always appears except when estimating the
leading function symbol. To estimate a function within a term at a position
π, the rule in Figure 4 is extended by a consequence which demands that the
term is monotonic in the position π. Subsequently any defined symbols in
monotonicity formulas like (1.22) are eliminated by generalization.

Note that the monotonicity problem results from the consideration of ar-

bitrary term orderings. If we restrict ourselves to the size ordering of Section
2, i.e. � :=�#, then monotonicity requirements like (1.22) always hold for
reflexive arguments of constructors.

Now we have finished our inductive construction of E
rm� rm

(as illustrated
in Figure 3) and obtain

E
rm �

rm

= fempty � rm(n;empty);(1.17)

rm(n;y) � rm(n;add(m;y));(1.20)

u� v ! add(m;u)� add(m;v);(1.22)

add(m; rm(n;y)) � rm(n;add(m;y))g:(1.23)

So in general estimation inequalities Eg�ḡ are computed as follows.

1. For each result r of the algorithm g we build the formula r � ḡ(: : :).
2. Then the defined symbols in r � ḡ(: : :) are eliminated by estimation

or generalization. When g itself is estimated, the second consequence
(Eg�ḡ) of the (non-strict) estimation rule is omitted.

The algorithm for the strictness predicate δ
rm � rm

is also constructed by in-
duction (corresponding to the construction of difference predicates in Section
2). The predicate δ

rm� rm

(n;x) has to return true iff rm(n;x) is strictly smaller
than rm(n;x). By analysis according to the result terms of rm we obtain the
following defining equations for δ

rm� rm

:

δ
rm� rm

(n;empty) = empty � rm(n;empty)

δ
rm�

rm

(n;add(m;y)) = if(eq(n;m);

(1.24) rm(n;y) � rm(n;add(m;y));

(1.25) add(m; rm(n;y)) � rm(n;add(m;y)))

However, the inequalities (1.24) and (1.25) still contain the defined func-
tion symbol rm. Therefore we eliminate this symbol by estimation again. So
inequality (1.24) is transformed into (1.20), E

rm�
rm

, and

δ
rm� rm

(n;y) _ rm(n;y) � rm(n;add(m;y)):(1.26)
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We construct δ
rm � rm

inductively, i.e. when defining δ
rm� rm

(n;add(m;y)) we
use “δ

rm � rm

(n;y) = rm(n;y) � rm(n;y)” as an induction hypothesis. This re-
sults in the recursive call δ

rm�
rm

(n;y) of (1.26).
Note that (1.20) is already included in E

rm �
rm

. Hence, as long as E
rm�

rm

holds we only have to consider the third consequence of the estimation rule
in Figure 4 and replace (1.24) by (1.26). We proceed in the same way for
inequality (1.25) and obtain the following algorithm for δ

rm�
rm

.

function δ
rm�

rm

: nat� list! bool

δ
rm�

rm

(n;empty) = empty � rm(n;empty)

δ
rm� rm

(n;add(m;y)) = if(eq(n;m);

δ
rm� rm

(n;y) _ rm(n;y)� rm(n;add(m;y));

δ
rm�

rm

(n;y) _ add(m; rm(n;y))� rm(n;add(m;y)))

So algorithms for strictness predicates δg�ḡ are constructed as follows.

1. Each result r of the algorithm g is replaced by r � ḡ(: : :).
2. Then the defined function symbols in r � ḡ(: : :) are eliminated by es-

timation or generalization. When using estimation all consequences of
the estimation rule except the third one are omitted.

3.2.3. Elimination of Strictness Predicates

By estimation and generalization of defined function symbols each termina-
tion formula b! r� t is transformed into a (possibly empty) set of non-strict
inequalities and a formula of the form

b ! δ1(: : :)_ : : :_δn(: : :)_ r0 � t:(1.27)

For example, the termination formula (1.11) of sort has been transformed into
inequality (1.15), the estimation inequalities E

rm � rm

, and the formula

:emptyp(x) ! δ
rm�

rm

(min(x);x) _ rm(z;x) � x:(1.16)

The formula (1.27) corresponds to the notion of termination hypothe-

ses from Section 2 and the unconditional part of (1.27), viz. δ1(: : :)_ : : :_

δn(: : :)_ r0 � t, is the difference equivalent ∆
�

(r; t) of r and t. Hence, this
extends the notion of difference equivalents to arbitrary term orderings �.
Similar to Section 2 we have

r � t implies ∆
�

(r; t)$ r � t:

While (1.15) and E
rm�

rm

contain no defined symbols, formula (1.16) contains
the strictness predicate δ

rm� rm

which is defined by an algorithm. To complete
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the elimination of defined symbols we now have to eliminate the strictness
predicate δ

rm � rm

from requirement (1.16).
For that purpose we choose some of the inequalities occurring in (1.16)

and in the algorithm δ
rm�

rm

, i.e. inequalities from

rm(z;x) � x;(1.28)

empty � rm(n;empty);(1.29)

rm(n;y) � rm(n;add(m;y));(1.30)

add(m; rm(n;y)) � rm(n;add(m;y)):(1.31)

Our method selects a subset of these inequalities which is sufficient for (1.16),
where small subsets are preferable in order to minimize the number of result-
ing constraints. Of course, (1.28) is sufficient for (1.16). However, if (1.16) is
transformed into (1.28) then the termination proof of sort fails. The reason is
that there exists no well-founded ordering satisfying both E

rm� rm

and (1.28).
But (1.16) is also implied by inequality (1.30) from the second defining

equation of δ
rm� rm

. Essentially, the reason is that every non-empty list x con-
tains its minimum. Hence when evaluating δ

rm� rm

(min(x);x), after a finite
number of recursive calls δ

rm� rm

is called with a list which begins with its
minimum. Then the if-condition of the second defining equation is satisfied
and therefore δ

rm�
rm

(min(x);x) returns true if (1.30) is true.
Different to the syntactical inference rules in Section 3.2.1 and 3.2.2 we

now had to consider the semantics of the strictness predicate δ
rm �

rm

. To elim-
inate strictness predicates we have to prove that certain inequalities (like
(1.30)) are sufficient for formulas like (1.16). To perform such proofs au-
tomatically an induction theorem proving system is used (similar to the veri-
fication of termination hypotheses in Section 2).

So to eliminate defined strictness predicates from a formula of the form
b! δ1(: : :)_ : : :_δn(: : :)_ r0 � t our method proceeds as follows.

1. Let Φ be the set containing r0� t and all inequalities from the algorithms
δ1; : : : ;δn and their auxiliary algorithms.

2. Then the formula is replaced by a minimal subset of Φ that is sufficient
for b! δ1(: : :)_ : : :_δn(: : :)_ r0 � t.

By replacing (1.16) with (1.30) we have finished the transformation of
sort’s termination formula into inequalities without defined symbols, i.e. we
have constructed the derivation tree in Figure 3. To prove sort’s termination
one now has to find a well-founded term ordering satisfying the constraints
(1.15), (1.17), (1.20), (1.22), (1.23), (1.30) at the leaves of the tree:
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rm(z;x) � x;(1.15)

empty � rm(n;empty);(1.17)

rm(n;y) � rm(n;add(m;y));(1.20)

u� v ! add(m;u)� add(m;v);(1.22)

add(m; rm(n;y)) � rm(n;add(m;y));(1.23)

rm(n;y) � rm(n;add(m;y)):(1.30)

For instance, these constraints are satisfied by the polynomial ordering
associating empty with 0, add(n;x) with x+1, and rm(n;x) with x. Therefore
the termination of sort is proved.

Note that this polynomial ordering is just the size ordering used in Section
2. In fact, sort’s termination can also be proved with the approach of Section
2. However, the technique just presented is a proper extension of Section 2,
i.e. every termination proof with the method of Section 2 can also be per-
formed with the method from this section, but not vice versa. The reason is
that the extended method also proves termination for algorithms like atten

where orderings different from size are needed. While atten did not use aux-
iliary algorithms, our method also handles examples like the following reach-
ability algorithm on directed graphs, which calls another algorithm union in
its recursive call and which also requires an ordering different from size.

function rch : nat�nat�graph�graph! bool

rch(x;y;ε;h) = false

rch(x;y;edge(u;v; i);h) = if(eq(x;u); if(eq(y;v); true; rch(x;y; i;h)_

rch(v;y;union(i;h);ε));
rch(x;y; i;edge(u;v;h)))

Here, ε (the empty graph) and edge(x;y;g) (the graph g extended by an
edge from x to y) are the constructors of type graph and rch(x;y;g;ε) returns
true iff there is a path from node x to node y in the directed graph g. Termina-
tion of rch can be proved with our method where the resulting constraints are
satisfied by a polynomial ordering of degree 2, whereas there is no termina-
tion proof using the size ordering. A collection of numerous such algorithms
can be found in (Giesl, 1995d).

For the computation of well-founded term orderings which satisfy the de-
rived constraints we use procedures developed in the area of term rewriting
systems and computer algebra. For instance, the algorithm of G. E. Collins

(1975) decides whether there exists a polynomial ordering over the reals of a
given degree satisfying a set of constraints. A procedure to generate polyno-
mial orderings using an efficient, incomplete modification of Collins’ algo-
rithm is given in (Giesl, 1995a).
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3.3. Refinements and Summary

We have presented a method for automated termination proofs of functional
programs which extends the approach of Section 2 by allowing arbitrary term
orderings. When using term orderings for termination proofs of functional

programs, defined function symbols in the recursive calls have to be elimi-
nated. This elimination proceeds in three steps. First, defined function sym-
bols g in the termination formulas are generalized or estimated by new free
function symbols ḡ (Section 3.2.1). To guarantee that ḡ is an upper bound for
g we demand estimation inequalities Eg�ḡ. By the estimation of a function
symbol g we also obtain a formula containing the strictness predicate δg�ḡ.
This predicate indicates whether the result of ḡ is strictly greater than the re-
sult of g (Section 3.2.2). Finally the (defined) strictness predicate has to be
eliminated (using an induction theorem prover) (Section 3.2.3).

Our method is easily extended to algorithms with several arguments. For
that purpose we introduce a new free tuple function symbol ν and instead
of two tuples (r1 : : : rn) and (t1 : : : tn) we compare the terms ν(r1 : : : rn) and
ν(t1 : : : tn). So for instance, we demand ν(x;y) � ν(s(x);s(y)) to prove termi-
nation of the algorithm minus.

The automatic transformation of termination formulas into formulas with-
out defined function symbols is performed in finitely many steps as each
transformation rule decreases the number of defined symbols. Therefore deri-
vation trees only contain paths of finite length. But our procedure contains two
choice points. First, defined function symbols can be eliminated by estima-
tion or by generalization. Second, for disjunctions like (1.16) there may be
more than one subset of inequalities sufficient for the elimination of strict-
ness predicates. So there can be several different derivation trees for one ter-
mination formula. But as the number of derivation trees for one termination
formula is also finite (and small), one can backtrack if no well-founded term
ordering satisfying the constraints at the leaves can be found. To improve
the efficiency of the method, we have also developed heuristics for choos-
ing the “right” derivation tree which have proved successful in practice. (We
tested our method on a large data base of examples and for the vast major-
ity, termination could be proved within a few seconds.) For a more detailed
description of our approach and further refinements see (Giesl, 1995b; Giesl,
1995c; Giesl, 1995d; Giesl, 1997).

Our method has also been adapted for termination proofs in other areas. In
particular, a method for termination proofs of term rewriting systems based
on the comparison of arguments (instead of rules) and on our estimation tech-
nique can be found in (Arts and Giesl, 1996; Arts and Giesl, 1997a; Arts and
Giesl, 1997b; Arts and Giesl, 1998).
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4. TERMINATION ANALYSIS FOR PARTIAL FUNCTIONS

A functional program P (without mutual recursion) can be written as a se-
quence h f1; : : : ; fki of algorithms, such that no algorithm fi is called by an
algorithm f j preceding fi in the sequence. A functional program P termi-

nates iff its last algorithm, viz. the “main” algorithm fk, terminates for all

inputs (total termination). If all “auxiliary” algorithms fi with i < k also ter-
minate totally, then termination of P is verified by proving total termination
for all functional algorithms f1; : : : ; fk step by step, e.g. by using one of the
methods developed so far. However, demanding total termination for all “aux-
iliary” algorithms is much too strong for termination of P, cf. e.g. (Manna,
1974; Boyer and Moore, 1988). One only has to verify total termination of
fk, whereas the “auxiliary” algorithms fi with i < k only have to terminate
for some inputs (partial termination), viz. the inputs which result from the
(direct or indirect) calls of fi by fk. In particular, this approach is necessary
when extending termination analysis to imperative programs, cf. Section 4.1.

To prove partial termination of an algorithm f : s1� : : :� sn ! s, a totally
terminating algorithm θ f : s1� : : :� sn ! bool (a termination predicate for
f ) is synthesized, such that the evaluation of θ f (x1; : : : ;xn) to true implies
that evaluation of f (x1; : : : ;xn) terminates. Then one only has to verify the
truth of θ f (t1; : : : ; tn) for each call f (t1; : : : ; tn) which can be executed in the
functional program P. So for

function f

1

: nat! nat

f

1

(0) = f

1

(0)

f

1

(s(x)) = 0

function f

2

: nat! nat

f

2

(0) = 0

f

2

(s(x)) = f

1

(s(x))

and P = hf

1

; f

2

i, we only have to prove that θ
f

1

(s(t)) evaluates to true for
all data objects t, i.e. we only have to prove partial termination of f

1

. This is
sufficient for the total termination of the main function f

2

since f

1

(0) is never
called when executing the functional program P.

Considered in this framework, our methods for proving total termina-
tion from Section 2 and 3 aim to synthesize termination predicates such that
θ f (t1; : : : ; tn) holds for all t1; : : : ; tn. Therefore, in order to obtain termination
predicates for algorithms which do not terminate totally, further developments
of our termination methods are required.

4.1. Termination Analysis for Imperative Programs

A straightforward approach to prove termination of imperative programs is
to transform them into functional ones. See e.g. (Henderson, 1980) for an
automated translation. If termination of the resulting functions can be proved,
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then termination of the original imperative program is verified. As an example
consider the following imperative program which adds the multiplication of
x’s and y’s initial values to r, i.e. r := x� y+ r. For that purpose, the program
uses the total auxiliary functions even, plus, and double.

while :eq(x;0)

do if even(x) then z := 0;
while :eq(x;z)

do x := p(x);
z := s(z) od;

9

=

;

sets x to x
2

y := double(y)

else x := p(x);
r := plus(r;y) fi od

To translate this imperative program into a functional one, every while-
loop is transformed into a separate “loop-function”. For instance, for the in-

ner while-loop we obtain the following function half which takes the input
values of the variables x and z as arguments and returns the output value of
x. (Of course, a similar function returning the output value of z could also
be constructed if required.) If the loop-condition is satisfied, i.e. if eq(x;z) is
false, then half is called recursively with the new values of x and z. Otherwise,
half returns the value of x.

function half : nat�nat! nat

half(x;z) = if(eq(x;z); x; half(p(x);s(z)))

The algorithm half(x;z) computes the arithmetical mean x+z
2 of two numbers

if it terminates. Using the auxiliary function half, the whole imperative pro-
gram is translated into the function times.

function times : nat�nat�nat! nat

times(x;y;r) = if(eq(x;0); r; if(even(x); times(half(x;0);double(y);r);

times(p(x);y;plus(r;y))))

Obviously, the function times is equivalent to the original imperative pro-
gram and in particular, termination of times is equivalent to the termination
of the imperative program. Note that in general the auxiliary functions result-
ing from such a translation are partial even if the original imperative program
terminates totally. The reason is that in imperative programs, termination of
while-loops often depends on their contexts, i.e. on the preconditions that
hold before entering the while-loop.

For instance, in our example the inner while-loop is only entered with an
even input x. However, this restriction on x is not present in the function half.
Therefore times terminates totally, but its auxiliary function half is partial, as
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half(x;z) only terminates iff x is not smaller than z and if x�z is even. Hence,
to prove (total) termination of times one needs a method for termination anal-
ysis of partial functions.

4.2. Generation of Termination Predicates

In this section we present a procedure for the synthesis of termination predi-
cates. Our aim is to generate termination predicates “as weak as possible”, i.e.
predicates which return true as often as possible, but of course in general this
goal cannot be reached as the domains of functions are undecidable. Recall
that there are two requirements for termination predicates θ f .

(a) θ f is partially correct, i.e. if θ f (t1; : : : ; tn) evaluates to true,
then the evaluation of f (t1; : : : ; tn) terminates.

(b) θ f terminates totally.

For instance, to satisfy requirement (a) a termination predicate θ
half

for
the algorithm half from Section 4.1 can be generated by replacing the result
of the non-recursive case by true and by replacing the recursive call of half
by a corresponding recursive call of θ

half

.

function θ
half

: nat�nat! bool

θ
half

(x;z) = if(eq(x;z); true; θ
half

(p(x);s(z)))

This algorithm returns true iff it terminates. As the recursions of θ
half

correspond to the recursions of half, the algorithm half terminates whenever
θ
half

yields true. Hence, the above algorithm for θ
half

is partially correct.
However, the above algorithm does not satisfy requirement (b), i.e. it is

not totally terminating. In other words, there is no well-founded ordering �
satisfying the termination formula

:eq(x;z) ! p(x) � x

of this algorithm. The central idea for the transformation of the above algo-
rithm into a totally terminating one is to choose some well-founded ordering
� and to enter the recursive call θ

half

(p(x);s(z)) only for those inputs x and z

where x is greater than the corresponding argument p(x) in the recursive call
and to return false for all other inputs.

A successful heuristic for the choice of � is to use a well-founded order-
ing which satisfies at least the non-strict version of the termination formula
p(x) � x (and which satisfies the strict inequality p(x) � x “as often as pos-
sible”). To determine such an ordering we use the methods of Section 2 or 3.
For example, by estimation of the defined symbol p, the inequality p(x) � x

is transformed into the constraints p(x) � x and E
p � p

which are satisfied by
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the size ordering (where p(x) is associated with the polynomial x). Hence, we
demand that θ

half

(x;z) may only enter its recursive call if p(x)�# x holds.
Now the methods of Section 2 or 3 are used to compute an equivalent

requirement for p(x) �# x, viz. the difference equivalent ∆
�#(p(x);x) which

corresponds to :eq(x;0). In this way we obtain the following algorithm for
the termination predicate of half.

function θ
half

: nat�nat! bool

θ
half

(x;z) = if(eq(x;z); true; if(eq(x;0); false; θ
half

(p(x);s(z))))

The incorporation of the difference equivalent guarantees that the evaluation
of θ

half

(x;z) can only lead to a recursive call θ
half

(p(x);s(z)) if p(x) is smaller
than the input x.

The above algorithm defines a termination predicate for half, i.e. θ
half

computes a total function and the truth of θ
half

(: : :) is sufficient for the ter-
mination of half(: : :). In fact, θ

half

(x;z) is true iff x is greater than or equal
to z and if x� z is even. Hence, in this example we have even generated the
weakest possible termination predicate, i.e. θ

half

returns true not only for a
subset but for all elements of the domain of half.

To automate the above synthesis of termination predicates we associate
a boolean term Θ(t) with each term t such that evaluation of Θ(t) always
terminates and evaluation of t terminates whenever Θ(t) evaluates to true

10.
Θ(t) is called a termination condition for t and its definition is based on the
termination predicates:

(i) Θ(x) :� true; for variables x,
(ii) Θ(if(b;r1;r2)) :�Θ(b) :̂ if(b; Θ(r1); Θ(r2));

(iii) Θ(g(r1 : : :rn)) :� Θ(r1) :̂ : : : :̂ Θ(rn) :̂ θg(r1 : : :rn); for functions g 6= if,

where “t1 :̂ t2” abbreviates “if(t1; t2; false)” and “t1 :̂ t2 :̂ : : :” abbreviates “t1 :̂

(t2 :̂ : : :)” to ease readability.
For example, the termination condition Θ( f (g(h(t)))) is computed as Θ(t)

:̂ θh(t) :̂ θg(h(t)) :̂ θ f (g(h(t))), because due to our eager language in this
term h and g are evaluated before evaluating f . Now if f (t1; : : : ; tn) = r is
a defining equation of f , then our aim is to use θ f (t1; : : : ; tn) = Θ(r) as a
defining equation for the corresponding termination predicate.

However, for total termination of θ f the arguments of recursive calls have
to be smaller than the corresponding inputs. Therefore, for recursive calls in a
defining equation f (: : : ti : : :) = : : : f (r1 : : :ri : : :rn) : : : we add a requirement to
the termination condition of f (r1 : : : ri : : : rn) which ensures ri � ti (for some

10 More precisely, this implication holds for each substitution σ of t’s variables by
data objects. For all such σ, evaluation of σ(Θ(t)) is terminating and σ(Θ(t)) = true

implies that the evaluation of σ(t) is also terminating.
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fixed i). To this end, instead of (iii) we use

(iv) Θ( f (r1 : : :rn)) :� Θ(r1) :̂ : : : :̂ Θ(rn) :̂ ∆
�

(ri; ti) :̂ θ f (r1 : : :rn)

when computing the termination condition for a result term of f .
So for constructors and functions f whose total termination has been ver-

ified we define θ f (x1; : : : ;xn) :� true. For all other functions f we use the
following construction principle for termination predicates.

From each defining equation f (t1; : : : ; tn) = r of f

construct a defining equation θ f (t1; : : : ; tn) =Θ(r) for θ f .

This construction of termination predicate algorithms can be automated
directly. For instance, θ

half

was built according to this procedure (where we
simplified expressions like if(true; t; : : :) to t).

Now termination of the imperative program from Section 4.1 can be veri-
fied automatically. For the function times, our method synthesizes

function θ
times

: nat�nat�nat! bool

θ
times

(x;y;r) = if(eq(x;0);

true,
if(even(x); if(θ

half

(x;0);θ
times

(half(x;0);double(y);r); false);

θ
times

(p(x);y;plus(r;y)))):

In the above algorithm, the difference equivalents ∆
�#(half(x;0);x) and

∆
�#(p(x);x) (both of which correspond to :eq(x;0)) have been simplified to

true, because they are called under the condition :eq(x;0).
Subsequently, the conjecture θ

times

(x;y;r) = true can be shown by an in-
duction proof. In this way, total termination of times and thereby termination
of the original imperative program is verified.

4.3. Refinements and Summary

To analyze the termination of an algorithm f , a termination predicate θ f is
synthesized, which represents a sufficient condition for f ’s termination. For
this synthesis, the methods of Section 2 or 3 are used to generate a well-
founded ordering satisfying all non-strict termination formulas and as many
strict termination formulas as possible. (If the ordering satisfies all termina-
tion formulas, then total termination of f is proved. So the approaches of
Section 2 and 3 are a special case of this termination analysis procedure.)

Our approach is successfully applied for termination analysis of impera-

tive programs. Such a program can be translated into an equivalent functional
program, where each while-loop corresponds to a (partially terminating) func-
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tional algorithm. Now the termination predicates for these partial “loop func-
tions” can be used to prove termination of the whole imperative program.

A refinement of our method such that several arguments of an algorithm
are considered is obtained by using tuple symbols, cf. Section 3.3. Moreover,
to ease subsequent reasoning we developed several techniques to simplify the
generated termination predicates. Further details can be found in (Brauburger
and Giesl, 1996; Brauburger, 1997).

5. CONCLUSION

We have presented methods for a fully automated termination analysis of
functional programs. We started with a technique to prove termination by es-
timating argument-bounded functions w.r.t. the size ordering. This approach
has been implemented in the induction theorem prover INKA (Biundo et al.,
1986; Hutter and Sengler, 1996) and it proved successful on many examples.
A collection of 60 such algorithms (including classical sorting algorithms and
algorithms for standard arithmetical operations) can be found in (Walther,
1991). Moreover, this method also proves termination of almost all examples
from the data base of (Boyer and Moore, 1979) automatically (where one
algorithm (greatest:factor) must be slightly modified). However, for three al-
gorithms of this data base (viz. normalize, gopher, samefringe) this technique
fails, as they terminate with a well-founded ordering different from size.

Hence, we generalized our first approach to allow an automatic synthesis
of other well-founded relations. The resulting method is the most powerful
technique for automated termination proofs developed so far, because in pre-
vious approaches the orderings used were either fixed or had to be provided
by the user. We also implemented this method within the INKA prover (us-
ing a procedure for the automated generation of polynomial orderings (Giesl,
1995a)) and it performed successfully on a large collection of benchmarks
(including all 82 algorithms from (Boyer and Moore, 1979) and all 60 exam-
ples from (Giesl, 1995d)). This collection contains many practically relevant
examples from different areas of computer science (e.g. algorithms on num-
bers, lists, graphs, trees, strings, terms etc.) and several well-known challenge
problems from the literature (such as McCarthy’s f 91 function).

Finally, we showed that our approach can also be used for partial func-
tions by synthesizing termination predicates which approximate the domains
of such functions. See (Brauburger and Giesl, 1996) for a collection of 32
examples which demonstrate that for many algorithms this approach is able
to generate sophisticated termination predicates (which are not only sufficient
for termination, but which even describe the exact domains of the functions).
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